JPH07211533A - Method of manufacturing oxide magnetic material - Google Patents

Method of manufacturing oxide magnetic material

Info

Publication number
JPH07211533A
JPH07211533A JP6006606A JP660694A JPH07211533A JP H07211533 A JPH07211533 A JP H07211533A JP 6006606 A JP6006606 A JP 6006606A JP 660694 A JP660694 A JP 660694A JP H07211533 A JPH07211533 A JP H07211533A
Authority
JP
Japan
Prior art keywords
mixed
powder
magnetic material
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006606A
Other languages
Japanese (ja)
Inventor
Norimasa Sasaki
教 真 佐々木
Shinya Naruki
木 紳 也 成
Kaoru Ito
藤 薫 伊
Yoshitaka Yamana
名 芳 隆 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6006606A priority Critical patent/JPH07211533A/en
Publication of JPH07211533A publication Critical patent/JPH07211533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a method of manufacturing an oxide magnetic material at high frequency, a low loss, and remaining magnetic density for use in a switching power supply, etc. CONSTITUTION:Fe, Mn, and Zn are mixed at a specific ratio in a type of a chloride solution, and sprayed and heat-dissolved in a spray calciner to form a mixed oxide powder comprising Fe2O3 71.5+ or -2%, MnO 22.5+ or -2%, and ZnO 6.0+ or -2%. Thereafter, they are heat-treated at 1000 deg.C or less and further SiO2 0.005 to 0.1%, CaO 0.01 to 0.5%, TiO2 0.01 to 0.5%, V2O5 0.005 to 0.1%, and Nb2O5 0.005 to 0.1% are used as sub-components and added simultaneously, and a calcine powder being controlled to be a mean particle diameter 0.3 to 1.0mum is used as a main material, and granulated and molded to burn at 1000 to 1200 deg.C. Thus, it is possible to obtain an oxide magnetic material having a small loss value, a great saturated magnetic flux density, and further small remaining magnetic flux density, suitable for a transformer material for a high frequency switching power supply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、数百kHz〜数MHz
のスイッチング周波数をもつ高周波スイッチング電源用
トランスコアに用いられる、高周波で低損失な酸化物磁
性材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to several hundred kHz to several MHz.
The present invention relates to a method for producing a high-frequency, low-loss oxide magnetic material used in a transformer core for a high-frequency switching power supply having a switching frequency of 1.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器の小型化に
伴って、その電力供給源として使用されているスイッチ
ング電源の小型化も進んできた。このスイッチング電源
の小型化にはスイッチング周波数の高周波化が不可欠で
あり、使用される電子部品も高周波で低損失なものが必
要となってきた。特にトランス材料である酸化物磁性材
料は、トランジスタ、FET、ダイオードなどと共に、
高周波での低損失化が望まれている電子材料である。
2. Description of the Related Art With the recent miniaturization of electronic equipment, the miniaturization of a switching power supply used as a power supply source thereof has also progressed. Higher switching frequency is indispensable for downsizing of this switching power supply, and electronic components used are required to have high frequency and low loss. In particular, oxide magnetic materials, which are transformer materials, are used together with transistors, FETs, diodes, etc.
It is an electronic material for which low loss at high frequencies is desired.

【0003】このような状況において、高周波で低損失
な酸化物磁性材料として、特開平4−230006、特
開平4−150007、特開平4−192309、特開
平4−192308、特開平4−149026、特開平
3−242906、特開平3−248405、特開平3
−248404、特開平3−233907、特開平3−
212906、特開平3−184307、特開平3−1
63802、特開平3−135002、特開平3−13
5003、特開平3−93667、特開平2−1565
11、特開平1−224265、特開昭63−3192
54、特開昭60−91602などの公報にみられるよ
うに各種の提案がなされている。
Under such circumstances, as an oxide magnetic material having a high frequency and a low loss, Japanese Patent Laid-Open Nos. 4-230006, 4-150007, 4-192309, 4-192308, and 4-1449026 are known. JP-A-3-242906, JP-A-3-248405, JP-A-3
-248404, JP-A-3-233907, JP-A-3-
212906, JP-A-3-184307, JP-A3-1
63802, JP-A-3-135002, JP-A-3-13
5003, JP-A-3-93667, JP-A-2-1565
11, JP-A-1-224265, JP-A-63-3192
54, various proposals have been made as disclosed in Japanese Patent Laid-Open No. 60-91602.

