JPH0924255A - Spiral membrane module - Google Patents

Spiral membrane module

Info

Publication number
JPH0924255A
JPH0924255A JP19796295A JP19796295A JPH0924255A JP H0924255 A JPH0924255 A JP H0924255A JP 19796295 A JP19796295 A JP 19796295A JP 19796295 A JP19796295 A JP 19796295A JP H0924255 A JPH0924255 A JP H0924255A
Authority
JP
Japan
Prior art keywords
water
vessel
raw water
spiral membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19796295A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19796295A priority Critical patent/JPH0924255A/en
Publication of JPH0924255A publication Critical patent/JPH0924255A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase permeated water by flowing raw water at a high flow speed through all spiral membrane elements of a plurality of steps which are filled in a line in the front and the rear in a vessel while raw water is brought into contact with the membranes. SOLUTION: A plurality of spiral membrane elements 1 having the water collection pipes 7 of permeated water in the center parts are held in a line in the front and rear direction in the inside of a cylindrical vessel 10 which is slender in the front and rear direction. The external circumference of each element and the internal circumference of the vessel are sealed. Thereby, the water collection pipes of the front and rear spiral membrane elements are connected in series. Raw water is pressurized and supplied from the the front end of the vessel to the inside thereof and successively passed from the spiral membrane elements of the front step to the spiral membrane element of the rear step. Water permeated through the membranes is introduced into the water collection pipe. Permeated water and concentrated water are separated and discharged from the rear end of the vessel. The sectional area of the flow path for raw water in the spiral membrane elements of a plurality of steps which are arranged in the front and the rear in the vessel is gradually made small from the front toward the rear.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、逆浸透(RO)
膜や、MF膜、UF膜によるスパイラル膜エレメントを
複数個、前後方向に細長い筒形のベッセルの内部に前後
方向に一列に収容し、原水中のトリハロメタン前駆物質
などの微量有機成分や、溶存無機成分を効率よく膜濾過
して分離し、半導体素子の洗浄用の超純水などの透過水
を採水するためのスパイラル膜モジュールに関する。
TECHNICAL FIELD The present invention relates to reverse osmosis (RO).
Membranes, spiral membrane elements composed of MF membranes and UF membranes are accommodated in a row in the front-back direction inside a cylindrical vessel elongated in the front-back direction, and trace organic components such as trihalomethane precursors in raw water and dissolved inorganic substances The present invention relates to a spiral membrane module for efficiently separating membrane components by filtration to collect permeated water such as ultrapure water for cleaning semiconductor elements.

【0002】[0002]

【従来の技術】スパイラル膜エレメントは、シート状の
透過水の流路スペーサと、膜と、シート状の原水の流路
スペーサと、もう1枚の膜を積層した状態で集水管の回
りに巻付けて構成されている。例えば、その一例を図5
に基づいて説明すると、集水孔7´を有する集水管7
に、膜や、原水の流路スペーサよりも幅が少し狭い透過
水の流路スペーサ3の一端が巻付けられ、他端は拡がっ
た状態にあり、一方、RO膜などの分離膜を中央で折り
返して形成される2枚の膜2,2の間に原水の流路スペ
ーサ5を挟み、膜の折返し部2´が集水管に接するよう
にして前記透過水の流路スペーサ3上に配置する。そし
て、膜の周辺部に接着剤を塗布して膜、及び2種のスペ
ーサ3,5を一緒に巻付け、のり巻き状積層体6を形成
する。これにより透過水の流路スペーサ3は結果として
周辺部が接着された2枚の膜2,2の間に介在する。
尚、集水管7の各端部は該積層体の両端から突出する。
又、のり巻き状積層体の外には不透水性のシート8を巻
いて接着する。透過水の流路スペーサ3は、凹凸状の表
面を形成するトリコット編の布(例えばポリエステル
製)であり、原水の流路スペーサ5は編成、又は織成し
た合成繊維のネットである。
2. Description of the Related Art A spiral membrane element is a sheet-shaped permeated water flow path spacer, a membrane, a sheet-shaped raw water flow path spacer, and another membrane, which is wound around a water collecting pipe in a laminated state. It is configured with. For example, FIG.
The water collecting pipe 7 having the water collecting hole 7 ′ will be described with reference to FIG.
On the other hand, one end of the flow path spacer 3 of the permeated water having a width slightly narrower than that of the flow path spacer of the raw water is wound around, and the other end is spread, while the separation membrane such as the RO membrane is placed at the center. A raw water flow path spacer 5 is sandwiched between two membranes 2, 2 that are formed by folding back, and the folded back portion 2 ′ of the membrane is arranged on the permeated water flow path spacer 3 so as to contact the water collecting pipe. . Then, an adhesive is applied to the peripheral portion of the film, and the film and the two kinds of spacers 3 and 5 are wound together to form a paste-wound laminate 6. As a result, the flow path spacer 3 of the permeated water is interposed between the two films 2 and 2 whose peripheral portions are adhered.
Each end of the water collection pipe 7 projects from both ends of the laminated body.
Further, a water-impermeable sheet 8 is wound around and adhered to the outside of the paste-wound laminate. The permeate flow path spacer 3 is a tricot knitted cloth (for example, made of polyester) that forms an uneven surface, and the raw water flow path spacer 5 is a knitted or woven synthetic fiber net.

