JPH06256067A - Compound for joining ceramic - Google Patents

Compound for joining ceramic

Info

Publication number
JPH06256067A
JPH06256067A JP6590993A JP6590993A JPH06256067A JP H06256067 A JPH06256067 A JP H06256067A JP 6590993 A JP6590993 A JP 6590993A JP 6590993 A JP6590993 A JP 6590993A JP H06256067 A JPH06256067 A JP H06256067A
Authority
JP
Japan
Prior art keywords
compound
ceramic
bonding
ceramics
polycarbosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6590993A
Other languages
Japanese (ja)
Other versions
JP3017372B2 (en
Inventor
Masaru Shinpo
優 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP5065909A priority Critical patent/JP3017372B2/en
Publication of JPH06256067A publication Critical patent/JPH06256067A/en
Application granted granted Critical
Publication of JP3017372B2 publication Critical patent/JP3017372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a compound for joining ceramics, capable of strongly joining the various ceramics in a simple process, and capable of forming joined layers and joined products having sufficient joining strengths also in processes before calcination and in calcination processes and excellent in high purity, heat resistance, high chemical resistance, etc. CONSTITUTION:A compound used for joining ceramics and formed by kneading a polysilazane compound and a polycarbosilazane compound with ceramic powder and a solvent is used as a joining material for the ceramics, the polysilazane compound and the polycarbosilazane compound being known as the precursors of silicon carbide(SiC) and silicon nitride(SiN).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、珪素、炭化珪素、窒化
珪素、窒化アルミニウム及びこれらを組合わせた複合物
等非酸化物セラミックスや、アルミナ、ジルコニヤ、ム
ライト等酸化物セラミックスの各種広範囲セラミックス
の接合及びそれらの空隙部の充填に適したコンパウンド
に関する。
FIELD OF THE INVENTION The present invention relates to a wide range of ceramics such as silicon, silicon carbide, silicon nitride, aluminum nitride and non-oxide ceramics such as composites thereof, and oxide ceramics such as alumina, zirconia and mullite. The present invention relates to a compound suitable for joining and filling those voids.

【0002】[0002]

【従来の技術】セラミックスは、耐熱性が高く、堅固で
あり、また、化学的に不活性で、極めて高純度に調製可
能である等の長所があり、先端材料として多方面に使わ
れている。これらセラミックスの加工は、通常、焼成前
の素材の成形段階等で行うのが一般的である。しかし、
セラミック成形体の焼成前後では大きな体積変化が起こ
るため、焼成前の加工のみで寸法精度を高めることは困
難である。そのため、焼成後に目的の形状と精度を得る
ように再加工することもできるが、セラミックスは、上
記のように堅固で脆く加工性が悪いため、その形状や大
きさが制限される。
2. Description of the Related Art Ceramics have advantages such as high heat resistance and solidity, are chemically inert, and can be prepared with extremely high purity, and are used in various fields as advanced materials. . Generally, the processing of these ceramics is performed at the stage of forming the material before firing. But,
Since a large volume change occurs before and after firing the ceramic molded body, it is difficult to improve the dimensional accuracy only by processing before firing. Therefore, it can be reprocessed to obtain a desired shape and accuracy after firing, but the shape and size of ceramics are limited because they are solid, brittle and poor in workability as described above.

