JP2003321273A - Method for producing spinel-type ferrite core and spinel- type ferrite core produced thereby - Google Patents
Method for producing spinel-type ferrite core and spinel- type ferrite core produced therebyInfo
- Publication number
- JP2003321273A JP2003321273A JP2002126134A JP2002126134A JP2003321273A JP 2003321273 A JP2003321273 A JP 2003321273A JP 2002126134 A JP2002126134 A JP 2002126134A JP 2002126134 A JP2002126134 A JP 2002126134A JP 2003321273 A JP2003321273 A JP 2003321273A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite core
- spinel
- ferrite
- main component
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば電源トラン
ス、パワーインダクタまたは電磁波吸収材料に用いられ
るスピネル型フェライトの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spinel type ferrite used in, for example, a power transformer, a power inductor or an electromagnetic wave absorbing material.
【0002】[0002]
【従来の技術】近年、電源トランス、パワーインダクタ
や電磁波吸収材料に用いられるスピネル型フェライトコ
アは、より安価でかつ高性能なものが求められている。
一般的なフェライトコアの製造方法は、図7(A)に示
すように、原料を秤量して混合(配合)し(S1)、こ
れを乾燥し(S2)、仮焼きし(S3)、粉砕し(S
4)、乾燥して造粒し(S5)、所定のコア形状に成形
し(S6)、焼成(S7)して製品としている。2. Description of the Related Art In recent years, spinel type ferrite cores used for power transformers, power inductors and electromagnetic wave absorbing materials are required to be cheaper and have higher performance.
As shown in FIG. 7 (A), a general ferrite core manufacturing method is as follows. Raw materials are weighed, mixed (blended) (S1), dried (S2), calcined (S3), and crushed. Shi (S
4) Drying and granulating (S5), molding into a predetermined core shape (S6), and firing (S7) to obtain a product.
【0003】特公平6-267724号公報には、Ni-
Zn-Cu系フェライトにおいて、WO3を添加するこ
とにより、低損失のものが得られること記載されてい
る。この公報による組成のフェライトコアを得る場合
も、800℃での仮焼き工程を入れ、本焼成を1010
℃で行うことが記載されている。Japanese Patent Publication No. 6-267724 discloses Ni-
It is described that, by adding WO 3 to the Zn-Cu type ferrite, a low loss material can be obtained. Also when obtaining a ferrite core having a composition according to this publication, a calcination step at 800 ° C. is performed and the main firing is performed at 1010.
It is described that it is carried out at ℃.
【0004】また、WO3を用いた従来例として、特公
平6-87441号公報に記載がある。該公報には、W
O3の融点が1473℃と高融点酸化物であることか
ら、従来の製造方法を用いてフェライトコアを得る場
合、WO3を、焼成において粗大粒子発生を抑制するた
めの焼結抑制剤として用いることが記載されている。A conventional example using WO 3 is described in Japanese Patent Publication No. 6-87441. In this publication, W
Since the melting point of O 3 is 1473 ° C., which is a high-melting oxide, WO 3 is used as a sintering inhibitor for suppressing the generation of coarse particles in firing when a ferrite core is obtained by a conventional manufacturing method. Is described.
【0005】[0005]
【発明が解決しようとする課題】前述のように、従来の
スピネル型フェライトコアの製造方法においては、フェ
ライトが生成できる仮焼きと、本焼成との合計二度の焼
成工程を行わなければならない。このように、従来の製
造方法で仮焼きを必要とした理由は、仮焼き工程を省略
した1回の焼成のみでは均一な連続固溶体には成り得
ず、フェライトコアとして必要な磁気特性を満たすもの
が得られなかったためである。As described above, in the conventional method for manufacturing a spinel-type ferrite core, it is necessary to carry out a total of two firing steps: calcination capable of producing ferrite and main firing. As described above, the reason why calcination is required in the conventional manufacturing method is that a single continuous firing without a calcination step cannot form a uniform continuous solid solution, and the ferrite core satisfies the required magnetic properties. Because it was not obtained.
【0006】そこで、より高い温度での焼成により、原
料成分中の元素の拡散を促進させれば、必要な磁気特性
を満足するものが実現でき、仮焼き工程を省略できるこ
とが予想された。しかし、仮焼き工程を省略し、通常の
焼成温度より高い温度で焼成すると、フェライト原料成
分中の不純物や粒度分布の影響を受け易く、これにより
異常粒成長を引き起こし、著しい磁気特性の劣化を起こ
すことがある。このため、焼成条件の制御が困難とな
り、安定した焼成条件を確保することができなかった。[0006] Therefore, it was expected that by promoting the diffusion of the elements in the raw material components by firing at a higher temperature, the one satisfying the required magnetic properties could be realized and the calcining step could be omitted. However, if the calcination process is omitted and firing is performed at a temperature higher than the normal firing temperature, it is easily affected by impurities in the ferrite raw material component and the grain size distribution, which causes abnormal grain growth and causes remarkable deterioration of magnetic properties. Sometimes. For this reason, it became difficult to control the firing conditions, and it was not possible to secure stable firing conditions.
【0007】したがって、フェライトコアの製造方法に
おいて、工程数が殖えてでも仮焼き工程を導入すること
は、必要な磁気特性を得るのに従来は必要不可欠なもの
とされてきた。Therefore, in the method of manufacturing a ferrite core, it has been conventionally indispensable to introduce a calcination step even if the number of steps increases.
【0008】本発明は、従来技術において必須とされて
きた仮焼き工程が不要となり、製造時間、製造コストを
削減でき、かつ従来のものと比較して遜色のない磁気特
性のフェライトとその製造方法を提供することを目的と
する。The present invention eliminates the calcination step which has been indispensable in the prior art, reduces the manufacturing time and manufacturing cost, and has a magnetic property comparable to that of the conventional ferrite, and its manufacturing method. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】(1)本発明のスピネル
型フェライトコアの製造方法は、Fe2O3と、これに
金属酸化物の一種以上を加えたものとを主成分とし、副
成分として、WO3を、主成分に対して0.075〜
0.7wt%加えた混合粉末を成形し、1040℃以上
での焼成1回のみでフェライト焼結体とすることを特徴
とする。(1) A method of manufacturing a spinel type ferrite core according to the present invention comprises Fe 2 O 3 and one or more of metal oxides as a main component, and a sub-component. As a result, WO 3 is added to the main component in an amount of 0.075 to
It is characterized in that a mixed powder added with 0.7 wt% is molded, and a ferrite sintered body is obtained by only one firing at 1040 ° C. or higher.
【0010】従来の仮焼き工程を有する製造方法では、
仮焼き工程において、例えば800℃で焼成すると、F
e2O3と他の金属酸化物との反応により、フェライト
を生成する。すなわち例えば主成分原料をFe2O3、
NiO、CuO、ZnOとし、副成分をWO3として仮
焼きしたとすると、図7(C)に示すように、NiFe
2O4と、ZnFe2O4と、CuFe2O4とが先行
生成する。そして、本焼成の際に、WO3は焼結抑制剤
として作用する。In the conventional manufacturing method having a calcination step,
In the calcination step, if the material is baked at 800 ° C., for example, F
The reaction of e 2 O 3 with another metal oxide produces ferrite. That is, for example, the main component raw material is Fe 2 O 3 ,
Assuming that NiO, CuO, and ZnO are used, and WO 3 as a secondary component is calcined, as shown in FIG.
2 O 4 , ZnFe 2 O 4 , and CuFe 2 O 4 are produced in advance. Then, during the main firing, WO 3 acts as a sintering inhibitor.
【0011】一方本発明において、Fe2O3、Ni
O、ZnO、CuOを主成分原料とし、WO3を加えて
混合し、仮焼きしないで1040℃以上で焼成すると、
Fe2O3とWO3とが反応し、図7(D)に示すよう
にFe2WO6が生成する。このFe2WO6は、WO
3と異なり、1050℃という比較低温で液相となるの
で、低温焼結化が可能となるのである。図8はFe2O
3-WO3の2成分系の相図であり、1050℃でFe
2WO6が液相となることを示している。On the other hand, in the present invention, Fe 2 O 3 and Ni
When O, ZnO, and CuO are used as the main ingredients, WO 3 is added and mixed, and firing is performed at 1040 ° C. or higher without calcination,
Fe 2 O 3 and WO 3 react with each other to produce Fe 2 WO 6 as shown in FIG. This Fe 2 WO 6 is WO
3 unlike, since the liquid phase in comparison low temperature of 1050 ° C., it become possible to low temperature co Yuika. Fig. 8 shows Fe 2 O
3 is a phase diagram of the binary system of 3- WO 3 , Fe at 1050 ° C.
2 shows that WO 6 is in a liquid phase.
【0012】本発明によれば、仮焼きや粉砕工程が無く
なるために、不純物が混入するチャンスが少なくなる
上、低温焼成が可能となるので、フェライト原料成分中
の不純物や粒度分布による影響が抑制され、異常粒成長
を起こしにくくすることができる。このため、著しい磁
気特性の劣化を同時に抑制することができる。According to the present invention, since the steps of calcination and pulverization are eliminated, the chance of impurities being mixed in is reduced, and low temperature firing is possible, so the influence of impurities in the ferrite raw material components and the particle size distribution is suppressed. It is possible to prevent abnormal grain growth from occurring. Therefore, remarkable deterioration of the magnetic characteristics can be suppressed at the same time.
【0013】また、必要な磁気特性を確保するための焼
成温度領域が拡大するに伴い、フェライトコアの低温焼
結も同時に実現できる。Further, as the firing temperature range for ensuring the necessary magnetic characteristics is expanded, low temperature sintering of the ferrite core can be realized at the same time.
【0014】また、本発明の製造方法は、仮焼き、粉砕
といった工程が省略されるため、製造時間が短縮され、
製造コストが削減される。Further, in the manufacturing method of the present invention, steps such as calcination and crushing are omitted, so that the manufacturing time is shortened,
Manufacturing costs are reduced.
【0015】本発明において、主成分原料として、Fe
2O3以外については、NiO、ZnO、CuO、Mg
Oのうちのいずれかまたはこれらの2種以上を含むもの
としてもよい。より具体的には、Ni-Cu-Zn系以外
に、Ni-Zn系、Mg-Zn系、Mg-Cu-Zn系、M
g-Ni-Zn系フェライトにおいて、本発明が好適に適
用される。
(2)本発明の製造方法を実施する場合、好ましくは、
単元フェライトAFe2O4(A=Ni、Cu、Znの
うちのいずれか1つの金属)と、Fe2O3と、前記N
iO、CuO、ZnOのうち前記Aを除く金属の酸化物
とを混合してなる粉末を主成分とする。このように、F
e2O3以外の金属酸化物の一部を最初からフェライト
の形で混合すると、焼成の際に、600℃以上の温度に
昇温したときのFe2O3と他の金属酸化物との反応に
よってフェライトを生じる際の膨張、収縮の度合いが減
少するので、製品の変形を抑制することができる。
(3)本発明の製造方法は、WO3の一部または全部の
代わりにMoO3を用いても実施することが可能であ
る。
(4)本発明によるスピネル型フェライトコアは、前記
製造方法によって得られるもので、好ましくは、主成分
として酸化鉄をFe2O3換算で48.0〜49.7モ
ル%、酸化銅をCuO換算で7.0〜11.0モル%、
酸化亜鉛をZnO換算で15.7〜30.3モル%、酸
化ニッケルを残りのモル%含み、副成分としてタングス
テンをWO3換算で0.075〜0.7wt%含み、フ
ェライトコア中の結晶粒子間の組成差が、前記ニッケ
ル、銅、亜鉛のうちの少なくとも1元素以上の酸化物に
ついて最大1モル%以上の組成差を有するものである。In the present invention, Fe is used as a main component raw material.