【0004】これらの高周波で低損失な酸化物磁性材料
の特徴としては、酸化物による粒界層の高抵抗化と結晶
粒径の微細化などが挙げられる。特に結晶粒径に関して
は、微細であると同時に粒径が揃っていることが必要で
ある。そのため、製造に用いられる仮焼粉も微細で粒径
が揃っていることが要求される。
Characteristic features of these oxide magnetic materials having a low loss at high frequencies are the increase in resistance of the grain boundary layer due to the oxide and the miniaturization of the crystal grain size. In particular, regarding the crystal grain size, it is necessary that the grain size is fine and at the same time the grain size is uniform. Therefore, the calcined powder used for manufacturing is also required to be fine and have a uniform particle size.

【0005】従来、仮焼粉には次のような製法によるも
のが使われていた。すなわち、主成分であるFe
、MnO、ZnOなどをボールミルで混合し、そ
れを乾燥した後、ロータリーキルンなどで仮焼し、その
後再びボールミルによって粉砕することによって得た仮
焼粉である。
Conventionally, a calcined powder produced by the following manufacturing method has been used. That is, the main component Fe
It is a calcined powder obtained by mixing 2 O 3 , MnO, ZnO, etc. in a ball mill, drying it, calcining it in a rotary kiln, etc., and then pulverizing it again in a ball mill.

【0006】このような従来の仮焼粉を用いた方法で
は、高周波低損失磁性材料に適した、粒径の揃った微細
な仮焼粉を得るためには、仮焼温度を下げ粉砕時間を長
くする必要があった。しかし、仮焼温度を低くすると原
料粉の焼結反応が進まず、成分の均質化がなされない。
また、粉砕時間を長くするとボールミルからの不純物の
混入量が増し、異常粒成長などの原因となる。
In the conventional method using the calcinated powder, in order to obtain a fine calcinated powder having a uniform particle size, which is suitable for a high frequency low loss magnetic material, the calcination temperature is lowered and the crushing time is shortened. I needed to make it longer. However, when the calcination temperature is lowered, the sintering reaction of the raw material powder does not proceed and the components are not homogenized.
Further, if the crushing time is lengthened, the amount of impurities mixed from the ball mill increases, which causes abnormal grain growth and the like.

【0007】このような従来の製造方法によって得た仮
焼粉を用いて高周波で低損失な酸化物磁性材料を作ろう
とすると、残留磁束密度の増加を生じてしまう。残留磁
束密度と残留磁束密度の差を小さくすることとなる。こ
のため、実際にスイッチング電源に搭載したときの発熱
が大きくなるなどの問題があった。
If an attempt is made to produce an oxide magnetic material having a high frequency and a low loss by using the calcined powder obtained by such a conventional manufacturing method, the residual magnetic flux density will increase. The difference between the residual magnetic flux density and the residual magnetic flux density will be reduced. For this reason, there is a problem in that the heat generated when actually mounted in the switching power supply becomes large.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高周波で低
損失、かつ、残留磁束密度が小さい酸化物磁性材料を得
るための製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method for obtaining an oxide magnetic material having a low loss at high frequencies and a small residual magnetic flux density.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明では原料仮焼粉として酸化物磁性材料を構成
する主要金属成分の塩化物溶液を噴霧焙焼して得られる
粉を使用し、この原料粉の粒径を制御し、さらに、添加
物を加えることにより、通常の方法では得られなかった
低い残留磁束密度と高周波での低損失を合わせ持つ酸化
物磁性材料を得た。すなわち、Fe、MnおよびZnを
塩化物溶液の形で所定の割合で混合し、得られる液を噴
霧焙焼炉中に噴霧して熱分解し、重量%で、Fe
71.5±2%、MnO 22.5±2%、Zn
O 6.0±2%、からなる混合酸化物粉末とし
た後、200℃以上、1000℃以下で熱処理し、これ
に副成分としてSiO 0.005〜0.100
%、CaO 0.010〜0.500%、TiO
0.010〜0.500%、V 0.00
5〜0.100%、Nb 0.005〜0.10
0%、を同時に添加し、その後、混合、解砕して平均粒
子径を0.3〜1.0μmに制御した仮焼粉を主原料と
して用い、この仮焼粉を造粒、成形し、雰囲気の酸素分
圧を制御しながら1000〜1200℃で焼成すること
を特徴とする高周波で低損失かつ残留磁束密度の低い酸
化物磁性材の製造方法である。
In order to solve the above problems, the present invention uses a powder obtained by spray roasting a chloride solution of a main metal component constituting an oxide magnetic material as a raw material calcining powder. By controlling the particle size of the raw material powder and further adding an additive, an oxide magnetic material having a low residual magnetic flux density and a low loss at high frequency, which were not obtained by a usual method, was obtained. That is, Fe, Mn, and Zn are mixed in a predetermined ratio in the form of a chloride solution, and the obtained liquid is sprayed in a spray roasting furnace to be pyrolyzed, and Fe 2 O 3 in weight% is used.
71.5 ± 2%, MnO 22.5 ± 2%, Zn
After forming a mixed oxide powder of O 6.0 ± 2%, it is heat treated at 200 ° C. or higher and 1000 ° C. or lower, and SiO 2 0.005 to 0.100 as a sub-component.
%, CaO 0.010 to 0.500%, TiO 2
0.010 to 0.500%, V 2 O 5 0.00
5 to 0.100%, Nb 2 O 5 0.005 to 0.10.
0% at the same time, and then mixed and crushed to use the calcined powder whose average particle size is controlled to 0.3 to 1.0 μm as the main raw material, and granulate and shape this calcined powder, A method for producing an oxide magnetic material having a low loss at a high frequency and a low residual magnetic flux density, which is characterized by firing at 1000 to 1200 ° C. while controlling an oxygen partial pressure of an atmosphere.

【0010】以下に、本発明を詳細に説明する。まず、
噴霧焙焼した混合酸化物粉末を用いた理由について述べ
る。噴霧焙焼炉中に噴霧して熱分解した混合酸化物粉末
は、塩化物溶液の形で所定の割合で混合するため十分な
均質化が行われており、また、小さな粒径の粉が得られ
るため粉砕はほとんど必要とせず、不純物の混入が少な
いためである。これにより粒径の揃った、微細な結晶粒
径の焼成体となる。
The present invention will be described in detail below. First,
The reason for using the spray-baked mixed oxide powder will be described. The mixed oxide powder sprayed in a spray roasting furnace and pyrolyzed is sufficiently homogenized because it is mixed in the form of a chloride solution at a prescribed ratio, and powder with a small particle size is obtained. This is because pulverization requires almost no crushing and less impurities are mixed. As a result, a fired body having a uniform grain size and a fine crystal grain size is obtained.

【0011】次いで、混合酸化物粉末の主成分およびそ
の組成範囲について説明する。本発明の混合酸化物
は、、重量%で、Fe 71.5±2%、MnO
22.5±2%、ZnO 6.0±2%としたが、これ
を外れるとヒステリシス損失が増加し、損失が著しく悪
化するためこのように定めた。また、混合酸化物粉末の
熱処理の温度範囲を200℃以上、1000℃以下に定
めたが、これは塩素を十分に除き、不必要な粒成長をさ
せないようにするためである。
Next, the main components of the mixed oxide powder and the composition range thereof will be described. The mixed oxide of the present invention is made of Fe 2 O 3 71.5 ± 2%, MnO 2 by weight%.
22.5 ± 2% and ZnO 6.0 ± 2% were set, but if deviating from these, the hysteresis loss increases and the loss remarkably deteriorates. Further, the temperature range of the heat treatment of the mixed oxide powder is set to 200 ° C. or higher and 1000 ° C. or lower, in order to sufficiently remove chlorine and prevent unnecessary grain growth.

【0012】本発明において微量添加物を加えることは
必須条件であり、その条件としてはSiO、CaO、
TiO、V、Nbを用いた場合、特に好
ましい特性が得られる。各添加物の適正組成範囲(重量
%)及びその理由は、次の通りである。SiO 0.
005〜0.100%、CaO 0.010〜0.50
0%の範囲は、下限値以下では高周波で低損失となら
ず、上限値以上では異常粒成長が発生するからである。
TiO 0.010〜0.500%の範囲は、下限値
以下では高周波で低損失とならず、上限値以上では異常
粒成長が発生する。V 0.005〜0.100
%、Nb 0.005〜0.100%の範囲は、
下限値以下では1000〜1200℃の焼成では十分な
密度の焼成体が得られず、また上限値以上では結晶粒の
巨大化により高周波での損失が悪化するからである。
In the present invention, the addition of a trace amount of additive is an essential condition, and the conditions include SiO 2 , CaO,
Particularly preferable characteristics are obtained when TiO 2 , V 2 O 5 , and Nb 2 O 5 are used. The proper composition range (% by weight) of each additive and the reason therefor are as follows. SiO 20 .
005 to 0.100%, CaO 0.010 to 0.50
This is because the range of 0% does not result in low loss at high frequencies below the lower limit and abnormal grain growth occurs above the upper limit.
In the range of TiO 2 0.010 to 0.500%, low loss does not occur at high frequencies at the lower limit or lower, and abnormal grain growth occurs at the upper limit or higher. V 2 O 5 0.005~0.100
%, Nb 2 O 5 0.005 to 0.100%,
This is because if the temperature is below the lower limit, a fired body with a sufficient density cannot be obtained by firing at 1000 to 1200 ° C., and if it is above the upper limit, the loss at high frequencies is deteriorated due to the enlargement of crystal grains.

