JPH06260321A - Sintered ferrite with fine crystalline grains and manufacture thereof - Google Patents

Sintered ferrite with fine crystalline grains and manufacture thereof

Info

Publication number
JPH06260321A
JPH06260321A JP5046800A JP4680093A JPH06260321A JP H06260321 A JPH06260321 A JP H06260321A JP 5046800 A JP5046800 A JP 5046800A JP 4680093 A JP4680093 A JP 4680093A JP H06260321 A JPH06260321 A JP H06260321A
Authority
JP
Japan
Prior art keywords
less
ppm
sintered body
ferrite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5046800A
Other languages
Japanese (ja)
Inventor
Shinya Naruki
紳也 成木
Wataru Ohashi
渡 大橋
Kaoru Ito
薫 伊藤
Fumihiko Hasegawa
史彦 長谷川
Yoshitaka Yamana
芳隆 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5046800A priority Critical patent/JPH06260321A/en
Publication of JPH06260321A publication Critical patent/JPH06260321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture low-cost extrafine grain sintered material by using extrafine powder having specific mean primary grain size to be obtained by spray roasting method as raw material powder, and sintering it under normal pressure at a specific temperature controlled in a sintering atmosphere. CONSTITUTION:The sintered ferrite with fine crystalline grains comprises, as main ingredient composition, 50-55mol% of Fe2O3, 30-45mol% of MnO and 5-20mol% of ZnO; and a fine amount of additive elements 80-1000ppm of SiO2 and 200-6000ppm of CaO. Sintered Kn-Zn ferrite comprises, as trace impurities, 20ppm or less of P, 50ppm or less or Cr, sintering density of 4.7g/cm<3> or more, and a mean crystalline grain size of 2mum or less. Thus, a soft ferrite core having excellent power loss in a MHz range can be manufactured with low cost, and a high frequency transformer can be reduced in size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワートランス等に用
いられるフェライト焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite sintered body used for a power transformer or the like.

【0002】[0002]

【従来の技術】スイッチング電源等に用いられるパワー
トランスは、近年、小型・軽量化が求められており、そ
のため駆動周波数が従来の100kHzから、現在では
500kHz以上の高周波領域に拡がりつつあり、将来
的にはMHz領域での適用が考えられている。しかしな
がら、電力損失のうち高周波領域で特に問題となる渦電
流損失は、駆動周波数の2乗に比例するため、周波数の
増加により電力損失が増大し、発熱が無視できない大き
さとなる。
2. Description of the Related Art In recent years, power transformers used for switching power supplies and the like have been required to be smaller and lighter. Therefore, the driving frequency has been expanded from the conventional 100 kHz to the high frequency region of 500 kHz or more, and in the future. Is considered to be applied in the MHz region. However, the eddy current loss, which is a particular problem in the high frequency region of the power loss, is proportional to the square of the driving frequency, and therefore the power loss increases as the frequency increases, and the amount of heat generated cannot be ignored.

【0003】このような問題を解決するためには、焼結
体の粒径を小さくすることが効果的である。例えば、特
開平1−224265号公報では焼結体の平均結晶粒径
を5μm以下とすることにより電力損失を改善してい
る。また、原料に水熱合成法により製造した微細な粉末
を用い、HIP法により焼結させ、結晶粒径2μmの微
細な焼結体を作成して、高周波領域での電力損失を改善
した例も報告されている(日経マテリアル&テクノロジ
ー、1993年1月号、p.24)。
In order to solve such a problem, it is effective to reduce the grain size of the sintered body. For example, in JP-A-1-224265, the power loss is improved by setting the average crystal grain size of the sintered body to 5 μm or less. Further, there is also an example in which a fine powder manufactured by a hydrothermal synthesis method is used as a raw material and is sintered by a HIP method to form a fine sintered body having a crystal grain size of 2 μm to improve power loss in a high frequency region. Reported (Nikkei Materials & Technology, January 1993 issue, p. 24).

【0004】しかしながら、特開平1−224265号
公報に開示されているように、粒径0.8〜1.0μm
の仮焼粉を原料に用い、1150〜1250℃の温度で
焼成するような従来の方法では、結晶粒径2μm以下の
粒径を有する焼結体を製造することは困難であり、この
ような極微細な粒径を有する焼結体を製造するには、前
述のように、水熱合成法で製造した微細な粉を原料に用
い、HIPやホットプレスによる焼結を行う必要があっ
た。しかしながら、水熱合成法による粉体製造や、或い
はHIPやホットプレスを用いて焼結を施す場合は、製
造コストが非常に高くなり、量産化の面でも問題があっ
た。
However, as disclosed in JP-A-1-224265, the particle size is 0.8 to 1.0 μm.
It is difficult to manufacture a sintered body having a grain size of 2 μm or less by a conventional method in which the calcined powder of 1 is used as a raw material and is fired at a temperature of 1150 to 1250 ° C. In order to produce a sintered body having an extremely fine grain size, it was necessary to use fine powder produced by the hydrothermal synthesis method as a raw material and perform sintering by HIP or hot pressing as described above. However, when the powder is produced by the hydrothermal synthesis method or when the sintering is performed by using HIP or hot press, the production cost becomes very high and there is a problem in mass production.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の水熱
合成法による粉体製造やHIPやホットプレス等の設備
を用いることなく、通常の常圧焼結により、2μm以下
の極微細な結晶粒径を有する焼結体を安価に得ることを
目的とする。
DISCLOSURE OF THE INVENTION The present invention is capable of producing ultrafine particles of 2 μm or less by ordinary pressureless sintering without using the conventional hydrothermal synthesis method such as powder production or equipment such as HIP and hot pressing. The purpose is to inexpensively obtain a sintered body having a crystal grain size.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では特に、原料仮焼粉および成形体の焼成
条件について検討を行った。その結果、原料粉として噴
霧焙焼法により得られる平均一次粒径0.1μm以下の
極微細粉を用い、これに対して焼成雰囲気を制御した1
100℃以下での常圧焼結を施すことにより、目的とす
る極微細粒焼結体が、非常に安価に得られることを見い
だし本発明を完成させるに至ったのである。
In order to solve the above problems, particularly in the present invention, the firing conditions of the raw material calcined powder and the molded body were examined. As a result, ultrafine powder having an average primary particle size of 0.1 μm or less obtained by the spray roasting method was used as the raw material powder, and the firing atmosphere was controlled for this 1.
The inventors have found that the desired ultrafine grained sintered body can be obtained at a very low cost by performing atmospheric pressure sintering at 100 ° C. or less, and have completed the present invention.

【0007】即ち、本発明は以下の通りである。 (1)主成分組成がFe2350〜55モル%、MnO
30〜45モル%、ZnO5〜20モル%の範囲にあ
り、更に微量添加元素としてSiO280〜1000p
pm、CaO200〜6000ppmを含有し、微量不
純物としてのPの量が20ppm以下、Crの量が50
ppm以下であり、焼結密度が4.7g/cm3以上、
平均結晶粒径が2μm以下、電力損失の最低値が1MH
z−50mTの条件下で300kW/m3以下であるM
n−Zn系フェライト焼結体。
That is, the present invention is as follows. (1) Main component composition is Fe 2 O 3 50 to 55 mol%, MnO
It is in the range of 30 to 45 mol% and ZnO is 5 to 20 mol%, and SiO 2 is 80 to 1000 p as a minor addition element.
pm, CaO of 200 to 6000 ppm is contained, the amount of P as a trace impurity is 20 ppm or less, and the amount of Cr is 50.
ppm or less and a sintered density of 4.7 g / cm 3 or more,
Average crystal grain size is 2μm or less, minimum power loss is 1MH
M of 300 kW / m 3 or less under the condition of z-50 mT
n-Zn ferrite sintered body.

【0008】(2)(1)記載のMn−Zn系フェライ
ト焼結体の製造方法において、Fe、MnおよびZnを
塩化物溶液の形で混合し、これを噴霧焙焼して得られる
平均一次粒径0.1μm以下のMn−Zn系ソフトフェ
ライト原料粉を用い、これを直接、造粒成形し、焼成工
程における400℃までの昇温を大気中で行って脱バイ
ンダーを施し、それ以降の昇温過程における雰囲気を酸
素分圧が100ppm以下の窒素雰囲気下で行って、1
100℃以下の温度で常圧焼結するMn−Zn系フェラ
イト焼結体の製造方法。
(2) In the method for producing a Mn-Zn based ferrite sintered body according to (1), Fe, Mn, and Zn are mixed in the form of a chloride solution, and the mixture is spray-baked to obtain an average primary Using Mn-Zn-based soft ferrite raw material powder having a particle size of 0.1 μm or less, this was directly granulated and molded, and the temperature was raised to 400 ° C. in the firing step in the atmosphere to remove the binder, and thereafter, The atmosphere in the temperature rising process is performed under a nitrogen atmosphere with an oxygen partial pressure of 100 ppm or less, and
A method for producing an Mn—Zn-based ferrite sintered body, which comprises sintering under normal pressure at a temperature of 100 ° C. or lower.

【0009】[0009]

【作用】以上の発明によれば、2μm以下の極微細な結
晶粒径を有する焼結体が容易に作製でき、MHz領域で
の渦電流損失を大幅に低減したフェライトコアの製造が
可能となる。本発明において主成分組成がFe2350
〜55モル%、MnO30〜45モル%、ZnO5〜2
0モル%の範囲に定めたのは、この範囲以外の組成にお
いては電力損失が悪化するためである。
According to the above invention, a sintered body having an extremely fine crystal grain size of 2 μm or less can be easily produced, and a ferrite core with greatly reduced eddy current loss in the MHz region can be produced. . In the present invention, the main component composition is Fe 2 O 3 50
~ 55 mol%, MnO30-45 mol%, ZnO5-2
The reason for defining the range of 0 mol% is that the power loss deteriorates in the composition other than this range.

【0010】微量添加元素としてSiO2、CaOを添
加するのは、粒界を高抵抗化し、渦電流損を更に低下さ
せることが目的ある。ここで、SiO2の添加量を80
〜1000ppmの範囲に定めたのは、SiO2の量が
80ppm未満では、特性を改善する効果が少なく、1
000ppmより多くしたときには粒成長が促進され、
目的とする粒径の焼結体が得られず、電力損失も悪化す
るためである。一方、CaOはSiO2との共存下にお
いて、粒界の高抵抗化に効果がある成分であるが、この
範囲を200〜6000ppmに限定したのは、CaO
の量が200ppm未満では、特性を改善する効果が少
なく、6000ppmより多くしたときには電力損失が
悪化するためである。また、PとCrの量は各々20p
pm以下、50ppm以下としたのは、不純物量をこれ
より多くすると、電力損失が著しく悪化するためであ
る。
The purpose of adding SiO 2 and CaO as the trace elements is to increase the resistance of the grain boundaries and further reduce the eddy current loss. Here, the addition amount of SiO 2 is 80
The amount of SiO 2 is less than 80 ppm, and the effect of improving the characteristics is small.
Grain growth is promoted when the amount exceeds 000 ppm,
This is because a sintered body having a target grain size cannot be obtained, and power loss also deteriorates. On the other hand, CaO is a component effective in increasing the resistance of the grain boundary in the coexistence with SiO 2 , but the range was limited to 200 to 6000 ppm because
This is because if the amount is less than 200 ppm, the effect of improving the characteristics is small, and if it is more than 6000 ppm, the power loss is deteriorated. The amount of P and Cr is 20p each
The reason why the amount is less than or equal to pm and less than or equal to 50 ppm is that if the amount of impurities is larger than this, the power loss is significantly deteriorated.

【0011】請求項2において、原料粉の平均一次粒径
を0.1μm以下としたのは、粒径がこれより大きな粉
を原料にした場合には、焼結性が悪くなり焼結密度が低
くなったり、最終的に得られる焼結体の結晶粒径が大き
くなるためである。なお、原料粉の製造方法として噴霧
焙焼法ではなく水熱合成法などの湿式法を用いても同等
の微細な原料粉を得ることができるが、噴霧焙焼法に比
べ、製造コストが非常に高くなる問題がある。また、通
常の固相法で得られた仮焼粉を過度に粉砕する事によっ
て、微細粉を製造する方法もあるが、粒度分布が広くな
ったり、粉砕によるコンタミが混入して特性が悪化す
る。更に、組成の不均一性により粒成長が起こりやすく
なり本発明の微細粒焼結体を得ることが難しくなる。
In the second aspect, the average primary particle diameter of the raw material powder is set to 0.1 μm or less, because when powder having a larger particle diameter is used as the raw material, the sinterability is deteriorated and the sintered density is This is because the particle size becomes lower and the crystal grain size of the finally obtained sintered body becomes larger. Even if a wet method such as a hydrothermal synthesis method is used as a method for producing the raw material powder instead of the spray roasting method, an equivalent fine raw material powder can be obtained, but the production cost is much higher than that of the spray roasting method. There is a problem of becoming expensive. There is also a method of producing fine powder by excessively pulverizing the calcined powder obtained by the usual solid-phase method, but the particle size distribution is widened, and the characteristics are deteriorated due to contamination by pulverization. . Further, due to the non-uniformity of the composition, grain growth easily occurs, and it becomes difficult to obtain the fine grain sintered body of the present invention.

【0012】本発明で原料に噴霧焙焼粉を使用し、容易
に微細粒焼結体が得られる理由を次に示す。従来の原料
仮焼粉では、一次粒子が焼結によって結合した粒子形状
となるが、このような硬い凝集は成形後も取り除かれな
いため、成形性が悪くなったり、粒子間に比較的大きな
細孔を生じ、焼成後に気孔が多くできるため、焼成密度
が低くなる。また、焼成時に結合部分の粒成長が優先的
に起こって、その部分の結晶粒径が大きくなり、不均一
な微細組織になる。
The reason why a fine-grained sintered body can be easily obtained by using a spray roasting powder as a raw material in the present invention is as follows. In the conventional raw material calcined powder, primary particles have a particle shape that is bonded by sintering, but such hard agglomerates are not removed even after molding, resulting in poor moldability or relatively large fine particles between particles. Since the pores are generated and the number of pores is increased after firing, the firing density becomes low. In addition, grain growth in the bonded portion occurs preferentially during firing, and the crystal grain size in that portion increases, resulting in an uneven microstructure.

【0013】一方、本発明の噴霧焙焼粉では、個々の一
次粒子が単独で存在するため、成形性が良く、また焼結
も均一に起こる。更に、このような微細結晶粒の焼結体
を得るには、初期の焼結挙動が重要であり、粉の組成の
均一性が影響する。噴霧焙焼粉は通常法に比べて、ミク
ロな化学組成が極めて均一であるため、局所的な粒成長
を生じることなく、粒成長が均一に起こり、最終的に得
られるコアの結晶粒径が極微細で均一な組織になる。ま
た、噴霧されるべき溶液を高純度化処理することによ
り、高純度の原料粉を得ることが可能となり、高特性の
コアが得られる。
On the other hand, in the spray-roasted powder of the present invention, since each primary particle exists independently, the moldability is good and the sintering also occurs uniformly. Further, in order to obtain a sintered body of such fine crystal grains, the initial sintering behavior is important, and the uniformity of the powder composition has an influence. Compared with the usual method, the spray roasted powder has an extremely uniform microchemical composition, so that the grain growth occurs uniformly without causing local grain growth, and the crystal grain size of the finally obtained core is It has an extremely fine and uniform structure. Further, by subjecting the solution to be sprayed to high purification treatment, it is possible to obtain high-purity raw material powder, and a core with high characteristics can be obtained.

【0014】本発明で用いる噴霧焙焼粉はFe、Mnお
よびZnを塩化物溶液の形で混合したものを焙焼して得
られるが、その際の焙焼時の溶液には、必ず3成分を含
んでいることが必須であり、例えば1成分、2成分のみ
を噴霧焙焼により製造し、その後で残り成分を混合する
等の方法をとった場合は、組成の不均一性や、焼成時の
反応の不完全性により特性が悪化する。
The spray roasting powder used in the present invention can be obtained by roasting a mixture of Fe, Mn and Zn in the form of a chloride solution, and the solution at the time of roasting must always contain three components. Is essential, for example, when a method such as producing only one component or two components by spray roasting and then mixing the remaining components is used, the composition is non-uniform and The characteristics are deteriorated due to the incompleteness of the reaction.

【0015】なお、噴霧焙焼粉を用いてフェライトコア
を製造する報告はいくつかの例があるが、特願平4−1
50656号の「高周波ソフトフェライト焼結体の製造
方法」あるいは特開平4−213805号公報の「複合
型ソフト磁心及びその製造方法」に開示されているよう
に、焙焼後の微小粉を400〜1100℃あるいは80
0℃以上の温度で熱処理して粒径を大きくした後、成形
を行うのが通常である。従って、微小粉に対して直接造
粒成形を施すことも、本発明の1つの特徴と言える。
There are some reports on the production of ferrite cores using spray roasted powder, but Japanese Patent Application No. 4-1
As disclosed in "Production Method of High Frequency Soft Ferrite Sintered Body" of No. 50656 or "Composite Soft Magnetic Core and Its Production Method" of Japanese Patent Laid-Open No. 4-213805, the fine powder after roasting is 400 to 1100 ° C or 80
It is usual to carry out molding after heat treatment at a temperature of 0 ° C. or higher to increase the particle size. Therefore, it can be said that direct granulation and molding of the fine powder is one of the features of the present invention.

【0016】本焼結体を得る際、焼成温度を1100℃
以下としたのは、これより高い温度で焼成した場合には
粒成長が激しく起こり、結晶粒径が2μmより大きくな
ってしまうためである。また、昇温時の雰囲気を酸素分
圧が100ppm以下の窒素雰囲気としたのは酸素分圧
を100ppmより大きくした場合、緻密な焼結体が得
られなかったり、α−Fe23が生成し、フェライト単
一相が得られない場合があるためである。
When obtaining the sintered body, the firing temperature is 1100 ° C.
The reason for the following is that when firing at a temperature higher than this, grain growth occurs violently and the crystal grain size becomes larger than 2 μm. Further, the atmosphere at the time of temperature rise is a nitrogen atmosphere having an oxygen partial pressure of 100 ppm or less. When the oxygen partial pressure is higher than 100 ppm, a dense sintered body cannot be obtained or α-Fe 2 O 3 is produced. However, this is because a single ferrite phase may not be obtained.

【0017】[0017]

【実施例】以下、本発明の具体的実施例を挙げ、本発明
を説明する。噴霧焙焼によりFe 23 71wt%、M
nO 22wt%、ZnO 7wt%の組成の粉を作製
し、SiO2 200ppm、CaO 800ppmの
組成を添加・混合し、平均粒径が約400Åのフェライ
ト原料粉を製造した。原料粉のPとCrの含有量は各々
15ppm、35ppmである。これにバインダーとし
てPVAを1.0%加えて造粒した後、外形29mm、
内径18mm、高さ7mmのリング状に成形した。この
成形体を請求項2に示した焼成条件で、4時間焼成し
た。
The present invention will be described below with reference to specific examples of the present invention.
Will be explained. Fe by spray roasting 2O3 71 wt%, M
Produce powder with composition of nO 22wt% and ZnO 7wt%
And SiO2 200ppm, CaO 800ppm
Ferrai with an average particle size of approximately 400Å by adding and mixing the composition
The raw material powder was manufactured. The content of P and Cr in the raw material powder is
It is 15 ppm and 35 ppm. As a binder
After adding PVA to 1.0% and granulating, the outer diameter is 29 mm,
It was formed into a ring shape having an inner diameter of 18 mm and a height of 7 mm. this
The molded body is fired for 4 hours under the firing conditions described in claim 2.
It was

【0018】このようにして焼成密度が4.8g/cm
3以上の緻密な焼結体を得た。焼成コアの結晶粒径と1
MHz−50mT、100℃での電力損失の値を表1に
記す。なお表中の比較例1、2は焼成温度をそれぞれ1
200℃、1300℃として得られた焼成コアについて
の結果を示しており、比較例3は噴霧される溶液の純度
を調整し、PとCrの含有量を各々40ppm、85p
pmとしたコアの特性である。表1から明らかなように
本発明の焼成コアは高周波での電力損失が非常に優れて
いることがわかる。
In this way, the firing density is 4.8 g / cm.
A dense sintered body of 3 or more was obtained. Crystal grain size of the fired core and 1
Table 1 shows the values of power loss at MHz-50 mT and 100 ° C. In Comparative Examples 1 and 2 in the table, the firing temperature was 1
The results for the fired cores obtained at 200 ° C. and 1300 ° C. are shown, and Comparative Example 3 adjusts the purity of the sprayed solution, and the P and Cr contents are 40 ppm and 85 p, respectively.
This is the characteristic of the core in pm. As is clear from Table 1, the fired core of the present invention has very excellent power loss at high frequencies.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上のように、本発明によれば高周波、
特にMHz領域での電力損失に優れたソフトフェライト
コアを安価に製造することができ、高周波トランスの小
型化に極めて有効である。
As described above, according to the present invention, high frequency,
In particular, a soft ferrite core excellent in power loss in the MHz region can be manufactured at low cost, which is extremely effective for downsizing a high frequency transformer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 史彦 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 山名 芳隆 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumihiko Hasegawa 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Advanced Technology Research Laboratories, Nippon Steel Corporation (72) Inventor Yoshitaka Yamana 2-6 Otemachi, Chiyoda-ku, Tokyo -3 Inside Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分がFe2350〜55モル%、M
nO30〜45モル%、ZnO5〜20モル%の範囲に
あり、更に微量添加元素としてSiO280〜1000
ppm、CaO200〜6000ppmを含有し、微量
不純物としてのPの量が20ppm以下、Crの量が5
0ppm以下であり焼結密度が4.7g/cm3以上、
平均結晶粒径が2μm以下、電力損失の最低値が1MH
z−50mTの条件下で300kW/m3以下であるM
n−Zn系フェライト焼結体。
1. Main component of Fe 2 O 3 is 50 to 55 mol%, M
nO30~45 mol%, in the range of ZnO5~20 mol%, SiO 2 80 to 1000 as further trace additive element
ppm, CaO of 200 to 6000 ppm is contained, the amount of P as a trace impurity is 20 ppm or less, and the amount of Cr is 5
0 ppm or less and a sintered density of 4.7 g / cm 3 or more,
Average crystal grain size is 2μm or less, minimum power loss is 1MH
M of 300 kW / m 3 or less under the condition of z-50 mT
n-Zn ferrite sintered body.
【請求項2】 請求項1記載のMn−Zn系フェライト
焼結体の製造方法において、Fe、MnおよびZnを塩
化物溶液の形で混合し、これを噴霧焙焼して得られる平
均一次粒径0.1μm以下のMn−Zn系ソフトフェラ
イト原料粉を用い、これを直接、造粒成形し、焼成工程
における400℃までの昇温を大気中で行って脱バイン
ダーを施し、それ以降の昇温過程における雰囲気を酸素
分圧が100ppm以下の窒素雰囲気下で行って、11
00℃以下の温度で常圧焼結するMn−Zn系フェライ
ト焼結体の製造方法。
2. The average primary particle obtained by mixing Fe, Mn and Zn in the form of a chloride solution and spray-baking the mixture in the method for producing a Mn—Zn ferrite sintered body according to claim 1. Using Mn-Zn-based soft ferrite raw material powder having a diameter of 0.1 μm or less, this was directly granulated and molded, and the temperature was raised to 400 ° C. in the firing process in the air to remove the binder, and thereafter the ascending process was performed. The atmosphere in the temperature process was performed under a nitrogen atmosphere with an oxygen partial pressure of 100 ppm or less,
A method for producing an Mn—Zn-based ferrite sintered body, which comprises performing atmospheric pressure sintering at a temperature of 00 ° C. or less.
JP5046800A 1993-03-08 1993-03-08 Sintered ferrite with fine crystalline grains and manufacture thereof Pending JPH06260321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5046800A JPH06260321A (en) 1993-03-08 1993-03-08 Sintered ferrite with fine crystalline grains and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5046800A JPH06260321A (en) 1993-03-08 1993-03-08 Sintered ferrite with fine crystalline grains and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06260321A true JPH06260321A (en) 1994-09-16

Family

ID=12757413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5046800A Pending JPH06260321A (en) 1993-03-08 1993-03-08 Sintered ferrite with fine crystalline grains and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06260321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089076A1 (en) * 2014-12-05 2016-06-09 주식회사 포스코 High silicon steel plate having excellent magnetic property and manufacturing method thereof
CN113620698A (en) * 2021-09-03 2021-11-09 江西尚朋电子科技有限公司 Preparation method of high-performance MnZn soft magnetic ferrite material
CN116375462A (en) * 2023-03-22 2023-07-04 无锡斯贝尔磁性材料有限公司 Wide-temperature low-power-consumption manganese-zinc soft magnetic ferrite material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089076A1 (en) * 2014-12-05 2016-06-09 주식회사 포스코 High silicon steel plate having excellent magnetic property and manufacturing method thereof
KR20160068563A (en) * 2014-12-05 2016-06-15 주식회사 포스코 High silicon electrical steel sheet with superior magnetic properties, and method for fabricating the high silicon electrical steel
CN113620698A (en) * 2021-09-03 2021-11-09 江西尚朋电子科技有限公司 Preparation method of high-performance MnZn soft magnetic ferrite material
CN116375462A (en) * 2023-03-22 2023-07-04 无锡斯贝尔磁性材料有限公司 Wide-temperature low-power-consumption manganese-zinc soft magnetic ferrite material and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI724761B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
CN112194482A (en) Ultralow-loss wide-temperature-power MnZn ferrite, preparation method and application thereof in 5G communication field
JPH06260321A (en) Sintered ferrite with fine crystalline grains and manufacture thereof
TWI704122B (en) Manganese-cobalt-zinc fertilizer granular iron and its manufacturing method
CN112041952B (en) MnZn ferrite and method for producing same
JPH06283320A (en) Oxide magnetic material having high saturation flux density and its manufacture
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JP6055892B2 (en) Mn-Zn ferrite
JP3871149B2 (en) Manufacturing method of low-loss ferrite sintered body
CN115650719B (en) high-Tc high-permeability manganese zinc ferrite material and preparation method thereof
JP2532159B2 (en) Transformer core for high frequency power supply
JP2000091114A (en) High permeability oxide magnetic material
JPH07245210A (en) Low loss oxide magnetic material and its preparing method
KR100302070B1 (en) Method for preparing soft magnetic ferrite
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH06290923A (en) Manufacture of ferrite magnet
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
KR100302072B1 (en) Method for preparing soft magnetic ferrite
JP3617070B2 (en) Low loss ferrite manufacturing method
KR100302073B1 (en) Method for preparing soft magnetic ferrite
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JPH09180926A (en) Low loss oxide magnetic material
JPH06349624A (en) Manufacture of oxide magnetic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709