【0003】また、目的のセラミック形状体を構成する
ように区分された各部品材を組立てて接合することによ
り、複雑形状体や大型品を形成することも従来から行わ
れている。この場合、耐熱性、化学的耐久性等に優れる
セラミックスの長所を保持しながら、各セラミック焼成
部品材を所定形状等に接合できなければ、本来のセラミ
ックスとしての利用価値が損なわれる。そのため、セラ
ミックス接合法として、耐熱性を有する方法も各種実施
されている。例えば、はんだガラスによる接合法や、メ
タライジングによる金属接合法等がある。また、例えば
アルミナセメント等のセメント系無機材料の一部も、高
耐熱性接合材として使用されている。
Further, it has been conventionally practiced to form a complex shaped body or a large-sized product by assembling and joining the respective component materials divided so as to form a desired ceramic shaped body. In this case, if the respective ceramic fired component materials cannot be joined in a predetermined shape or the like while maintaining the advantages of ceramics excellent in heat resistance and chemical durability, the original utility value as ceramics is impaired. Therefore, various methods having heat resistance have been carried out as ceramics joining methods. For example, there are a joining method using solder glass and a metal joining method using metallizing. Further, a part of cement-based inorganic material such as alumina cement is also used as a high heat resistant bonding material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
はんだガラス接合及び金属接合法のいずれも適用できる
材料が限られており、耐熱性や耐蝕性も十分ではなかっ
た。しかも、接合時には高度な技術を必要とする上に、
接合部の形状も単純なものに限られている。また、無機
材料系接合材は室温で固着できる利点があるが、耐火性
とするために、通常1000℃以上の高温で焼成する必
要があり、焼成過程で固着力が著しく低減したり、ひび
割れ等を発生して破損したりすることが多く、極めて限
られた材料や用途にしか使用することができなかった。
また、無機材料系接合材には、成分や不純物として種々
の元素成分を含むことが多く、所定の高純度化を達成で
きないこともある。
However, the materials applicable to both the solder glass bonding method and the metal bonding method are limited, and the heat resistance and the corrosion resistance are not sufficient. Moreover, in addition to requiring advanced technology when joining,
The shape of the joint is also limited to a simple shape. Further, the inorganic material-based bonding material has an advantage that it can be fixed at room temperature, but in order to have fire resistance, it is usually necessary to bake at a high temperature of 1000 ° C. or higher, and the fixing force is remarkably reduced in the baking process, cracks, etc. It was often generated and damaged, and it could only be used for extremely limited materials and applications.
Further, the inorganic material-based bonding material often contains various elemental components as components and impurities, and it may not be possible to achieve a predetermined high degree of purification.

【0005】本発明は、上記した従来のセラミックスの
接合法の現況に鑑み、種々のセラミックスを簡便な工程
で強固に接合でき、焼成前及び焼成過程においても十分
な接合強度を有し、且つ、高純度、高耐熱性、高耐薬品
性等の優れた接合層及び接合体を形成することができる
セラミック接合材、即ちセラミック接合用コンパウンド
を提供することを目的とし、更に、それにより強固に固
着接合されて一体化されたセラミックスの大型品や複雑
形状体を簡便に形成することを目的とする。
In view of the present situation of the above-mentioned conventional ceramics joining method, the present invention can firmly join various ceramics in a simple process, has sufficient joining strength before and during firing, and The purpose is to provide a ceramic bonding material capable of forming a bonding layer and a bonded body excellent in high purity, high heat resistance, high chemical resistance, and the like, that is, a compound for ceramic bonding, and further firmly fix it. The object is to easily form a large-sized ceramic product and a complex shaped body that are joined and integrated.

【0006】発明者は、上記目的を達成するための接合
材としての要件を種々検討し、特に下記の2点が満足さ
れるように鋭意検討した結果、本発明を完成した。即
ち、 (1)接合材が接合時に室温で十分な強度な固着力を発
現でき、且つ、その固着力が焼成過程でも保持される接
合材であること。即ち、焼成過程で接合部が離脱等する
おそれがない上、特別な焼成用治具が不要となる。ま
た、接合体の形状や大きさでの制限を受けることもな
い。更に、場合によってはセラミック接合体の使用温度
を焼成温度域とすることにより、接合後の焼成工程を省
略することもできる。 (2)高純度を要求されるセラミック用接合材として
は、例えば遷移金属やアルカリ金属イオン等の汚染物
を、その成分や不純物として含まないようにすること。
セラミックスは、電子部品や半導体素子製造用部材等高
純度を要求される用途が非常に多く、これらの使用にお
いては、原料素材を初めセラミックスの製造工程や加工
の段階でも、上記汚染物が混入しないようにする必要が
ある。従って、接合したセラミック接合体を特に半導体
素子の処理に使用する場合には、Si、O、N、C、H
等の元素以外はすべて汚染物であり極力低減させる。
The present inventor has completed the present invention as a result of various studies on the requirements as a bonding material for achieving the above object, and in particular as a result of intensive studies so as to satisfy the following two points. That is, (1) the bonding material is a bonding material capable of exhibiting a sufficiently strong bonding force at room temperature during bonding and maintaining the bonding force even during the firing process. In other words, there is no risk of the joints coming off during the firing process, and no special firing jig is required. Further, there is no restriction on the shape or size of the bonded body. Further, in some cases, the firing step after joining can be omitted by setting the operating temperature of the ceramic joined body in the firing temperature range. (2) As the ceramic bonding material that requires high purity, for example, contaminants such as transition metals and alkali metal ions should not be included as components or impurities.
Ceramics are very often used in high-purity applications such as electronic parts and semiconductor element manufacturing members. In these applications, the above contaminants do not mix even in the manufacturing process and processing stage of raw materials and ceramics. Need to do so. Therefore, when the joined ceramic joined body is used particularly for the treatment of semiconductor elements, Si, O, N, C, H
All other elements are pollutants and should be reduced as much as possible.

