JPH06349625A - High-magnetic permeability oxide magnetic material and manufacure thereof - Google Patents

High-magnetic permeability oxide magnetic material and manufacure thereof

Info

Publication number
JPH06349625A
JPH06349625A JP5136026A JP13602693A JPH06349625A JP H06349625 A JPH06349625 A JP H06349625A JP 5136026 A JP5136026 A JP 5136026A JP 13602693 A JP13602693 A JP 13602693A JP H06349625 A JPH06349625 A JP H06349625A
Authority
JP
Japan
Prior art keywords
magnetic material
powder
mol
crystal
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5136026A
Other languages
Japanese (ja)
Inventor
Shinya Naruki
木 紳 也 成
Kaoru Ito
藤 薫 伊
Yoshitaka Yamana
名 芳 隆 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5136026A priority Critical patent/JPH06349625A/en
Publication of JPH06349625A publication Critical patent/JPH06349625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To inhibit the generation of the growth of abnormal grains at the time of firing of oxide powder by a method wherein spray calcined powder is used as raw calcinated powder for an Mn-Zn ferrite. CONSTITUTION:A high-magnetic permeability oxide magnetic material is formed into a constitution, wherein a composition consisting of 50 to 55mol% of Fe2O3, 20 to 35mol% of MnO and 15 to 30mol% of ZnO is used as the composition of the magnetic material, the crystal density of the magnetic material is 4.95g/cm<3> or higher, the mean crystal grain diameter of crystal grains constituting the magnetic material is 1.5mum or longer and the ratio of the crystal grains of a crystal grain diameter exceeding 150mum is set at 5% or lower of the whole crystal grains. A method of manufacturing this magnetic material is performed by a method wherein Fe, Mn and Zn are mixed in the form of a chloride solution, this solution is sprayed in a spray calcinating furnace to decompose thermally and after the obtained spray calcinated powder is used as oxide powder consisting of the composition consisting of the 50 to 55mol% of the Fe2O3, the 20 to 35mol% of the MnO and the 15 to 30mol% of the ZnO, the oxide powder is heat-treated at 200 to 1000 deg.C, is pulverized, granulated and molded and thereafter, is subjected to firing at 1330 deg.C or higher and at 1450 deg.C or lower. Thereby, the growth of abnormal grains is hardly caused even on a high-temperature and long-time firing condition and the high-magnetic permeability oxide magnetic material having a magnetic permeability of 10000 or higher can be stably obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランスおよびノイズ
フィルタ用の高透磁率酸化物磁性材料に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a high permeability oxide magnetic material for transformers and noise filters.

【0002】[0002]

【従来の技術】Mn−Zn系フェライトは、透磁率が高
いという特徴を有するため、トランス、ノイズフィルタ
に多く使用されている。しかし、近年のノイズ法規制の
周波数帯の拡大、および部品形状の小型化への要求が増
加するにつれ、より小型でかつ広い周波数帯域特性を持
たせうる、優れた高透磁率Mn−Zn系フェライトの開
発が必要になっている。透磁率を高くするためにはフェ
ライトの結晶粒径を大きくし、かつ密度を高くすること
が効果的である。そのためには、高温で長時間の焼成が
必要となる。
2. Description of the Related Art Mn--Zn based ferrites are widely used in transformers and noise filters because of their high magnetic permeability. However, with the recent expansion of the frequency band under the noise law regulation and the increasing demand for miniaturization of component shapes, an excellent high-permeability Mn-Zn-based ferrite that can have a smaller and wider frequency band characteristic can be obtained. Development is needed. In order to increase the magnetic permeability, it is effective to increase the crystal grain size of ferrite and increase the density. For that purpose, baking at high temperature for a long time is required.