Other than 2 O 3 , NiO, ZnO, CuO, Mg
One of O or two or more of these may be contained. More specifically, besides Ni-Cu-Zn system, Ni-Zn system, Mg-Zn system, Mg-Cu-Zn system, M
The present invention is preferably applied to g-Ni-Zn ferrite. (2) When carrying out the production method of the present invention, preferably,
Unitary ferrite AFe 2 O 4 (A = any one metal of Ni, Cu and Zn), Fe 2 O 3 and the N
The main component is a powder obtained by mixing oxides of metals other than A among iO, CuO, and ZnO. Thus, F
When a part of the metal oxides other than e 2 O 3 is mixed in the form of ferrite from the beginning, Fe 2 O 3 and other metal oxides when heated to a temperature of 600 ° C. or higher during firing are mixed. Since the degree of expansion and contraction when ferrite is generated by the reaction is reduced, the deformation of the product can be suppressed. (3) The production method of the present invention can be carried out by using MoO 3 instead of part or all of WO 3 . (4) The spinel type ferrite core according to the present invention is obtained by the above-mentioned manufacturing method, and preferably, iron oxide as the main component is 48.0 to 49.7 mol% in terms of Fe 2 O 3 , and copper oxide is CuO. 7.0 to 11.0 mol% in terms of conversion,
Crystal particles in a ferrite core containing zinc oxide in an amount of 15.7 to 30.3 mol% in terms of ZnO, nickel oxide in the remaining mol%, and tungsten as an accessory component in an amount of 0.075 to 0.7 wt% in terms of WO 3. The composition difference between the oxides is a maximum of 1 mol% or more with respect to the oxide of at least one element of the nickel, copper, and zinc.
【0016】[0016]
【発明の実施の形態】本発明の製造方法の一実施の形態
を、Ni-Cu-Zn系フェライトについて説明する。主
成分の原料には、一例として、Fe2O3、NiO、C
uO、ZnOからなる混合粉末を用いる。また他の実施
の形態として、単元フェライトAFe 2O4(AはN
i、Cu、Zn)の1つを用い、これにFe2O3と、
A以外の金属の酸化物を加えたものを用いる。これらの
主成分原料に対して、WO3を加え、図7(B)に示す
ように、所定量秤量して湿式混合(配合)し(S1)、
乾燥し(S2)、解砕する。この粉体にバインダーを加
えて造粒し、顆粒を作成してコアを成形する(S3)。
これを大気中1000〜1250℃で焼成して製品とす
る(S4)。BEST MODE FOR CARRYING OUT THE INVENTION One Embodiment of the Manufacturing Method of the Present Invention
The Ni-Cu-Zn ferrite will be described. main
As the raw material of the component, for example, FeTwoOThree, NiO, C
A mixed powder of uO and ZnO is used. Other implementation
As a form of unitary ferrite AFe TwoOFour(A is N
i, Cu, Zn), and FeTwoOThreeWhen,
A material to which an oxide of a metal other than A is added is used. these
WO for the main ingredientThreeIs shown in FIG. 7 (B).
As described above, a predetermined amount is weighed and wet-mixed (blended) (S1),
Dry (S2) and crush. Add binder to this powder
And granulate to form granules and mold the core (S3).
This is baked in the atmosphere at 1000 to 1250 ° C to obtain a product.
(S4).
【0017】[実施例1]主成分の原料には、ZnFe
2O4、Fe2O3、NiO、CuOを使用し、Fe2
O3=49.3モル%、NiO=21.0モル%、Cu
O=8.0モル%、ZnO=21.7モル%となるよう
に配合し、さらに副成分としてWO3を0.3wt%添
加して原料粉末とした。この原料粉末をボールミルで湿
式混合し、得られた混合粉末を乾燥し、乾粉とした後、
PVA6%水溶液を10wt%添加して造粒した。そし
て20メッシュのふるいにより整粒して顆粒を作った。
この顆粒を乾式圧縮成形機と金型を用いてリング状コア
に成形した。これを大気中で1000〜1250℃で2
時間焼成し、外径約18mm、内径約10mm、高さ約
6mmのリング状コアを得た。[Example 1] ZnFe was used as the main component raw material.
2 O 4 , Fe 2 O 3 , NiO, CuO is used, and Fe 2
O 3 = 49.3 mol%, NiO = 21.0 mol%, Cu
O was 8.0 mol%, ZnO was 21.7 mol%, and WO 3 was added as an accessory component in an amount of 0.3 wt% to obtain a raw material powder. This raw material powder is wet-mixed with a ball mill, and the obtained mixed powder is dried to obtain a dry powder.
Granulation was carried out by adding 10 wt% of PVA 6% aqueous solution. The granules were prepared by sizing with a 20-mesh sieve.
The granules were molded into a ring-shaped core using a dry compression molding machine and a mold. 2 at 1000-1250 ℃ in the atmosphere
Firing was performed for an hour to obtain a ring-shaped core having an outer diameter of about 18 mm, an inner diameter of about 10 mm, and a height of about 6 mm.
【0018】[比較例1]比較例として、表1において
比較品1で示す組成のものについて、仮焼き工程を含む
従来方法によりリング状コアを作製した。[Comparative Example 1] As a comparative example, a ring-shaped core having a composition shown as Comparative Product 1 in Table 1 was prepared by a conventional method including a calcining step.
【0019】[磁気特性の測定]このようにして得たリ
ング状コアについて、インピーダンスアナライザ(ヒュ
ーレットパッカード社製4291A)により磁界0.4
A/m印加し、室温で100kHzにおける初透磁率を
測定した。飽和磁束密度は、理研電子株式会社製、直流
磁化特性自動記録装置 Model MHS40によ
り、室温で4kA/mの磁界を印加して測定した。[Measurement of Magnetic Properties] The ring-shaped core thus obtained was subjected to a magnetic field of 0.4 by an impedance analyzer (4291A manufactured by Hewlett-Packard Co.).
A / m was applied, and the initial magnetic permeability at 100 kHz was measured at room temperature. The saturation magnetic flux density was measured by applying a magnetic field of 4 kA / m at room temperature using a direct current magnetization characteristic automatic recording device Model MHS40 manufactured by Riken Denshi Co., Ltd.
【0020】[測定結果]本発明の実施品1は、実施例
1における焼成温度が1090℃である場合の製品であ
り、実施品1について、上記方法により測定した初透磁
率(μi)、飽和磁束密度(Bs)を表1に示す。な
お、初透磁率(μi)の目標値は、仮焼きの有るサンプ
ル(比較品1)と比較して±25%、飽和磁束密度(B
s)の目標値は、仮焼きの有るサンプル(比較品1)と
比較して±5%である。[Measurement Results] The product 1 of the present invention is a product when the firing temperature in Example 1 is 1090 ° C., and the product 1 has the initial magnetic permeability (μi) and saturation measured by the above method. The magnetic flux density (Bs) is shown in Table 1. The target value of the initial magnetic permeability (μi) is ± 25% compared with the sample with calcination (Comparative product 1), and the saturation magnetic flux density (B
The target value of s) is ± 5% compared with the sample with calcination (Comparative product 1).
【0021】表1から分かるように、仮焼き工程を経る
比較品1に比較し、実施品1は初透磁率(μi)、飽和
磁束密度(Bs)共に目標値を満たし、コストの上でも
30%削減でき、生産のリードタイムは50%削減でき
た。As can be seen from Table 1, in comparison with the comparative product 1 which has undergone the calcination process, the actual product 1 satisfies both the target values of the initial magnetic permeability (μi) and the saturation magnetic flux density (Bs), and the cost is 30. %, And the production lead time has been reduced by 50%.
【0022】[焼成温度と密度との関係]実施例1にお
いて、焼成温度を1040〜1150℃の間で変化させ
た場合の密度の変化を、WO3を含まずかつ仮焼きを行
わないものと対比して図1に示す。図1から明らかなよ
うに、本発明のようにWO3を加えて仮焼きを省略した
場合、WO3を加えずかつ仮焼きを省略した場合に比較
し、フェライトとして好適な5.0Mg/m3以上の焼
結体密度が得られる温度領域が拡大すると共に、フェラ
イトコアの低温焼結化も同時に達成できることが分か
る。本発明において望ましい焼成温度は1040〜12
50℃、より好ましくは5.0Mg/m3以上の焼結体
密度が得られる1050℃以上で、かつ焼結体密度がほ
ぼ飽和する1160℃以下である。[Relationship between Firing Temperature and Density] In Example 1, the change in density when the firing temperature was changed between 1040 and 1150 ° C. was that WO 3 was not included and calcination was not performed. In contrast, it is shown in FIG. As apparent from FIG. 1, when the addition of WO 3 is omitted calcination as in the present invention, and without adding WO 3 as compared to the case of omitting the calcination, suitable as ferrite 5.0 mg / m It can be seen that the temperature range in which the density of the sintered body of 3 or more is obtained is expanded, and the low temperature sintering of the ferrite core can be achieved at the same time. In the present invention, the desirable firing temperature is 1040-12.
The temperature is 50 ° C., more preferably 1050 ° C. or higher at which a sintered body density of 5.0 Mg / m 3 or higher is obtained, and 1160 ° C. or lower at which the sintered body density is almost saturated.
【0023】[焼成温度と初透磁率との関係]図2に実
施例1の場合、焼成温度を1040〜1150℃の間で
変化させた場合の初透磁率の変化を、WO3を含まずか
つ仮焼きを行わないものと対比して示す。図1から明ら
かなように、本発明のようにWO3を加えかつ仮焼きを
省略した場合、初透磁率の目標値である400±25%
(300〜500)が得られる温度領域が拡大すると共
に、WO3を加えずかつ仮焼きを省略した場合に比較
し、高い初透磁率が得られる焼成温度が低温度側に移っ
ていることが分かる。[Relationship between Firing Temperature and Initial Permeability] In FIG. 2, in the case of Example 1, the change in the initial permeability when the firing temperature was changed between 1040 and 1150 ° C., not including WO 3. Moreover, it is shown in comparison with the case where calcination is not performed. As is clear from FIG. 1, when WO 3 is added and calcination is omitted as in the present invention, the target value of initial permeability is 400 ± 25%.
The temperature range in which (300 to 500) is obtained expands, and the firing temperature at which high initial permeability is obtained is shifted to the low temperature side as compared with the case where WO 3 is not added and calcination is omitted. I understand.
【0024】[0024]
【表1】 [Table 1]
【0025】[実施例1の原料の変更]主成分の原料と
して、実施例1のZnFe2O4の代わりにZnOを用
い、かつ各酸化物の組成、工程、コア形状は実施例1と
同様になるようにしてサンプルを作製した。このように
して得られた焼結コアの密度および初透磁率を、焼成温
度を種々に変えて測定した結果をそれぞれ図3、図4に
示す。その結果、実施例1とほぼ同様の結果が得られ
た。[Change of Raw Material of Example 1] ZnO was used as the main component material instead of ZnFe 2 O 4 of Example 1, and the composition, process, and core shape of each oxide were the same as in Example 1. A sample was prepared as follows. The density and the initial magnetic permeability of the thus-obtained sintered core were measured at various firing temperatures, and the results are shown in FIGS. 3 and 4, respectively. As a result, almost the same results as in Example 1 were obtained.
【0026】[WO3の添加量の影響]実施例1で示し
た主原料を用い、工程、コア形状も同一とし、焼成温度
も1000℃以上とし、WO3の添加量を0〜1.0w
t%の範囲で種々に変化させて各添加量における最大コ
ア密度、最大初透磁率(各添加量において、異なる焼成
温度で焼成したサンプルのうち最大のコア密度、最大初
透磁率)を測定した。その結果を図5に示す。[Effect of WO 3 Addition Amount] Using the main raw material shown in Example 1, the process and core shape were the same, the firing temperature was 1000 ° C. or higher, and the WO 3 addition amount was 0 to 1.0 w.
The maximum core density and the maximum initial magnetic permeability at each addition amount (maximum core density and maximum initial magnetic permeability among samples fired at different firing temperatures at each addition amount) were measured while varying variously within the range of t%. . The result is shown in FIG.
【0027】図5から、目標とするコア密度が5.0M
g/m3、初透磁率400±25%満たすものは、WO
3の添加量が0.075〜0.7wt%であることが分
かった。From FIG. 5, the target core density is 5.0M.
Those satisfying g / m 3 and initial permeability of 400 ± 25% are WO
It was found that the addition amount of 3 was 0.075 to 0.7 wt%.
【0028】[主成分組成の影響]主成分の原料とし
て、実施例1の種類のものを用い、組成が表1の実施品
2〜8に記載のものとなるように種々に変更し、副成分
としてのWO3の添加量は0.3wt%に固定し、実施
例1と同様の工程でサンプルを作製し、初透磁率(μ
i)、飽和磁束密度(Bs)を測定した。また、比較の
ため、組成が近似したものについて、WO3が無く、か
つ仮焼き工程の有る従来工程により比較品2〜8のもの
を作製し、初透磁率(μi)、飽和磁束密度(Bs)を
測定した。各サンプルについての特性測定の結果を表1
に示す。[Influence of the composition of the main component] As the raw material of the main component, the raw material of Example 1 was used, and the composition was changed variously so as to be those described in Examples 2 to 8 in Table 1. The amount of WO 3 added as a component was fixed at 0.3 wt%, a sample was prepared in the same process as in Example 1, and the initial magnetic permeability (μ
i) and the saturation magnetic flux density (Bs) were measured. For comparison, comparative products 2 to 8 having similar compositions having no WO 3 and having a calcination process were prepared, and initial permeability (μi), saturation magnetic flux density (Bs) ) Was measured. Table 1 shows the results of the characteristic measurements for each sample.
Shown in.
【0029】表1より明らかなように、いずれの結果と
比較しても、実施品のフェライト組成は、比較品と比較
し、初透磁率と飽和磁束密度も目標値を満たし、生産の
リードタイムを50%短縮でき、製造コストを30%削
減できる。As is clear from Table 1, in comparison with any of the results, the ferrite composition of the implemented product was higher than that of the comparative product, the initial permeability and the saturation magnetic flux density also satisfied the target values, and the production lead time was Can be reduced by 50% and the manufacturing cost can be reduced by 30%.
【0030】なお、本発明を実施する場合において、主
成分組成の好適な範囲は、酸化鉄がFe2O3換算で4
8.0〜49.7モル%、酸化銅がCuO換算で7.0
〜11.0モル%、酸化亜鉛がZnO換算で15.7〜
30.3モル%、酸化ニッケルが残りのモル%となるも
のである。In the case of carrying out the present invention, the preferred range of the main component composition is that iron oxide is 4 in terms of Fe 2 O 3.
8.0 to 49.7 mol%, copper oxide is 7.0 in terms of CuO
~ 11.0 mol%, zinc oxide is 15.7 by ZnO conversion
30.3 mol%, and nickel oxide is the remaining mol%.
【0031】Fe2O3が前記下限値未満であると初透
磁率、飽和磁束密度が低下し、コアロスが増加する傾向
がある。また、Fe2O3が前記上限値を超えると比抵
抗の低下、焼結性の低下による初透磁率、飽和磁束密度
の低下、コアロスの増加、安定化した量産が困難化する
という傾向がある。If Fe 2 O 3 is less than the above lower limit, the initial magnetic permeability and the saturation magnetic flux density tend to decrease, and the core loss tends to increase. Further, when Fe 2 O 3 exceeds the upper limit value, there is a tendency that specific resistance decreases, initial permeability due to deterioration of sinterability, saturation magnetic flux density decreases, core loss increases, and stable mass production becomes difficult. .
【0032】CuOが前記下限値未満であると、焼結性
が悪くなり、初透磁率、飽和磁束密度が低下し、コアロ
スが増大する傾向がある。また、CuOが前記上限値を
超えると、初透磁率、飽和磁束密度が低下し、コアロス
が増加する傾向がある。When CuO is less than the lower limit value, the sinterability tends to be poor, the initial permeability and the saturation magnetic flux density are lowered, and the core loss tends to be increased. If CuO exceeds the upper limit value, the initial magnetic permeability and the saturation magnetic flux density tend to decrease, and the core loss tends to increase.
【0033】ZnOが前記下限値未満であると、初透磁
率が低下し、コアロスが増大する傾向がある。また、Z
nOが前記上限値を超えると、飽和磁束密度が低下し、
キュリー点が低下することにより、コアロスが最小とな
る温度が低下し、コアロスが増加する傾向がある。If ZnO is less than the lower limit, the initial magnetic permeability tends to decrease and the core loss tends to increase. Also, Z
When nO exceeds the upper limit value, the saturation magnetic flux density decreases,
The decrease in the Curie point tends to decrease the temperature at which the core loss is minimized and increase the core loss.
【0034】しかしながら本発明は、Fe2O3とWO
3の存在により効果を発現させるものであって、所望の
磁気特性は、主成分元素の組成により調整すればよく、
Ni-Cu-Zn系フェライトのみならず、Ni-Zn
系、Mg-Zn系、Mg-Cu-Zn系、Mg-Ni-Zn
系フェライトにも応用可能である。However, the present invention is based on Fe 2 O 3 and WO
The effect is exhibited by the presence of 3 , and the desired magnetic properties may be adjusted by the composition of the main component element,
Not only Ni-Cu-Zn type ferrite but also Ni-Zn
System, Mg-Zn system, Mg-Cu-Zn system, Mg-Ni-Zn
It can also be applied to series ferrite.
【0035】[結晶粒子間の組成差]実施品1におい
て、フェライトコアの断面を研磨した面を走査型電子顕
微鏡により撮像した反射電子像の模式図を図6(A)に
示す。また、従来の仮焼き工程を有する製造方法により
作製した比較品1のフェライトコアの前記反射電子像の
模式図を図6(B)に示す。このような反射電子像にお
いては、原子量の大きい重い粒子は明度が大きく(白
く)写る傾向があり、原子量の小さい軽い粒子は明度が
小さく(黒く)写る傾向がある。図6(A)、(B)の
対比から分かるように、本発明による製造方法を用いた
ものは、従来方法により得たものに比較し、結晶粒子間
の明度差が大きく、結晶粒子間の組成ばらつきが大き
い。[Composition Difference between Crystal Particles] FIG. 6 (A) is a schematic diagram of a backscattered electron image of the polished surface of the ferrite core in the embodiment 1 taken by a scanning electron microscope. Further, FIG. 6B shows a schematic diagram of the backscattered electron image of the ferrite core of the comparative product 1 manufactured by the manufacturing method having the conventional calcination step. In such a backscattered electron image, heavy particles having a large atomic weight tend to appear with high brightness (white), and light particles with small atomic weight tend to appear with low brightness (black). As can be seen from the comparison between FIGS. 6 (A) and 6 (B), the one using the production method according to the present invention has a large difference in lightness between the crystal grains and a larger lightness difference between the crystal grains than the one obtained by the conventional method. There is a large variation in composition.
【0036】表2、表3は、それぞれ実施品1、比較品
1について、各結晶粒子間の組成を、TEM-EDSを
用いて測定した結果を示す。表2から分かるように、実
施品1の場合、前記ニッケル、銅、亜鉛のうちの少なく
とも1元素以上の酸化物について、結晶粒子間で1モル
%以上の組成ばらつきを有する。一方、表3に示すよう
に、比較品1の場合には、前記組成ばらつきが1モル%
未満であることが判明した。Tables 2 and 3 show the results of measuring the composition between the crystal grains of Example 1 and Comparative Example 1 using TEM-EDS, respectively. As can be seen from Table 2, in the case of the product 1, the composition variation of 1 mol% or more among the crystal grains is present in the oxide of at least one element of nickel, copper and zinc. On the other hand, as shown in Table 3, in the case of Comparative product 1, the composition variation is 1 mol%.
Was found to be less than.
【0037】[MoO3について]本発明において、W
O3の代わりにWO3に近似した特性を有するMoO3
を用いても同様に実施することができる。この場合、M
oO3はWO3の一部または全部に代えて使用し、全体
の添加量もWO3を加える場合と同様とする。表4はW
O3の代わりにMoO3を0.3wt%添加した実施品
9〜12について、前記従来製法による比較品2、6、
7、8と対比して示す。表4より明らかなように、いず
れの結果と比較しても、実施品のフェライト組成は、比
較品と比較し、初透磁率と飽和磁束密度も目標値を満た
し、生産のリードタイムを50%短縮でき、製造コスト
を30%削減できる。[About MoO 3 ] In the present invention, W
MoO 3 having a characteristic approximate to WO 3 in place of the O 3
Can also be carried out in the same manner. In this case, M
oO 3 is used in place of part or all of WO 3 , and the total amount of addition is the same as when WO 3 is added. Table 4 is W
Comparative Examples 2 and 6 according to the conventional manufacturing method for Examples 9 to 12 in which 0.3 wt% of MoO 3 was added instead of O 3 .
Shown in contrast to Nos. 7 and 8. As is clear from Table 4, in comparison with any of the results, the ferrite composition of the implementation product is higher than the comparison product in initial permeability and saturation magnetic flux density, and the production lead time is 50%. It can be shortened and the manufacturing cost can be reduced by 30%.