【0007】[0007]

【課題を解決するための手段】本発明によれば、ポリシ
ラザン化合物、ポリカルボシラン化合物、セラミック粉
末及び溶媒からなることを特徴とするセラミック接合用
コンパウンドが提供される。
According to the present invention, there is provided a compound for ceramic bonding which comprises a polysilazane compound, a polycarbosilane compound, a ceramic powder and a solvent.

【0008】[0008]

【作用】本発明は上記のように構成され、ポリシラザン
類やポリカルボシラン類化合物は、所定の溶媒に溶解し
て粘着性溶液を形成し、その溶液を被接合セラミックス
の接合部に塗布等し、乾燥させることにより容易にセラ
ミックスを固着接合でき、その後の焼成中でも固着力が
保持される。また、ポリシラザン類やポリカルボシラン
類化合物は、不活性ガスまたは酸素含有ガス雰囲気下で
加熱すれば、その雰囲気によりSiN、SiC、SiO
N、Si、SiO2 等の耐熱性で化学的に安定な化合物
を生成し、混在するセラミック粉末と共に堅固な接合層
を形成し、セラミックス同士の強固な接合体を得ること
ができる。また、ポリシラザン類やポリカルボシラン類
化合物は、化学的に合成することができ、高純度化が容
易であり、半導体等に有害な汚染元素を含まず、半導体
部材等各種セラミックスの接合材として、汚染源となる
ことがない。
The present invention is constituted as described above, and polysilazanes and polycarbosilane compounds are dissolved in a predetermined solvent to form an adhesive solution, and the solution is applied to the joint portion of the ceramics to be joined. The ceramics can be easily fixed and joined by drying, and the fixing force can be maintained even during the subsequent firing. In addition, the polysilazanes and polycarbosilane compounds can be heated in an inert gas or oxygen-containing gas atmosphere to produce SiN, SiC, SiO depending on the atmosphere.
It is possible to produce a heat-resistant and chemically stable compound such as N, Si, and SiO 2 and form a firm bonding layer with the mixed ceramic powder to obtain a strong bonded body of ceramics. In addition, polysilazanes and polycarbosilane compounds can be chemically synthesized, can be easily purified, do not contain polluting elements harmful to semiconductors, etc., as a bonding material for various ceramics such as semiconductor members, It does not become a pollution source.

【0009】以下、本発明について詳細に説明する。本
発明で使用するポリシラザン類及びポリカルボシラン類
化合物は炭化珪素(SiC)や窒化珪素(SiN)の前
駆体として良く知られている。ポリシラザン類はペルヒ
ドロポリシラザンの種々の分子量の重合体、メチルポリ
シラザンの各種重合体等、SiNまたはSiCの前駆体
として通常用いられる化合物を使用することができる。
また、ポリカルボシラン類は[RR′SiCH2n
(但し、R及びR′は、R≠R′で、H、CH3 、C6
5 のいずれかである。n=5〜5000以上)の一般
式で表され、SiCの前駆体として従来から用いられて
いる化合物を使用することができる。
The present invention will be described in detail below. The polysilazanes and polycarbosilane compounds used in the present invention are well known as precursors of silicon carbide (SiC) and silicon nitride (SiN). As the polysilazanes, compounds generally used as precursors of SiN or SiC, such as polymers of various molecular weights of perhydropolysilazane and various polymers of methylpolysilazane, can be used.
Further, polycarbosilanes are [RR'SiCH 2 ] n
(However, R and R ′ are R ≠ R ′, and H, CH 3 , C 6
It is one of H 5 . A compound represented by the general formula (n = 5 to 5000 or more) and conventionally used as a precursor of SiC can be used.