【0003】[0003]

【発明が解決しようとする課題】ところが、高温で長時
間の焼成条件下では焼結時に異常粒成長がしばしば起こ
り、かえって特性を悪化させ、生産性を低下させる問題
を生じる。本発明は、高温で長時間の焼成条件でも異常
粒成長を殆ど起こさず、透磁率が10000以上の高い
透磁率を有する酸化物磁性材料を安定に得る方法を提供
することを目的とするものである。
However, under the conditions of firing at high temperature for a long time, abnormal grain growth often occurs during sintering, which rather deteriorates the characteristics and lowers the productivity. It is an object of the present invention to provide a method for stably obtaining an oxide magnetic material having a high magnetic permeability of 10,000 or more, with almost no abnormal grain growth even under high temperature and long-term firing conditions. is there.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、Mn−Znフェライトの原料仮焼粉として、噴霧
焙焼粉を用いることにより、焼成時の異常粒成長の発生
を抑制できることを見い出し、本発明を完成した。
In order to solve the above problems, it is possible to suppress the occurrence of abnormal grain growth during firing by using a spray roasting powder as a raw material calcined powder of Mn-Zn ferrite. Found and completed the present invention.

【0005】本発明は、下記の事項を要旨としている。 (1) Fe2 3 50〜55モル%、MnO 20
〜35モル%およびZnO 15〜30モル%を組成と
し、結晶密度が4.95g/cm3 以上、平均結晶粒径
が15μm以上、結晶粒径が150μmを超える結晶粒
子の割合が結晶粒子全体の5%以下である高透磁率酸化
物磁性材料。 (2) 焼結密度が5.0g/cm3 以上、平均結晶粒
径が25μm以上、結晶粒径が150μmを超える結晶
粒子の割合が結晶粒子全体の5%以下である上記(1)
に記載の高透磁率酸化物磁性材料。 (3) Fe、MnおよびZnを塩化物溶液の形で混合
し、これを噴霧焙焼炉中に噴霧して熱分解し、Fe2
3 50〜55モル%、MnO 20〜35モル%およ
びZnO 15〜30モル%の組成からなる酸化物粉末
とした後、200〜1000℃で熱処理し、解砕、造
粒、成形後、1330℃以上、1450℃以下で焼成す
る高透磁率酸化物磁性材料の製造方法。 なお、本発明において、結晶粒径が150μmを超える
結晶粒子の割合とは、コアの断面積中150μmを超え
る結晶粒子の全断面積の面積比と定義する。
The subject matter of the present invention is as follows. (1) Fe 2 O 3 50 to 55 mol%, MnO 20
35 mol% and 15 to 30 mol% ZnO and the composition, crystal density of 4.95 g / cm 3 or more, an average grain diameter of 15μm or more, the proportion of crystal grains the crystal grain diameter exceeds 150μm of the total crystal grain A high-permeability oxide magnetic material having a content of 5% or less. (2) The ratio of the crystal grains having a sintered density of 5.0 g / cm 3 or more, an average crystal grain size of 25 μm or more, and a crystal grain size of more than 150 μm is 5% or less of the entire crystal grains (1).
The high-permeability oxide magnetic material described in 1. (3) Fe, Mn, and Zn are mixed in the form of a chloride solution, which is sprayed in a spray roasting furnace to be pyrolyzed, and Fe 2 O is added.
3 After forming an oxide powder having a composition of 50 to 55 mol%, MnO 20 to 35 mol% and ZnO 15 to 30 mol%, heat treating at 200 to 1000 ° C., and crushing, granulating and molding, and 1330 ° C. As described above, the method for producing a high-permeability oxide magnetic material, which is fired at 1450 ° C. or lower. In the present invention, the ratio of crystal grains having a crystal grain size of more than 150 μm is defined as the area ratio of the total cross-sectional areas of the crystal grains of more than 150 μm in the core cross-sectional area.

【0006】以下に、本発明を詳細に説明する。本発明
で用いられるフェライト材料の組成は、通常高透磁率材
料として用いられる、この種の材料の組成範囲であるF
2 3 50〜55モル%、MnO20〜35モル
%、およびZnO 15〜30モル%が選ばれる。ま
た、必要により、透磁率の改善に効果があるBi
2 3 、V2 5 、InO等を数10〜数100ppm
含有させても構わない。更に、意図せずに混入する微量
不純物、例えば原料中に最初から含有される、或いは製
造工程において混入するSi、P、Ni、Cr、Al、
Cu、Mg、Ti、Na、Cl、S等の不純物が特性に
影響を与えない程度の微量含まれていても差し支えな
い。ただし、PとSiは、透磁率に大きな影響を及ぼす
ので、各々20ppm、100ppm以下とするのが望
ましい。
The present invention will be described in detail below. The composition of the ferrite material used in the present invention is F, which is the composition range of this type of material that is usually used as a high magnetic permeability material.
e 2 O 3 50-55 mol%, MnO20~35 mol%, and ZnO 15 to 30 mole% is selected. In addition, Bi is effective in improving the magnetic permeability, if necessary.
2 O 3 , V 2 O 5 , InO, etc.
It may be contained. Furthermore, trace impurities that are unintentionally mixed, such as Si, P, Ni, Cr, and Al, which are initially contained in the raw material or mixed in the manufacturing process.
Impurities such as Cu, Mg, Ti, Na, Cl, and S may be contained in a trace amount that does not affect the characteristics. However, since P and Si have a great influence on the magnetic permeability, it is desirable to set them to 20 ppm and 100 ppm or less, respectively.

【0007】焼成温度については、結晶粒径を大きくす
るため1330℃以上で行うが、必要により1380℃
以上という非常に高温で焼成を行っても、異常粒成長を
発生せず、この場合、透磁率が10000以上、条件に
よっては15000を超える非常に高特性の材料を安定
に製造することが可能である。
The firing temperature is 1330 ° C. or higher to increase the crystal grain size, but if necessary, 1380 ° C.
Abnormal grain growth does not occur even if firing is performed at a very high temperature as described above. In this case, it is possible to stably manufacture a material having a magnetic permeability of 10,000 or more, and exceeding 15,000 depending on conditions, with extremely high characteristics. is there.

【0008】本発明においては、原料仮焼粉として、通
常使用されるFe2 3 、MnOおよびZnOを混合
後、仮焼、粉砕して得られる仮焼粉を用いるのではな
く、噴霧焙焼粉を用いる。即ち、Fe、MnおよびZn
を塩化物溶液の形で所定の割合で混合し、得られる液を
噴霧焙焼炉中に噴霧して熱分解し、Fe、Mn、Znの
混合酸化物粉末とした後、成形性を良好とするために2
00〜1000℃で、より好ましくは400〜800℃
で1〜4時間熱処理し、平均一次粒子径を0.3〜1.
0μm程度まで粒成長させたものを用いる。
In the present invention, as the raw material calcined powder, spray calcined powder is used instead of using the calcined powder obtained by mixing commonly used Fe 2 O 3 , MnO and ZnO, then calcining and pulverizing. Use flour. That is, Fe, Mn and Zn
Is mixed at a predetermined ratio in the form of a chloride solution, and the resulting liquid is sprayed in a spray roasting furnace to be pyrolyzed to obtain a mixed oxide powder of Fe, Mn, and Zn. 2 to do
0 to 1000 ° C, more preferably 400 to 800 ° C
Heat treatment for 1 to 4 hours to obtain an average primary particle diameter of 0.3 to 1.
A grain-grown material having a grain size of about 0 μm is used.

【0009】このような仮焼粉を使用し、フェライトコ
アを製造した場合、1330℃以上の高い温度で焼成し
ても異常粒成長を発生することなく、高密度で結晶粒が
大きく均一な、良好な微細構造を有する焼結体が得られ
る。具体的には焼結密度が5.0g/cm3 以上、平均
結晶粒径が15μm以上、好ましくは20μm以上、結
晶粒径が150μmを超える異常粒の割合が結晶粒子全
体の5%以下の焼結体が容易に得られる。その結果、透
磁率が10000以上、条件によっては15000以上
の非常に優れた特性のフェライトコアを安定的に製造す
ることができる。
When a ferrite core is manufactured by using such a calcined powder, even if it is fired at a high temperature of 1330 ° C. or higher, abnormal grain growth does not occur, the density is high and the crystal grains are large and uniform. A sintered body having a good microstructure can be obtained. Specifically, the sintering density is 5.0 g / cm 3 or more, the average crystal grain size is 15 μm or more, preferably 20 μm or more, and the ratio of abnormal grains having a crystal grain size of more than 150 μm is 5% or less of the entire crystal grain. Consolidation is easily obtained. As a result, it is possible to stably manufacture a ferrite core having a magnetic permeability of 10,000 or more and, depending on conditions, 15,000 or more, which is extremely excellent.

【0010】このように、噴霧焙焼粉を用いた場合に高
特性のコアが得られる理由としては、以下のことが考え
られる。 従来法による仮焼粉に比べて、粒度分布がシャープ
であり、しかも液相を経ているため化学組成が均質であ
る。このため、焼成時に局所的な粒成長が起こらず、結
晶粒径が均質な微細構造となるとともに、気孔が少なく
なり、高密度の焼結体が得られる。 従来法で製造した仮焼粉では一次粒子が焼結により
結合し、ネックを有する二次粒子を形成しており、この
硬い凝集が、成形後も除去できず、粒子間に空隙ができ
る。その空隙が焼結後も気孔として残り、密度が低下す
る。また、ネック部分は他の部分よりも急激に粒成長が
進むため、異常粒成長が発生しやすい。これに対し、本
発明の噴霧焙焼粉は、所謂ビルドアップ法で造られるた
めに、個々の粒子が単独で存在しており、凝集が弱く、
大きな空隙ができることなく高密度の成形体が得られ、
その結果、焼結体の密度が高くなる。また、ネック部分
がないために、異常粒成長が発生しにくい。 噴霧焙焼粉は熱処理後も粒子間の結合が弱く、粉砕
が軽度で済むために、微粉が発生しにくく、異常粒成長
が起こらない。
The reason why a core having high characteristics is obtained when the spray roasted powder is used is considered as follows. Compared with the calcined powder produced by the conventional method, the particle size distribution is sharper and the chemical composition is uniform because it passes through the liquid phase. For this reason, local grain growth does not occur at the time of firing, the crystal grain size becomes a uniform fine structure, the number of pores is reduced, and a high-density sintered body can be obtained. In the calcined powder produced by the conventional method, the primary particles are combined by sintering to form secondary particles having a neck. The hard agglomerates cannot be removed even after molding, and voids are formed between the particles. The voids remain as pores even after sintering, and the density decreases. Further, since grain growth progresses more rapidly in the neck portion than in other portions, abnormal grain growth is likely to occur. On the other hand, since the spray roasted powder of the present invention is produced by a so-called build-up method, individual particles are present alone, and aggregation is weak,
A high-density molded body can be obtained without forming large voids.
As a result, the density of the sintered body increases. Further, since there is no neck portion, abnormal grain growth is unlikely to occur. Even after the heat treatment, the spray-roasted powder has a weak bond between the particles and can be crushed lightly. Therefore, fine powder is hardly generated and abnormal grain growth does not occur.

【0011】以上のように、本発明の焙焼粉を用いた場
合、仮焼粉を用いた従来の場合の異常粒成長の主なる発
生原因である、成分の不均一性、硬い凝集粒子の存在、
微粉の存在、の三点を全て排除できるため、高温長時間
の焼成を施しても異常粒成長が起こらず、高密度の焼結
体を製造することが可能となる。なお、コア製造時にF
e、Mn、Znのうち、1成分あるいは2成分のみを噴
霧焙焼法により製造し、その後で残り成分を混合する等
の方法を採用した場合は、組成の不均一性に伴う局所的
な粒成長が起こり、高特性が得られないことがあるた
め、必ず3成分を含む必要がある。
As described above, when the roasted powder of the present invention is used, the main causes of abnormal grain growth in the conventional case using the calcined powder are the non-uniformity of components and the formation of hard agglomerated particles. Existence,
Since all three points of existence of fine powder can be eliminated, abnormal grain growth does not occur even if firing is performed at high temperature for a long time, and it becomes possible to manufacture a high-density sintered body. In addition, when manufacturing the core
In the case of adopting a method in which only one or two components of e, Mn, and Zn are produced by the spray roasting method and then the remaining components are mixed, local grains due to non-uniformity of composition Since growth may occur and high characteristics may not be obtained, it is necessary to always contain three components.

