JP2006143530A - Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT - Google Patents

Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT Download PDF

Info

Publication number
JP2006143530A
JP2006143530A JP2004336041A JP2004336041A JP2006143530A JP 2006143530 A JP2006143530 A JP 2006143530A JP 2004336041 A JP2004336041 A JP 2004336041A JP 2004336041 A JP2004336041 A JP 2004336041A JP 2006143530 A JP2006143530 A JP 2006143530A
Authority
JP
Japan
Prior art keywords
mol
fine powder
cao
cuo
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004336041A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
寛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Corp
Original Assignee
Sumida Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corp filed Critical Sumida Corp
Priority to JP2004336041A priority Critical patent/JP2006143530A/en
Priority to CN 200510118658 priority patent/CN1776834A/en
Publication of JP2006143530A publication Critical patent/JP2006143530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve superposition characteristic when a magnetic element is structured by balancing the improvement of initial magnetic permeability and saturation flux density and increasing magnetic field to be applied until magnetic flux is saturated. <P>SOLUTION: The Ni-Zn based ferrite composition comprises 49.0-50.0 mol% iron oxide (Fe<SB>2</SB>O<SB>3</SB>), 21.0-30.0 mol% mixture of nickel oxide (NiO) with copper oxide (CuO) (wherein the replacement ratio of copper oxide is 5.00-30.00%) and balance being zinc oxide (ZnO). The Ni-Zn based ferrite composition contains 100-800 ppm calcium oxide (CaO) and 1,000-2,000 ppm aluminum oxide (Al<SB>2</SB>O<SB>3</SB>) to total weight of each component as additives of the ferrite. The magnetic element uses the ferrite composition. A sintered compact (No.1-8) containing Al<SB>2</SB>O<SB>3</SB>and CaO has low rising of initial magnetization curve and is capable of increasing the magnetic field to be applied until the magnetic flux is saturated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気特性に優れたNi−Zn系フェライト組成物および当該組成物からなる磁性素子に関するものである。   The present invention relates to a Ni—Zn-based ferrite composition having excellent magnetic characteristics and a magnetic element comprising the composition.

一般に、電源系インダクタ素子においては、電流印加時の重畳特性に優れていることが要求される。現状では、インダクタ素子における磁路が直交する部位にギャップを設ける手段が多く採用されている。しかし、ギャップを設けることによって重畳特性が向上する反面、インダクタンスが低下するという欠点がある。インダクタンスの低下は、これを補うべくコイルの巻数の増加を余儀なくし、インダクタ素子の大型化を招く。近年、PCに代表される電子機器の小型化あるいは薄型化が進むなか、搭載される電子部品についても小型化が強く要求されている。このような要求に鑑みて、ギャップを設けることなく、インダクタ素子のコア材の材料開発によって重畳特性の向上を図る試みがされている。   In general, a power source inductor element is required to have excellent superposition characteristics when a current is applied. At present, many means for providing a gap at a portion where the magnetic paths in the inductor element are orthogonal to each other are employed. However, the provision of the gap improves the superimposition characteristics, but has the disadvantage that the inductance decreases. The decrease in inductance necessitates an increase in the number of turns of the coil to compensate for this, leading to an increase in the size of the inductor element. In recent years, as electronic devices typified by PCs have become smaller or thinner, there is a strong demand for smaller electronic components to be mounted. In view of such requirements, attempts have been made to improve the superposition characteristics by developing a material for the core material of the inductor element without providing a gap.

また、最近では、インダクタ素子のコア材となるフェライトにおいて、初透磁率および飽和磁束密度等の磁性特性のさらなる向上が望まれている。従来、初透磁率および飽和磁束密度等の磁性特性に優れるMn−Zn系フェライトが採用されてきたが、近年では、材料の絶縁性と製造コストの両面で優れるNi−Zn系フェライトが採用されてきている。例えば、飽和磁束密度が高く、直流重畳特性にも優れたNi−Zn系フェライトの発明については、特許文献1に開示されている。
特開2001−217115(特許請求の範囲等)
Recently, further improvements in magnetic properties such as initial magnetic permeability and saturation magnetic flux density have been desired for ferrite as a core material for inductor elements. Conventionally, Mn—Zn ferrites that are excellent in magnetic properties such as initial permeability and saturation magnetic flux density have been adopted, but in recent years, Ni—Zn ferrites that are excellent in terms of both insulating properties and manufacturing costs have been adopted. ing. For example, Patent Document 1 discloses an invention of a Ni—Zn ferrite having a high saturation magnetic flux density and excellent direct current superposition characteristics.
JP 2001-217115 (Claims etc.)

しかし、上記のNi−Zn系フェライトにも、次のような課題がある。一般に、インダクタ素子の重畳特性を向上させるには、ヒステリシス曲線の飽和磁束密度を大きくする手段が採用されるが、初透磁率と飽和磁束密度とは相反関係にある。このため、飽和磁束密度を単に大きくするだけでは、初透磁率が低下してしまい、その結果、磁性素子構成時のインダクタンスの低下を招くという問題がある。   However, the above Ni-Zn ferrite also has the following problems. In general, in order to improve the superposition characteristics of the inductor element, means for increasing the saturation magnetic flux density of the hysteresis curve is employed, but the initial permeability and the saturation magnetic flux density are in a reciprocal relationship. For this reason, simply increasing the saturation magnetic flux density lowers the initial permeability, and as a result, there is a problem in that the inductance is reduced when the magnetic element is configured.

かかる課題に鑑みて、本発明は、初透磁率と飽和磁束密度の向上のバランスを保持し、さらに、磁束飽和までに印加できる磁界(電流量)を増加させることにより、磁性素子構成時の重畳特性をさらに向上させることを目的とする。   In view of such problems, the present invention maintains the balance between the improvement of the initial magnetic permeability and the saturation magnetic flux density, and further increases the magnetic field (current amount) that can be applied until the magnetic flux is saturated, thereby superimposing at the time of magnetic element configuration. The object is to further improve the characteristics.

上記目的を達成すべく、本発明は、酸化鉄(Fe)49.0〜50.0mol%と、酸化ニッケル(NiO)と酸化銅(CuO)の混合物21.0〜30.0mol%(内、酸化銅置換率5.00〜30.00%)と、残部として酸化亜鉛(ZnO)とからなるNi−Zn系フェライト組成物であって、フェライトへの添加物として、上記各成分の総重量に対して100〜800ppmの酸化カルシウム(CaO)と1000〜2000ppmの酸化アルミニウム(Al)とを含むNi−Zn系フェライト組成物としている。また、本発明は、かかる組成物からなる磁性素子を構成するようにしている。ここで、Fe、NiO、CuOおよびZnOの各モル比は、Fe、NiO、CuOおよびZnOの総量を100mol%としたときの数値である。また、CaOおよびAlの量は、Fe、NiO、CuOおよびZnOの総重量に対する重量比率で示している。 To achieve the above object, the present invention is iron oxide (Fe 2 O 3) 49.0~50.0mol% and, mixtures 21.0~30.0Mol% of nickel oxide (NiO) and copper oxide (CuO) (Including a copper oxide substitution rate of 5.00 to 30.00%) and a balance of zinc oxide (ZnO) as a Ni-Zn based ferrite composition, The Ni—Zn ferrite composition contains 100 to 800 ppm of calcium oxide (CaO) and 1000 to 2000 ppm of aluminum oxide (Al 2 O 3 ) based on the total weight. The present invention also constitutes a magnetic element comprising such a composition. Here, Fe 2 O 3, NiO, each molar ratio of CuO and ZnO is a numerical value when the Fe 2 O 3, NiO, the total amount of CuO and ZnO and 100 mol%. Moreover, the amount of CaO and Al 2 O 3 is shown as a weight ratio to the total weight of Fe 2 O 3 , NiO, CuO and ZnO.

Feのモル比率が49.0mol%より小さくなると、コアロスが大きくなり、好ましくない。また、Feのモル比率が50.0mol%より大きくなると、比抵抗が低下し、温度特性が悪くなる。したがって、Feの含有率は、49.0〜50.0mol%の範囲にあるのが好ましい。 When the molar ratio of Fe 2 O 3 is smaller than 49.0 mol%, the core loss is increased, which is not preferable. On the other hand, when the molar ratio of Fe 2 O 3 is larger than 50.0 mol%, the specific resistance is lowered and the temperature characteristics are deteriorated. Accordingly, the content of Fe 2 O 3 is preferably in the range of 49.0~50.0mol%.

NiO+CuOの混合物が下限21.0mol%の場合、酸化銅置換率5.00%とすると、NiOは19.95mol%で、CuOは1.05mol%である。また、酸化銅置換率30.00%とすると、NiOは14.7mol%で、CuOは6.3mol%である。    When the mixture of NiO + CuO has a lower limit of 21.0 mol%, assuming that the copper oxide substitution rate is 5.00%, NiO is 19.95 mol% and CuO is 1.05 mol%. If the copper oxide substitution rate is 30.00%, NiO is 14.7 mol% and CuO is 6.3 mol%.

NiO+CuOの混合物が上限30.0mol%の場合、酸化銅置換率5.00%とすると、NiOは28.5mol%で、CuOは1.5mol%である。また、酸化銅置換率30.00%とすると、NiOは21.0mol%で、CuOは9.0mol%である。   When the upper limit of the mixture of NiO + CuO is 30.0 mol%, assuming that the copper oxide substitution rate is 5.00%, NiO is 28.5 mol% and CuO is 1.5 mol%. Further, assuming that the copper oxide substitution rate is 30.00%, NiO is 21.0 mol% and CuO is 9.0 mol%.

NiOのモル比率が28.5mol%よりも大きくなると、飽和磁束密度と初透磁率とのバランスがくずれる。一方、NiOのモル比率が14.7mol%よりも小さくなっても、同様に、飽和磁束密度と初透磁率とのバランスがくずれる。このため、NiOのモル比率は、14.7〜28.5mol%の範囲にあるのが好ましい。   When the molar ratio of NiO is larger than 28.5 mol%, the balance between the saturation magnetic flux density and the initial magnetic permeability is lost. On the other hand, even if the molar ratio of NiO is smaller than 14.7 mol%, the balance between the saturation magnetic flux density and the initial magnetic permeability is similarly lost. For this reason, it is preferable that the molar ratio of NiO is in the range of 14.7 to 28.5 mol%.

CuOのモル比率が9.0mol%よりも大きくなると、飽和磁束密度が低下する。一方、CuOのモル比率が1.05mol%よりも小さくなると、焼成温度が高くなる。このため、CuOのモル比率は、1.05〜9.0mol%の範囲にあるのが好ましい。なお、酸化銅置換率は、15.00〜20.00%の範囲にあるのが好ましい。また、NiO+CuOの混合物のモル比は、28〜30mol%の範囲にあるのが好ましい。   When the molar ratio of CuO is greater than 9.0 mol%, the saturation magnetic flux density decreases. On the other hand, when the molar ratio of CuO is smaller than 1.05 mol%, the firing temperature is increased. For this reason, it is preferable that the molar ratio of CuO exists in the range of 1.05-9.0 mol%. The copper oxide substitution rate is preferably in the range of 15.00 to 20.00%. Moreover, it is preferable that the molar ratio of the mixture of NiO + CuO exists in the range of 28-30 mol%.

一方、Alの含有率が1000ppmより少ないと、Alを含有していない従来の製品とほとんど性能は変わらない。一方、Alの含有率が2000ppmより多くなると、直流重畳特性は向上するが、周波数特性は非直線的になり、好ましくない。よって、Alの含有率は、1000〜2000ppmの範囲にあるのが好ましい。特に、Alの含有率は、1000〜1500ppmの範囲にあるのがより好ましい。また、Alのみを添加した場合、重畳特性は向上するが、それ以外の特性(初透磁率、温度特性など)が低下してしまう。CaOをAlと共存させると、重畳特性と、それ以外の特性の向上が見られる。CaOの含有率が100ppmより少ないと、初透磁率を低く抑えることが難しくなる。また、CaOの含有率が800ppmより多いと、製造工程において、スラリーの粘度が高くなり、ハンドリングに悪影響が生じる。よって、CaOの含有率は、100〜800ppmの範囲にあるのが好ましい。特に、CaOの含有率は、200〜500ppmの範囲にあるのがより好ましい。 On the other hand, if the content of Al 2 O 3 is less than 1000 ppm, the performance is almost the same as that of a conventional product not containing Al 2 O 3 . On the other hand, if the content of Al 2 O 3 exceeds 2000 ppm, the DC superimposition characteristic is improved, but the frequency characteristic becomes non-linear, which is not preferable. Therefore, the content of Al 2 O 3 is preferably in the range of 1000-2000 ppm. In particular, the content of Al 2 O 3 is more preferably in the range of 1000 to 1500 ppm. Further, when only Al 2 O 3 is added, the superposition characteristics are improved, but other characteristics (initial permeability, temperature characteristics, etc.) are deteriorated. When CaO coexists with Al 2 O 3 , superposition characteristics and other characteristics are improved. If the CaO content is less than 100 ppm, it is difficult to keep the initial permeability low. Moreover, when there is more content rate of CaO than 800 ppm, the viscosity of a slurry will become high in a manufacturing process, and a bad influence will arise on handling. Therefore, the CaO content is preferably in the range of 100 to 800 ppm. In particular, the CaO content is more preferably in the range of 200 to 500 ppm.

本発明によれば、初透磁率と飽和磁束密度の向上のバランスを保持し、さらに、磁束飽和までに印加できる磁界を増加させることにより、磁性素子構成時の重畳特性をさらに向上させることができる。   According to the present invention, the balance between the improvement of the initial magnetic permeability and the saturation magnetic flux density is maintained, and further, the superposition characteristics at the time of magnetic element configuration can be further improved by increasing the magnetic field that can be applied before the magnetic flux saturation. .

以下、図面を参照しながら、本発明の好適な実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施の形態に係るNi−Zn系フェライト組成物は、磁性素子に適している。この実施の形態では、Ni−Zn系フェライト組成物を磁性素子として使用する例について説明する。   The Ni—Zn ferrite composition according to the embodiment of the present invention is suitable for a magnetic element. In this embodiment, an example in which a Ni—Zn ferrite composition is used as a magnetic element will be described.

図1は、磁性素子を製造するプロセスを示すフローチャートである。   FIG. 1 is a flowchart showing a process for manufacturing a magnetic element.

図1に示すように、磁性素子は、原料混合工程(ステップS1)、造粒工程(ステップS2)、仮焼工程(ステップS3)、篩工程(ステップS4)、解砕工程(ステップS5)、造粒工程(ステップS6)、成形工程(ステップS7)、焼成工程(ステップS8)を経て、製造される。コア材は、その性能を調べるため、製造後に各種評価に供される。以下、磁性素子を製造するための各工程について説明する。   As shown in FIG. 1, the magnetic element includes a raw material mixing step (step S1), a granulation step (step S2), a calcining step (step S3), a sieving step (step S4), a crushing step (step S5), It is manufactured through a granulation process (step S6), a molding process (step S7), and a firing process (step S8). The core material is subjected to various evaluations after production in order to examine its performance. Hereinafter, each process for manufacturing a magnetic element will be described.

(原料混合工程:ステップS1)
まず、Fe微粉末、NiO微粉末、CuO微粉末およびZnO微粉末を、それぞれ秤量し、所定量の水および分散剤と共にボールミル混合機に投入して、ボールミル混合機を回転させる。
(造粒工程:ステップS2)
この工程は、成形密度およびその後の焼結密度を上げるために行う工程である。混合工程後、ボールミル混合機からスラリーを別の容器に移し、攪拌機を用いて、所定量のバインダーと混合する。バインダーを投入後、泡が出てきたら、消泡剤を入れる。また、分散剤が足りないと思われる場合には、攪拌しながら分散剤を加えても良い。次に、当該スラリーをスプレードライヤーに投入して造粒する。
(仮焼工程:ステップS3)
造粒した原料をスプレードライヤーから耐熱性の容器に移し、800℃前後の温度で仮焼する。
(篩工程:ステップS4)
次に、仮焼後の原料を30メッシュ(網目の大きさ:約500ミクロン)の篩いにかけて、大きな粒子を除去する。
(解砕工程:ステップS5)
次に、篩から落ちた粉末と、条件によっては添加物(CaO微粉末、Al微粉末、Cr微粉末の内少なくとも一種類等)を加えて、所定量の水および分散剤と共に、ボールミル混合機に投入して、ボールミル混合機を回転させる。ボールミル混合機には、鉄製のボールが入れられており、篩下の粉末および条件によっては添加物をも加えた混合粉末は、ボールミル混合機の中で解砕および混合される。この工程中、定期的にスラリーのサンプリングを行い、平均粒径(D50値)で1.3ミクロンになると、解砕および混合を終了する。解砕後の粒子の粒度分布は、レーザー法により測定される。
(造粒工程:ステップS6)
次に行う造粒工程は、ステップS2の工程と同様の工程であるため、その説明を省略する。
(成形工程:ステップS7)
次に、造粒された粉末を成形用の金型に入れて成形する。
(焼成工程:ステップS8)
次に、金型から成形体を取り出して、約1100℃の温度で常圧にて焼成する(常圧焼結)。
(Raw material mixing step: Step S1)
First, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder and ZnO fine powder are weighed, put into a ball mill mixer together with a predetermined amount of water and a dispersant, and the ball mill mixer is rotated.
(Granulation process: Step S2)
This step is a step performed to increase the molding density and the subsequent sintering density. After the mixing step, the slurry is transferred from the ball mill mixer to another container and mixed with a predetermined amount of binder using a stirrer. When foam comes out after adding the binder, add antifoaming agent. Moreover, when it is thought that a dispersing agent is insufficient, you may add a dispersing agent, stirring. Next, the slurry is put into a spray dryer and granulated.
(Calcination process: Step S3)
The granulated raw material is transferred from a spray dryer to a heat-resistant container and calcined at a temperature of about 800 ° C.
(Sieving process: Step S4)
Next, the raw material after calcination is passed through a 30 mesh (mesh size: about 500 microns) sieve to remove large particles.
(Crushing step: Step S5)
Next, the powder dropped from the sieve and depending on conditions, an additive (at least one of CaO fine powder, Al 2 O 3 fine powder, Cr 2 O 3 fine powder, etc.) is added, and a predetermined amount of water and dispersion are added. Together with the agent, it is put into a ball mill mixer and the ball mill mixer is rotated. The ball mill mixer contains iron balls, and the powder under the sieve and, depending on the conditions, the mixed powder with additives added are crushed and mixed in the ball mill mixer. During this process, periodically samples the slurry, at a 1.3 micron average particle size (D 50 value), and terminates the disintegration and mixing. The particle size distribution of the crushed particles is measured by a laser method.
(Granulation process: Step S6)
Since the next granulation process is the same as the process of step S2, the description thereof is omitted.
(Molding process: Step S7)
Next, the granulated powder is put into a molding die and molded.
(Baking process: Step S8)
Next, the molded body is taken out from the mold and fired at a temperature of about 1100 ° C. under normal pressure (normal pressure sintering).

なお、上記各工程からなる製法は、本発明の磁性素子を製造する上での一形態に過ぎず、上記と異なる工程を採用することができる。また、各工程においても、上述と異なる手法を採用することができる。   In addition, the manufacturing method which consists of said each process is only one form in manufacturing the magnetic element of this invention, and can employ | adopt a process different from the above. In each step, a method different from the above can be adopted.

例えば、上述のステップS1〜ステップS8から成る工程の内、仮焼工程(ステップS3)、篩工程(ステップS4)、解砕工程(ステップS5)および造粒工程(ステップS6)を省略し、原料混合工程(ステップS1)、造粒工程(ステップS2)、成形工程(ステップS3)および焼成工程(ステップS4)からなる製法を採用しても良い。また、ステップS1において投入する原料の粒径が大きい場合には、原料混合工程(ステップS1)において、原料の粉砕工程を兼ねるようにしても良い。また、篩工程を原料混合工程の前に行い、篩工程(ステップS1)、原料混合工程(ステップS2)、造粒工程(ステップS3)、成形工程(ステップS4)および焼成工程(ステップS5)からなる製法を採用しても良い。さらに、原料混合工程(ステップS1)、造粒工程(ステップS2)、篩工程(ステップS3)、成形工程(ステップS4)および焼成工程(ステップS5)からなる製法を採用しても良い。また、添加物を原料混合工程(ステップS1)にて投入しても良い。   For example, the calcining process (step S3), the sieving process (step S4), the crushing process (step S5) and the granulating process (step S6) are omitted from the process consisting of the above-described steps S1 to S8. You may employ | adopt the manufacturing method which consists of a mixing process (step S1), a granulation process (step S2), a shaping | molding process (step S3), and a baking process (step S4). When the particle size of the raw material to be charged in step S1 is large, the raw material mixing step (step S1) may also serve as a raw material pulverization step. Further, the sieving step is performed before the raw material mixing step, and from the sieving step (step S1), the raw material mixing step (step S2), the granulation step (step S3), the molding step (step S4), and the firing step (step S5). The following manufacturing method may be adopted. Furthermore, you may employ | adopt the manufacturing method which consists of a raw material mixing process (step S1), a granulation process (step S2), a sieving process (step S3), a shaping | molding process (step S4), and a baking process (step S5). Moreover, you may throw in an additive in a raw material mixing process (step S1).

仮焼工程における温度として、800℃より低いあるいは高い温度を採用しても良い。ただし、800℃よりも高い温度を採用する場合であっても、焼成工程における焼成温度よりも低いことが条件となる。また、篩工程で使用する篩は、30メッシュの網に限定されるものではなく、これより目の細かい篩あるいは目の粗い網を使用することもできる。篩は、造粒された粉末の特性、用いられる原料の粒径等によって、適宜選択可能である。また、解砕工程における解砕終了の目安は、平均粒径(D50値)以外の目安、例えば、粒度分布において粒径の最大値をD100とした時のD90値若しくはD10値を採用しても良い。また、D50値を採用する場合であっても、1.3ミクロン以外の値を目安に解砕を終了しても良い。成形条件、焼結体の密度の要求によっては、解砕の程度が変動し得るからである。また、成形工程において、金型を用いた成形以外の方法、例えば、冷間静水圧成形(Cold Isostatic Pressing: CIP)等を採用しても良い。また、焼成工程において、常圧焼結以外の方法、例えば、ホットプレス、熱間静水圧(Hot Isostatic Pressing: HIP)等の圧力を加えた焼結方法を採用しても良い。かかる加圧焼結を採用する場合には、1100℃よりも低い温度で焼結するようにしても良い。また、焼結温度は、圧力に応じて適宜変更することができる。 A temperature lower or higher than 800 ° C. may be adopted as the temperature in the calcination step. However, even when a temperature higher than 800 ° C. is employed, the temperature is lower than the firing temperature in the firing step. Further, the sieve used in the sieving step is not limited to a 30-mesh net, and a finer mesh or a coarser net can be used. The sieve can be appropriately selected depending on the characteristics of the granulated powder, the particle size of the raw material used, and the like. Further, indication of the crushing ends in crushing step, the average particle diameter (D 50 value) other than the guide, for example, a D 90 value or D 10 value when the maximum value of the particle size in particle size distribution was D 100 It may be adopted. Further, even when employing a D 50 value, it may be terminated disintegrated to measure a value other than 1.3 microns. This is because the degree of crushing can vary depending on the molding conditions and the density requirements of the sintered body. In the molding process, a method other than molding using a mold, for example, cold isostatic pressing (CIP) or the like may be employed. In the firing step, a method other than atmospheric pressure sintering, for example, a sintering method in which a pressure such as hot pressing or hot isostatic pressing (HIP) is applied may be employed. When such pressure sintering is employed, the sintering may be performed at a temperature lower than 1100 ° C. Further, the sintering temperature can be appropriately changed according to the pressure.

以下、磁性素子の評価方法について説明する。   Hereinafter, a method for evaluating a magnetic element will be described.

評価し得る項目は、初透磁率(μi)、クオリティ・ファクタ(Q)、相対損失係数(tanδ/μiac)、飽和磁束密度(Bs)、コアロス(Pcv)、振幅比透磁率(μa)、相対温度係数(αμir)および比抵抗(ρv)である。   Items that can be evaluated are initial permeability (μi), quality factor (Q), relative loss factor (tan δ / μiac), saturation magnetic flux density (Bs), core loss (Pcv), amplitude relative permeability (μa), relative The temperature coefficient (αμir) and the specific resistance (ρv).

ここで、初透磁率(μi)とは、磁界の強さを限りなくゼロに近づけた時における磁心の振幅透磁率の極限値をいう。このため、初透磁率(μi)は、磁心の外部磁界に対する応答性を示す。また、クオリティ・ファクタ(Q)とは、損失係数tanδ(ヒステリシス損失係数、うず電流損失係数、残留損失係数の総和)の逆数である。相対損失係数(tanδ/μi)とは、損失係数(tanδ)を交流初透磁率(μiac)で除した値である。飽和磁束密度(Bs)とは、磁性材料において可能な限り最大の磁束密度をいう。コアロス(Pcv)とは、フェライト等の強磁性体が磁化した後に、外部磁場により磁気ヒステリシス曲線内を移動する際に消費されるエネルギーをいう。一般的に、コアロス(Pcv)は、熱に変換されるエネルギーロスと、渦電流を生じることによるエネルギーロスとの和で表されるが、フェライトのような絶縁体ではほとんど渦電流は生じないので、主に、発熱によるエネルギーロスと等しい。コアロスは、磁気ヒステリシス曲線の面積に比例するため、面積が少ないほどコアロスは少ない。振幅比透磁率(μa)とは、磁界を加えていない状態にある磁心に時間と共に周期的に変化し、かつその強さの平均値がゼロとなるような磁界を加えた時の磁束密度の最大値と磁界の強さの最大値から得られる比透磁率をいう。相対温度係数(αμir)とは、(μi2−μi1)/μi1(T2−T1)で表される係数をいう。ここで、T1およびT2は温度を示し、μi1およびμi2は、それぞれ温度T1における初透磁率および温度T2における初透磁率を示す。比抵抗(ρv)とは、物質の単位体積当たりの電気抵抗をいう。   Here, the initial permeability (μi) refers to the limit value of the amplitude permeability of the magnetic core when the strength of the magnetic field is made as close to zero as possible. For this reason, the initial permeability (μi) indicates the response of the magnetic core to the external magnetic field. The quality factor (Q) is the reciprocal of the loss coefficient tan δ (the sum of hysteresis loss coefficient, eddy current loss coefficient, and residual loss coefficient). The relative loss coefficient (tan δ / μi) is a value obtained by dividing the loss coefficient (tan δ) by the AC initial permeability (μiac). The saturation magnetic flux density (Bs) refers to the maximum magnetic flux density possible in the magnetic material. Core loss (Pcv) refers to the energy consumed when moving in a magnetic hysteresis curve by an external magnetic field after a ferromagnetic material such as ferrite is magnetized. In general, the core loss (Pcv) is expressed as the sum of energy loss converted to heat and energy loss caused by eddy current. However, an insulator such as ferrite hardly generates eddy current. This is mainly equivalent to energy loss due to heat generation. Since the core loss is proportional to the area of the magnetic hysteresis curve, the smaller the area, the smaller the core loss. Amplitude relative permeability (μa) is the magnetic flux density when a magnetic field that periodically changes with time on a magnetic core in a state where no magnetic field is applied and whose average strength is zero is applied. The relative permeability obtained from the maximum value and the maximum value of the magnetic field strength. The relative temperature coefficient (αμir) refers to a coefficient represented by (μi2−μi1) / μi1 (T2−T1). Here, T1 and T2 indicate the temperature, and μi1 and μi2 indicate the initial permeability at the temperature T1 and the initial permeability at the temperature T2, respectively. Specific resistance (ρv) refers to the electrical resistance per unit volume of a substance.

図2は、従来のNi−Zn系フェライト焼結体のヒステリシス曲線(2A)および本発明のNi−Zn系フェライト焼結体で目指すヒステリシス曲線(2B)を比較して示す図である。本発明では、初磁化曲線の立ち上がりを低く抑えて、飽和磁束密度になるまでに印加できる磁界(電流量)が大きくなるヒステリシス曲線となることを目指している。   FIG. 2 is a diagram comparing the hysteresis curve (2A) of a conventional Ni—Zn ferrite sintered body and the hysteresis curve (2B) aimed at by the Ni—Zn ferrite sintered body of the present invention. In the present invention, the rise of the initial magnetization curve is suppressed to a low level, and it aims to be a hysteresis curve in which the magnetic field (current amount) that can be applied before the saturation magnetic flux density is reached.

以下、本発明の実施例および比較例について説明する。最初に、各実施例および各比較例における製造方法および評価方法について説明し、次に、表および図面を参照しながら評価結果について説明する。   Examples of the present invention and comparative examples will be described below. First, the manufacturing method and the evaluation method in each example and each comparative example will be described, and then the evaluation result will be described with reference to the tables and drawings.

1.製造方法および評価方法
[実施例1]
(1)原料および混合処理
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、49.40mol%、21.75mol%、7.25mol%および21.60mol%であり、かつ上記4種類の原料粉末の総重量が3Kgとなるように、各原料粉末を秤量した。このときのCuO置換率は25.00%であった。続いて、秤量後の各原料粉末を、1,800mlの純水、特殊ポリカルボン酸アンモニウム塩からなる分散剤約20ccおよび直径4mmのスチールボール17.5kg分と共に、アトライターに入れた。このときのスラリー濃度は、62.5重量%であった。その後、回転数200rpmおよび混合時間30分の条件にてアトライターを回転させて、各原料粉末を湿式混合した。
1. Manufacturing method and evaluation method [Example 1]
(1) Raw material and mixing treatment As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder and ZnO fine powder were 49.40 mol%, 21.75 mol% and 7.25 mol%, respectively. Each raw material powder was weighed so that the total weight of the four raw material powders was 3 kg. The CuO substitution rate at this time was 25.00%. Subsequently, each raw material powder after weighing was put in an attritor together with 1,800 ml of pure water, about 20 cc of a dispersant made of special polycarboxylic acid ammonium salt and 17.5 kg of steel balls having a diameter of 4 mm. The slurry concentration at this time was 62.5% by weight. Thereafter, the attritor was rotated under the conditions of a rotation speed of 200 rpm and a mixing time of 30 minutes, and each raw material powder was wet mixed.

(2)造粒
アトライターを用いた原料混合の後、アトライター内のスラリーをステンレス製の容器に移した。次に、その容器に、ポリビニルアルコールからなるバインダーの希釈水溶液を入れて、攪拌機を用いて1時間以上混合した。攪拌機の攪拌スピードは、100〜150rpmの範囲とした。また、バインダーの希釈水溶液は、純バインダーが、原料粉末の全重量に対して1%となるように添加した。この実施例では、原料粉末が3Kg、バインダーの希釈水溶液の濃度が10重量%なので(バインダーの固形分が10重量%で、残り90重量%が水)、バインダー希釈水溶液を300g添加した。バインダーの添加により、スラリー粘度は、1000〜2000cpsの範囲に調整された。また、バインダーの投入後、泡が出てきたら、非イオン系ポリエーテルからなる消泡剤を適宜、添加した。次に、こうして調整されたスラリーを少しづつスプレードライヤーに供給し、造粒を行った。造粒は、スプレードライヤーを用いて行った。スプレードライヤーのディスクの回転数は、8000rpmとし、約1時間かけて造粒を行った。
(2) Granulation After mixing raw materials using an attritor, the slurry in the attritor was transferred to a stainless steel container. Next, a diluted aqueous solution of a binder made of polyvinyl alcohol was put into the container, and mixed for 1 hour or more using a stirrer. The stirring speed of the stirrer was in the range of 100 to 150 rpm. The diluted aqueous solution of the binder was added so that the pure binder was 1% with respect to the total weight of the raw material powder. In this example, since the raw material powder was 3 kg and the concentration of the diluted aqueous solution of the binder was 10 wt% (the solid content of the binder was 10 wt% and the remaining 90 wt% was water), 300 g of the diluted binder aqueous solution was added. The slurry viscosity was adjusted to the range of 1000 to 2000 cps by the addition of the binder. Moreover, when foam | bubble came out after throwing in a binder, the antifoamer which consists of nonionic polyether was added suitably. Next, the slurry thus prepared was gradually supplied to a spray dryer to perform granulation. Granulation was performed using a spray dryer. The rotation speed of the spray dryer disk was 8000 rpm, and granulation was performed for about 1 hour.

(3)仮焼
造粒した原料は、スプレードライヤーからアルミナ容器に移した。次に、バッチ式焼成炉に、造粒した原料入りの当該アルミナ容器を入れた。仮焼は、室温から200℃/hrで昇温し、800℃で2時間保持し、100℃/hrで室温まで降温するプログラムで制御して行った。
(3) Calcination The granulated raw material was transferred from the spray dryer to an alumina container. Next, the said alumina container containing the granulated raw material was put into the batch type baking furnace. The calcination was controlled by a program in which the temperature was raised from room temperature at 200 ° C./hr, held at 800 ° C. for 2 hours, and lowered to room temperature at 100 ° C./hr.

(4)篩い
炉内が冷えてから、アルミナ容器を取り出して、仮焼後の原料を30メッシュの篩いにかけて粗大粒子を除去した。
(4) Sieve After the inside of the furnace had cooled, the alumina container was taken out, and the raw material after calcination was passed through a 30-mesh sieve to remove coarse particles.

(5)解砕
次に、篩下の粉末と、添加物である100ppmのCaO微粉末および1000ppmのAl微粉末とを、スラリー濃度が63〜65重量%の範囲に入るように、所定量の水および分散剤と共に、アトライターに投入した。なお、添加物の量は、焼結体中の成分として100ppmおよび1000ppmとなるようにしている。以後、添加物の量については同様である。アトライターに入れたボールは、最初の混合時と同じもので、かつ同じ量とした。また、アトライターの回転数は、200rpmとし、約1時間を目安に解砕した。途中、スラリーのサンプリングを行い粒度を測定した。粒度測定の結果、平均粒径が約1.3ミクロン程度になったら、アトライターを停止した。なお、粒度の測定には、レーザー式粒度分布測定装置を用いた。
(5) Crushing Next, the powder under the sieve and the additive 100 ppm CaO fine powder and 1000 ppm Al 2 O 3 fine powder are added so that the slurry concentration falls within the range of 63 to 65 wt%. Along with a predetermined amount of water and dispersant, it was put into an attritor. The amount of the additive is set to 100 ppm and 1000 ppm as a component in the sintered body. Thereafter, the amount of the additive is the same. The balls placed in the attritor were the same as in the first mixing and the same amount. Further, the rotation speed of the attritor was set to 200 rpm, and the pulverization was performed for about 1 hour. In the middle, the slurry was sampled to measure the particle size. When the average particle size was about 1.3 microns as a result of the particle size measurement, the attritor was stopped. A laser type particle size distribution measuring device was used for measuring the particle size.

(6)造粒
造粒の条件は、(2)で説明した条件と同じ条件とした。ここでは、重複説明を避ける。
(6) Granulation The conditions for granulation were the same as those described in (2). Here, duplicate explanation is avoided.

(7)成形
次に、造粒した粉末をφ30mm×φ20mmの超硬合金製の金型に入れて、9.5tの圧力をかけて成形した。成形に用いた粉体の重量は、7.20gとした。また、成形には20tプレス機を用いた。
(7) Molding Next, the granulated powder was put into a cemented carbide mold having a diameter of 30 mm and a diameter of 20 mm, and molded by applying a pressure of 9.5 t. The weight of the powder used for molding was 7.20 g. In addition, a 20t press was used for molding.

(8)焼成
次に、成形体を金型から抜き、横型管状雰囲気炉に入れ、焼成した。焼成は、室温から1.6℃/minで500℃まで昇温し、500℃から3.2℃/minで1089℃まで昇温し、1089℃で2時間保持し、5.0℃/minで室温まで降温するプログラムで制御しながら行った。得られた焼結体を、サンプルNo.1とした。
(8) Firing Next, the compact was removed from the mold, placed in a horizontal tubular atmosphere furnace, and fired. Firing is performed at room temperature from 1.6 ° C./min to 500 ° C., from 500 ° C. to 3.2 ° C./min to 1089 ° C., held at 1089 ° C. for 2 hours, and 5.0 ° C./min. It was carried out while controlling with a program that lowered the temperature to room temperature. The obtained sintered body was referred to as Sample No. It was set to 1.

(9)評価方法
次に、焼結体の特性を評価した。μi、Q、tanδ/μiおよびαμirは、インピーダンス/ゲインフェイズ・アナライザを用いて求めた。測定条件は、線材S1−UEW−0−30−NTL、巻数20T、f=10および100kHz、0SC LV=0.1Vとした。また、Bsは、直流磁化特性自動記録装置を用いて求めた。測定条件は、一次側の線材S1−SFBW−0−40−NTL、巻数95T、二次側の線材S1−UEW−0−20−NTL、巻数60T、磁場30若しくは50Oeとした。また、Pcvおよびμaは、B−H測定装置を用いて求めた。測定条件は、線材S1−UEW−0−35−NTL(RED)、一次側および二次側共に巻数8T、f=130kHz、Bm=70〜100mTとした。また、ρvは、Digit Multimeterを用いて求めた。また、測定に際して、In−Ga電極を塗布した。
(9) Evaluation method Next, the characteristics of the sintered body were evaluated. μi, Q, tan δ / μi and αμir were determined using an impedance / gain phase analyzer. The measurement conditions were wire rod S1-UEW-0-30-NTL, number of turns 20T, f = 10 and 100 kHz, 0SC LV = 0.1V. Bs was obtained using a direct current magnetization characteristic automatic recording apparatus. The measurement conditions were the primary wire S1-SFBW-0-40-NTL, the number of turns 95T, the secondary wire S1-UEW-0-20-NTL, the number of turns 60T, the magnetic field 30 or 50 Oe. Pcv and μa were determined using a BH measuring device. The measurement conditions were wire S1-UEW-0-35-NTL (RED), the number of turns of 8T on the primary side and the secondary side, f = 130 kHz, Bm = 70 to 100 mT. Also, ρv was determined using a Digit Multimeter. In measurement, an In—Ga electrode was applied.

[実施例2]
CaOの量を200ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.2とした。
[Example 2]
It manufactured on the same conditions as Example 1 except the quantity of CaO having been 200 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 2.

[実施例3]
CaOの量を300ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.3とした。
[Example 3]
It manufactured on the same conditions as Example 1 except having made the quantity of CaO into 300 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 3.

[実施例4]
CaOの量を500ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.4とした。
[Example 4]
Manufactured under the same conditions as in Example 1 except that the amount of CaO was 500 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 4.

[実施例5]
Alの量を1500ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.5とした。
[Example 5]
Except that the amount of al 2 O 3 to 1500ppm were prepared under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 5.

[実施例6]
CaOの量を200ppm、Alの量を1500ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.6とした。
[Example 6]
Manufactured under the same conditions as in Example 1 except that the amount of CaO was 200 ppm and the amount of Al 2 O 3 was 1500 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 6.

[実施例7]
CaOの量を300ppm、Alの量を1500ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.7とした。
[Example 7]
Manufactured under the same conditions as in Example 1 except that the amount of CaO was 300 ppm and the amount of Al 2 O 3 was 1500 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 7.

[実施例8]
CaOの量を500ppm、Alの量を1500ppmにした以外は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.8とした。
[Example 8]
Manufactured under the same conditions as in Example 1 except that the amount of CaO was 500 ppm and the amount of Al 2 O 3 was 1500 ppm. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 8.

[実施例9]
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末、ZnO微粉末、CaO微粉末およびAl微粉末がそれぞれ、49.50mol%、26.10mol%、2.90mol%、21.50mol%、500ppmおよび1500ppmであり、かつ添加物を除く上記4種類の原料粉末の総重量が3Kgとなるように秤量した。このときのCuO置換率は10.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.9とした。
[Example 9]
As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder, ZnO fine powder, CaO fine powder and Al 2 O 3 fine powder were 49.50 mol%, 26.10 mol%, 2.90 mol%, 21.50 mol%, 500 ppm, and 1500 ppm, and the above four kinds of raw material powder excluding additives were weighed so that the total weight was 3 kg. The CuO substitution rate at this time was 10.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 9.

[実施例10]
NiO微粉末およびCuO微粉末がそれぞれ24.65mol%および4.35mol%とした以外は、実施例9と同じ条件で製造した。このときのCuO置換率は15.00%であった。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.10とした。
[Example 10]
Production was performed under the same conditions as in Example 9, except that the NiO fine powder and the CuO fine powder were 24.65 mol% and 4.35 mol%, respectively. The CuO substitution rate at this time was 15.00%. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 10.

[実施例11]
NiO微粉末およびCuO微粉末がそれぞれ23.20mol%および5.80mol%とした以外は、実施例9と同じ条件で製造した。このときのCuO置換率は20.00%であった。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.11とした。
[Example 11]
Production was performed under the same conditions as in Example 9 except that the NiO fine powder and the CuO fine powder were 23.20 mol% and 5.80 mol%, respectively. The CuO substitution rate at this time was 20.00%. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 11.

[実施例12]
NiO微粉末およびCuO微粉末がそれぞれ21.75mol%および7.25mol%とした以外は、実施例9と同じ条件で製造した。このときのCuO置換率は25.00%であった。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.12とした。
[Example 12]
Production was performed under the same conditions as in Example 9, except that the NiO fine powder and the CuO fine powder were 21.75 mol% and 7.25 mol%, respectively. The CuO substitution rate at this time was 25.00%. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 12.

次に、本発明の実施例と比較するための例(比較例)について説明する。   Next, an example (comparative example) for comparison with the example of the present invention will be described.

[比較例1]
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、48.90mol%、20.63mol%、6.88mol%、23.60mol%であり、かつ上記4種類の原料粉末の総重量が3Kgとなるように、各原料粉末を秤量した。このときのCuO置換率は25.01%であった。CaO微粉末およびAl微粉末は、全く添加しなかった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.13とした。
[Comparative Example 1]
As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder and ZnO fine powder are 48.90 mol%, 20.63 mol%, 6.88 mol% and 23.60 mol%, respectively. In addition, each raw material powder was weighed so that the total weight of the four kinds of raw material powders was 3 kg. The CuO substitution rate at this time was 25.01%. The CaO fine powder and Al 2 O 3 fine powder were not added at all. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 13.

[比較例2]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.00mol%、7.00mol%および23.10mol%とした以外は、比較例1と同じ条件で製造した。このときのCuO置換率は25.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.14とした。
[Comparative Example 2]
Manufacture was performed under the same conditions as in Comparative Example 1 except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.00 mol%, 7.00 mol%, and 23.10 mol%, respectively. The CuO substitution rate at this time was 25.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 14.

[比較例3]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.38mol%、7.13mol%および22.60mol%とした以外は、比較例1と同じ条件で製造した。このときのCuO置換率は25.01%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.15とした。
[Comparative Example 3]
It was manufactured under the same conditions as in Comparative Example 1 except that the NiO fine powder, CuO fine powder and ZnO fine powder were 21.38 mol%, 7.13 mol% and 22.60 mol%, respectively. The CuO substitution rate at this time was 25.01%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 15.

[比較例4]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.75mol%、7.25mol%および22.10mol%とした以外は、比較例1と同じ条件で製造した。このときのCuO置換率は25.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.16とした。
[Comparative Example 4]
Manufacture was performed under the same conditions as in Comparative Example 1, except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.75 mol%, 7.25 mol%, and 22.10 mol%, respectively. The CuO substitution rate at this time was 25.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 16.

[比較例5]
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、49.20mol%、21.00mol%、7.00mol%、22.80mol%であり、かつ上記4種類の原料粉末の総重量が3Kgとなるように、各原料粉末を秤量した。このときのCuO置換率は25.00%であった。CaO微粉末およびAl微粉末は、全く添加しなかった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.17とした。
[Comparative Example 5]
As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder and ZnO fine powder were 49.20 mol%, 21.00 mol%, 7.00 mol% and 22.80 mol%, respectively. In addition, each raw material powder was weighed so that the total weight of the four kinds of raw material powders was 3 kg. The CuO substitution rate at this time was 25.00%. The CaO fine powder and Al 2 O 3 fine powder were not added at all. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 17.

[比較例6]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.38mol%、7.13mol%および22.30mol%とした以外は、比較例5と同じ条件で製造した。このときのCuO置換率は25.01%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.18とした。
[Comparative Example 6]
It manufactured on the same conditions as the comparative example 5 except having made NiO fine powder, CuO fine powder, and ZnO fine powder 21.38 mol%, 7.13 mol%, and 22.30 mol%, respectively. The CuO substitution rate at this time was 25.01%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 18.

[比較例7]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.75mol%、7.25mol%および21.80mol%とした以外は、比較例5と同じ条件で製造した。このときのCuO置換率は25.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.19とした。
[Comparative Example 7]
Manufacture was performed under the same conditions as in Comparative Example 5, except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.75 mol%, 7.25 mol%, and 21.80 mol%, respectively. The CuO substitution rate at this time was 25.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 19.

[比較例8]
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、49.40mol%、20.63mol%、6.88mol%、23.10mol%であり、かつ上記4種類の原料粉末の総重量が3Kgとなるように、各原料粉末を秤量した。このときのCuO置換率は25.01%であった。CaO微粉末およびAl微粉末は、全く添加しなかった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.20とした。
[Comparative Example 8]
As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder and ZnO fine powder are 49.40 mol%, 20.63 mol%, 6.88 mol% and 23.10 mol%, respectively. In addition, each raw material powder was weighed so that the total weight of the four kinds of raw material powders was 3 kg. The CuO substitution rate at this time was 25.01%. The CaO fine powder and Al 2 O 3 fine powder were not added at all. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 20.

[比較例9]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.00mol%、7.00mol%および22.60mol%とした以外は、比較例8と同じ条件で製造した。このときのCuO置換率は25.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.21とした。
[Comparative Example 9]
Manufacture was performed under the same conditions as Comparative Example 8, except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.00 mol%, 7.00 mol%, and 22.60 mol%, respectively. The CuO substitution rate at this time was 25.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 21.

[比較例10]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.38mol%、7.13mol%および22.10mol%とした以外は、比較例8と同じ条件で製造した。このときのCuO置換率は25.01%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.22とした。
[Comparative Example 10]
Manufacture was performed under the same conditions as in Comparative Example 8, except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.38 mol%, 7.13 mol%, and 22.10 mol%, respectively. The CuO substitution rate at this time was 25.01%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. It was set to 22.

[比較例11]
NiO微粉末、CuO微粉末およびZnO微粉末がそれぞれ、21.75mol%、7.25mol%および21.60mol%とした以外は、比較例8と同じ条件で製造した。このときのCuO置換率は25.00%であった。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.23とした。
[Comparative Example 11]
Manufacture was performed under the same conditions as in Comparative Example 8, except that NiO fine powder, CuO fine powder, and ZnO fine powder were 21.75 mol%, 7.25 mol%, and 21.60 mol%, respectively. The CuO substitution rate at this time was 25.00%. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 23.

[比較例12]
焼結体中の成分比率としてFe微粉末、NiO微粉末、CuO微粉末、ZnO微粉末、CaO微粉末、Cr微粉末およびAl微粉末がそれぞれ、49.40mol%、21.75mol%、7.25mol%、21.60mol%、100ppm、300ppmおよび1000ppmであり、かつ添加物を除く上記4種類の原料粉末の総重量が3Kgとなるように秤量した。このときのCuO置換率は25.00%であった。比較例11との相違点は、CaO微粉末、Cr微粉末およびAl微粉末を添加した点のみである。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.24とした。
[Comparative Example 12]
As component ratios in the sintered body, Fe 2 O 3 fine powder, NiO fine powder, CuO fine powder, ZnO fine powder, CaO fine powder, Cr 2 O 3 fine powder and Al 2 O 3 fine powder were 49.40 mol, respectively. %, 21.75 mol%, 7.25 mol%, 21.60 mol%, 100 ppm, 300 ppm and 1000 ppm, and the above four kinds of raw material powder excluding additives were weighed so that the total weight was 3 kg. The CuO substitution rate at this time was 25.00%. The difference from Comparative Example 11 is only that CaO fine powder, Cr 2 O 3 fine powder and Al 2 O 3 fine powder were added. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 24.

[比較例13]
CaO微粉末およびCr微粉末を添加せずに、焼結体中の成分比率として1000ppmのAl微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.25とした。
[Comparative Example 13]
The difference from Comparative Example 11 is that only 1000 ppm Al 2 O 3 fine powder was added as a component ratio in the sintered body without adding CaO fine powder and Cr 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 25.

[比較例14]
CaO微粉末およびCr微粉末を添加せずに、焼結体中の成分比率として2000ppmのAl微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.26とした。
[Comparative Example 14]
The difference from Comparative Example 11 is that only 2000 ppm Al 2 O 3 fine powder was added as a component ratio in the sintered body without adding CaO fine powder and Cr 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 26.

[比較例15]
CaO微粉末およびAl微粉末を添加せずに、焼結体中の成分比率として250ppmのCr微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.27とした。
[Comparative Example 15]
The difference from Comparative Example 11 is that only the 250 ppm Cr 2 O 3 fine powder was added as the component ratio in the sintered body without adding the CaO fine powder and the Al 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 27.

[比較例16]
CaO微粉末およびAl微粉末を添加せずに、焼結体中の成分比率として500ppmのCr微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.28とした。
[Comparative Example 16]
The difference from Comparative Example 11 is that only the 500 ppm Cr 2 O 3 fine powder was added as the component ratio in the sintered body without adding the CaO fine powder and the Al 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 28.

[比較例17]
Cr微粉末およびAl微粉末を添加せずに、焼結体中の成分比率として250ppmのCaO微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.29とした。
[Comparative Example 17]
The difference from Comparative Example 11 is that only the 250 ppm CaO fine powder was added as the component ratio in the sintered body without adding the Cr 2 O 3 fine powder and the Al 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 29.

[比較例18]
Cr微粉末およびAl微粉末を添加せずに、焼結体中の成分比率として500ppmのCaO微粉末のみを添加した点が、比較例11との相違点である。その他は、実施例1と同じ条件で製造した。評価条件は、実施例1と同一条件とした。得られた焼結体を、サンプルNo.30とした。
[Comparative Example 18]
The difference from Comparative Example 11 is that only the CaO fine powder of 500 ppm was added as the component ratio in the sintered body without adding the Cr 2 O 3 fine powder and the Al 2 O 3 fine powder. Others were manufactured under the same conditions as in Example 1. The evaluation conditions were the same as those in Example 1. The obtained sintered body was referred to as Sample No. 30.

2.評価結果
表1および図3〜6に、上述の製造条件で得られたサンプルの評価結果を示す。なお、図3〜5において、Hmが低い部分で各曲線が太くなっているが、これはプロットした点が多数重なっているためである。図3〜6において示される系列表記(サンプルNo.)は、表1に示されるサンプルNo.に対応している。

Figure 2006143530
2. Evaluation Results Table 1 and FIGS. 3 to 6 show the evaluation results of the samples obtained under the above-described manufacturing conditions. In FIGS. 3 to 5, each curve is thick at a portion where Hm is low, because a large number of plotted points overlap. The series notation (sample No.) shown in FIGS. It corresponds to.
Figure 2006143530

まず、表1のサンプルNo.13〜23に基づいて、Al、CaOおよびCrのいずれも含まないNi−Zn系フェライト焼結体における各主要成分と、初磁化特性および飽和磁束密度との関係をみると、サンプルNo.23が初透磁率を低く抑え、かつ飽和磁束密度を高くでき、最も良好な特性を有することがわかった。以後、主要成分をサンプルNo.23として、Al、CaOおよびCrの各添加物の添加効果を調べた。 First, sample no. Based on 13 to 23, when the relationship between each main component in the Ni—Zn based ferrite sintered body containing none of Al 2 O 3 , CaO and Cr 2 O 3 , the initial magnetization characteristics and the saturation magnetic flux density is seen. Sample No. It was found that No. 23 has the best characteristics because the initial permeability can be kept low and the saturation magnetic flux density can be increased. Thereafter, the main components are designated as Sample No. 23, the addition effect of each additive of Al 2 O 3 , CaO and Cr 2 O 3 was examined.

図3は、表1におけるサンプルNo.23およびサンプルNo.1〜8の各サンプルの初磁化特性を示すグラフである。図3の結果から、Al、CaOおよびCrのいずれも含まない焼結体(表1におけるNo.23)よりも、AlとCaOを含む焼結体(No.1〜8)の方が、初磁化曲線の立ち上がりが低いことがわかった。すなわち、AlとCaOを含むと、Ni−Zn系フェライト焼結体の初磁化特性を低く抑え、磁束飽和までに印加できる磁界量を増加させることが可能であることがわかった。 3 shows a sample No. in Table 1. 23 and sample no. It is a graph which shows the initial magnetization characteristic of each sample of 1-8. From the results of FIG. 3, than the sintered body containing neither Al 2 O 3, CaO and Cr 2 O 3 (No.23 in Table 1), the sintered body containing Al 2 O 3 and CaO (No. It was found that 1 to 8) had a lower initial magnetization curve. That is, when Al 2 O 3 and CaO are included, it has been found that the initial magnetization characteristics of the Ni—Zn-based ferrite sintered body can be kept low, and the amount of magnetic field that can be applied before magnetic flux saturation can be increased.

図4は、表1におけるサンプルNo.23〜26、No.4、No.6およびNo.8の各サンプルの初磁化特性を示すグラフである。図4の結果から、Al、CaOおよびCrを含むと、Al、CaOおよびCrのいずれも含まない焼結体(表1におけるNo.23)よりも初磁化曲線の立ち上がりが低くなることがわかった。しかし、Al、CaOおよびCrを含む焼結体(表1におけるNo.24)と、CaOおよびCrを含まずにAlのみを含む焼結体(表1におけるNo.25およびNo.26)の特性とを比較すると、Al、CaOおよびCrを含む焼結体(表1におけるNo.24)の特性は、Alのみを1000ppm含む焼結体(表1におけるNo.25)と同等の特性であることがわかった。また、Alを2000ppm含む焼結体(表1におけるNo.26)は、さらに初磁化特性の立ち上がりが低くなることがわかった。また、AlとCaOを含む焼結体(表1におけるNo.4、6および8)の方が、Alのみを含む焼結体(表1におけるNo.25およびNo.26)およびAl、CaOおよびCrを含む焼結体(表1におけるNo.24)よりも、初磁化特性の立ち上がりを低く抑えられることがわかった。 4 shows a sample No. in Table 1. 23-26, no. 4, no. 6 and no. 8 is a graph showing initial magnetization characteristics of each sample of No. 8; From the result of FIG. 4, when Al 2 O 3 , CaO and Cr 2 O 3 are included, the sintered body does not include any of Al 2 O 3 , CaO and Cr 2 O 3 (No. 23 in Table 1). It was found that the initial magnetization curve rises low. However, a sintered body containing Al 2 O 3 , CaO and Cr 2 O 3 (No. 24 in Table 1) and a sintered body containing only Al 2 O 3 without containing CaO and Cr 2 O 3 (table 1 and No. 25 and No. 26 in No. 1), the characteristics of the sintered body (No. 24 in Table 1) containing Al 2 O 3 , CaO and Cr 2 O 3 are only Al 2 O 3. It was found that the characteristics were the same as those of a sintered body containing 1000 ppm (No. 25 in Table 1). It was also found that the sintered body containing 2000 ppm of Al 2 O 3 (No. 26 in Table 1) has a further lower initial magnetization characteristic. Further, sintered bodies containing Al 2 O 3 and CaO (Nos. 4, 6 and 8 in Table 1) are sintered bodies containing only Al 2 O 3 (No. 25 and No. 26 in Table 1). ) And Al 2 O 3 , CaO and Cr 2 O 3 (No. 24 in Table 1).

図5は、表1におけるサンプルNo.23、No.30、No.4およびNo.8の各サンプルの初磁化特性を示すグラフである。図5の結果から、CaOの含有量を一定にしたままAlの含有量を増やすと、初磁化特性をより低く抑えることができることがわかった。 5 shows a sample No. in Table 1. 23, no. 30, no. 4 and no. 8 is a graph showing initial magnetization characteristics of each sample of No. 8; From the results shown in FIG. 5, it was found that the initial magnetization characteristics can be further reduced by increasing the Al 2 O 3 content while keeping the CaO content constant.

図6は、表1におけるサンプルNo.23、No.2、No.4、No.6およびNo.8の各サンプルの重畳特性を示すグラフである。Al、CaOおよびCrのいずれも含まない焼結体(表1におけるNo.23)の重畳特性に比べて、AlとCaOを含む焼結体(表1におけるNo.2、4、6および8)の重畳特性の方が良好であることがわかった。特に、Alを1500ppm、CaOを200若しくは500ppm含む焼結体(表1におけるNo.6および8)では、より良好な重畳特性が得られた。 6 shows a sample No. in Table 1. 23, no. 2, No. 4, no. 6 and no. 8 is a graph showing superposition characteristics of each sample of 8; Compared to the superimposed characteristics of the sintered body (No. 23 in Table 1) that does not contain any of Al 2 O 3 , CaO, and Cr 2 O 3 , the sintered body (No. in Table 1) containing Al 2 O 3 and CaO. It was found that the superposition characteristics of .2, 4, 6, and 8) were better. In particular, in the sintered body (Nos. 6 and 8 in Table 1) containing 1500 ppm of Al 2 O 3 and 200 or 500 ppm of CaO, better superposition characteristics were obtained.

次に、表1において、サンプルNo.9〜12の比較から、CuO置換率と初磁化特性および飽和磁束密度との関係を調べた。AlとCaOの各含有量を一定にしたまま(Alを1500ppm、CaOを500ppm)、主成分比率を変動させてCuO置換率だけを変化させた。この結果、CuO置換率が15.00%または20.00%で、初磁化特性と飽和磁束密度とを共に両立できることがわかった。CuO置換率を25.00%にまで増加すると、初磁化特性が低下することがわかった。 Next, in Table 1, sample No. From the comparison of 9 to 12, the relationship between the CuO substitution rate, the initial magnetization characteristics, and the saturation magnetic flux density was examined. While the contents of Al 2 O 3 and CaO were kept constant (Al 2 O 3 was 1500 ppm and CaO was 500 ppm), the main component ratio was varied to change only the CuO substitution rate. As a result, it was found that both the initial magnetization characteristics and the saturation magnetic flux density can be achieved at a CuO substitution rate of 15.00% or 20.00%. It was found that when the CuO substitution rate was increased to 25.00%, the initial magnetization characteristics were lowered.

以上、表1および図3〜6に示す結果より、Feが49.50mol%、NiO+CuOの混合物が29.00mol%(ただし、CuO置換率が15.00若しくは20.00%)、Alが1500ppm、CaOが500ppmである焼結体の特性が最も良いことがわかった。 As described above, from the results shown in Table 1 and FIGS. 3 to 6, Fe 2 O 3 is 49.50 mol%, the mixture of NiO + CuO is 29.00 mol% (however, the CuO substitution rate is 15.00 or 20.00%), Al It was found that the characteristics of the sintered body having 2 O 3 of 1500 ppm and CaO of 500 ppm were the best.

本発明は、主に、電源系の磁性素子、例えばインダクタ、トランス等を製造あるいは使用する産業分野に利用できる。   The present invention can be used mainly in an industrial field in which a magnetic element of a power supply system, such as an inductor or a transformer, is manufactured or used.

本発明の実施の形態に係る磁性素子を製造するプロセスを示すフローチャートである。It is a flowchart which shows the process which manufactures the magnetic element which concerns on embodiment of this invention. 従来のNi−Zn系フェライト焼結体のヒステリシス曲線(2A)および本発明のNi−Zn系フェライト焼結体で目指すヒステリシス曲線(2B)を比較して示す図である。It is a figure which compares and shows the hysteresis curve (2B) of the conventional Ni-Zn type ferrite sintered compact, and the hysteresis curve (2B) aimed at by the Ni-Zn type ferrite sintered compact of this invention. 表1におけるサンプルNo.23およびサンプルNo.1〜8の各サンプルの初磁化特性を示すグラフである。Sample No. in Table 1 23 and sample no. It is a graph which shows the initial magnetization characteristic of each sample of 1-8. 表1におけるサンプルNo.23〜26、No.4、No.6およびNo.8の各サンプルの初磁化特性を示すグラフである。Sample No. in Table 1 23-26, no. 4, no. 6 and no. 8 is a graph showing initial magnetization characteristics of each sample of No. 8; 表1におけるNo.23、No.30、No.4およびNo.8の各サンプルの初磁化特性を示すグラフである。No. in Table 1 23, no. 30, no. 4 and no. 8 is a graph showing initial magnetization characteristics of each sample of No. 8; 表1におけるNo.23、No.2、No.4、No.6およびNo.8の各サンプルの重畳特性を示すグラフである。No. in Table 1 23, no. 2, no. 4, no. 6 and no. 8 is a graph showing superposition characteristics of each sample of 8;

Claims (3)

酸化鉄(Fe)49.0〜50.0mol%と、酸化ニッケル(NiO)と酸化銅(CuO)の混合物21.0〜30.0mol%(内、酸化銅置換率5.00〜30.00%)と、残部として酸化亜鉛(ZnO)とからなるNi−Zn系フェライト組成物であって、
上記フェライトへの添加物として、上記各成分の総重量に対して100〜800ppmの酸化カルシウム(CaO)と1000〜2000ppmの酸化アルミニウム(Al)とを含むことを特徴とするNi−Zn系フェライト組成物。
Iron oxide (Fe 2 O 3 ) 49.0 to 50.0 mol%, nickel oxide (NiO) and copper oxide (CuO) mixture 21.0 to 30.0 mol% (including copper oxide substitution rate 5.00 to 30.00%) and the balance being zinc oxide (ZnO), a Ni—Zn based ferrite composition,
Ni-Zn characterized by containing 100 to 800 ppm of calcium oxide (CaO) and 1000 to 2000 ppm of aluminum oxide (Al 2 O 3 ) as additives to the ferrite with respect to the total weight of the above components. -Based ferrite composition.
前記酸化銅置換率が15.00〜20.00%で、200〜500ppmの酸化カルシウム(CaO)と、1000〜1500ppmの酸化アルミニウム(Al)とを含むことを特徴とする請求項1記載のNi−Zn系フェライト組成物。 The copper oxide substitution rate is 15.00 to 20.00%, and includes 200 to 500 ppm of calcium oxide (CaO) and 1000 to 1500 ppm of aluminum oxide (Al 2 O 3 ). The Ni-Zn ferrite composition described. 請求項1または2記載のNi−Zn系フェライト組成物を用いた磁性素子。   A magnetic element using the Ni—Zn ferrite composition according to claim 1.
JP2004336041A 2004-11-19 2004-11-19 Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT Pending JP2006143530A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004336041A JP2006143530A (en) 2004-11-19 2004-11-19 Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT
CN 200510118658 CN1776834A (en) 2004-11-19 2005-11-01 Ni-zn series ferrite synthetic material and magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336041A JP2006143530A (en) 2004-11-19 2004-11-19 Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT

Publications (1)

Publication Number Publication Date
JP2006143530A true JP2006143530A (en) 2006-06-08

Family

ID=36623648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336041A Pending JP2006143530A (en) 2004-11-19 2004-11-19 Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT

Country Status (2)

Country Link
JP (1) JP2006143530A (en)
CN (1) CN1776834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225699A1 (en) * 2018-05-24 2019-11-28 京セラ株式会社 Ferrite sintered compact and noise filter
CN112521171A (en) * 2020-12-22 2021-03-19 江门江益磁材有限公司 Anisotropic permanent magnetic ferrite and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422643B2 (en) 2008-10-02 2014-02-19 エスエヌユー アール アンド ディービー ファウンデーション Multiferroic substance and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225699A1 (en) * 2018-05-24 2019-11-28 京セラ株式会社 Ferrite sintered compact and noise filter
JPWO2019225699A1 (en) * 2018-05-24 2021-04-30 京セラ株式会社 Ferrite sintered body and noise filter
JP7094361B2 (en) 2018-05-24 2022-07-01 京セラ株式会社 Ferrite sintered body and noise filter
CN112521171A (en) * 2020-12-22 2021-03-19 江门江益磁材有限公司 Anisotropic permanent magnetic ferrite and preparation method thereof

Also Published As

Publication number Publication date
CN1776834A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP4540768B2 (en) Magnetic ferrite sintered body
EP1101736B1 (en) Mn-Zn ferrite and production thereof
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
TW201927701A (en) MnCoZn ferrite and production method therefor
JP2008143744A (en) MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008127230A (en) MnZnNi FERRITE
JP5693725B2 (en) Ferrite sintered body and ferrite core provided with the same
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2007269503A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
CN110418775A (en) MnCoZn class ferrite and its manufacturing method
JP2006143530A (en) Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP2015113247A (en) Ferrite composition, ferrite core and electronic component
JP2010215453A (en) NiCuZn FERRITE
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP5387422B2 (en) Ferrite composition and electronic component
JP2006160584A (en) Ni-Zn-BASED FERRITE COMPOSITION AND ANTENNA COIL
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP2005108977A (en) Mn-Zn SYSTEM FERRITE, MAGNETIC CORE FOR TRANSFORMER, AND TRANSFORMER
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JP3363017B2 (en) Ni-based ferrite sintered body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602