【0010】発明者の知見によれば、上記ポリシラザン
類及びポリカルボシラン類化合物は、いずれもキシレン
等の有機溶媒に溶解した後、溶媒を除去した場合には常
温である程度の固着力を生じるが温度上昇により固着力
が変化する。即ち、ポリシラザン化合物、ポリカルボシ
ラン化合物及び両者比率約1:1の混合物のそれぞれに
ついて、温度と固着強度の関係を実験検討した。その結
果を図1に模式的に示した。図1によれば、ポリシラザ
ン化合物の固着力、即ち、接着強度は約100〜200
℃で殆どなくなるが、200℃付近から急激に増大し、
500℃付近からはその増加率が低下し、900〜10
00℃で再び更に上昇傾向となる。ポリシラザン化合物
は室温付近ではその種類や重合度によって固体から粘稠
な液体であり、温度が上昇すると低粘性の液体が生成す
ると共に分解反応が起こり極めて脆いゲルが生成するた
め、接着強度が低下する。200℃以上では重合が進み
ゲルが固化するため接着強度が上昇するが、500℃付
近からは熱分解が激しく有機物が多く離脱し残留分が多
孔質化するため、接着強度の上昇が緩慢になる。また、
約900〜1000℃では熱分解反応が完了し生成した
無機化合物の焼結と結晶化が進行し、接着強度が更に急
激に上昇するものと推定される。
According to the knowledge of the inventor, both of the above polysilazanes and polycarbosilane compounds have a certain degree of fixing force at room temperature when they are dissolved in an organic solvent such as xylene and then the solvent is removed. The sticking force changes as the temperature rises. That is, the relationship between the temperature and the bonding strength was experimentally examined for each of the polysilazane compound, the polycarbosilane compound, and the mixture of both ratios of about 1: 1. The results are shown schematically in FIG. According to FIG. 1, the adhesion force of the polysilazane compound, that is, the adhesive strength is about 100 to 200.
Almost disappeared at ℃, but increased sharply from around 200 ℃,
The rate of increase decreases from around 500 ° C, 900 to 10
At 00 ° C., it again tends to rise. The polysilazane compound is a solid to viscous liquid at around room temperature depending on its type and degree of polymerization, and when the temperature rises, a low-viscosity liquid is generated and a decomposition reaction occurs to form an extremely brittle gel, which reduces the adhesive strength. . At 200 ° C or higher, the polymerization progresses and the gel solidifies to increase the adhesive strength, but from around 500 ° C, the thermal decomposition is intense and a large amount of organic substances are desorbed and the residue becomes porous, so the increase in the adhesive strength becomes slow. . Also,
It is estimated that at about 900 to 1000 ° C., the thermal decomposition reaction is completed, the inorganic compound produced is sintered and crystallized, and the adhesive strength is further rapidly increased.

【0011】一方、ポリカルボシラン化合物は、図1に
示されるように約200〜400℃で固着力が無くなる
が、約400℃以上では温度と共に固着力が増加し、6
00℃を越えると強度増加率が小さくなり、ポリシラザ
ン化合物と同様に900〜1000℃で再び更に上昇傾
向となる。ポリカルボシラン類化合物の殆どは、室温付
近で固体であり通常は200℃付近まで安定で固着力が
保持される。しかし、200℃以上に昇温すると低粘性
の液体となり重合反応が起こり始め接着強度が失われる
が、400℃以上では高分子化していくため温度と共に
固着力が増加する。また通常はゲル化反応が起こらない
のでポリシラザンの場合より高強度になる。600℃を
越えるとポリシラザンと同様に、固化物の熱分解反応が
進行し多孔質化するため強度増加率が低下するが、熱分
解反応が完了する約900〜1000℃以上で接着強度
が再び温度と共に急激に上昇する。
On the other hand, the polycarbosilane compound loses its sticking force at about 200 to 400 ° C. as shown in FIG. 1, but at about 400 ° C. or higher, the sticking force increases with temperature.
When it exceeds 00 ° C, the rate of increase in strength becomes small, and like the polysilazane compound, it tends to rise again at 900 to 1000 ° C. Most of the polycarbosilane compounds are solid at around room temperature, and are usually stable up to around 200 ° C. and the adhesive strength is maintained. However, when the temperature is raised to 200 ° C. or higher, it becomes a low-viscosity liquid and a polymerization reaction starts to occur, and the adhesive strength is lost. However, at 400 ° C. or higher, the polymer is polymerized and the adhesive strength increases with temperature. In addition, since gelation reaction does not usually occur, the strength is higher than that of polysilazane. When the temperature exceeds 600 ° C, the rate of increase in strength decreases because the thermal decomposition reaction of the solidified substance progresses to become porous, as in the case of polysilazane, but the adhesive strength is re-heated when the thermal decomposition reaction is completed at about 900 to 1000 ° C. Rises sharply with.

【0012】また一方、図1から明らかなように、ポリ
シラザン化合物及びポリカルボシラン化合物を単独で使
用したときは、それぞれ昇温の途中で固着力が殆ど無く
なる温度域が出現するが、本発明のように両者を混合し
て用いた場合は、ほぼ全温度域で両者の平均値を上回る
接着強度が得られることが分かる。その理由は明らかで
ないが、ポリシラザンの固着力がなくなる100〜20
0℃付近では、ポリカルボシランは固化あるいは高粘性
の液体であるためにポリシラザンのゲル化が妨げられ、
また重合反応は高分子化し粘性が増加する方向に進行す
るため固着力が低減することがない。また一方、ポリカ
ルボシランの固着力がなくなる200〜400℃付近で
は、重合、固化したポリシラザンに溶融したポリカルボ
シランが可塑材として作用し、脆性さを補い強度を増大
させる。600℃以上の高温では、両者の分解温度が異
なるため全体としては急激なガス放出が起こらず、構造
が破壊することなく固化が完了する。また反応生成物の
性質も両者で異なるので、複合化による相互作用が固着
力増加に寄与するものと考えられる。
On the other hand, as is apparent from FIG. 1, when the polysilazane compound and the polycarbosilane compound are used alone, a temperature range in which the sticking force almost disappears appears during the temperature rise. It can be seen that when the two are mixed and used, the adhesive strength exceeding the average value of the both is obtained in almost the entire temperature range. The reason for this is not clear, but the adhesion of polysilazane is lost 100 to 20
At around 0 ° C., polycarbosilane solidifies or is a highly viscous liquid, which prevents gelation of polysilazane,
In addition, the polymerization reaction progresses in the direction in which the polymer is polymerized and the viscosity increases, so that the fixing force does not decrease. On the other hand, in the vicinity of 200 to 400 ° C., where the polycarbosilane has no adhesiveness, the polycarbosilane melted in the polymerized and solidified polysilazane acts as a plasticizer to compensate brittleness and increase strength. At a high temperature of 600 ° C. or higher, rapid decomposition of gas does not occur as a whole because the decomposition temperatures of both are different, and solidification is completed without destroying the structure. Moreover, since the properties of the reaction product are different between the two, it is considered that the interaction due to the complexation contributes to the increase in the sticking force.

【0013】上記したように、本発明においてポリシラ
ザン類及びポリカルボシラン類化合物の双方を併用する
ことによる相互作用により、適用温度全域で所定の高接
着強度を保持することができる。本発明において、ポリ
シラザン類化合物及びポリカルボシラン類化合物は、そ
れぞれ一方の化合物に対し他方の添加量を5重量%以上
とし、重量比で1:0.05〜40、好ましくは1:
0.1〜20で混合して用いるのがよい。
As described above, a predetermined high adhesive strength can be maintained over the entire application temperature range due to the interaction caused by the combined use of both the polysilazane compound and the polycarbosilane compound in the present invention. In the present invention, the polysilazane compound and the polycarbosilane compound are each added to the other compound in an amount of 5% by weight or more, and the weight ratio is 1: 0.05 to 40, preferably 1: 100.
It is preferable to use a mixture of 0.1 to 20.

【0014】本発明のセラミック接合用コンパウンドに
おいて、上記ポリシラザン化合物及びポリカルボシラン
化合物の混合物に、更にセラミック粉末を添加混合す
る。添加するセラミック粉末としては、被接合セラミッ
クスと同種のセラミックス粉末または被接合セラミック
スとその熱膨張係数が所定の範囲で整合する異種のセラ
ミックス粉末を用いるのが好ましい。セラミック接合コ
ンパウンドを、ポリシラザン類化合物及びポリカルボシ
ラン類化合物の混合物のみから構成した場合、被セラミ
ックスの接合面が極めて小さな時には良好な接合体が得
られるが、面積が大きくなると剥がれを生じ、良好な接
合体を得ることが困難であった。発明者は、その主な原
因が、接合後のセラミックス焼成時に、これらの化合物
がSiN、SiC、SiO2 等化合物に変化し、その際
に水素や炭化水素等の有機物が離脱または燃焼、揮散し
体積収縮が起こり、接合部に隙間やひび割れが発生する
ことを知見した。本発明は、ポリシラザン類化合物及び
ポリカルボシラン類化合物の混合物にセラミック粉末を
添加することのより、上記の焼成時の体積収縮を軽減す
ると共に、接合強度の向上を図ることができたものであ
る。
In the ceramic bonding compound of the present invention, ceramic powder is further added and mixed to the mixture of the polysilazane compound and the polycarbosilane compound. As the ceramic powder to be added, it is preferable to use a ceramic powder of the same type as the ceramic to be joined or a different ceramic powder having a thermal expansion coefficient matching that of the ceramic to be joined within a predetermined range. When the ceramic bonding compound is composed only of the mixture of the polysilazane compound and the polycarbosilane compound, a good bonded body can be obtained when the bonding surface of the ceramics is extremely small, but peeling occurs when the area is large, which is good. It was difficult to obtain a bonded body. The inventor has found that the main cause is that these compounds change to compounds such as SiN, SiC, and SiO 2 during firing of ceramics after joining, and at that time, organic substances such as hydrogen and hydrocarbons are released or burned and volatilized. It was found that volume contraction occurs and gaps and cracks occur at the joints. INDUSTRIAL APPLICABILITY In the present invention, by adding ceramic powder to a mixture of a polysilazane compound and a polycarbosilane compound, it is possible to reduce the volume shrinkage at the time of firing and improve the bonding strength. .

【0015】本発明において、被接合セラミックスと同
種のセラミックス粉末を用いると、特に良好な接合状態
を得ることができる。接合層と被接合セラミックスとの
熱膨張差がなくなるために、セラミックス接合体の熱歪
みが軽減されるためと推定される。また、被接合セラミ
ックスと同種でなく、異種であっても熱膨張係数がほぼ
同様、または、その差が1×10-6以下のセラミック粉
末でも高接合強度の接合体を得ることができる。ポリシ
ラザン類化合物及びポリカルボシラン類化合物の混合物
に加えられる被接合セラミックスと同種のセラミック粉
末とは、被接合セラミックスと同種のセラミックス粉末
をいう。例えば、シリコンの接合にはシリコン粉末、S
iCにはSiC粉末、SiNにはSiN粉末、アルミナ
に対してはアルミナ粉末、ジルコニアにはジルコニア粉
末等である。一方、熱膨張係数の整合する異種のセラミ
ック粉末としては、被接合セラミックスとは異なり、そ
れぞれの平均熱膨張係数の差が1×10-6以下であるセ
ラミック粉末で、例えばシリコン、SiC、SiN、窒
化アルミニウム等の各種セラミックス材料中から適宜選
択することができる。例えば、被接合セラミックスの窒
化アルミニウムに対し、SiNやシリコンの粉末等を選
択することができる。被接合セラミックスと異種セラミ
ックス粉末との平均熱膨張係数の差が1×10-6を超え
ると、得られるセラミックス接合体における熱歪みが大
きくなり、剥がれ等の不都合が生じるため好ましくな
い。
In the present invention, if a ceramic powder of the same type as the ceramic to be bonded is used, a particularly good bonded state can be obtained. It is presumed that the difference in thermal expansion between the bonding layer and the ceramics to be bonded is eliminated, so that the thermal strain of the ceramic bonded body is reduced. Further, a bonded body having a high bonding strength can be obtained even if the ceramic powder is not the same as the ceramics to be bonded, but has a similar thermal expansion coefficient or a ceramic powder having a difference of 1 × 10 −6 or less. The ceramic powder of the same kind as the ceramics to be joined, which is added to the mixture of the polysilazane compound and the polycarbosilane compound, means the same ceramic powder as the ceramics to be joined. For example, for joining silicon, silicon powder, S
SiC powder is used for iC, SiN powder is used for SiN, alumina powder is used for alumina, and zirconia powder is used for zirconia. On the other hand, different types of ceramic powders having matching thermal expansion coefficients are ceramic powders having a difference in average thermal expansion coefficient of 1 × 10 −6 or less, which is different from the ceramics to be bonded, such as silicon, SiC, SiN, It can be appropriately selected from various ceramic materials such as aluminum nitride. For example, it is possible to select powder of SiN, silicon, or the like for aluminum nitride which is the ceramic to be bonded. If the difference in the average thermal expansion coefficient between the ceramics to be bonded and the different type ceramic powder exceeds 1 × 10 −6 , the resulting ceramic bonded body will have a large thermal strain, and peeling or other inconvenience will occur, such being undesirable.

【0016】セラミック粉末の添加量は、上記化合物混
合物に対して重量比で1:2〜40、好ましくは1:4
〜20で添加する。化合物混合物の総量に対するセラミ
ックス粉の重量比が2以下であると焼成時のひび割れ防
止等の効果が十分でなく、40を超えると接合強度が低
下し実用的でない。添加するセラミックス粉末の粒度
は、適用する塗布手段や接合物の形状等により適宜選択
することができる。また、大きな隙間の充填等には、粒
度の大きいセラミックス粉を用いることにより、乾燥後
の収縮が少なく良好な結果を得ることができる。この場
合、混練、生成した接合用コンパウンドの保管時に、セ
ラミック粉末が沈降分離し易い等の問題を生じる場合が
あり、通常は平均粒径100μm以下のセラミック粉末
を用いるのが好ましい。
The amount of the ceramic powder added is 1: 2 to 40, preferably 1: 4, by weight based on the compound mixture.
Add ~ 20. If the weight ratio of the ceramic powder to the total amount of the compound mixture is 2 or less, the effect of preventing cracks during firing is not sufficient, and if it exceeds 40, the bonding strength decreases and it is not practical. The particle size of the ceramic powder to be added can be appropriately selected depending on the application means to be applied, the shape of the bonded article, and the like. Further, by using a ceramic powder having a large particle size for filling a large gap or the like, good results can be obtained with less shrinkage after drying. In this case, problems such as easy precipitation and separation of the ceramic powder may occur during kneading and storage of the produced bonding compound, and it is usually preferable to use the ceramic powder having an average particle size of 100 μm or less.

【0017】本発明のコンパウンドは、上記ポリシラザ
ン類及びポリカルボシラン類化合物混合物に、上記した
セラミック粉末を添加して得た粉末混合物と、キシレン
等の有機溶媒を添加して十分混練してスラリーとする。
溶媒の種類や、固形分と溶媒との混合比は、接合時の各
条件に応じて適宜選択することができる。これらは、塗
布等の作業性に関係し、一般に、溶媒の分量が少ないほ
うが乾燥が簡単で乾燥後の体積減少も少なく良好な結果
を得ることができる。しかし、溶媒が少なすぎると流動
性が低下し、塗布作業が難しくなる。そのため、通常、
上記のポリシラザン類及びポリカルボシラン類化合物混
合物とセラミック粉末との粉末混合物と溶媒とを、1:
0.05〜40重量比で混合するのがよい。高流動性を
付与するためには、溶媒の液体成分が20重量%以上と
なるように溶媒を添加するのが好ましい。本発明におい
て、作業性改善の目的で、上記の粉末混合物、溶媒の
他、適量の界面活性剤や増粘剤を加えても良い。
The compound of the present invention comprises a powder mixture obtained by adding the above-mentioned ceramic powder to the above-mentioned polysilazane and polycarbosilane compound mixture, and an organic solvent such as xylene to be sufficiently kneaded to form a slurry. To do.
The kind of solvent and the mixing ratio of the solid content and the solvent can be appropriately selected according to each condition at the time of bonding. These are related to workability such as coating, and generally, the smaller the amount of the solvent is, the easier the drying is, and the less volume is reduced after the drying, and good results can be obtained. However, if the amount of the solvent is too small, the fluidity is lowered and the coating work becomes difficult. Therefore, usually
The powder mixture of the polysilazanes and polycarbosilane compound mixture and the ceramic powder and the solvent were mixed with each other in a ratio of 1:
It is advisable to mix them in a weight ratio of 0.05 to 40. In order to impart high fluidity, it is preferable to add the solvent such that the liquid component of the solvent is 20% by weight or more. In the present invention, for the purpose of improving workability, an appropriate amount of a surfactant or a thickener may be added in addition to the above powder mixture and solvent.

【0018】上記のようにして得られる本発明のセラミ
ック接合用コンパウンドは、刷毛やデスペンサー等を使
用し、各被接合セラミクッスの接合面に一定量を塗布や
注入等することにより接合部を形成することができる。
塗布等した後、溶媒が蒸発・固化する以前に、各被接合
セラミックスの接合部を突き合わせ、必要に応じ加熱し
て乾燥させる。更にその後、窒素、アルゴン等の不活性
ガス雰囲気中、または空気等の酸素含有ガス雰囲気内
で、所定の温度に加熱、焼成することにより、目的の高
耐熱性、高強度接合のセラミック接合体を得ることがで
きる。
The ceramic bonding compound of the present invention obtained as described above uses a brush, a dispenser or the like, and forms a bonding portion by applying or injecting a fixed amount on the bonding surface of each ceramic ceramic to be bonded. can do.
After coating and the like, before the solvent evaporates and solidifies, the joints of the respective ceramics to be joined are butted, and heated and dried if necessary. After that, by further heating and firing to a predetermined temperature in an atmosphere of an inert gas such as nitrogen or argon or in an atmosphere of an oxygen-containing gas such as air, a desired ceramic joint having high heat resistance and high strength joining is obtained. Obtainable.

【0019】[0019]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1〜9及び比較例1 ポリシランをオートクレーブ中で加熱して得たポリカル
ボシランを、分子量1700〜2100のペルヒドロポ
リシラザンに対し、表1に示した各重量割合で混合して
化合物混合物を得た。得られた混合物に、平均粒径20
μmのシリコン粉末を、混合物との重量比が1:5の割
合で添加し、ポリシラザン、ポリカルボシラン及びシリ
コンからなる混合粉末を得た。更に、得られた混合粉末
固形分に対して、重量比1:0.5になるようにキシレ
ンを加え、ボールミルで4時間混練して接合用コンパウ
ンドをそれぞれ作成した。作成した接合用コンパウンド
は各々約30gであった。
EXAMPLES The present invention will now be described in detail based on examples. However, the present invention is not limited to the following examples. Examples 1 to 9 and Comparative Example 1 Polycarbosilane obtained by heating polysilane in an autoclave was mixed with perhydropolysilazane having a molecular weight of 1700 to 2100 at each weight ratio shown in Table 1 to obtain a compound mixture. