JPH09180926A - Low loss oxide magnetic material - Google Patents

Low loss oxide magnetic material

Info

Publication number
JPH09180926A
JPH09180926A JP7350402A JP35040295A JPH09180926A JP H09180926 A JPH09180926 A JP H09180926A JP 7350402 A JP7350402 A JP 7350402A JP 35040295 A JP35040295 A JP 35040295A JP H09180926 A JPH09180926 A JP H09180926A
Authority
JP
Japan
Prior art keywords
oxide
pcv
magnetic material
cao
low loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7350402A
Other languages
Japanese (ja)
Inventor
Hiroshi Oyanagi
浩 大柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7350402A priority Critical patent/JPH09180926A/en
Publication of JPH09180926A publication Critical patent/JPH09180926A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low loss oxide magnetic material having a high amplitute permeability. SOLUTION: A low loss oxide magnetic material contains a main component of ferrous oxide (Fe2 O3 ) of 52 to 54mol%, manganese oxide of 33 to 37mol%, the balance of zinc oxide (ZnO), and the auxilliary component of silicon dioxide (SiO2 ) of 0.001 to 0.008wt.% and calcium oxide (CaO) of 0.02 to 0.10wt.%. Besides, tantalum oxide (Ta2 O4 ) of 0 to 0.6wt.% (containing no O) or niobium oxide (Nb2 O4 ) (containing no O) are contained, and also Ta2 O5 and Nb2 O5 of 0 to 0.06wt.% (containing no O) in total are contained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スイッチング電源
等の各種電源用トランス材として用いられる低損失酸化
物磁性材料に関し、特に、Mn−Zn系フェライトに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material used as a transformer material for various power supplies such as switching power supplies, and more particularly to a Mn-Zn ferrite.

【0002】[0002]

【従来の技術】近年、各種電源機器の高性能化、かつ、
軽量小型化の進展が著しい。それ故、この各種電源機器
に搭載されるスイッチング電源用トランス材の、より一
層の高性能化が求められている。
2. Description of the Related Art In recent years, the performance of various power supply devices has been improved, and
Significant progress has been made in reducing the size and weight. Therefore, it is required to further improve the performance of the switching power supply transformer material mounted on the various power supply devices.

【0003】トランス材の高性能化に必要な代表的項目
としては、高磁束密度、高振幅透磁率、低電力損失(低
損失)が挙げられる。なお、以下においては、振幅透磁
率をμa、電力損失をPcvと称する。
Typical items required for improving the performance of transformer materials are high magnetic flux density, high amplitude magnetic permeability, and low power loss (low loss). In the following, the amplitude permeability is referred to as μa and the power loss is referred to as Pcv.

【0004】ところで、一般に、Mn−Zn系フェライ
トは、粉末冶金法により、混合、予焼、解砕、造粒、成
形、焼成の工程を経て製造され、この製造プロセス条件
の適切なコントロールにより、高性能化が図られてい
る。又、更に、Fe23、MnO、ZnOというマトリ
ックス相を形成する主成分組成と、SiO2、CaO、
Ta25、Nb25等の粒界相を形成する副成分組成の
厳密なコントロールにより、高性能化が図られている。
By the way, in general, Mn-Zn ferrite is manufactured by powder metallurgy through the steps of mixing, pre-firing, crushing, granulation, molding and firing, and by controlling the manufacturing process conditions appropriately, Higher performance has been achieved. In addition, the main component composition of Fe 2 O 3 , MnO, and ZnO forming a matrix phase, and SiO 2 , CaO,
Higher performance has been achieved by strictly controlling the composition of subcomponents forming the grain boundary phase such as Ta 2 O 5 and Nb 2 O 5 .

【0005】Pcvを下げるためには、粒界相の厚みを大
きくして、より高抵抗化を図ることが最も効果的であ
る。一方、μaを大きくするためには、粒界相の厚さを
極力薄くする、あるいは、マトリックス相中に残存する
不純物量を低減することが必要である。
In order to lower Pcv, it is most effective to increase the thickness of the grain boundary phase to achieve higher resistance. On the other hand, in order to increase μa, it is necessary to reduce the thickness of the grain boundary phase as much as possible or reduce the amount of impurities remaining in the matrix phase.

【0006】このように、μa、Pcvにおける高性能化
のための原理は、二律背反の関係にあり、従来は、両者
を満足させる高性能なMn−Zn系フェライトが得難
く、100kHz、2000G、100℃の条件におい
て、Pcvで350〜500(kW/m3)程度のもの
か、あるいは、μaで3000〜5000程度のものし
か得られなかった。
As described above, the principle for high performance in μa and Pcv is in a trade-off relationship, and it has been difficult to obtain a high-performance Mn-Zn-based ferrite satisfying both of them in the past, at 100 kHz, 2000 G, 100 Under the conditions of ° C, only Pcv of about 350 to 500 (kW / m 3 ) or μa of about 3000 to 5000 was obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述の問題
点を解決し、より高性能な、高いμaを有する低損失酸
化物磁性材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a high-performance, low-loss oxide magnetic material having a high μa.

【0008】[0008]

【課題を解決するための手段】前述した如く、Mn−Z
n系フェライトは、SiO2、CaO等を主成分とした
粒界相が存在しており、この粒界相により、フェライト
焼結体の高抵抗化が図られ、渦電流損失が低減され、低
損失化が実現できるものである。
As described above, Mn-Z
The n-type ferrite has a grain boundary phase composed mainly of SiO 2 , CaO, etc. This grain boundary phase increases the resistance of the ferrite sintered body, reduces the eddy current loss, and reduces the eddy current loss. It is possible to realize loss.

【0009】ところが、高抵抗化により渦電流損失を低
減させるために、SiO2、CaO等の副成分量を増加
させ、粒界相を厚くし過ぎると、逆に粒界相による応力
が大きくなり、磁性を担うマトリックス相の磁気特性、
例えば、μaの劣化、Hcの増大を招き、高性能化を図
ることがきない。
However, in order to reduce the eddy current loss by increasing the resistance, if the amount of subcomponents such as SiO 2 and CaO is increased and the grain boundary phase is made too thick, the stress due to the grain boundary phase becomes large on the contrary. , The magnetic properties of the matrix phase responsible for magnetism,
For example, deterioration of μa and increase of Hc are caused, and high performance cannot be achieved.

【0010】又、マトリックス相中に残存する空隙中に
は、SiO2、CaO等の副成分が高濃度に残留する。
このため、これらの副成分量の増加は、磁壁の滑らかな
移動の妨げとなり、μa、μi等の劣化を引き起こす原因
ともなっている。
Further, in the voids remaining in the matrix phase, secondary components such as SiO 2 and CaO remain in high concentration.
For this reason, the increase in the amount of these sub-components hinders the smooth movement of the domain wall, and causes deterioration of μa, μi, and the like.

【0011】逆に、SiO2、CaO等の副成分の量を
減少させ、粒界相を、例えば、全く存在しないような状
態にすると、μa、μi等は、著しく高い値が得られる。
しかし、電気抵抗が著しく小さくなるため、渦電流損失
が大きくなり、Pcvの低下は図れない上、μa、μiの周
波数特性も著しく劣化する欠点が生じる。
On the contrary, when the amounts of the subcomponents such as SiO 2 and CaO are reduced so that the grain boundary phase does not exist at all, for example, μa, μi, etc. have remarkably high values.
However, since the electric resistance is remarkably reduced, the eddy current loss is increased, Pcv cannot be reduced, and the frequency characteristics of μa and μi are significantly deteriorated.

【0012】本発明者は、種々検討を行った結果、S
iO2量を極力少なく含有せしめる、Ta25あるい
はNb25を含有するCaOを主成分とする粒界相を形
成させる、ことにより、前述した二律背反の関係による
影響を極力小さくし、低いPcvで、かつ、高いμaを有
する高性能なMn−Zn系フェライトを提供できること
を見い出したものである。
As a result of various investigations, the present inventor found that S
By making the amount of iO 2 as small as possible and forming a grain boundary phase containing CaO containing Ta 2 O 5 or Nb 2 O 5 as the main component, the influence of the above-mentioned trade-off relationship is minimized and reduced. It has been found that a high-performance Mn-Zn-based ferrite having Pcv and high μa can be provided.

【0013】即ち、本発明は、主成分として52〜54
mol%の酸化鉄(Fe23)、33〜37mol%の
酸化マンガン(MnO)及び残部酸化亜鉛(ZnO)か
らなり、副成分として0.001〜0.008wt%の二
酸化珪素(SiO2)及び0.02〜0.10wt%の酸
化カルシウム(CaO)を含有し、更に、0〜0.06
wt%(0を含まず)の酸化タンタル(Ta25)、又
は0〜0.02wt%(0を含まず)の酸化ニオブ(N
25)を含有し、かつ、Ta25及びNb25の総量
で0〜0.06wt%(0を含まず)含有することを特
徴とする低損失酸化物磁性材料である。
That is, according to the present invention, the main components are 52 to 54.
Consists of mol% iron oxide (Fe 2 O 3 ), 33 to 37 mol% manganese oxide (MnO) and balance zinc oxide (ZnO), and 0.001 to 0.008 wt% silicon dioxide (SiO 2 ) as a subcomponent. And 0.02 to 0.10 wt% calcium oxide (CaO), and further 0 to 0.06.
wt% (not including 0) tantalum oxide (Ta 2 O 5 ) or 0 to 0.02 wt% (not including 0) niobium oxide (N)
b 2 O 5 ), and a total content of Ta 2 O 5 and Nb 2 O 5 of 0 to 0.06 wt% (not including 0), which is a low loss oxide magnetic material. .

【0014】本発明において、Ta25及びNb25
用いたのは、上述した問題点を解決できる上、異常粒成
長等の組織不整のない結晶粒径の均一な組織が得られる
ため、ヒステリシス損失の低減が可能となり、更に、T
25及び、あるいはNb25を含有するCaOを主成
分とする粒界相が形成され、渦電流損失の低減が可能と
なるためである。従って、SiO2を極力少なく含有さ
せた場合においても、これまで達成できなかった低いP
cvで、かつ、高いμaを含有するMn−Zn系フェライ
トを得ることができる。
In the present invention, the use of Ta 2 O 5 and Nb 2 O 5 can solve the above-mentioned problems and can obtain a structure having a uniform crystal grain size without irregularities such as abnormal grain growth. Therefore, it is possible to reduce the hysteresis loss.
This is because a grain boundary phase containing Ca 2 O 5 and / or CaO containing Nb 2 O 5 as a main component is formed, and eddy current loss can be reduced. Therefore, even if the content of SiO 2 is as small as possible, the low P that could not be achieved until now.
It is possible to obtain a Mn-Zn-based ferrite containing cv and high μa.

【0015】又、本発明において、Fe23を52〜5
4mol%、MnOを33〜37mol%の組成範囲と
したのは、通常、電源トランス材が使用される環境下で
ある、60〜100℃程度の温度範囲では、主成分であ
るFe23及びMnOの組成に強く依存するPcvの温度
特性が負であり、かつ、Pcvが低いからである。
Further, in the present invention, Fe 2 O 3 is contained in an amount of 52-5.
The composition range of 4 mol% and MnO of 33 to 37 mol% is usually in the environment where the power transformer material is used. In the temperature range of about 60 to 100 ° C., the main components of Fe 2 O 3 and This is because the temperature characteristic of Pcv, which strongly depends on the composition of MnO, is negative and Pcv is low.

【0016】更に、SiO2を0.001〜0.008w
t%、CaOを0.02〜0.10wt%としたのは、下
限値以下では、粒界相がほとんど形成されず、渦電流損
失が著しく増大し、低いPcvが得られないためであり、
又、上限値を越えた領域においては、高いμaが得られ
ないためである。
Further, SiO 2 is 0.001 to 0.008 w.
The reason why t% and CaO are set to 0.02 to 0.10 wt% is that the grain boundary phase is hardly formed, the eddy current loss is significantly increased and a low Pcv cannot be obtained at the lower limit value or less.
Also, in a region exceeding the upper limit value, a high μa cannot be obtained.

【0017】Ta25を0〜0.06wt%(0を除
く)、Nb25を0〜0.02wt%(0を除く)とし
た理由は、各添加物共に上限値を越えても、高抵抗化に
より渦電流損失が低減でき、低いPcvが得られる領域も
あるが、マトリックス中の空隙が多くなる等、組織制御
が困難となり、高いμaが得られないためである。
The reason for setting Ta 2 O 5 to 0 to 0.06 wt% (excluding 0) and Nb 2 O 5 to 0 to 0.02 wt% (excluding 0) is that each additive exceeds the upper limit. Also, although there is a region in which eddy current loss can be reduced by increasing the resistance and low Pcv can be obtained, it is difficult to control the structure such as an increase in voids in the matrix and a high μa cannot be obtained.

【0018】又、Ta25とNb25の総量を0〜0.
06wt%(0を除く)とした理由は、0.06wt%
を越えた領域では、同様に、組織制御が困難であり、低
いPcv、高いμaが得られないためである。
The total amount of Ta 2 O 5 and Nb 2 O 5 is 0 to 0.
The reason for setting 06 wt% (excluding 0) is 0.06 wt%
This is because it is difficult to control the structure in a region exceeding the above range, and low Pcv and high μa cannot be obtained.

【0019】[0019]

【発明の実施の形態】以下、本発明に係わる低損失酸化
物磁性材料の実施例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the low loss oxide magnetic material according to the present invention will be described below.

【0020】(実施例1)高純度のFe23、Mn34
及びZnO原料を用いて、52.8Fe23−36.0M
nO−11.2ZnO(mol%)となるように秤量
し、ボールミルで混合した後、900℃の大気中で2時
間仮焼した。
Example 1 High-purity Fe 2 O 3 and Mn 3 O 4
And ZnO raw material, 52.8Fe 2 O 3 -36.0M
It was weighed so as to be nO-11.2 ZnO (mol%), mixed with a ball mill, and then calcined in the atmosphere at 900 ° C. for 2 hours.

【0021】次に、この仮焼粉末に、CaOを0.05
wt%添加し、更に、Ta25を0.03wt%添加
し、SiO2を0.001〜0.012wt%(0を含ま
ず)の範囲で添加した後、ボールミルにて更に微粉砕
(解砕)を行った。
Then, CaO was added to the calcined powder in an amount of 0.05.
was added wt%, further, the Ta 2 O 5 was added 0.03 wt%, was added in the range of the SiO 2 0.001~0.012wt% (0 not including), further finely pulverized in a ball mill ( Crushing) was performed.

【0022】更に、ポリビニルアルコール(PVA)を
バインダーとして0.5wt%添加し、スプレードライ
ヤーにて乾燥・造粒した。
Further, polyvinyl alcohol (PVA) was added as a binder in an amount of 0.5 wt% and dried and granulated with a spray dryer.

【0023】得られた造粒体を、外径30mm×内径2
0mm×高さ10mmのトロイダル形状に加圧成形した
後、1200〜1400℃で窒素と酸素の混合気流中で
酸素分圧が0.5〜10%となるよう焼成した。
The obtained granules were treated with an outer diameter of 30 mm and an inner diameter of 2
After pressure forming into a toroidal shape of 0 mm × height 10 mm, it was fired at 1200 to 1400 ° C. in a mixed air flow of nitrogen and oxygen so that the oxygen partial pressure was 0.5 to 10%.

【0024】図1に、Mn−Zn系フェライト焼結体に
おけるSiO2含有量を変化させた時のPcv及びμaの値
の変化を示す。ここで、Pcv及びμaは、100kH
z,2000G,100℃における値を示した。
FIG. 1 shows the changes in the values of Pcv and μa when the SiO 2 content in the Mn-Zn ferrite sintered body was changed. Here, Pcv and μa are 100 kH
The values at z, 2000 G and 100 ° C. are shown.

【0025】図1に示す如く、SiO2含有量が0.00
1〜0.008wt%の範囲で低いPcv、かつ、高いμa
値を示すことがわかる。
As shown in FIG. 1, the SiO 2 content is 0.00
Low Pcv and high μa in the range of 1 to 0.008 wt%
It turns out that it shows a value.

【0026】(実施例2)実施例1で得られた仮焼粉末
に、SiO2を0.004wt%、Nb25を0.01w
t%添加し、CaOを0.01〜0.13wt%の範囲で
添加し、実施例1と同様の製造方法により焼結体を作製
した。
Example 2 The calcined powder obtained in Example 1 contains 0.002 wt% of SiO 2 and 0.01 w of Nb 2 O 5 .
t% was added, CaO was added in the range of 0.01 to 0.13 wt%, and a sintered body was manufactured by the same manufacturing method as in Example 1.

【0027】図2に、Mn−Zn系フェライト焼結体に
おけるCaO含有量を変化させた時のPcv値及びμa値
の変化を示す。図2に示す如く、CaO含有量が0.0
2〜0.10wt%の範囲で低いPcv、かつ、高いμa値
を示すことがわかる。
FIG. 2 shows changes in the P cv value and the μa value when the CaO content in the Mn-Zn ferrite sintered body was changed. As shown in FIG. 2, the CaO content is 0.0
It can be seen that a low Pcv and a high μa value are exhibited in the range of 2 to 0.10 wt%.

【0028】(実施例3)実施例1で得られた仮焼粉末
に、SiO2を0.004wt%、CaOを0.06wt
%添加し、更に、Ta25を0〜0.09wt%の範囲
で添加し、実施例1と同一の製造方法により焼結体を作
製した。
(Example 3) The calcined powder obtained in Example 1 contains 0.002 wt% of SiO 2 and 0.06 wt of CaO.
%, And Ta 2 O 5 was further added in the range of 0 to 0.09 wt%, and a sintered body was manufactured by the same manufacturing method as in Example 1.

【0029】図3に、Mn−Zn系フェライト焼結体に
おけるTa25含有量とPcv、μaとの関係を示す。こ
こで、Pcv及びμaは、100kHz,2000G,1
00℃における値を示した。
FIG. 3 shows the relationship between the Ta 2 O 5 content and Pcv, μa in the Mn-Zn system ferrite sintered body. Here, Pcv and μa are 100 kHz, 2000 G, 1
The value at 00 ° C is shown.

【0030】図3より、Ta25含有量が0〜0.06
wt%(0を含まず)の範囲で、低いPcv、かつ、高い
μa値を示すことがわかる。
According to FIG. 3, the content of Ta 2 O 5 is 0 to 0.06.
It can be seen that a low Pcv and a high μa value are exhibited in the range of wt% (not including 0).

【0031】(実施例4)実施例1で得られた仮焼粉末
に、SiO2を0.004wt%、CaOを0.06wt
%添加し、更に、Nb25を0〜0.03wt%の範囲
で添加し、実施例1と同一の製造方法により焼結体を作
製した。
Example 4 The calcined powder obtained in Example 1 contains 0.002 wt% of SiO 2 and 0.06 wt of CaO.
%, And Nb 2 O 5 was further added in the range of 0 to 0.03 wt%, and a sintered body was manufactured by the same manufacturing method as in Example 1.

【0032】図4に、Mn−Zn系フェライト焼結体に
おけるNb25含有量とPcv、μaとの関係を示す。こ
こで、Pcv及びμaは、100kHz,2000G,1
00℃における値を示した。
FIG. 4 shows the relationship between the Nb 2 O 5 content and Pcv, μa in the Mn-Zn system ferrite sintered body. Here, Pcv and μa are 100 kHz, 2000 G, 1
The value at 00 ° C is shown.

【0033】図4より、Nb25含有量が0〜0.02
wt%(0を含まず)の範囲で、低いPcv、かつ、高い
μa値を示すことがわかる。
From FIG. 4, the Nb 2 O 5 content is 0 to 0.02.
It can be seen that a low Pcv and a high μa value are exhibited in the range of wt% (not including 0).

【0034】(実施例5)実施例1で得られた仮焼粉末
に、SiO2を0.005wt%、CaOを0.07wt
%添加し、更にTa25を0〜0.08wt%、Nb2
5を0〜0.03wt%の範囲で同時添加し、実施例1と
同一の製造方法により焼結体を作製した。
Example 5 The calcined powder obtained in Example 1 contains 0.002 wt% of SiO 2 and 0.07 wt of CaO.
%, Ta 2 O 5 is further added in an amount of 0 to 0.08 wt%, Nb 2 O
5 was simultaneously added in the range of 0 to 0.03 wt%, and a sintered body was manufactured by the same manufacturing method as in Example 1.

【0035】表1に、Mn−Zn系フェライト焼結体に
おけるTa25及びNb25含有量を変化させた時のP
cv値及びμa値の変化を示す。
Table 1 shows P when the contents of Ta 2 O 5 and Nb 2 O 5 in the Mn-Zn system ferrite sintered body were changed.
The changes in cv value and μa value are shown.

【0036】 [0036]

【0037】表1より、Ta25とNb25の総量が0
〜0.06wt%(0を含まず)の範囲で含有せしめる
ことにより、低いPcv、かつ、高いμa値を示すことが
わかる。
From Table 1, the total amount of Ta 2 O 5 and Nb 2 O 5 is 0.
It can be seen that when the content is in the range of 0.06 wt% (not including 0), low Pcv and high μa value are exhibited.

【0038】[0038]

【発明の効果】以上、述べた如く、本発明によれば、よ
り高性能で、高いμaを有する低損失酸化物磁性材料を
提供することができ、工業的にも極めて有益である。
As described above, according to the present invention, it is possible to provide a high-performance low-loss oxide magnetic material having a high μa, which is extremely useful industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるMn−Zn系フェライト焼結
体のSiO2含有量とPcv、μaとの関係を示す図。
FIG. 1 is a diagram showing the relationship between the SiO 2 content and Pcv, μa of a Mn—Zn ferrite sintered body in Example 1.

【図2】実施例2におけるMn−Zn系フェライト焼結
体のCaO含有量とPcv、μaとの関係を示す図。
FIG. 2 is a diagram showing the relationship between the CaO content and Pcv, μa of the Mn—Zn ferrite sintered body in Example 2.

【図3】実施例3におけるMn−Zn系フェライト焼結
体のTa25含有量とPcv、μaとの関係を示す図。
FIG. 3 is a diagram showing the relationship between the Ta 2 O 5 content and Pcv, μa of the Mn—Zn based ferrite sintered body in Example 3.

【図4】実施例4におけるMn−Zn系フェライト焼結
体のNb25含有量とPcv、μaとの関係を示す図。
FIG. 4 is a diagram showing the relationship between the Nb 2 O 5 content and Pcv, μa of the Mn—Zn system ferrite sintered body in Example 4.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主成分として52〜54mol%の酸化
鉄(Fe23)、33〜37mol%の酸化マンガン
(MnO)及び残部酸化亜鉛(ZnO)からなり、副成
分として0.001〜0.008wt%の二酸化珪素(S
iO2)及び0.02〜0.10wt%の酸化カルシウム
(CaO)を含有し、更に、0〜0.06wt%(0を
含まず)の酸化タンタル(Ta25)、又は0〜0.0
2wt%(0を含まず)の酸化ニオブ(Nb25)を含
有し、かつ、Ta25及びNb25の総量で0〜0.0
6wt%(0を含まず)含有することを特徴とする低損
失酸化物磁性材料。
1. A main component comprising 52 to 54 mol% iron oxide (Fe 2 O 3 ), 33 to 37 mol% manganese oxide (MnO) and the balance zinc oxide (ZnO), and 0.001 to 0 as a subcomponent. 0.008 wt% silicon dioxide (S
iO 2) and containing 0.02~0.10Wt% of calcium oxide (CaO), further, tantalum oxide 0~0.06wt% (0 not including) (Ta 2 O 5), or 0-0 .0
It contains 2 wt% (not including 0) of niobium oxide (Nb 2 O 5 ), and the total amount of Ta 2 O 5 and Nb 2 O 5 is 0 to 0.0.
A low loss oxide magnetic material containing 6 wt% (not including 0).
JP7350402A 1995-12-22 1995-12-22 Low loss oxide magnetic material Pending JPH09180926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7350402A JPH09180926A (en) 1995-12-22 1995-12-22 Low loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7350402A JPH09180926A (en) 1995-12-22 1995-12-22 Low loss oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH09180926A true JPH09180926A (en) 1997-07-11

Family

ID=18410257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7350402A Pending JPH09180926A (en) 1995-12-22 1995-12-22 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH09180926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220146A (en) * 2000-02-07 2001-08-14 Hitachi Metals Ltd Low-loss ferrite and magnetic core using the same
JP2015229626A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF
JP2015229625A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220146A (en) * 2000-02-07 2001-08-14 Hitachi Metals Ltd Low-loss ferrite and magnetic core using the same
JP2015229626A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF
JP2015229625A (en) * 2014-06-06 2015-12-21 Jfeケミカル株式会社 Mn-Zn-Co FERRITE AND PRODUCTION METHOD THEREOF

Similar Documents

Publication Publication Date Title
JP4554959B2 (en) Mn-Co-Zn ferrite
JP2005213100A (en) METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP4554960B2 (en) Mn-Co-Zn ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
EP1547988A1 (en) Ferrite material
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP2004161593A (en) Ferritic material
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP2001261344A (en) Mn-zn ferrite and method of producing the same
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JPH09180926A (en) Low loss oxide magnetic material
JP2008169072A (en) Mn-Zn FERRITE
JP2007269503A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP3597665B2 (en) Mn-Ni ferrite material
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP4739658B2 (en) Mn-Zn ferrite
JPH08236336A (en) Low-loss oxide magnetic material
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP3654303B2 (en) Low loss magnetic material
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
WO2023182133A1 (en) MnZn-BASED FERRITE
JP2004238211A (en) Manganese-zinc ferrite
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921