JP2000173812A - Manufacture of anisotropic ferrite magnet - Google Patents

Manufacture of anisotropic ferrite magnet

Info

Publication number
JP2000173812A
JP2000173812A JP10348794A JP34879498A JP2000173812A JP 2000173812 A JP2000173812 A JP 2000173812A JP 10348794 A JP10348794 A JP 10348794A JP 34879498 A JP34879498 A JP 34879498A JP 2000173812 A JP2000173812 A JP 2000173812A
Authority
JP
Japan
Prior art keywords
type hexagonal
hexagonal ferrite
powder
ferrite
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10348794A
Other languages
Japanese (ja)
Inventor
Hiroshi Marusawa
博 丸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP10348794A priority Critical patent/JP2000173812A/en
Publication of JP2000173812A publication Critical patent/JP2000173812A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an anisotropic ferrite magnet, which reduces the cost of the magnet by dispensing with an orientation using a press in a magnetic field through the magnet has a high density and a high orientation. SOLUTION: A powder body consisting of a Y type hexagonal ferrite which is shown by a general formula: M2Fe2Fe12O22 (Provided that, the M is at least one kind of an element out of Ba and Sr.) is subjected to uniaxial pressing and after that, is calcined to obtain a sintered body consisting an M type hexagonal ferrite, which is shown by a general formula: MFe12O19 (Provided that, the M is at least one kind of an element out of Ba and Sr.), as its main component. Moreover, before uniaxial pressing, an Fe compound, a Ba compound and an Si compound are added to the powder body consisting of the Y type hexagonal ferrite and the powder body is kept prepared into a composition of an MFe12O19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モーターなどの電
気機器で用いられる異方性フェライト磁石の製造方法に
関するものであり、バリウムフェライト磁石またはスト
ロンチウムフェライト磁石の製造方法に関する。
The present invention relates to a method for producing an anisotropic ferrite magnet used in electric equipment such as a motor, and more particularly to a method for producing a barium ferrite magnet or a strontium ferrite magnet.

【0002】[0002]

【従来の技術】近年、高保持力磁性材料として、フェラ
イト磁石と比べて磁気特性が優れている希土類磁石の利
用比率が高くなっている。その影響もあり、フェライト
磁石には、低価格で高性能なものが要求されている。こ
の要求に答えてフェライト磁石の磁気特性を高めるため
には、単磁区からなるM型六方晶フェライト(マグネト
プランバイト)粒子を高配向させて、高密度で焼結させ
ることが重要である。
2. Description of the Related Art In recent years, as a high coercive force magnetic material, the use ratio of rare earth magnets having better magnetic properties than ferrite magnets has increased. Due to this effect, low cost and high performance ferrite magnets are required. In order to respond to this requirement and to improve the magnetic properties of the ferrite magnet, it is important that M-type hexagonal ferrite (magnetoplumbite) particles composed of a single magnetic domain be highly oriented and sintered at a high density.

【0003】そして、通常、このようなフェライト磁石
は、出発原料を仮焼し、粉砕して、単磁区からなるM型
六方晶フェライト粒子を得た後、この粒子を磁場中でc
軸配向させて成形した後、焼成して得られている。
[0003] Usually, such a ferrite magnet is obtained by calcining and pulverizing a starting material to obtain M-type hexagonal ferrite particles composed of a single magnetic domain.
It is obtained by firing after shaping with axial orientation.

【0004】なお、単磁区のM型六方晶フェライト粒子
は、c軸配向させるためには六角板状粒子であることが
望ましいが、ボールミル、アトライター、振動ミルなど
を用いた通常の粉砕では六角板状粒子は得られない。六
角板状粒子を得る方法として、フラックス(K2SO4
どの硫酸塩等)中に板状粒子を析出させる方法や、ガラ
ス(B23)中に微結晶化させる方法などの種々の方法
が提案されているが(特公昭42−19064号公報、
特公昭55−49030号公報、特公昭57−1251
8号公報、特公昭58−20890号公報、特開昭59
−146944号公報、特開昭60−90829号公
報)、いずれもコストアップとなるため、通常の粉砕に
よるフェライト磁石の製造が最も一般的に行なわれてい
る。
The M-type hexagonal ferrite particles having a single magnetic domain are desirably hexagonal plate-shaped particles for c-axis orientation. No plate-like particles are obtained. Various methods for obtaining hexagonal plate-like particles, such as a method of depositing plate-like particles in a flux (sulfate such as K 2 SO 4 ) and a method of micro-crystallizing in glass (B 2 O 3 ), are used. A method has been proposed (Japanese Patent Publication No. 42-19064,
JP-B-55-49030, JP-B-57-1251
8, JP-B-58-20890, JP-A-59-20890
No. 146944, Japanese Patent Application Laid-Open No. Sho 60-90829), the production of ferrite magnets by ordinary pulverization is most commonly performed because of increased cost.

【0005】[0005]

【発明が解決しようとする課題】従来のM型六方晶フェ
ライト粒子の粉砕は、高密度の焼結体を得ることを目的
とするものであが、このM型六方晶フェライト粒子は硬
くて摩砕粉砕がおこるため、サブミクロン粒子が多数発
生し、粒度分布が大きくなるという問題点を有してい
た。また、その粉砕に要する費用を無視できず、低コス
ト化の妨げとなっていた。
The conventional pulverization of M-type hexagonal ferrite particles is intended to obtain a high-density sintered body. Since crushing and pulverization occur, there is a problem that a large number of submicron particles are generated and the particle size distribution is increased. Further, the cost required for the pulverization cannot be neglected, which hinders cost reduction.

【0006】また、通常、M型六方晶フェライト粒子を
高配向させるには磁場中プレスでc軸配向させるのが一
般的であるが、これらの粉砕粒子では配向度に限界があ
る上に、粉砕条件により配向性が変化するという問題点
を有していた。さらに、大型成形体を作製するために
は、大電流または高巻線数の磁場発生コイルを装備した
成形機とその金型が必要であり、コストアップの要因と
なっていた。
Usually, in order to highly orient M-type hexagonal ferrite particles, c-axis orientation is carried out by a press in a magnetic field. There was a problem that the orientation changed depending on the conditions. Further, in order to produce a large-sized molded body, a molding machine equipped with a magnetic field generating coil having a large current or a high number of windings and a mold for the molding machine are required, which has caused a cost increase.

【0007】そこで、本発明の目的は、高密度、高配向
でありながら、磁場中プレスによる配向を不要とするこ
とでコストを低減した、異方性フェライト磁石の製造方
法を提供することにある。
It is an object of the present invention to provide a method for producing an anisotropic ferrite magnet, which has a high density and a high orientation, and reduces the cost by eliminating the need for orientation by pressing in a magnetic field. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の異方性フェライト磁石の製造方法は、一般
式M2Fe2Fe1222(ただし、MはBaおよびSrの
うちの少なくとも1種)で表わされるY型六方晶フェラ
イトの粉体を一軸加圧成形し、その後焼成して、一般式
MFe1219(ただし、MはBaおよびSrのうちの少
なくとも1種)で表わされるM型六方晶フェライトを主
成分とする焼結体を得ることを特徴とする。
Means for Solving the Problems In order to achieve the above object, a method for producing an anisotropic ferrite magnet of the present invention uses a general formula M 2 Fe 2 Fe 12 O 22 (where M is one of Ba and Sr). Y-type hexagonal ferrite powder represented by at least one kind) is uniaxially pressed and then fired, and is represented by a general formula MFe 12 O 19 (where M is at least one kind of Ba and Sr). A sintered body containing M-type hexagonal ferrite as a main component.

【0009】そして、前記一軸加圧成形する前のY型六
方晶フェライトの粉体に、Fe化合物、またはFe化合
物とM化合物(ただし、MはBaおよびSrのうちの少
なくとも1種)を添加し、MFe1219組成に調合する
ことを特徴とする。
Then, an Fe compound or an Fe compound and an M compound (where M is at least one of Ba and Sr) is added to the Y-type hexagonal ferrite powder before the uniaxial pressing. , MFe 12 O 19 composition.

【0010】また、前記Y型六方晶フェライトの粉体の
量は50wt%以上であることを特徴とする。
The amount of the Y-type hexagonal ferrite powder is at least 50 wt%.

【0011】さらに、前記一軸加圧成形する前の粉体
に、SiO2を1.0wt%以下、かつCaOを1.0
wt%以下添加することを特徴とする。
Further, the powder before the uniaxial pressing is made to contain 1.0% by weight or less of SiO 2 and 1.0% by weight of CaO.
It is characterized in that it is added in an amount of not more than wt%.

【0012】なお、焼成雰囲気については、Fe2+をF
3+に変化させるために、空気中または、酸素雰囲気中
での焼成が必要である。また、焼成温度は、1100〜
1300℃の範囲が好ましい。これは、1100℃未満
では、MFe1219(ただし、MはBaおよびSrのう
ちの少なくとも1種)への反応が十分に起こらず、一
方、1300℃を超えると、結晶粒子が異常に成長して
保持力bHc特性が低下するためである。そして、焼成
時間は、焼成温度と関係するが、MFe1219への反
応を完結させるためには、通常6時間程度が好ましい。
As for the firing atmosphere, Fe 2+ is converted to F
In order to change to e 3+ , firing in air or an oxygen atmosphere is required. The firing temperature is 1100
A range of 1300 ° C. is preferred. This is because below 1100 ° C., the reaction to MFe 12 O 19 (where M is at least one of Ba and Sr) does not sufficiently occur, while above 1300 ° C., the crystal grains grow abnormally. This is because the holding force bHc characteristic is reduced. The firing time is related to the firing temperature, but is preferably about 6 hours in order to complete the reaction to MFe 12 O 19 .

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を実施
例に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples.

【0014】(実施例1)まず、出発原料としてFe2
3およびBaCO3の粉体を用意した。その後、Fe2
3およびBaCO3をBa2Fe2Fe1222組成になる
ように調合し、調合原料に対して2倍重量の純水を加え
た後、ボールミルで24時間混合・粉砕し、濾過脱水し
た。ふるいに通した後、酸素分圧1×10-4MPaの雰
囲気中、1100℃で仮焼してY型六方晶フェライトで
あるBa2Fe2Fe1222の六角板状粒子を得た。
(Example 1) First, Fe 2 was used as a starting material.
Powders of O 3 and BaCO 3 were prepared. Then, Fe 2
The O 3 and BaCO 3 were blended so as to Ba 2 Fe 2 Fe 12 O 22 composition, after addition of pure water 2 times by weight relative to the formulation material, 24 hours were mixed and pulverized in a ball mill, and filtering and dewatering . After passing through a sieve, it was calcined at 1100 ° C. in an atmosphere having an oxygen partial pressure of 1 × 10 −4 MPa to obtain hexagonal plate-like particles of Y 2 type hexagonal ferrite Ba 2 Fe 2 Fe 12 O 22 .

【0015】次に、このBa2Fe2Fe1222に酢酸ビ
ニル系バインダと純水を添加した後、ボールミルで6時
間混合し、スプレードライヤーで造粒した。なお、この
ボールミル混合を長時間行なうと、六角板状の粒子が崩
れて焼結体の配向性が崩れるため好ましくない。次に、
得られた造粒粉を一軸加圧成形機で成形し、1200℃
で焼成してBaFe1219で表わされるM型六方晶フェ
ライトを主成分とする焼結体を得た。
Next, after adding a vinyl acetate-based binder and pure water to the Ba 2 Fe 2 Fe 12 O 22 , the mixture was mixed for 6 hours by a ball mill and granulated by a spray drier. If the ball mill mixing is performed for a long period of time, hexagonal plate-like particles are broken and the orientation of the sintered body is broken, which is not preferable. next,
The obtained granulated powder is molded by a uniaxial pressing machine,
To obtain a sintered body mainly composed of M-type hexagonal ferrite represented by BaFe 12 O 19 .

【0016】得られた焼結体の密度は5.2g/cm3
(X線理論密度比98%)であり、高密度な焼結体が得
られた。また、配向度は85%であり、高配向な焼結体
が得られた。さらに、焼結体の磁気特性は、残留磁束密
度Brが2.6kG、保持力bHcが2.0kOe、最
大エネルギー積(BH)maxが1.8GOeと良好で
あった。
The density of the obtained sintered body is 5.2 g / cm 3
(X-ray theoretical density ratio: 98%), and a high-density sintered body was obtained. The degree of orientation was 85%, and a highly oriented sintered body was obtained. Further, the magnetic properties of the sintered body were as good as residual magnetic flux density Br of 2.6 kG, coercive force bHc of 2.0 kOe, and maximum energy product (BH) max of 1.8 GOe.

【0017】なお、配向度は、焼結体のX線回折分析に
より、次式で求めた。配向度(%)=[ΣI(00l)
/ΣI(hkl)]×100ただし、I(00l)は、
X線回折測定範囲15〜60°間の(00l)面のX線
回折強度であり、I(hkl)は、X線回折測定範囲1
5〜60°間の(hkl)面のX線回折強度である。
The degree of orientation was determined by the following equation by X-ray diffraction analysis of the sintered body. Degree of orientation (%) = [ΣI (00l)
/ ΣI (hkl)] × 100 where I (001) is
The X-ray diffraction intensity of the (00l) plane between 15 and 60 ° in the X-ray diffraction measurement range, and I (hkl) is the X-ray diffraction measurement range 1
It is the X-ray diffraction intensity of the (hkl) plane between 5 and 60 °.

【0018】(実施例2)まず、出発原料としてFe2
3、BaCO3、CaCO3およびSiO2の粉体を用意
した。その後、Fe23およびBaCO3をBa2Fe2
Fe1222組成になるように調合し、調合原料に対して
2倍重量の純水を加えた後、ボールミルで24時間混合
・粉砕し、濾過脱水した。ふるいに通した後、酸素分圧
1×10-4MPaの雰囲気中、1100℃で仮焼してY
型六方晶フェライトであるBa2Fe2Fe1222の六角
板状粒子を得た。
Example 2 First, Fe 2 was used as a starting material.
Powders of O 3 , BaCO 3 , CaCO 3 and SiO 2 were prepared. Then, Fe 2 O 3 and BaCO 3 were converted to Ba 2 Fe 2
The mixture was prepared so as to have a composition of Fe 12 O 22 , and after adding twice the weight of pure water to the prepared raw materials, the mixture was mixed and pulverized with a ball mill for 24 hours, and filtered and dewatered. After passing through a sieve, it is calcined at 1100 ° C. in an atmosphere of an oxygen partial pressure of 1 × 10 −4 MPa to obtain Y.
Hexagonal plate-like particles of Ba 2 Fe 2 Fe 12 O 22 , which is a type hexagonal ferrite, were obtained.

【0019】次に、このBa2Fe2Fe1222に対し
て、CaO換算で0.2wt%のCaCO3と0.2w
t%のSiO2を加え、酢酸ビニル系バインダと純水を
添加した後、ボールミルで6時間混合し、スプレードラ
イヤーで造粒した。次に、得られた造粒粉を一軸加圧成
形機で成形し、1200℃で焼成してBaFe1219
表わされるM型六方晶フェライトを主成分とする焼結体
を得た。
Next, with respect to the Ba 2 Fe 2 Fe 12 O 22 , 0.2 wt% of CaCO 3 and 0.2 w
After adding t% of SiO 2 , adding a vinyl acetate-based binder and pure water, the mixture was mixed by a ball mill for 6 hours, and granulated by a spray drier. Next, the obtained granulated powder was molded by a uniaxial pressing machine and fired at 1200 ° C. to obtain a sintered body mainly composed of M-type hexagonal ferrite represented by BaFe 12 O 19 .

【0020】得られた焼結体の密度は5.2g/cm3
(X線理論密度比98%)であり、高密度な焼結体が得
られた。また、配向度は86%であり、高配向な焼結体
が得られた。また、仮焼粉体にCaCO3およびSiO2
を添加したことにより、粒径1〜3μmの焼結体が得ら
れた。さらに、焼結体の磁気特性は、Brが2.8k
G、bHcが3.0kOe、(BH)maxが2.5G
Oeと良好であった。
The density of the obtained sintered body is 5.2 g / cm 3
(X-ray theoretical density ratio: 98%), and a high-density sintered body was obtained. The degree of orientation was 86%, and a highly oriented sintered body was obtained. CaCO 3 and SiO 2 were added to the calcined powder.
, A sintered body having a particle size of 1 to 3 μm was obtained. Further, the magnetic characteristics of the sintered body are as follows: Br is 2.8 k
G, bHc is 3.0 kOe, (BH) max is 2.5 G
Oe was good.

【0021】(実施例3)まず、出発原料としてFe2
3、BaCO3、CaCO3およびSiO2の粉体を用意
した。その後、Fe23およびBaCO3をBa2Fe2
Fe1222組成になるように調合し、調合原料に対して
2倍重量の純水を加えた後、ボールミルで24時間混合
・粉砕し、濾過脱水した。ふるいに通した後、酸素分圧
1×10-4MPaの雰囲気中、1100℃で仮焼してY
型六方晶フェライトであるBa2Fe2Fe1222の六角
板状粒子を得た。
Example 3 First, Fe 2 was used as a starting material.
Powders of O 3 , BaCO 3 , CaCO 3 and SiO 2 were prepared. Then, Fe 2 O 3 and BaCO 3 were converted to Ba 2 Fe 2
The mixture was prepared so as to have a composition of Fe 12 O 22 , and after adding twice the weight of pure water to the prepared raw materials, the mixture was mixed and pulverized with a ball mill for 24 hours, and filtered and dewatered. After passing through a sieve, it is calcined at 1100 ° C. in an atmosphere of an oxygen partial pressure of 1 × 10 −4 MPa to obtain Y.
Hexagonal plate-like particles of Ba 2 Fe 2 Fe 12 O 22 , which is a type hexagonal ferrite, were obtained.

【0022】次に、このBa2Fe2Fe1222(Y型
相)に対して、表1に示す量のFe化合物としてのFe
23、Ba化合物としてのBaCO3をBaFe1219
組成になるように加え、さらに、Ba2Fe2Fe1222
に対して、CaO換算で0.2wt%のCaCO3
0.2wt%のSiO2を加え、酢酸ビニル系バインダ
と純水を添加した後、ボールミルで6時間混合し、スプ
レードライヤーで造粒した。次に、得られた造粒粉を一
軸加圧成形機で成形し、1200℃で焼成してBaFe
1219で表わされるM型フェライトの焼結体を得た。
Next, with respect to the Ba 2 Fe 2 Fe 12 O 22 (Y type phase), the amount of Fe
2 O 3 , BaCO 3 as a Ba compound is converted to BaFe 12 O 19
In addition to the composition, Ba 2 Fe 2 Fe 12 O 22
Then, 0.2 wt% of CaCO 3 and 0.2 wt% of SiO 2 in terms of CaO were added, a vinyl acetate-based binder and pure water were added, followed by mixing for 6 hours by a ball mill and granulation by a spray drier. . Next, the obtained granulated powder is molded by a uniaxial press molding machine, fired at 1200 ° C., and
A sintered body of M-type ferrite represented by 12 O 19 was obtained.