【0038】[0038]
【表2】 [Table 2]
【0039】[0039]
【発明の効果】本発明によれば、仮焼き工程が不要とな
り、製造時間、製造コストを削減でき、かつ従来のもの
と比較して遜色のない磁気特性のフェライトを提供する
ことができる。また、焼成温度範囲が拡大することによ
って、大量生産による特性のバラツキを抑えることがで
き、高信頼性のフェライトコアを安定生産することがで
きる。According to the present invention, it is possible to provide a ferrite having magnetic characteristics comparable to those of the conventional ones, since the calcination step is not required, the manufacturing time and the manufacturing cost can be reduced. Further, by expanding the firing temperature range, it is possible to suppress variations in characteristics due to mass production, and it is possible to stably produce a highly reliable ferrite core.
【0040】[0040]
【表3】 [Table 3]
【0041】[0041]
【表4】 [Table 4]
【図1】本発明の実施例1における焼成温度と密度との
関係を、WO3を含まないものと対比して示す図であ
る。FIG. 1 is a diagram showing the relationship between the firing temperature and the density in Example 1 of the present invention, in comparison with those containing no WO 3 .
【図2】本発明の実施例1における焼成温度と初透磁率
との関係を、WO3を含まないものと対比して示す図で
ある。FIG. 2 is a diagram showing the relationship between the firing temperature and the initial magnetic permeability in Example 1 of the present invention, in comparison with those containing no WO 3 .
【図3】本発明の実施例1において、原料に単元フェラ
イトを含ませた場合の焼成温度と密度との関係を、WO
3を含まないものと対比して示す図である。FIG. 3 shows the relationship between the firing temperature and the density when the raw material contains unitary ferrite in Example 1 of the present invention.
It is a figure shown in contrast with what does not contain 3 .
【図4】本発明の実施例1において、原料に単元フェラ
イトを含ませた場合の焼成温度と初透磁率との関係を、
WO3を含まないものと対比して示す図である。FIG. 4 shows the relationship between the firing temperature and the initial magnetic permeability when the raw material contains unitary ferrite in Example 1 of the present invention.
Shows in comparison with those not containing WO 3.
【図5】本発明において、WO3の添加量と焼結コア密
度および初透磁率との関係を示す図である。FIG. 5 is a diagram showing the relationship between the amount of WO 3 added and the sintered core density and initial magnetic permeability in the present invention.
【図6】本発明の実施品1および比較品1の焼結コア断
面を研磨した面を走査型電子顕微鏡により撮像した反射
電子像の模式図である。FIG. 6 is a schematic diagram of a backscattered electron image of a polished surface of a sintered core cross section of Example 1 of the present invention and Comparative Example 1 taken by a scanning electron microscope.
【図7】(A)、(B)はそれぞれ従来と本発明のフェ
ライトコアの製造方法を示す工程図、(C)は仮焼き工
程を含む従来の製造方法による場合の仮焼きによるフェ
ライトの生成を説明する図、(D)は本発明による製造
方法を用いた場合のFe2O3とWO3との反応を説明
する図である。7 (A) and 7 (B) are process diagrams showing a conventional and a method for manufacturing a ferrite core according to the present invention, respectively, and FIG. 7 (C) is a diagram showing the production of ferrite by calcining in the case of a conventional manufacturing method including a calcining step FIG. 3D is a diagram illustrating a reaction between Fe 2 O 3 and WO 3 when the production method according to the present invention is used.
【図8】Fe2O3-WO3の2成分系の相図である。FIG. 8 is a phase diagram of a binary system of Fe 2 O 3 —WO 3 .
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G018 AA23 AA24 AA25 AA39 AB02 AC16 5E041 AB12 AB19 BD01 HB17 NN01 NN06 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4G018 AA23 AA24 AA25 AA39 AB02 AC16 5E041 AB12 AB19 BD01 HB17 NN01 NN06
Claims (5)
上を加えたものとを主成分とし、 副成分として、WO3を、主成分に対して0.075〜
0.7wt%加えた混合粉末を成形し、 1040℃以上での焼成1回のみでフェライト焼結体と
することを特徴とするスピネル型フェライトコアの製造
方法。1. Fe 2 O 3 and a mixture of Fe 2 O 3 and one or more metal oxides as a main component, and WO 3 as a sub-component in an amount of 0.075 to 0.075 with respect to the main component.
A method for producing a spinel-type ferrite core, which comprises molding a mixed powder to which 0.7 wt% is added, and forming a ferrite sintered body only by firing once at 1040 ° C. or more.
nOのうちの一種以上を加えたものとを主成分とし、 副成分として、WO3を、主成分に対して0.075〜
0.7wt%加えた混合粉末を成形し、 1040℃以上での焼成1回のみでフェライト焼結体と
することを特徴とするスピネル型フェライトコアの製造
方法。2. Fe 2 O 3 and NiO, CuO, Z
The main component is one to which one or more of nO is added, and WO 3 as a sub-component, 0.075 to the main component.
A method for producing a spinel-type ferrite core, which comprises molding a mixed powder to which 0.7 wt% is added, and forming a ferrite sintered body only by firing once at 1040 ° C. or more.
Cu、Znのうちのいずれか1つの金属)と、Fe2O
3と、前記NiO、CuO、ZnOのうち前記Aを除く
金属の酸化物とを混合してなる粉末を主成分とし、 副成分として、WO3を、主成分に対して0.075〜
0.7wt%加えた混合粉末を成形し、 1040℃以上での焼成1回のみでフェライト焼結体と
することを特徴とするスピネル型フェライトコアの製造
方法。3. A unit ferrite AFe 2 O 4 (A = Ni,
Any one of Cu and Zn) and Fe 2 O
3 as a main component, and a powder obtained by mixing oxides of metals other than A among NiO, CuO, and ZnO described above, and WO 3 as a sub-component from 0.075 to 0.075 with respect to the main component.
A method for producing a spinel-type ferrite core, which comprises molding a mixed powder to which 0.7 wt% is added, and forming a ferrite sintered body only by firing once at 1040 ° C. or more.
ピネル型フェライトコアの製造方法において、 前記WO3の一部または全部の代わりにMoO3を用い
ることを特徴とするスピネル型フェライトコアの製造方
法。4. The spinel ferrite core according to any one of claims 1 to 3, wherein MoO 3 is used in place of part or all of WO 3. Manufacturing method.
造方法により得られるスピネル型フェライトコアであっ
て、 主成分として酸化鉄をFe2O3換算で48.0〜4
9.7モル%、酸化銅をCuO換算で7.0〜11.0
モル%、酸化亜鉛をZnO換算で15.7〜30.3モ
ル%、酸化ニッケルを残りのモル%含み、 副成分としてタングステンをWO3換算で0.075〜
0.7wt%含み、 フェライトコア中の結晶粒子間の組成差が、前記ニッケ
ル、銅、亜鉛のうちの少なくとも1元素以上の酸化物に
ついて最大1モル%以上の組成ばらつきを有することを
特徴とするスピネル型フェライトコア。5. A spinel type ferrite core obtained by the manufacturing method according to claim 1, wherein iron oxide as a main component is 48.0-4 in terms of Fe 2 O 3.
9.7 mol%, copper oxide 7.0 to 11.0 in terms of CuO
Mol%, 15.7 to 30.3 mol% of zinc oxide in terms of ZnO, and remaining mol% of nickel oxide, and tungsten as an accessory component in terms of WO 3 of 0.075 to.
0.7 wt% is included, and the composition difference between the crystal grains in the ferrite core has a composition variation of 1 mol% or more at maximum with respect to the oxide of at least one element of nickel, copper, and zinc. Spinel type ferrite core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002126134A JP3856722B2 (en) | 2002-04-26 | 2002-04-26 | Manufacturing method of spinel type ferrite core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002126134A JP3856722B2 (en) | 2002-04-26 | 2002-04-26 | Manufacturing method of spinel type ferrite core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003321273A true JP2003321273A (en) | 2003-11-11 |
JP3856722B2 JP3856722B2 (en) | 2006-12-13 |
Family
ID=29540652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002126134A Expired - Fee Related JP3856722B2 (en) | 2002-04-26 | 2002-04-26 | Manufacturing method of spinel type ferrite core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3856722B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207988A (en) * | 2007-02-26 | 2008-09-11 | Kyocera Corp | Ferrite powder, ferrite sintered body, and their production method and ferrite core |
CN114242371A (en) * | 2021-12-27 | 2022-03-25 | 标旗磁电产品(佛冈)有限公司 | Nickel-zinc ferrite granule and preparation method and application thereof |
CN115490507A (en) * | 2022-09-23 | 2022-12-20 | 中山市东晨磁性电子制品有限公司 | Broadband high-strength thermal shock resistant nickel-zinc ferrite magnetic core and preparation method thereof |
-
2002
- 2002-04-26 JP JP2002126134A patent/JP3856722B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207988A (en) * | 2007-02-26 | 2008-09-11 | Kyocera Corp | Ferrite powder, ferrite sintered body, and their production method and ferrite core |
CN114242371A (en) * | 2021-12-27 | 2022-03-25 | 标旗磁电产品(佛冈)有限公司 | Nickel-zinc ferrite granule and preparation method and application thereof |
CN115490507A (en) * | 2022-09-23 | 2022-12-20 | 中山市东晨磁性电子制品有限公司 | Broadband high-strength thermal shock resistant nickel-zinc ferrite magnetic core and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3856722B2 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011096977A (en) | Ferrite composition, ferrite core, and electronic component | |
JP4826093B2 (en) | Ferrite, electronic component and manufacturing method thereof | |
JP3492802B2 (en) | Low loss ferrite material | |
CN113053649A (en) | Method for manufacturing magnetic body and coil component including magnetic body | |
JP5734078B2 (en) | Ferrite sintered body and noise filter including the same | |
JP3856722B2 (en) | Manufacturing method of spinel type ferrite core | |
JP5836887B2 (en) | Ferrite sintered body and noise filter including the same | |
CN116323491A (en) | MnZn ferrite and method for producing same | |
JPH11307336A (en) | Manufacture of soft magnetic ferrite | |
JP5831256B2 (en) | Ferrite composition, ferrite core and electronic component | |
JP2006165479A (en) | Ferrite core and line filter | |
JP2003221232A (en) | Ferrite material and its production method | |
JP7426818B2 (en) | Manufacturing method of magnetic material and coil parts including magnetic material | |
JP5672974B2 (en) | Ferrite sintered body and electronic parts | |
JP2005194134A (en) | Ferrite core and its production method | |
JP2000109325A (en) | Production of nickel-copper-zinc ferrite material | |
JP7426819B2 (en) | Manufacturing method of magnetic material and coil parts including magnetic material | |
JP3545438B2 (en) | Method for producing Ni-Zn ferrite powder | |
JP6064525B2 (en) | Ferrite composition, ferrite core and electronic component | |
JPH09306718A (en) | Ferrite magnetic material and method of fabricating the same | |
JP5831255B2 (en) | Ferrite composition, ferrite core and electronic component | |
JP4701591B2 (en) | Ferrite composition and electronic component | |
JP2002179460A (en) | Ferrite material and ferrite core by using the same | |
JP2542776B2 (en) | Low temperature magnetic material | |
JP2006143530A (en) | Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060912 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |