JPH07245210A - Low loss oxide magnetic material and its preparing method - Google Patents

Low loss oxide magnetic material and its preparing method

Info

Publication number
JPH07245210A
JPH07245210A JP6035760A JP3576094A JPH07245210A JP H07245210 A JPH07245210 A JP H07245210A JP 6035760 A JP6035760 A JP 6035760A JP 3576094 A JP3576094 A JP 3576094A JP H07245210 A JPH07245210 A JP H07245210A
Authority
JP
Japan
Prior art keywords
less
content
mol
power loss
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6035760A
Other languages
Japanese (ja)
Inventor
Shinya Naruki
木 紳 也 成
Shoichi Osada
田 昭 一 長
Yoshitaka Yamana
名 芳 隆 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6035760A priority Critical patent/JPH07245210A/en
Publication of JPH07245210A publication Critical patent/JPH07245210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare Mn-Zn system soft ferrite material having a low power loss by a method wherein, as a very small amount of impurities of a Mn-Zn system soft ferrite sintered body having a specific main compound composition, content of P and Cr is respectively a specific amount or less. CONSTITUTION:This embodiment is a Mn-Zn system soft ferrite sintered body having a main compound composition of FE2O3 51 to 55mol%, MnO 31 to 44mol% and ZnO 5 to 14mol%. The reason why the main compound is limited to this range is that, when excluding this range, a power loss may increase or saturated magnetic flux density may lower. Further, content of P and Cr fairly affects the power loss of the sintered body. The content of P is 20ppm or less and the content of Cr is 50ppm or less, whereby it is possible to prepare a ferrite core of a low power loss like 350kW/m<3> or less, or 270kW/m<3> as conditions demand. Further, a reduction in P is effective in improving DELTAB.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波スイッチング電
源用トランスコアやテレビ、ディスプレイモニタのフラ
イバックトランスコア等に使用可能な低損失酸化物磁性
材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material which can be used for a transformer core for high frequency switching power supplies, a flyback transformer core for televisions and display monitors.

【0002】[0002]

【従来の技術】スイッチング電源等に用いられるパワー
トランスは、近年、小型、軽量化が求められており、そ
のため駆動周波数が100kHz〜500kHz程度に
拡がりつつある。しかしながら、電力損失のうち高周波
領域で特に問題となる渦電流損失は、駆動周波数の2乗
に比例するため、周波数の増加により電力損失も増大
し、発熱が無視できない大きさとなる。このため、より
低損失の磁性材料が求められている。また、飽和磁束密
度(Bs)が大きく、残留磁束密度(Br)が小さい、
すなわち△B=Bs−Brが大きいことも重要である。
2. Description of the Related Art In recent years, power transformers used for switching power supplies and the like have been required to be smaller and lighter. Therefore, the driving frequency is expanding to about 100 kHz to 500 kHz. However, the eddy current loss, which is a particular problem in the high frequency region of the power loss, is proportional to the square of the driving frequency, so that the power loss also increases as the frequency increases, and the amount of heat generated cannot be ignored. Therefore, there is a demand for magnetic materials with lower loss. Further, the saturation magnetic flux density (Bs) is large and the residual magnetic flux density (Br) is small,
That is, it is also important that ΔB = Bs−Br is large.