【0012】[0012]

【実施例】以下に、本発明を実施例に基づいて更に説明
する。噴霧焙焼によりFe2 3 53モル%、MnO
25モル%、ZnO 22モル%の組成を有する酸化
物混合粉末を製造した。これを800℃で熱処理後、解
砕し、バインダーとしてPVAを1.0wt%加えて造
粒した後、外径29mm、内径18mm、高さ7mmの
リング状に成形した。この成形体を酸素濃度を制御した
窒素雰囲気中、1330〜1400℃で4時間焼成し
た。ここで、1380℃以上の焼成では、亜鉛の蒸発を
防ぐため、成形体を同組成の仮焼粉に埋めて焼成した。
EXAMPLES The present invention will be further described below based on examples. By spray roasting, Fe 2 O 3 53 mol%, MnO
An oxide mixed powder having a composition of 25 mol% and ZnO 22 mol% was produced. This was heat-treated at 800 ° C., then crushed, added with 1.0 wt% of PVA as a binder and granulated, and then molded into a ring shape having an outer diameter of 29 mm, an inner diameter of 18 mm, and a height of 7 mm. The compact was fired at 1330 to 1400 ° C. for 4 hours in a nitrogen atmosphere in which the oxygen concentration was controlled. Here, in the case of firing at 1380 ° C. or higher, in order to prevent evaporation of zinc, the molded body was embedded in calcined powder of the same composition and fired.

【0013】このようにして得られた焼成コアの焼結密
度、平均結晶粒径、結晶粒径が150μmを超える異常
粒の割合(S150 )、10kHz、室温における透磁率
を表1に示す。なお、表1中の比較例1は、仮焼粉とし
てFe2 3 、Mn3 4 、ZnOの混合後、1050
℃で仮焼、粉砕して得られたものを用いたコアの特性で
ある。また、比較例2は、焼成温度を低くした(130
0℃)例である。
Table 1 shows the sintered density, the average crystal grain size, the ratio of abnormal grains having a crystal grain size of more than 150 μm (S 150 ), 10 kHz, and room temperature permeability of the fired core thus obtained. In Comparative Example 1 in Table 1, after calcination powders of Fe 2 O 3 , Mn 3 O 4 , and ZnO were mixed, 1050
These are the characteristics of the core that was obtained by calcination at ℃ and crushing. In Comparative Example 2, the firing temperature was lowered (130
0 ° C.) is an example.

【0014】 表 1 焼成温度 焼結密度 平均結晶粒径 S150 透磁率 (℃) (g/cm3 ) (μm) (%) 実施例1 1330 5.0 16.0 0 8300 実施例2 1380 5.1 28.5 1.2 12500 実施例3 1400 5.1 43.5 1.5 16500 比較例1 1380 4.9 29.0 7.4 6200 比較例2 1300 4.9 11.0 0 4800 表1から明らかなように、原料仮焼粉として噴霧焙焼粉
を用いることにより、焼結密度が高く、異常粒が少な
い、高透磁率のコアが得られることがわかる。
Table 1 Firing temperature Sintering density Average grain size S 150 Permeability (℃) (g / cm 3 ) (μm) (%) Example 1 1330 5.0 16.0 0 8300 Example 2 1380 5.1 28.5 1.2 12500 Example 3 1400 5.1 43.5 1.5 16500 Comparative Example 1 1380 4.9 29.0 7.4 6200 Comparative Example 2 1300 4.9 11.00 4800 As is clear from Table 1, by using the spray roasted powder as the raw material calcined powder, it is possible to obtain a core having high sintering density, few abnormal grains, and high magnetic permeability.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、非常に
高い透磁率を有する材質が容易に得られるので、高特性
のトランスおよびノイズフィルタ用コアを安定に製造す
ることができ、産業上極めて有益である。
As described above, according to the present invention, since a material having a very high magnetic permeability can be easily obtained, it is possible to stably manufacture a transformer and a noise filter core having high characteristics. Above all extremely beneficial.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Fe2 3 50〜55モル%、MnO
20〜35モル%およびZnO 15〜30モル%を組
成とし、結晶密度が4.95g/cm3 以上、平均結晶
粒径が15μm以上、結晶粒径が150μmを超える結
晶粒子の割合が結晶粒子全体の5%以下である高透磁率
酸化物磁性材料。
1. Fe 2 O 3 50 to 55 mol%, MnO
The composition is 20 to 35 mol% and ZnO 15 to 30 mol%, the crystal density is 4.95 g / cm 3 or more, the average crystal grain size is 15 μm or more, and the crystal grain ratio is more than 150 μm. 5% or less of a high magnetic permeability oxide magnetic material.
【請求項2】焼結密度が5.0g/cm3 以上、平均結
晶粒径が25μm以上、結晶粒径が150μmを超える
結晶粒子の割合が結晶粒子全体の5%以下である請求項
1に記載の高透磁率酸化物磁性材料。
2. The ratio of crystal grains having a sintered density of 5.0 g / cm 3 or more, an average crystal grain size of 25 μm or more, and a crystal grain size of more than 150 μm is 5% or less of the entire crystal grains. The high-permeability oxide magnetic material described.
【請求項3】Fe、MnおよびZnを塩化物溶液の形で
混合し、これを噴霧焙焼炉中に噴霧して熱分解し、Fe
2 3 50〜55モル%、MnO 20〜35モル%
およびZnO 15〜30モル%の組成からなる酸化物
粉末とした後、200〜1000℃で熱処理し、解砕、
造粒、成形後、1330℃以上、1450℃以下で焼成
する高透磁率酸化物磁性材料の製造方法。
3. Fe, Mn and Zn are mixed in the form of a chloride solution, which is sprayed in a spray roasting furnace to be pyrolyzed.
2 O 3 50-55 mol%, MnO 20-35 mol%
And ZnO 15 to 30 mol% and made into oxide powder, and then heat-treated at 200 to 1000 ° C. to be crushed,
A method for producing a high-permeability oxide magnetic material, which comprises firing at 1330 ° C. or higher and 1450 ° C. or lower after granulation and molding.
JP5136026A 1993-06-07 1993-06-07 High-magnetic permeability oxide magnetic material and manufacure thereof Pending JPH06349625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136026A JPH06349625A (en) 1993-06-07 1993-06-07 High-magnetic permeability oxide magnetic material and manufacure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136026A JPH06349625A (en) 1993-06-07 1993-06-07 High-magnetic permeability oxide magnetic material and manufacure thereof

Publications (1)

Publication Number Publication Date
JPH06349625A true JPH06349625A (en) 1994-12-22

Family

ID=15165454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136026A Pending JPH06349625A (en) 1993-06-07 1993-06-07 High-magnetic permeability oxide magnetic material and manufacure thereof

Country Status (1)

Country Link
JP (1) JPH06349625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316069C (en) * 2002-10-11 2007-05-16 赛若朴有限公司 Solid phase single crystal growing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316069C (en) * 2002-10-11 2007-05-16 赛若朴有限公司 Solid phase single crystal growing method

Similar Documents

Publication Publication Date Title
JP2005213100A (en) METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH06283320A (en) Oxide magnetic material having high saturation flux density and its manufacture
JP2006165479A (en) Ferrite core and line filter
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
JP7117447B1 (en) Method for producing zirconia setter and MnZn ferrite
JPS6131601B2 (en)
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP5541475B2 (en) Ferrite sintered body, manufacturing method thereof, and electronic component
JP5183856B2 (en) Method for producing Mn-Zn ferrite
KR100302071B1 (en) Method for preparing soft magnetic ferrite
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
KR100302070B1 (en) Method for preparing soft magnetic ferrite
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JP2000091114A (en) High permeability oxide magnetic material
JP3406382B2 (en) Method for producing ferrite magnetic powder
JP2003321273A (en) Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby
JPH06342716A (en) Manufacture of oxide magnetic material high in permeability
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH06314608A (en) Low loss oxide magnetic material
JPH06333723A (en) Manufacture of low-loss oxide magnetic material
KR100302073B1 (en) Method for preparing soft magnetic ferrite
KR100302069B1 (en) Method for preparing soft magnetic ferrite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730