【0023】得られた焼結体の密度、配向度、磁気特性
(Br、bHc、(BH)max)を、表1に示す。
Table 1 shows the density, degree of orientation, and magnetic properties (Br, bHc, (BH) max) of the obtained sintered body.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなとおり、一軸加圧成形す
る前のY型六方晶フェライトの粉体に、Fe化合物、ま
たはFe化合物とBa化合物を添加し、BaFe1219
組成に調合することにより、焼成密度が高く、配向度お
よび磁気特性(Br、bHc、(BH)max)に優れ
た、異方性フェライト磁石を得ることができる。
As is clear from Table 1, an Fe compound or an Fe compound and a Ba compound were added to the powder of the Y-type hexagonal ferrite before the uniaxial pressing, and BaFe 12 O 19
By adjusting the composition, it is possible to obtain an anisotropic ferrite magnet having a high firing density, an excellent degree of orientation and excellent magnetic properties (Br, bHc, (BH) max).

【0026】なお、表1の試料番号1〜3に示すよう
に、Y型六方晶フェライトの粉体に添加するFe化合物
とBa化合物の量は50wt%未満、すなわちY型六方
晶フェライトの粉体の量が50wt%以上の場合が、特
に配向度、磁気特性の面から好ましい。
As shown in Sample Nos. 1 to 3 in Table 1, the amounts of the Fe compound and the Ba compound added to the powder of the Y-type hexagonal ferrite are less than 50 wt%, that is, the powder of the Y-type hexagonal ferrite. Is preferably 50 wt% or more, particularly in view of the degree of orientation and magnetic properties.

【0027】(実施例4)まず、出発原料としてFe2
3、SrCO3、CaCO3およびSiO2の粉体を用意
した。その後、Fe23およびSrCO3をSr2Fe2
Fe1222組成になるように調合し、調合原料に対して
2倍重量の純水を加えた後、ボールミルで24時間混合
・粉砕し、濾過脱水した。ふるいに通した後、酸素分圧
1×10-4MPaの雰囲気中、1100℃で仮焼してY
型六方晶フェライトであるSr2Fe2Fe1222の六角
板状粒子を得た。
Example 4 First, Fe 2 was used as a starting material.
Powders of O 3 , SrCO 3 , CaCO 3 and SiO 2 were prepared. Thereafter, Fe 2 O 3 and SrCO 3 were converted to Sr 2 Fe 2
The mixture was prepared so as to have a composition of Fe 12 O 22 , and after adding twice the weight of pure water to the prepared raw materials, the mixture was mixed and pulverized with a ball mill for 24 hours, and filtered and dewatered. After passing through a sieve, it is calcined at 1100 ° C. in an atmosphere of an oxygen partial pressure of 1 × 10 −4 MPa to obtain Y.
Hexagonal plate-like particles of Sr 2 Fe 2 Fe 12 O 22 , which is a type hexagonal ferrite, were obtained.

【0028】次に、このSr2Fe2Fe1222に対し
て、Fe23をSrFe1219組成になるように加え、
さらに、Sr2Fe2Fe1222に対して、CaO換算で
0.2wt%のCaCO3と0.2wt%のSiO2を加
え、酢酸ビニル系バインダと純水を添加した後、ボール
ミルで6時間混合し、スプレードライヤーで造粒した。
次に、得られた造粒粉を一軸加圧成形機で成形し、12
00℃で焼成してSrFe1219で表わされるM型フェ
ライトの焼結体を得た。
Next, Fe 2 O 3 was added to the Sr 2 Fe 2 Fe 12 O 22 so as to have a SrFe 12 O 19 composition.
Further, 0.2 wt% of CaCO 3 and 0.2 wt% of SiO 2 in terms of CaO were added to Sr 2 Fe 2 Fe 12 O 22 , and a vinyl acetate binder and pure water were added. Mix for hours and granulate with a spray drier.
Next, the obtained granulated powder was molded by a uniaxial pressing machine,
By firing at 00 ° C., a sintered body of M-type ferrite represented by SrFe 12 O 19 was obtained.

【0029】得られた焼結体の配向度は90%であり、
高配向な焼結体が得られた。また、その磁気特性は、B
rが4.0kG、bHcが3.5kOe、(BH)ma
xが3.8GOeであり、実施例1、2のBaFe12
19焼結体より優れた磁気特性が得られた。
The degree of orientation of the obtained sintered body is 90%,
A highly oriented sintered body was obtained. In addition, the magnetic characteristics are B
r is 4.0 kG, bHc is 3.5 kOe, (BH) ma
x is 3.8 GOe, and the BaFe 12 O of Examples 1 and 2
Magnetic properties superior to those of the 19 sintered bodies were obtained.

【0030】(実施例5)まず、出発原料としてFe2
3、BaCO3、CaCO3およびSiO2の粉体を用意
した。その後、Fe23およびBaCO3をBa2Fe2
Fe1222組成になるように調合し、調合原料に対して
2倍重量の純水を加えた後、ボールミルで24時間混合
・粉砕し、濾過脱水した。その後、ふるいに通して、酸
素分圧1×10-4MPaの雰囲気中、1100℃で仮焼
してY型六方晶フェライトであるBa2Fe2Fe1222
の六角板状粒子を得た。
Example 5 First, Fe 2 was used as a starting material.
Powders of O 3 , BaCO 3 , CaCO 3 and SiO 2 were prepared. Then, Fe 2 O 3 and BaCO 3 were converted to Ba 2 Fe 2
The mixture was prepared so as to have a composition of Fe 12 O 22 , and after adding twice the weight of pure water to the prepared raw materials, the mixture was mixed and pulverized with a ball mill for 24 hours, and filtered and dewatered. Thereafter, the mixture is passed through a sieve, and calcined at 1100 ° C. in an atmosphere having an oxygen partial pressure of 1 × 10 −4 MPa to obtain Ba 2 Fe 2 Fe 12 O 22 which is a Y-type hexagonal ferrite.
To obtain hexagonal plate-like particles.

【0031】次に、このBa2Fe2Fe1222に対し
て、Fe23をBaFe1219組成になるように加え、
さらに、Ba2Fe2Fe1222に対して、表2に示す量
のCaOに換算したCaCO3とSiO2を加え、酢酸ビ
ニル系バインダと純水を添加した後、ボールミルで6時
間混合し、スプレードライヤーで造粒した。次に、得ら
れた造粒粉を一軸加圧成形機で成形し、1200℃で焼
成してBaFe1219で表わされるM型フェライトの焼
結体を得た。
Next, Fe 2 O 3 was added to the Ba 2 Fe 2 Fe 12 O 22 so as to have a BaFe 12 O 19 composition.
Further, CaCO 3 and SiO 2 converted into CaO in the amounts shown in Table 2 were added to Ba 2 Fe 2 Fe 12 O 22 , a vinyl acetate-based binder and pure water were added, and the mixture was mixed by a ball mill for 6 hours. And granulated with a spray dryer. Next, the obtained granulated powder was molded by a uniaxial pressing machine and fired at 1200 ° C. to obtain a sintered body of M-type ferrite represented by BaFe 12 O 19 .

【0032】得られた焼結体の密度、配向度、磁気特性
(Br、bHc、(BH)max)を、表2に示す。
Table 2 shows the density, orientation degree, and magnetic properties (Br, bHc, (BH) max) of the obtained sintered body.

【0033】[0033]

【表2】 [Table 2]

【0034】表2から明らかなとおり、SiO2および
CaOの添加量は、それぞれ1.0wt%以下が好まし
い。表2の試料番号8、9に示すように、添加量がこの
値を超えると、マグネトプランバイト粒子の構成比率が
減少するため、磁気特性(Br、bHc、(BH)ma
x)が低下する。
As is evident from Table 2, the addition amounts of SiO 2 and CaO are each preferably 1.0% by weight or less. As shown in Sample Nos. 8 and 9 in Table 2, when the addition amount exceeds this value, the composition ratio of the magnetoplumbite particles decreases, so that the magnetic properties (Br, bHc, (BH) ma
x) decreases.

【0035】(比較例)まず、出発原料としてFe23
およびBaCO3の粉体を用意した。その後、Fe23
およびBaCO3をBaFe1219組成になるように調
合し、調合原料に対して2倍重量の純水を加えた後、ボ
ールミルで24時間混合・粉砕し、濾過脱水した。その
後、ふるいに通して、1100℃で仮焼した。
Comparative Example First, Fe 2 O 3 was used as a starting material.
And BaCO 3 powder were prepared. Then, Fe 2 O 3
And BaCO 3 were prepared to have a BaFe 12 O 19 composition, and after adding twice the weight of pure water to the prepared raw materials, the mixture was mixed and pulverized for 24 hours in a ball mill, and filtered and dewatered. Then, it was calcined at 1100 ° C. through a sieve.

【0036】次に、この仮焼粉体に酢酸ビニル系バイン
ダと純水を添加した後、ボールミルで6時間混合し、ス
プレードライヤーで造粒した。次に、得られた造粒粉を
一軸加圧成形機で成形し、1200℃で焼成した。
Next, a vinyl acetate-based binder and pure water were added to the calcined powder, mixed for 6 hours with a ball mill, and granulated with a spray drier. Next, the obtained granulated powder was molded with a uniaxial pressing machine and fired at 1200 ° C.

【0037】得られた焼結体の密度は5.0g/cm3
(X線理論密度比、94%)であり、高密度な焼結体が
得られた。しかしながら、X線回折分析による配向度は
55%であり、磁場配向工程なしで高配向した焼結体は
得られなかった。また、得られた磁気特性は、Brが
2.0kG、bHcが2.0kOe、(BH)maxが
1.2GOeであった。
The density of the obtained sintered body is 5.0 g / cm 3
(X-ray theoretical density ratio, 94%), and a high-density sintered body was obtained. However, the degree of orientation by X-ray diffraction analysis was 55%, and a highly oriented sintered body could not be obtained without a magnetic field orientation step. The obtained magnetic characteristics were Br of 2.0 kG, bHc of 2.0 kOe, and (BH) max of 1.2 GOe.

【0038】[0038]

【発明の効果】以上の説明で明らかなように、本発明の
異方性フェライト磁石の製造方法は、六角板状粒子を得
やすい、一般式M2Fe2Fe1222(ただし、MはBa
およびSrのうちの少なくとも1種)で表わされるY型
六方晶フェライトの粉体を一軸加圧成形し、その後焼成
して、一般式MFe1219(ただし、MはBaおよびS
rのうちの少なくとも1種)で表わされるM型六方晶フ
ェライトを主成分とする焼結体を得る方法である。
As is apparent from the above description, the method for producing an anisotropic ferrite magnet of the present invention provides a general formula M 2 Fe 2 Fe 12 O 22 (where M is Ba
Y-type hexagonal ferrite powder represented by at least one of Sr and Sr is uniaxially pressed and then fired to obtain a general formula MFe 12 O 19 (where M is Ba and Sr).
This is a method of obtaining a sintered body mainly composed of M-type hexagonal ferrite represented by at least one of r.

【0039】上記一般式M2Fe2Fe1222で表わされ
るY型六方晶フェライトは、原料(Fe23、BaCO
3など)を熱処理することで容易に単磁区となる臨界粒
径に近い六角板状粒子として得ることができ、過度な粉
砕工程は不要である。また、Y型六方晶フェライトは板
状粒子であるため、一軸加圧成形して焼成することで、
高いc軸配向の焼結体が得られる。
The Y-type hexagonal ferrite represented by the general formula M 2 Fe 2 Fe 12 O 22 is a raw material (Fe 2 O 3 , BaCO 3)
3 ) can be easily obtained as hexagonal plate-like particles having a critical particle size close to the critical particle size to be a single magnetic domain, and an excessive pulverization step is unnecessary. In addition, since the Y-type hexagonal ferrite is a plate-like particle, it is formed by uniaxial pressing and firing.
A sintered body with a high c-axis orientation is obtained.

【0040】したがって、本製造方法によれば、磁場中
成形による磁場配向工程を経ずに、また、フラックス法
やガラス化法などの特別な手法を使わずに、安価に、高
密度・高配向の異方性フェライト磁石を得ることができ
る。また、成形、焼成前にSiO2、CaOを添加する
ことで、焼成時の粒成長を抑制して、さらに優れた磁気
特性の異方性フェライト磁石を得ることができる。
Therefore, according to the present manufacturing method, high-density and high-orientation can be performed at low cost without using a magnetic field orientation step by molding in a magnetic field and without using a special method such as a flux method or a vitrification method. Can be obtained. By adding SiO 2 and CaO before molding and firing, grain growth during firing can be suppressed, and an anisotropic ferrite magnet with even better magnetic properties can be obtained.

【0041】[0041]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式M2Fe2Fe1222(ただし、M
はBaおよびSrのうちの少なくとも1種)で表わされ
るY型六方晶フェライトの粉体を一軸加圧成形し、その
後焼成して、一般式MFe1219(ただし、MはBaお
よびSrのうちの少なくとも1種)で表わされるM型六
方晶フェライトを主成分とする焼結体を得ることを特徴
とする、異方性フェライト磁石の製造方法。
(1) A general formula M 2 Fe 2 Fe 12 O 22 (where M
Is a uniaxially press-formed powder of a Y-type hexagonal ferrite represented by at least one of Ba and Sr, and then fired to obtain a general formula MFe 12 O 19 (where M is Ba and Sr). A method for producing an anisotropic ferrite magnet, characterized by obtaining a sintered body mainly containing M-type hexagonal ferrite represented by at least one of the following:
【請求項2】 前記一軸加圧成形する前のY型六方晶フ
ェライトの粉体に、Fe化合物、またはFe化合物とM
化合物(ただし、MはBaおよびSrのうちの少なくと
も1種)を添加し、MFe1219組成に調合することを
特徴とする、請求項1に記載の異方性フェライト磁石の
製造方法。
2. The method according to claim 1, wherein the powder of the Y-type hexagonal ferrite before the uniaxial pressing is mixed with an Fe compound or an Fe compound and M
The method for producing an anisotropic ferrite magnet according to claim 1, wherein a compound (where M is at least one of Ba and Sr) is added and the composition is adjusted to an MFe 12 O 19 composition.
【請求項3】 前記Y型六方晶フェライトの粉体の量は
50wt%以上であることを特徴とする、請求項2に記
載の異方性フェライト磁石の製造方法。
3. The method for producing an anisotropic ferrite magnet according to claim 2, wherein the amount of the Y-type hexagonal ferrite powder is 50 wt% or more.
【請求項4】 前記一軸加圧成形する前の粉体に、Si
2を1.0wt%以下、かつCaOを1.0wt%以
下添加することを特徴とする、請求項1から3のいずれ
かに記載の異方性フェライト磁石の製造方法。
4. The method according to claim 1, wherein the powder before the uniaxial pressure molding is made of Si powder.
The O 2 or less 1.0 wt%, and is characterized by adding the following 1.0 wt% of CaO, method for producing anisotropic ferrite magnet as claimed in any one of claims 1 to 3.
JP10348794A 1998-12-08 1998-12-08 Manufacture of anisotropic ferrite magnet Pending JP2000173812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10348794A JP2000173812A (en) 1998-12-08 1998-12-08 Manufacture of anisotropic ferrite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10348794A JP2000173812A (en) 1998-12-08 1998-12-08 Manufacture of anisotropic ferrite magnet

Publications (1)

Publication Number Publication Date
JP2000173812A true JP2000173812A (en) 2000-06-23

Family

ID=18399413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10348794A Pending JP2000173812A (en) 1998-12-08 1998-12-08 Manufacture of anisotropic ferrite magnet

Country Status (1)

Country Link
JP (1) JP2000173812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141311B2 (en) * 2000-11-21 2006-11-28 Japan Science And Technology Agency Ferrite thin film for high frequency and method for preparation thereof
US10971288B2 (en) 2014-10-24 2021-04-06 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US11069983B2 (en) 2014-09-30 2021-07-20 Skyworks Solutions, Inc. Modified Z-type hexagonal ferrite materials with enhanced resonant frequency

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141311B2 (en) * 2000-11-21 2006-11-28 Japan Science And Technology Agency Ferrite thin film for high frequency and method for preparation thereof
US11069983B2 (en) 2014-09-30 2021-07-20 Skyworks Solutions, Inc. Modified Z-type hexagonal ferrite materials with enhanced resonant frequency
US10971288B2 (en) 2014-10-24 2021-04-06 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US10984928B2 (en) 2014-10-24 2021-04-20 Skyworks Solutions, Inc. Magnetodielectric y-phase strontium hexagonal ferrite materials formed by sodium substitution
US11004581B2 (en) 2014-10-24 2021-05-11 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped Y-phase hexagonal ferrites
US11164689B2 (en) 2014-10-24 2021-11-02 Skyworks Solutions, Inc. Increased resonant frequency potassium-doped hexagonal ferrite
US11551837B2 (en) 2014-10-24 2023-01-10 Skyworks Solutions, Inc. Magnetodielectric Y-phase strontium hexagonal ferrite materials formed by sodium substitution
US11742118B2 (en) 2014-10-24 2023-08-29 Skyworks Solutions, Inc. Increased resonant frequency alkali-doped Y-phase hexagonal ferrites
US11776718B2 (en) 2014-10-24 2023-10-03 Skyworks Solutions, Inc. Increased resonant frequency potassium-doped hexagonal ferrite
US11869689B2 (en) 2014-10-24 2024-01-09 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties

Similar Documents

Publication Publication Date Title
TWI434302B (en) Oxide magnetic material and preparation method thereof, and ferrite iron sintered magnet and preparation method thereof
JP4367649B2 (en) Ferrite sintered magnet
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
WO1999034376A1 (en) Ferrite magnet and process for producing the same
US5958284A (en) Ferrite magnet and method for producing same
JP2005259751A (en) Ferrite magnet and its manufacturing method
JP2001135512A (en) Ferrite magnet powder, magnet using the magnet powder and method of manufacturing both
JP2021052097A (en) Ferrite sintered magnet
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JP2004532524A (en) Manufacturing method of ferrite type magnet
JP2002141212A (en) Rotating machine
JPH11307331A (en) Ferrite magnet
JP2002343616A (en) Method for manufacturing oxide containing rare earth element
KR102610891B1 (en) Method for preparing ferrite sintered magnet
JPH0878220A (en) Manufacture of hexagonal crystal system ferrite
JP2001006912A (en) Hard ferrite magnet and its manufacture
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material
JP3257536B2 (en) Composite ferrite magnet material
CN113470913A (en) Ferrite sintered magnet and rotating electrical machine
CN113470912A (en) Ferrite sintered magnet and rotating electrical machine
JPH0653020A (en) Oxide permanent magnet