【0003】このような問題を解決するため、Mn−Z
nフェライトにおいては、従来から種々の微量成分を添
加することによって電力損失の低減が試みられている。
例えば、特開昭58−15037号公報ではMb
の添加により、特開昭60−16863号公報、特開昭
62−142303号公報ではCaO、Nbおよ
びVの添加により、特開昭61−252608号
公報ではCaO、SiO、VおよびSeO
添加により、また特開平2−30660号公報ではCa
O、SiOおよびPの添加により、さらに特開平4−6
9905号公報ではCaO、SiO、Nbおよび
Clの添加により電力損失の改善をそれぞれ、図ってい
る。また、特開昭60−132301号公報ではFe、
Mn、Znの主成分にCaOとNbを添加し、さ
らにSiO、Al、CoO、CuO、ZrO
のうち1種を添加することにより損失の低減を試みてい
る。しかし、さらに高周波化、小型・軽量化を図るため
には、より低損失の材質が必要とされている。
In order to solve such a problem, Mn-Z
In n-ferrite, reduction of power loss has hitherto been attempted by adding various trace components.
For example, in JP-A-58-15037, Mb 2 O 5
Addition of CaO, Nb 2 O 5 and V 2 O 5 in JP-A-60-16863 and JP-A-62-142303, CaO and SiO 2 in JP-A-61-252608. , V 2 O 5 and SeO 2 and Ca in JP-A-2-30660.
With the addition of O, SiO and P, the method disclosed in
In 9905, the power loss is improved by adding CaO, SiO, Nb 2 O 5 and Cl. Further, in JP-A-60-132301, Fe,
CaO and Nb 2 O 5 are added to the main components of Mn and Zn, and SiO 2 , Al 2 O 3 , CoO, CuO, and ZrO 2 are further added.
We are trying to reduce the loss by adding one of them. However, in order to achieve higher frequencies, smaller size and lighter weight, materials with lower loss are required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の低損
失酸化物磁性材料よりもさらに低損失なMn−Zn系ソ
フトフェライト材料とその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a Mn-Zn based soft ferrite material having a lower loss than conventional low loss oxide magnetic materials and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するため、Mn−Znフェライトの電力損失を
悪化させている原因について鋭意研究を行った。その結
果、焼結体内に含有される微量不純物、特にPとCrが
電力損失を悪化させている原因であること、およびこれ
らの元素の含有量を小さくすることにより電力損失を低
く抑えられることを知見した。そして、従来の微量元素
の添加とは異なる観点から、これらの知見に基づいて本
発明を完成したのである。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted earnest research on the cause of worsening the power loss of Mn-Zn ferrite. As a result, the trace impurities contained in the sintered body, especially P and Cr, are the cause of worsening the power loss, and the power loss can be suppressed low by reducing the content of these elements. I found out. The present invention has been completed based on these findings from a viewpoint different from the conventional addition of trace elements.

【0006】本発明は、下記の事項をその要旨としてい
る。 (1) Fe 51〜55モル%、MnO 31
〜44モル%、ZnO5〜14モル%の主成分組成を有
するMn−Zn系ソフトフェライト焼結体であって、微
量不純物としてのPの含有量を20ppm 以下、Crの含
有量を50ppm以下としたことを特徴とする低損失酸化
物磁性材料。 (2) 主要成分であるFe、MnおよびZnを塩化物
溶液の形で所定の割合で混合した溶液を噴霧焙焼炉中に
噴霧し、熱分解して得られる主成分組成がFe
51〜55モル%、MnO 31〜44モル%およびZ
nO 5〜14モル%である混合酸化物粉末について、
微量不純物としてのPの含有量を20ppm以下、Crの
含有量を50ppm 以下とし、これを200〜1000℃
で熱処理した仮焼粉を主原料とし、造粒、成形、焼成す
る酸化物磁性材料の製造方法。
The subject matter of the present invention is as follows. (1) Fe 2 O 3 51~55 mol%, MnO 31
The content of P as a trace impurity is 20 ppm or less, and the content of Cr is 50 ppm or less. A low loss oxide magnetic material characterized by the above. (2) The main component composition obtained by pyrolyzing a solution obtained by mixing Fe, Mn, and Zn, which are the main components, in the form of a chloride solution at a predetermined ratio and spraying the solution into a spray roasting furnace, is Fe 2 O 3
51-55 mol%, MnO 31-44 mol% and Z
Regarding the mixed oxide powder having nO of 5 to 14 mol%,
The content of P as a trace impurity is set to 20 ppm or less and the content of Cr is set to 50 ppm or less.
A method for producing an oxide magnetic material, which comprises granulating, molding, and baking the calcined powder heat-treated as a main raw material.

【0007】以下に、本発明を詳細に説明する。まず、
主要成分の組成を限定した理由について述べる。Fe
51〜55モル%、MnO 31〜44モル%お
よびZnO 5〜14モル%の範囲に限定したのは、フ
ェライトコアの主要成分をこの範囲外にした場合、電力
損失が大きくなったり、飽和磁束密度が低くなることが
あり、本発明の意図するフェライトコアが得られなくな
るからである。
The present invention will be described in detail below. First,
The reasons for limiting the composition of the main components will be described. Fe 2
O 3 51 to 55 mol%, MnO 31 to 44 mol% and ZnO 5 to 14 mol% are limited in the range because when the main component of the ferrite core is out of this range, power loss becomes large or saturation occurs. This is because the magnetic flux density may decrease, and the ferrite core intended by the present invention may not be obtained.

【0008】本発明の特徴は、焼結体内のPとCrの量
を低減させたことにある。従来、微量不純物とフェライ
トの電磁特性との関係については不明瞭な部分が多く、
定量的な知見は殆ど得られていなかった。そこで、焼結
体内の微量不純物例えば、P、Cr、Cn、Alの量と
電力損失との関係を検討した結果、PとCrの含有量が
焼結体の電力損失に著しく影響を与えることを見い出し
た。特に、Pの含有は焼成時に異常粒成長を引き起こす
原因の一つであり、電力損失を著しく悪化させることが
わかった。
A feature of the present invention is that the amounts of P and Cr in the sintered body are reduced. Conventionally, there are many unclear points about the relationship between trace impurities and the electromagnetic characteristics of ferrite,
Little quantitative knowledge has been obtained. Therefore, as a result of examining the relationship between the power loss and the amount of trace impurities such as P, Cr, Cn, and Al in the sintered body, it was found that the P and Cr contents significantly affect the power loss of the sintered body. I found it. In particular, it has been found that the inclusion of P is one of the causes for causing abnormal grain growth during firing and significantly deteriorates power loss.

【0009】これらの結果からPの含有量を20ppm 以
下、Crの含有量を50ppm 以下とすることにより、1
00kHz−200mTの測定条件で350kW/m3
以下、条件によっては270kW/m3 という、従来に
ない低い電力損失のフェライトコアを製造することに成
功した。また、Pの低減は、△Bの改善にも効果がある
ことも見い出された。
From these results, by setting the P content to 20 ppm or less and the Cr content to 50 ppm or less, 1
350 kW / m 3 under the measurement condition of 00 kHz-200 mT
Below, we succeeded in producing a ferrite core with an unprecedented low power loss of 270 kW / m 3 depending on the conditions. It was also found that the reduction of P is also effective in improving ΔB.

【0010】次いで、本発明で用いられる原料仮焼粉の
製造法について説明する。主要成分であるFe、Mnお
よびZnを塩化物溶液の形で所定の割合で混合し、得ら
れる液を噴霧焙焼炉中に噴霧して熱分解し、粒径数百オ
ングストロームのFe、Mn、Znの混合酸化物粉末と
した後、成形性を良好とするために200〜1000℃
で熱処理したもの、より好ましくは400〜800℃で
1〜4時間熱処理し、平均一次粒子径を0.3〜1.0
μm程度まで粒成長させて仮焼粉を製造する。
Next, a method for producing the raw material calcined powder used in the present invention will be described. Fe, Mn and Zn, which are the main components, are mixed at a predetermined ratio in the form of a chloride solution, and the resulting liquid is sprayed in a spray roasting furnace to be pyrolyzed, and Fe, Mn having a particle size of several hundred angstroms, After forming a mixed oxide powder of Zn, 200 to 1000 ° C. in order to improve moldability
Heat treated at 400 ° C. to 800 ° C. for 1 to 4 hours, and the average primary particle diameter is 0.3 to 1.0.
The grain is grown to about μm to produce a calcined powder.

【0011】このような方法を適用した場合、出発原料
が溶液であるため、溶液の精製により高純度の原料を比
較的容易に得ることができる。これに対し、Fe、M
n、Znの各酸化物粉体を混合後、仮焼し、ボールミ
ル、アトライター等で粉砕する通常の仮焼粉の製造方法
では、粉砕時に製造設備からの不純物が混入し易く、本
発明のような高純度の仮焼粉を大量に製造することは難
しい。
When such a method is applied, since the starting material is a solution, a highly pure material can be obtained relatively easily by refining the solution. On the other hand, Fe, M
In the usual method for producing a calcined powder, in which each oxide powder of n and Zn is mixed, calcined, and pulverized by a ball mill, an attritor, etc., impurities from the production equipment are easily mixed during pulverization, It is difficult to mass-produce such high-purity calcined powder.

【0012】[0012]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。噴霧焙焼によりFe 53.5モル%、
MnO 36.5モル%、ZnO 10.0モル%の主
成分組成を有し、種々のPとCrの量を有する酸化物混
合粉末を製造した。これを800℃で熱処理後、SiO
を150ppm 、CaOを600ppm 添加、混合した。
バインダーとしてPVAを加えて造粒した後、外径29
mm、内径18mm、高さ7mmのリング状に成形した。この
成形体を酸素濃度を制御した窒素雰囲気中、1275℃
および1300℃で4時間焼成した。
EXAMPLES The present invention will be further described below based on examples. Fe 2 O 3 53.5 mol% by spray roasting,
Oxide mixed powders having a main component composition of 36.5 mol% MnO and 10.0 mol% ZnO and various amounts of P and Cr were produced. After heat-treating this at 800 ℃, SiO
150 ppm of Ca 2 and 600 ppm of CaO were added and mixed.
After adding PVA as a binder and granulating, the outer diameter 29
mm, inner diameter 18 mm, and height 7 mm. This molded body was heated at 1275 ° C. in a nitrogen atmosphere with controlled oxygen concentration.
And baked at 1300 ° C. for 4 hours.

【0013】このようにして得られた焼成コアの80℃
での電力損失の値(100kHz−200mT)とP、
Crの量との関係を、図1および図2に示す。また、図
3には25℃での△Bの値とPの量との関係を示す。な
お、図1〜図3において実線部分は本発明の範囲、点線
部分は比較例を示している。
The fired core thus obtained is at 80 ° C.
Power loss value (100kHz-200mT) and P,
The relationship with the amount of Cr is shown in FIGS. 1 and 2. Further, FIG. 3 shows the relationship between the value of ΔB and the amount of P at 25 ° C. 1 to 3, the solid line portion shows the range of the present invention, and the dotted line portion shows a comparative example.

【0014】図1および図2から明らかなように、Pや
Crの量が少ない程、電力損失は小さくなる。本発明の
ようにPが20ppm 以下、Crが50ppm 以下としたと
き、特に電力損失が小さいコアが得られることが分る。
また、図3から明らかなように、Pが20ppm 以下の場
合には△Bが大きくなることが分る。
As is clear from FIGS. 1 and 2, the smaller the amount of P and Cr, the smaller the power loss. It can be seen that when P is 20 ppm or less and Cr is 50 ppm or less as in the present invention, a core with particularly small power loss can be obtained.
Further, as is clear from FIG. 3, it can be seen that ΔB becomes large when P is 20 ppm or less.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、非常に
低い電力損失を有し、しかも△Bが大きいコアを製造で
きるため、スイッチング電源用トランスコアを始め、各
種コアの小型化に極めて有益である。
As described above, according to the present invention, a core having a very low power loss and a large ΔB can be manufactured. Therefore, it is possible to miniaturize various cores including a transformer power supply core. It is extremely beneficial.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼成コアの80℃での電力損失の値とPの量と
の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the power loss value and the amount of P at 80 ° C. of a fired core.

【図2】焼成コアの80℃での電力損失の値とCrの量
との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the power loss value of a fired core at 80 ° C. and the amount of Cr.

【図3】△Bの値とPの量との関係を示したグラフであ
る。
FIG. 3 is a graph showing the relationship between the value of ΔB and the amount of P.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Fe 51〜55モル%、MnO
31〜44モル%、ZnO 5〜14モル%の主成分組
成を有するMn−Zn系ソフトフェライト焼結体であっ
て、微量不純物としてPの含有量を20ppm 以下、Cr
の含有量を50ppm 以下としたことを特徴とする低損失
酸化物磁性材料。
1. Fe 2 O 3 51-55 mol%, MnO
A Mn-Zn-based soft ferrite sintered body having a main component composition of 31 to 44 mol% and ZnO 5 to 14 mol%, the content of P as a trace impurity is 20 ppm or less, Cr
A low loss oxide magnetic material, characterized in that its content is 50 ppm or less.
【請求項2】主要成分であるFe、MnおよびZnを塩
化物溶液の形で所定の割合で混合した溶液を噴霧焙焼炉
中に噴霧し、熱分解して得られる主成分組成がFe
51〜55モル%、MnO 31〜44モル%および
ZnO 5〜14モル%である混合酸化物粉末につい
て、微量不純物としてPの含有量を20ppm 以下、Cr
の含有量を50ppm 以下とし、これを200〜1000
℃で熱処理した仮焼粉を主原料とし、造粒、成形、焼成
する酸化物磁性材料の製造方法。
Wherein the major component Fe, sprayed with Mn and Zn the solution mixed at a predetermined ratio in the form of a chloride solution in the spray roasting furnace, the main component composition obtained by pyrolysis Fe 2 O
3 51-55 mol%, MnO 31-44 mol% and ZnO 5-14 mol%, the content of P as a trace impurity is 20 ppm or less, Cr
Content of 50ppm or less, 200 ~ 1000
A method for producing an oxide magnetic material, which comprises using a calcined powder heat-treated at ℃ as a main raw material, granulating, molding and firing.
JP6035760A 1994-03-07 1994-03-07 Low loss oxide magnetic material and its preparing method Pending JPH07245210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6035760A JPH07245210A (en) 1994-03-07 1994-03-07 Low loss oxide magnetic material and its preparing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6035760A JPH07245210A (en) 1994-03-07 1994-03-07 Low loss oxide magnetic material and its preparing method

Publications (1)

Publication Number Publication Date
JPH07245210A true JPH07245210A (en) 1995-09-19

Family

ID=12450810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6035760A Pending JPH07245210A (en) 1994-03-07 1994-03-07 Low loss oxide magnetic material and its preparing method

Country Status (1)

Country Link
JP (1) JPH07245210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058643A (en) * 2013-01-14 2013-04-24 苏州天源磁业有限公司 Mn-Zn soft magnetic ferrite material with high, temperature, high superposition and low power consumption, and preparation method of Mn-Zn soft magnetic ferrite material
JP2013166663A (en) * 2012-02-14 2013-08-29 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2013166664A (en) * 2012-02-14 2013-08-29 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
CN103693952A (en) * 2013-12-04 2014-04-02 江门安磁电子有限公司 Preparation method of ultra-low-loss MnZn power ferrite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166663A (en) * 2012-02-14 2013-08-29 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2013166664A (en) * 2012-02-14 2013-08-29 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
CN103058643A (en) * 2013-01-14 2013-04-24 苏州天源磁业有限公司 Mn-Zn soft magnetic ferrite material with high, temperature, high superposition and low power consumption, and preparation method of Mn-Zn soft magnetic ferrite material
CN103693952A (en) * 2013-12-04 2014-04-02 江门安磁电子有限公司 Preparation method of ultra-low-loss MnZn power ferrite material

Similar Documents

Publication Publication Date Title
US6495059B1 (en) Magnetic ferrite composition and process of production thereof
JP2001151565A (en) Mn-Zn FERRITE AND METHOD OF PRODUCING THE SAME
KR100383394B1 (en) Method for Producing Manganese-Zinc Ferrite Core, and Manganses-Zinc Ferrite Core
JPH07245210A (en) Low loss oxide magnetic material and its preparing method
JPH03254103A (en) Low-loss mn-zn ferrite
JPH06290926A (en) Mn-zn ferrite magnetic material
US20240006103A1 (en) MnZn-BASED FERRITE AND METHOD FOR PRODUCING SAME
JPH06283320A (en) Oxide magnetic material having high saturation flux density and its manufacture
JP2892095B2 (en) Low loss Mn-Zn ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP5845137B2 (en) Method for producing Mn-Zn ferrite
US20010036895A1 (en) Mn-Zn ferrite and production process thereof
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2000182816A (en) Manganese-based ferrite, transformer using the same and choke coil
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JPH10326706A (en) Manganese-nickel-based ferrite material
JPH06314608A (en) Low loss oxide magnetic material
JP3499283B2 (en) High permeability oxide magnetic material
JP3617070B2 (en) Low loss ferrite manufacturing method
JPH0353270B2 (en)
JPH06333723A (en) Manufacture of low-loss oxide magnetic material
JPH06349624A (en) Manufacture of oxide magnetic material
JPH10335130A (en) Mn-zn ferrite material
JPH06260320A (en) Oxide magnetic material with highly saturated magnetic flux density and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030401