【0013】酸化物磁性材料を得るための焼成は、通常
の製法と同様に酸素分圧を制御しながら行うが、焼成温
度は1000〜1200℃の比較的低温度とする。これ
はこの温度以上では、結晶粒径が大きくなりすぎ高周波
での損失が悪化するためであり、下限値以下では焼結が
進まないためである。また、混合、解砕して得られる平
均粒子径を0.3〜1.0μmの範囲に制御すると、焼
成温度1000〜1200℃と比較的低いにもかかわら
ず空孔などが残らない、緻密な、結晶粒径が0.5〜
5.0μmの範囲の残留磁束密度の低い、高周波で低損
失な酸化物磁性材料が得られる。
The firing for obtaining the oxide magnetic material is carried out while controlling the oxygen partial pressure as in the usual production method, but the firing temperature is set to a relatively low temperature of 1000 to 1200 ° C. This is because above this temperature, the crystal grain size becomes too large and the loss at high frequencies becomes worse, and below the lower limit the sintering does not proceed. Further, when the average particle size obtained by mixing and crushing is controlled in the range of 0.3 to 1.0 μm, pores and the like do not remain even though the firing temperature is relatively low at 1000 to 1200 ° C. , The crystal grain size is 0.5 ~
An oxide magnetic material having a low residual magnetic flux density in the range of 5.0 μm and high frequency and low loss can be obtained.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに説明
する。実施例 噴霧焙焼によりFe 71.6wt%、MnO
22.5wt%、ZnO 5.9wt%の組成を有する
酸化物混合粉末を製造した。これを800℃で熱処理
後、SiO 0.025wt%、CaO換算でCaC
を0.110wt%、TiOを0.190wt
%、Vを0.012wt%、Nbを0.0
22wt%添加し、ボールミルにて混合した。混合後の
粉体をレーザー回折式粒度分布測定器によって測定した
ところ、平均粒径は0.83μmであった。
EXAMPLES The present invention will be further described below based on examples. Example 71.6 wt% Fe 2 O 3 by spray roasting, MnO
An oxide mixed powder having a composition of 22.5 wt% and ZnO 5.9 wt% was manufactured. After heat-treating this at 800 ° C, SiO 2 0.025 wt%, CaC in terms of CaO
O 3 0.110 wt%, TiO 2 0.190 wt
%, V 2 O 5 0.012 wt%, Nb 2 O 5 0.0
22 wt% was added and mixed by a ball mill. When the powder after mixing was measured with a laser diffraction type particle size distribution analyzer, the average particle size was 0.83 μm.

【0015】この仮焼粉にポリビニールアルコールを1
%添加し、水分が3±0.5%になるように調整し、焼
結後の形状がおよそ外形25mm、内径16mm、高さ
7mmであるリング状のコアに成形圧力2ton/cm
2 でプレスした。この成形体を酸素濃度を制御した窒素
雰囲気中で、1100℃、5時間焼成した。得られた高
周波損失酸化物磁性材料の磁束密度50mT、周波数5
00kHzおよび1MHzにおける損失値の最低値、飽
和磁束密度、残留磁束密度を、表1に示す。
1 part of polyvinyl alcohol was added to the calcined powder.
%, And the water content is adjusted to 3 ± 0.5%, and the pressure after sintering is 2 ton / cm on a ring-shaped core whose shape after sintering is approximately 25 mm in outer diameter, 16 mm in inner diameter, and 7 mm in height.
Pressed at 2 . The compact was fired at 1100 ° C. for 5 hours in a nitrogen atmosphere in which the oxygen concentration was controlled. The obtained high-frequency loss oxide magnetic material has a magnetic flux density of 50 mT and a frequency of 5
Table 1 shows the minimum loss value, the saturation magnetic flux density, and the residual magnetic flux density at 00 kHz and 1 MHz.

【0016】比較例 比較例1は、市販されている高周波低損失酸化物磁性材
料である。また、比較例2は、仮焼粉として従来の方
法、すなわち、Fe 71.6wt%、MnO
22.5wt%、ZnO 5.9wt%を混合後、10
50℃で仮焼して得られた粉を粉砕して得た仮焼粉を用
いて作製したものである。
Comparative Example Comparative Example 1 is a commercially available high frequency low loss oxide magnetic material. Further, Comparative Example 2 uses a conventional method of calcining powder, that is, Fe 2 O 3 71.6 wt% and MnO.
After mixing 22.5 wt% and ZnO 5.9 wt%, 10
It is produced by using a calcined powder obtained by pulverizing powder obtained by calcining at 50 ° C.

【0017】比較例1および2の各材料について実施例
と同様に、損失値、飽和磁束密度、残留磁束密度を測定
した。その結果を、表1に併わせて示す。
Loss values, saturation magnetic flux densities and residual magnetic flux densities of the respective materials of Comparative Examples 1 and 2 were measured in the same manner as in the examples. The results are also shown in Table 1.

【0018】 表 1 損失値(kW/m3 ) 500kHz 1MHz 飽和磁束密度 残留磁束密度 50mT 50mT (mT) (mT) 実施例1 48 280 525 160 比較例1 80 310 470 190 比較例2 100 400 500 200 Table 1 Loss value (kW / m 3 ) 500 kHz 1 MHz Saturation magnetic flux density Residual magnetic flux density 50 mT 50 mT (mT) (mT) Example 1 48 280 525 160 Comparative Example 1 80 310 470 190 Comparative Example 2 100 400 500 500 200

【0019】表1から明らかなように、本発明の製造方
法で作製した酸化物磁性材料の損失値は、比較例1およ
び比較例2よりも小さく、その最低値は500kHzで
48kW/m3 、1MHzで280kW/m3 となって
いる。また、飽和磁束密度と残留磁束密度についても、
本発明の仮焼粉を用いた酸化物磁性材料は、飽和磁束密
度が525mTと非常に大きく、さらに残留磁束密度も
160mTと低くなっている。
As is clear from Table 1, the loss values of the oxide magnetic materials produced by the manufacturing method of the present invention are smaller than those of Comparative Examples 1 and 2, and the minimum value is 48 kW / m 3 at 500 kHz, It is 280 kW / m 3 at 1 MHz. Also, regarding the saturation magnetic flux density and the residual magnetic flux density,
The oxide magnetic material using the calcined powder of the present invention has a very high saturation magnetic flux density of 525 mT and a low residual magnetic flux density of 160 mT.

【発明の効果】以上のように、本発明によれば高周波で
低損失なだけでなく、飽和磁束密度の大きい、残留磁束
密度の小さい酸化物磁性材料が得られ、そのため高周波
スイッチング電源用のトランスとして使用できる。
As described above, according to the present invention, it is possible to obtain an oxide magnetic material having a high saturation magnetic flux density and a small residual magnetic flux density as well as a low loss at a high frequency. Therefore, a transformer for a high frequency switching power supply is obtained. Can be used as

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 名 芳 隆 千葉県富津市新富20−1 新日本製鐵株式 会社設備技術センター内新規プロセスエン ジニアリング部 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshitaka Yamana 20-1 Shintomi, Futtsu City, Chiba New Nippon Steel Engineering Co., Ltd. New Process Engineering Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Fe、MnおよびZnを塩化物溶液の形で
所定の割合で混合し、得られる液を噴霧焙焼炉中に噴霧
して熱分解し、重量%で、 Fe 71.5±2%、 MnO 22.5±2%、 ZnO 6.0±2%、 からなる混合酸化物粉末とした後、200℃以上、10
00℃以下で熱処理し、その後、混合、解砕して平均粒
子径を0.3〜1.0μmに制御した仮焼粉を主原料と
して用い、造粒、成形後、1000〜1200℃で焼成
する酸化物磁性材料の製造方法。
1. Fe, Mn and Zn are mixed in a predetermined ratio in the form of a chloride solution, and the resulting liquid is sprayed in a spray roasting furnace to be pyrolyzed, and Fe 2 O 3 71% by weight is added. 0.5 ± 2%, MnO 22.5 ± 2%, ZnO 6.0 ± 2%, and a mixed oxide powder of 200 ° C. or higher, 10
Heat treatment is performed at a temperature of 00 ° C. or lower, and then calcinated powder having an average particle diameter controlled to 0.3 to 1.0 μm by mixing and crushing is used as a main raw material. After granulating and molding, firing at 1000 to 1200 ° C. A method for producing an oxide magnetic material.
【請求項2】Fe、MnおよびZnを塩化物溶液の形で
所定の割合で混合し、得られる液を噴霧焙焼炉中に噴霧
して熱分解し、重量%で、 Fe 71.5±2%、 MnO 22.5±2%、 ZnO 6.0±2%、 からなる混合酸化物粉末とした後、200℃以上、10
00℃以下で熱処理し、これに副成分として SiO 0.005〜0.100%、 CaO 0.010〜0.500%、 TiO 0.010〜0.500%、 V 0.005〜0.100%、 Nb 0.005〜0.100%、 を同時に添加し、その後、混合、解砕して平均粒子径を
0.3〜1.0μmに制御した仮焼粉を主原料として用
い、造粒、成形後、1000〜1200℃で焼成するこ
とを特徴とする高周波で低損失かつ残留磁束密度の小さ
い酸化物磁性材料の製造方法。
2. Fe, Mn and Zn are mixed in a predetermined ratio in the form of a chloride solution, and the resulting liquid is sprayed in a spray roasting furnace to be pyrolyzed, and Fe 2 O 3 71% by weight is added. 0.5 ± 2%, MnO 22.5 ± 2%, ZnO 6.0 ± 2%, and a mixed oxide powder of 200 ° C. or higher, 10
00 ° C. heat treatment below, SiO 2 0.005 to 0.100% to as an auxiliary component, CaO 0.010~0.500%, TiO 2 0.010~0.500 %, V 2 O 5 0. 005 to 0.100% and Nb 2 O 5 0.005 to 0.100% are added at the same time, and then mixed and crushed to control the average particle size to 0.3 to 1.0 μm. Is used as a main raw material, and after granulating and molding, firing is performed at 1000 to 1200 ° C., and a method for producing an oxide magnetic material having a low loss at high frequency and a small residual magnetic flux density.
JP6006606A 1994-01-25 1994-01-25 Method of manufacturing oxide magnetic material Pending JPH07211533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006606A JPH07211533A (en) 1994-01-25 1994-01-25 Method of manufacturing oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006606A JPH07211533A (en) 1994-01-25 1994-01-25 Method of manufacturing oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH07211533A true JPH07211533A (en) 1995-08-11

Family

ID=11643012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006606A Pending JPH07211533A (en) 1994-01-25 1994-01-25 Method of manufacturing oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH07211533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061412A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Ferrite sintered compact and method for producing the same, and electronic parts using the same
US7968606B2 (en) 2004-08-06 2011-06-28 Takasago International Corporation Perfume composition having sedative effect
US8282853B2 (en) 2008-09-30 2012-10-09 Tdk Corporation NiMnZn based ferrite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061412A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Ferrite sintered compact and method for producing the same, and electronic parts using the same
US7754094B2 (en) 2003-12-24 2010-07-13 Hitachi Metals Ltd. Sintered ferrite and its production method and electronic part using same
US7968606B2 (en) 2004-08-06 2011-06-28 Takasago International Corporation Perfume composition having sedative effect
US8282853B2 (en) 2008-09-30 2012-10-09 Tdk Corporation NiMnZn based ferrite

Similar Documents

Publication Publication Date Title
CN110818402B (en) Preparation method of superfine ferrite powder
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH06283320A (en) Oxide magnetic material having high saturation flux density and its manufacture
CN112358289A (en) Preparation method of manganese-zinc ferrite material for power supply
JP5183856B2 (en) Method for producing Mn-Zn ferrite
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JP2852151B2 (en) Method for producing raw material oxide for soft ferrite
JPH0543248A (en) Method for controlling density of raw oxides for ferrite
JPH07245210A (en) Low loss oxide magnetic material and its preparing method
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH06260321A (en) Sintered ferrite with fine crystalline grains and manufacture thereof
JPH06112033A (en) Manufacture of ferrite material
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JPH06333723A (en) Manufacture of low-loss oxide magnetic material
EP0149758B1 (en) Process of preparing ferrite with a predetermined ferrous content
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
JPH08217455A (en) Oxide magnetic material and production thereof
JP3653638B2 (en) Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite
JPH06325918A (en) Ferrite magnetic material
JPH05267038A (en) Manufacture of oxide magnetic material
JPH0891942A (en) Production of powder for ferrite
JPH02307864A (en) Production of porcelain composition for magnetic head
JPH06314608A (en) Low loss oxide magnetic material
JPH04295045A (en) Production of calcined powder of starting material for ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030228