【0003】このスパイラル膜エレメントは、図7に示
すように前後方向に細長い筒形のベッセル10の内部に
前後方向に複数個、一列に収容し、各エレメント1の外
周とベッセルの内周を環状のシール材9でシールすると
共に、最前段のエレメント1−1の、原水供給口11を
有するベッセルの前端に向いた集水管の前端部7Aはキ
ャップ12を取付けて塞ぎ、最後段のエレメント1−N
の、濃縮水排出口13を有するベッセルの後端に向いた
集水管の後端部7Bは直接、又は間接にベッセルの後端
壁に貫通支持し、それ以外の前段のエレメントの集水管
の後端部と、後段のエレメントの集水管の前端部とをジ
ョイント筒14で連結してスパイラル膜モジュールを構
成する。
As shown in FIG. 7, this spiral membrane element is accommodated in a row in the longitudinal direction in a cylindrical vessel 10 elongated in the longitudinal direction, and the outer circumference of each element 1 and the inner circumference of the vessel are annular. The front end 7A of the water collecting pipe of the frontmost element 1-1 facing the front end of the vessel having the raw water supply port 11 is closed by attaching the cap 12 and the last element 1- N
The rear end portion 7B of the water collecting pipe having the concentrated water discharge port 13 facing the rear end of the vessel is directly or indirectly pierced and supported by the rear end wall of the vessel, and after the water collecting pipe of the other preceding element. The end portion and the front end portion of the water collecting pipe of the latter stage element are connected by the joint cylinder 14 to form a spiral membrane module.

【0004】これによりベッセルの前端の原水供給口1
1からベッセルの内部に原水を圧入すると、原水は最前
段から最後段までの各段のスパイラル膜エレメントの、
のり巻き状積層体6中を軸方向に流れ、その際に膜2を
透過した透過水は膜と膜の間の透過水の流路スペーサ3
を伝わりのり巻き状積層体の中心に向かって渦状に流
れ、集水管の外周に接触した膜を透過し、ジョイント筒
14で直列に接続された各段のエレメントの集水管7内
に集水孔7´から流入する。従って、ベッセルの後端壁
を貫通して突出した集水管の端部7Bからは透過水が流
出し、この後端壁に設けられた濃縮水排出口13からは
各段のエレメントの膜を透過しなかった濃縮水が流出す
る。集水管の端部から流出する透過水は、前述したよう
に原水中のトリハロメタン前駆物質などの微量有機成分
や、溶存無機成分を膜濾過により分離、除去した超純水
であって、半導体素子の洗浄用水などとして必要個所に
配管で供給する。
As a result, the raw water supply port 1 at the front end of the vessel is
When raw water is press-fitted into the vessel from 1, the raw water flows through the spiral membrane element of each stage from the first stage to the last stage.
The permeated water that has flowed axially in the glue-wrapped laminate 6 and has permeated through the membrane 2 at that time is the flow path spacer 3 for the permeated water between the membranes.
Flowing in a spiral shape toward the center of the roll-shaped laminated body, permeating through the membrane in contact with the outer periphery of the water collecting pipe, and collecting holes in the water collecting pipe 7 of each stage element connected in series by the joint cylinder 14. Inflow from 7 '. Therefore, the permeated water flows out from the end portion 7B of the water collecting pipe that penetrates through the rear end wall of the vessel, and permeates the membrane of each stage element from the concentrated water discharge port 13 provided in the rear end wall. The concentrated water that did not flow out. The permeated water flowing out from the end of the water collecting pipe is ultrapure water obtained by separating and removing trace organic components such as trihalomethane precursors in raw water and dissolved inorganic components by membrane filtration as described above. Supply it as piping for cleaning water etc. to the required places.

【0005】[0005]

【発明が解決しようとする課題】この場合、前段の膜エ
レメントの流路スペーサ5に流入する原水の水量は、該
膜エレメントののり巻き状積層体6中を膜に接して軸方
向に流れ、膜を透過して該エレメントの集水管に採水さ
れた透過水と、膜を透過し得ずに原水流路スペーサから
軸方向に流出する濃縮水との合計水量であるのに対し、
後段の膜エレメントののり巻き状積層体中に流入する原
水は、前段の膜エレメントの原水流路スペーサから流出
する濃縮水であって、その水量は前段の膜エレメントの
のり巻き状積層体に流入する原水の水量に対し、前段の
膜エレメントの集水管に採水された透過水の水量分少な
い。
In this case, the amount of raw water flowing into the flow path spacer 5 of the former membrane element flows axially in contact with the membrane in the roll-shaped laminated body 6 of the membrane element, Whereas the total water amount of the permeated water that has permeated through the membrane and is collected in the water collecting pipe of the element and the concentrated water that cannot permeate through the membrane and flows out in the axial direction from the raw water flow path spacer,
The raw water flowing into the roll-up laminated body of the latter membrane element is the concentrated water flowing out from the raw water flow path spacer of the front-stage membrane element, and the amount of water flows into the roll-up laminated body of the front membrane element. The amount of the permeated water sampled in the water collection pipe of the preceding membrane element is smaller than the amount of the raw water to be collected.

【0006】膜濾過においては、のり巻き状積層体中を
膜2に接して流れる原水の流速が速い程、濃度分極を防
止でき、見掛けの塩の阻止率が高い。しかし従来の膜モ
ジュールに使用されているスパイラル膜エレメントのの
り巻き状積層体の原水流路断面積(のり巻き状積層体中
の、原水の通過可能な空間の断面積)は、前段の膜エレ
メントも、後段の膜エレメントも一定にしてある。この
ため、前段の膜エレメントののり巻き状積層体には、後
段の膜エレメントののり巻き状積層体に流入するよりも
量が多い原水が流入し、膜に接して高流速で流れるの
で、濃度分極を効率よく防止できるが、前段の膜エレメ
ントののり巻き状積層体と原水流路断面積が同じ後段の
膜エレメントののり巻き状積層体に流入する原水(前段
の膜エレメントの原水の流路スペーサから流出する濃縮
水)は前段にくらべて少ないため、のり巻き状積層体中
を流れる原水の流速は低下し、濃度分極が発達し、塩の
阻止率が悪くなる。その上、濃度分極現象の進行によっ
てスケールなどが生成し、透過水の採水量が減少する。
In membrane filtration, the higher the flow rate of the raw water flowing in contact with the membrane 2 in the roll-shaped laminate, the more the concentration polarization can be prevented and the apparent salt rejection rate is high. However, the cross-sectional area of the raw water flow path of the spiral wound laminate of the spiral wound membrane element used in the conventional membrane module (the cross-sectional area of the space through which the raw water can pass in the paste wound laminate) is However, the membrane element in the latter stage is also fixed. For this reason, a larger amount of raw water flows into the roll-wound laminate of the preceding membrane element than it flows into the roll-wound laminate of the latter membrane element, and flows at a high flow rate in contact with the membrane. Although the polarization can be efficiently prevented, the raw water flowing into the roll-wound laminate of the former membrane element and the roll-wound laminate of the latter membrane element having the same cross-sectional area of the raw water flow passage (the raw water flow passage of the former membrane element Since the amount of concentrated water flowing out from the spacer) is smaller than that in the former stage, the flow velocity of the raw water flowing through the paste-shaped laminated body decreases, concentration polarization develops, and the salt rejection rate deteriorates. In addition, as the concentration polarization phenomenon progresses, scales are generated, and the amount of permeated water collected decreases.

【0007】このように、膜に接触して流れる原水の流
速の速度差によって、前段の膜エレメントほど透過水の
採水量が多く、後段の膜エレメントほど透過水の採水量
が極端に減少する傾向は、ベッセルの前端内部に原水を
供給する水圧を大にするほど顕著になる。そこで、従来
は各段の膜エレメントでの透過水の採水量をなるべく同
じにするため、ベッセルへの原水の供給圧力を低くして
いるが、これでは膜に膜濾過の機能を充分に発揮させる
ことができず、装置の運転効率は頗る悪い。
As described above, due to the difference in the flow velocity of the raw water flowing in contact with the membrane, the amount of the permeated water taken in the former membrane element is large, and the amount of the permeated water taken in the latter membrane element is extremely reduced. Becomes more remarkable as the water pressure for supplying raw water into the front end of the vessel increases. Therefore, conventionally, the feed pressure of the raw water to the vessel is made low in order to make the amount of permeated water collected at each stage of the membrane element as equal as possible, but this allows the membrane to sufficiently exhibit the function of membrane filtration. It is not possible, and the operating efficiency of the device is extremely poor.

【0008】[0008]

【課題を解決するための手段】本発明は、上述した従来
のスパイラル膜モジュールの問題点を解消するためのも
ので、前後方向に細長い筒形のベッセルの内部に、中心
部に透過水の集水管を有する複数のスパイラル膜エレメ
ントを前後方向に一列に収容し、各エレメントの外周と
ベッセルの内周をシールすると共に、前後のスパイラル
膜エレメントの集水管を直列に接続し、ベッセルの前端
から内部に加圧して供給した原水を前段のスパイラル膜
エレメントから後段のスパイラル膜エレメントに順次通
水し、膜を透過した透過水を集水管に導入し、ベッセル
の後端から透過水と、濃縮水とを分離して排出するよう
にしたスパイラル膜モジュールにおいて、ベッセル内に
配列した前後、複数段のスパイラル膜エレメントの原水
流路断面積を前段から後段に向かって順次小さくしたこ
とを特徴とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems of the conventional spiral membrane module, in which the permeated water is collected in the center of the inside of a cylindrical vessel elongated in the front-rear direction. Multiple spiral membrane elements with water pipes are housed in a row in the front-back direction, the outer circumference of each element and the inner circumference of the vessel are sealed, and the water collection pipes of the front and rear spiral membrane elements are connected in series, and the inside from the front end of the vessel The raw water pressurized and supplied to the spiral membrane element at the front stage is sequentially passed through the spiral membrane element at the rear stage, the permeated water that has permeated the membrane is introduced into the water collection tube, and the permeated water from the rear end of the vessel and the concentrated water are introduced. In the spiral membrane module that separates and discharges the water, the cross-sectional areas of the raw water flow paths of the spiral membrane elements in multiple stages before and after the arrangement in the vessel Characterized by being gradually decrease toward Luo subsequent stage.

【0009】[0009]

【発明の実施の形態】図1から図4は本発明の実施形態
であって、図5〜7の従来装置と同じ構成要素には同じ
符号を付してある。図1の第1実施形態では最前段の膜
エレメント1−1ののり巻き状積層体6の直径はAで、
その外に不透水性シート8を巻いて接着し、シートの外
に環状のシール材9を取付けてベッセル10の内周にシ
ール材9でシールして保持する。2段目以降の膜エレメ
ントののり巻き状積層体6の原水流路断面積を、最前段
で使用したのと同じ透過水の流路スペーサ、原水の流路
スペーサを使用して最前段よりも小さくするため、のり
巻き状積層体の直径をAよりも小さくし、その外を不透
水包囲層21で包囲して不透水包囲層の直径を最前段の
のり巻き状積層体の直径Aと同径にする。そして、不透
水包囲層の外に不透水性シート8を巻いて接着し、この
シートの外に環状のシール材9を取付け、ベッセルの内
周にシール材でシールして保持する。この場合、3段目
の膜エレメント1−3ののり巻き状積層体の直径は、2
段目の膜エレメント1−2ののり巻き状積層体の直径B
(但しB<A)よりも小さいCにし、同様に4段目の膜
エレメント1−4ののり巻き状積層体の直径は、3段目
の膜エレメント1−3ののり巻き状積層体の直径Cより
も小さいDにしてある。従って、後の段の不透水包囲層
21ほど筒壁の厚さは増加する。
1 to 4 show an embodiment of the present invention, in which the same components as those of the conventional apparatus shown in FIGS. 5 to 7 are designated by the same reference numerals. In the first embodiment of FIG. 1, the diameter of the roll-shaped laminated body 6 of the membrane element 1-1 at the frontmost stage is A,
A water-impermeable sheet 8 is wound around the sheet and adhered thereto, an annular sealing material 9 is attached to the outside of the sheet, and the vessel 10 is sealed with the sealing material 9 and held. The cross-sectional area of the raw water flow passage of the second or subsequent membrane element roll-wound laminated body 6 is the same as that used in the first stage, and the same permeate flow channel spacer and raw water flow channel spacer are used as compared with the first stage. In order to make the size smaller, the diameter of the paste-wrapped laminate is made smaller than A, and the outside is surrounded by the impermeable envelope layer 21 so that the diameter of the impermeable envelope is the same as the diameter A of the frontmost roll-like laminate. Diameter. Then, the water-impermeable sheet 8 is wound and adhered to the outside of the water-impermeable envelope layer, an annular seal material 9 is attached to the outside of the sheet, and the inner periphery of the vessel is sealed and held by the seal material. In this case, the diameter of the roll-shaped laminate of the third stage membrane element 1-3 is 2
Diameter B of the roll-shaped laminated body of the membrane element 1-2 of the second stage
(However, C is smaller than B <A), and similarly, the diameter of the roll-shaped laminated body of the fourth-stage membrane element 1-4 is the diameter of the roll-shaped laminated body of the third-stage membrane element 1-3. D is smaller than C. Therefore, the thickness of the tubular wall increases as the water impermeable envelope layer 21 in the subsequent stage increases.

【0010】不透水包囲層21は、発泡樹脂など、それ
自体が不透水材料で成形した2つの半円筒形部材で構成
してもよいし、可撓性のシートを、直径がAよりも小さ
いのり巻き状積層体の外に、直径がAになるまで巻付
け、シートが吸水性の場合は、両端面に不透水性の塗料
を塗るなどして不透水塗層を設けてもよい。
The water impermeable envelope layer 21 may be composed of two semi-cylindrical members which are themselves formed of a water impermeable material such as foamed resin, or a flexible sheet having a diameter smaller than A. A water-impermeable coating layer may be provided outside the glue-wrapped laminated body until the diameter becomes A, and when the sheet is water-absorbing, a water-impermeable coating material may be applied to both end surfaces.

【0011】こうして、第1実施形態ではのり巻き状積
層体の直径を後段の膜エレメントほど小さくすることに
より原水流路断面積を小にし、後段の膜エレメントのの
り巻き状積層体に流入する原水の水量が前段より少なく
ても、膜に接して流れる原水の流速を高速に保つことが
できる。
As described above, in the first embodiment, the diameter of the paste-laminated laminate is made smaller in the latter membrane element to reduce the cross-sectional area of the raw water flow passage, and the raw water flowing into the paste-laminated laminate of the latter membrane element is made smaller. Even if the amount of water is smaller than that in the preceding stage, the flow velocity of the raw water flowing in contact with the membrane can be kept high.

【0012】図2の第2実施形態では、透過水の流路ス
ペーサを前段、後段とも同じにしながら、原水の流路ス
ペーサ5のネットを構成する繊維22の太さを、前段で
は太いd1 にし、後段では細いd2 にしてある。これに
より、原水の流路スペーサの厚さは後段のものほど薄く
なり、のり巻き状積層体6中の原水の流路スペーサ5が
占める断面積の割合は後段の膜エレメントほど小にな
る。従って、前後の各段の膜エレメントの直径は同じで
あるが、原水の流路スペーサ5の厚さが後段のものほど
薄くなることによってのり巻き状積層体の原水流路断面
積は後段のものほど小になり、後段の膜エレメントのの
り巻き状積層体に流入する原水の水量が前段より少なく
ても、膜に接して流れる原水の流速を高速に保つことが
できる。
In the second embodiment of FIG. 2, the permeated water flow channel spacers are the same in both the front and rear stages, but the thickness of the fibers 22 forming the net of the raw water flow channel spacer 5 is set to be thick d1 in the front stage. In the latter part, it is made thin d2. As a result, the thickness of the raw water flow path spacer becomes thinner in the latter stage, and the ratio of the cross-sectional area occupied by the raw water flow path spacer 5 in the paste-laminated laminate 6 becomes smaller in the latter stage membrane element. Therefore, although the diameters of the membrane elements in each of the front and rear stages are the same, the raw water flow channel spacers 5 are thinner in the latter stages, so that the raw water flow passage cross-sectional area of the roll-shaped laminate is the latter stage. The flow rate of the raw water flowing in contact with the membrane can be maintained at a high speed even when the amount of raw water flowing into the roll-wound laminated body of the latter membrane element is smaller than that in the former stage.

【0013】図3の第3実施形態では、原水の流路スペ
ーサを前段、後段とも同じにしながら、膜2と2の間に
介在するトリコット編の布からなる透過水の流路スペー
サ3の厚さを前段では薄いT1 、後段は厚いT2 にして
ある。又、後段の流路スペーサ3の厚さを前段のものゝ
2倍とする場合には厚さT1 のスペーサを前段に、厚さ
T1 のスペーサを2枚重ねて後段のスペーサとしてもよ
い。従って、2枚の膜2,2の各側縁同志を接着してそ
の間に透過水の流路スペーサ3を挟んだ袋状の扁平な膜
体4は後段のものほど厚くなって膜濾過層中に流入しよ
うとする原水の流れを遮るので、前後の各段の膜エレメ
ントの直径は同じでありながらのり巻き状積層体の原水
流路断面積は後段のものほど小になり、後段の膜エレメ
ントののり巻き状積層体に流入する原水の水量が前段よ
り少なくても、膜に接して流れる原水の流速を高速に保
つことができる。
In the third embodiment of FIG. 3, the thickness of the permeated water flow path spacer 3 made of a tricot knitted cloth interposed between the membranes 2 is the same as that of the raw water flow path spacer in both the front and rear stages. The thickness of the front is T1 and the thickness of the rear is T2. Further, when the thickness of the flow passage spacer 3 in the latter stage is doubled from that in the former stage, the spacer of the thickness T1 may be arranged in the front stage and two spacers of the thickness T1 may be stacked to form the latter stage spacer. Therefore, the bag-shaped flat membrane body 4 in which the side edges of the two membranes 2 and 2 are adhered to each other and the permeated water flow path spacer 3 is sandwiched between them is thicker in the latter stage, and thus in the membrane filtration layer. Since it blocks the flow of raw water that tries to flow in, the cross-sectional area of the raw water flow path of the roll-wound laminated body becomes smaller in the latter stage while the diameter of the membrane elements in the front and rear stages is the same. Even if the amount of raw water flowing into the paste-laminated laminate is smaller than that in the preceding stage, the flow velocity of the raw water flowing in contact with the membrane can be kept high.

【0014】図4の第4実施形態は、第2実施形態と、
第3実施形態を複合したもので前段の膜エレメントに使
用する原水の流路スペーサ5は第2実施形態と同様に厚
いもの、透過水の流路スペーサ4は第3実施形態と同様
に薄いものとし、後段の膜エレメントに使用する原水の
流路スペーサ5は第2実施形態と同様に薄いもの、透過
水の流路スペーサ4は第3実施形態と同様に厚いものと
する。これにより、後段の膜エレメントで使用する厚さ
が薄く、断面積が小さな原水の流路スペーサと、のり巻
き状積層体に流入しようとする原水の流れを大きく遮る
透過水の流路スペーサの相乗効果によって後段の膜エレ
メントののり巻き状積層体の原水流路断面積を、前段の
ものゝ原水流路断面積よりも充分に小さくすることがで
き、そののり巻き状積層体に流入する少ない原水を膜に
接して高流速で流すことができる。
The fourth embodiment shown in FIG. 4 is the same as the second embodiment.
A composite of the third embodiment, the raw water flow path spacer 5 used in the membrane element of the preceding stage is as thick as in the second embodiment, and the permeated water flow path spacer 4 is as thin as in the third embodiment. The raw water flow path spacer 5 used for the subsequent membrane element is thin as in the second embodiment, and the permeate flow path spacer 4 is as thick as in the third embodiment. As a result, the raw water flow channel spacer used in the latter membrane element has a small cross-sectional area and the permeated water flow channel spacer that greatly blocks the flow of raw water that is about to flow into the glue roll laminate. Due to the effect, the raw water flow passage cross-sectional area of the roll-wound laminated body of the latter stage membrane element can be made sufficiently smaller than that of the former stage `` raw water flow passage cross-sectional area, and a small amount of raw water flowing into the roll-wound laminated body is obtained. Can be flowed at a high flow rate in contact with the membrane.

【0015】図1から4の各実施形態では、のり巻き状
積層体の原水流路断面積を2段目は1段目より小、3段
目は2段目より小にし、後段に向かって1段宛小さくし
たが、例えば1段目と2段目の原水流路断面積を同じに
し、2段目と3段目の原水流路断面積をそれよりも小さ
くするなど、幾つか宛の膜エレメントの原水流路断面積
を同じにまとめ、順次小さくしてもよい。
In each of the embodiments shown in FIGS. 1 to 4, the raw water flow passage cross-sectional area of the glue-wound laminated body is smaller than that of the first stage in the second stage and smaller than that of the second stage in the third stage. Although it was made smaller for the first stage, for example, the raw water flow passage cross-sectional areas of the first and second stages were made the same, and the raw water flow passage cross-sectional areas of the second and third stages were made smaller than that. The raw water flow passage cross-sectional areas of the membrane element may be put together to be the same and may be successively reduced.

【0016】[0016]

【発明の効果】以上で明らかなように、本発明のスパイ
ラル膜モジュールではベッセル内に一列に充填した前後
複数の膜エレメントののり巻き状積層体の原水流路断面
積を、後に向かって小さくしてあるので、前段の膜エレ
メントに流入するよりも原水の流入量が少ない後段の膜
エレメントにおいても膜に接して原水を高流速で流すこ
とができる。このため、膜面に濃度分極現象が生じるの
を防止し、見掛けの塩の阻止率を高める。そして、ベッ
セルの前端に供給する原水の水圧を高め、各段の膜エレ
メントののり巻き状積層体に原水を高速で通水し、透過
水をより以上に増収できる。
As is apparent from the above, in the spiral membrane module of the present invention, the raw water flow passage cross-sectional area of the roll-shaped laminated body of the front and rear membrane elements packed in a line in the vessel is made smaller toward the rear. Therefore, the raw water can flow at a high flow rate in contact with the membrane even in the latter membrane element in which the amount of raw water inflow is smaller than that in the former membrane element. Therefore, the concentration polarization phenomenon is prevented from occurring on the film surface, and the apparent rejection rate of salt is increased. Then, the water pressure of the raw water supplied to the front end of the vessel is increased, and the raw water is passed through the glue-wound laminated body of the membrane elements at each stage at a high speed, so that the permeated water can be further collected.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の第1実施形態の軸方向断面
図、(B)は同上の前後各段の膜エレメントの断面図で
ある。
FIG. 1A is an axial cross-sectional view of a first embodiment of the present invention, and FIG. 1B is a cross-sectional view of a front and rear membrane element of the same.

【図2】(A)は本発明の第2実施形態の一部の軸方向
断面図、(B)は同上の前段の膜エレメントに使用した
原水の流路スペーサの一部の斜視図、(C)は同じく後
段の膜エレメントに使用した原水の流路スペーサの一部
斜視図である。
FIG. 2 (A) is a partial axial cross-sectional view of a second embodiment of the present invention, (B) is a perspective view of a part of a raw water flow path spacer used for the preceding membrane element of the same, C) is a partial perspective view of the flow path spacer of the raw water, which is also used for the latter membrane element.

【図3】(A)は本発明の第3実施形態の一部の軸方向
断面図、(B)は同上の前段の膜エレメントに使用した
透過水の流路部材の一部の断面図、(C)は同じく後段
の膜エレメントに使用した透過水の流路部材の一部の断
面図である。
FIG. 3A is a partial axial cross-sectional view of a third embodiment of the present invention, and FIG. 3B is a partial cross-sectional view of a permeate flow channel member used for the preceding membrane element of the same. (C) is a cross-sectional view of a part of a permeated water flow channel member that is also used in the latter-stage membrane element.

【図4】本発明の第4実施形態の一部の軸方向断面図で
ある。
FIG. 4 is a partial axial cross-sectional view of a fourth embodiment of the present invention.

【図5】膜エレメントを構成する集水管、膜体、原水の
流路部材の分解状態の斜視図である。
FIG. 5 is a perspective view of a water collecting pipe, a membrane body, and a raw water flow path member that constitute the membrane element in a disassembled state.

【図6】(A)は従来の膜エレメントの一部を拡大した
軸方向断面図、(B)は同上のB−B線での断面図であ
る。
FIG. 6A is an enlarged axial sectional view of a part of a conventional membrane element, and FIG. 6B is a sectional view taken along line BB of the same.

【図7】従来の膜モジュールの軸方向断面図である。FIG. 7 is an axial sectional view of a conventional membrane module.

【符号の説明】[Explanation of symbols]

1 スパイラル膜エレメント 2 膜 3 透過水の流路スペーサ 4 膜体 5 原水の流路スペーサ 6 のり巻き状積層体 7 集水管 8 不透水性シート 9 シール 10 ベッセル 11 原水の導入口 12 キャップ 13 濃縮水の流出口 14 ジョイント筒 21 不透水包囲層 22 原水の流路スペーサの繊維 23 透過水の流路スペーサの突条 1 Spiral Membrane Element 2 Membrane 3 Permeate Flow Channel Spacer 4 Membrane 5 Raw Water Flow Channel Spacer 6 Glued Laminate 7 Water Collection Tube 8 Impermeable Sheet 9 Seal 10 Vessel 11 Raw Water Inlet 12 Cap 13 Concentrated Water Outlet 14 Joint tube 21 Impermeable surrounding layer 22 Raw water flow path spacer fiber 23 Permeate flow path spacer ridge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前後方向に細長い筒形のベッセルの内部
に、中心部に透過水の集水管を有する複数のスパイラル
膜エレメントを前後方向に一列に収容し、各エレメント
の外周とベッセルの内周をシールすると共に、前後のス
パイラル膜エレメントの集水管を直列に接続し、ベッセ
ルの前端から内部に加圧して供給した原水を前段のスパ
イラル膜エレメントから後段のスパイラル膜エレメント
に順次通水し、膜を透過した透過水を集水管に導入し、
ベッセルの後端から透過水と、濃縮水とを分離して排出
するようにしたスパイラル膜モジュールにおいて、ベッ
セル内に配列した前後、複数段のスパイラル膜エレメン
トの原水流路断面積を前段から後段に向かって順次小さ
くしたことを特徴とするスパイラル膜モジュール。
1. A plurality of spiral membrane elements, each having a permeate water collecting pipe in the center thereof, are housed in a row in the front-rear direction inside a vessel that is elongated in the front-rear direction, and the outer circumference of each element and the inner circumference of the vessel. In addition to sealing, the water collecting pipes of the front and rear spiral membrane elements are connected in series, and raw water pressurized and supplied from the front end of the vessel is sequentially passed from the front spiral membrane element to the rear spiral membrane element to form a membrane. The permeated water that has permeated through is introduced into the water collection pipe,
In a spiral membrane module that separates and discharges permeated water and concentrated water from the rear end of the vessel, the raw water flow passage cross-sectional areas of the spiral membrane elements in multiple stages before and after being arranged in the vessel are changed from the front stage to the rear stage. The spiral membrane module is characterized in that it is gradually reduced in size.
JP19796295A 1995-07-12 1995-07-12 Spiral membrane module Pending JPH0924255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19796295A JPH0924255A (en) 1995-07-12 1995-07-12 Spiral membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19796295A JPH0924255A (en) 1995-07-12 1995-07-12 Spiral membrane module

Publications (1)

Publication Number Publication Date
JPH0924255A true JPH0924255A (en) 1997-01-28

Family

ID=16383219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19796295A Pending JPH0924255A (en) 1995-07-12 1995-07-12 Spiral membrane module

Country Status (1)

Country Link
JP (1) JPH0924255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707254A1 (en) * 2005-03-30 2006-10-04 Special Membrane Technologies, Inc. High density filtration module
JP2007523744A (en) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド Equipment for processing highly osmotic solutions
WO2010024291A1 (en) * 2008-08-29 2010-03-04 富士フイルム株式会社 Film degassing module
JP2011120996A (en) * 2009-12-10 2011-06-23 Panasonic Corp Method and apparatus for desalination
KR20210150119A (en) * 2020-06-03 2021-12-10 두산중공업 주식회사 Reverse osmosis apparatus and seawater desalination system comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523744A (en) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド Equipment for processing highly osmotic solutions
EP1707254A1 (en) * 2005-03-30 2006-10-04 Special Membrane Technologies, Inc. High density filtration module
WO2010024291A1 (en) * 2008-08-29 2010-03-04 富士フイルム株式会社 Film degassing module
JP2011120996A (en) * 2009-12-10 2011-06-23 Panasonic Corp Method and apparatus for desalination
KR20210150119A (en) * 2020-06-03 2021-12-10 두산중공업 주식회사 Reverse osmosis apparatus and seawater desalination system comprising the same
US11617987B2 (en) 2020-06-03 2023-04-04 Doosan Enerbility Co., Ltd. Reverse osmosis apparatus and seawater desalination system having the same

Similar Documents

Publication Publication Date Title
US4476022A (en) Spirally wrapped reverse osmosis membrane cell
US5460720A (en) Pleated membrane crossflow fluid separation device
US4235723A (en) Reverse osmosis membrane module
US4033878A (en) Spiral wound membrane module for direct osmosis separations
US4083780A (en) Fluid purification system
US4792401A (en) Spiral wound membrane module and method of manufacture and use
US4906372A (en) Spiral-wound membrane cartridge
EP2838645B1 (en) Spiral wound membrane element
CN103167902A (en) Membrane separation module
US20030222011A1 (en) Spiral wound filtration membrane cartridge with chevron seal
US3827564A (en) Reverse osmosis membrane module
US10286361B2 (en) Filtration assembly including spiral wound bioreactors and hyperfiltration membrane modules
JPH0924255A (en) Spiral membrane module
TWI602609B (en) Spiral wound membrane with bi-directional permeate flow
JP2000342939A (en) Production of spiral membrane module
US20030192821A1 (en) Spiral wound filtration membrane cartridge with chevron seal
USRE26097E (en) Michaels membrane separation device
JP3900624B2 (en) Membrane separator
JPH11188245A (en) Spiral membrane element
RU2398619C2 (en) Membrane ultra-micro-filtration roll element
JPH11137974A (en) Spiral membrane element
Foreman et al. Spiral wound membrane module for direct osmosis separations
JPS5931282Y2 (en) liquid separator
JPH11169685A (en) Spiral membrane module
JPS6013723B2 (en) fluid separation element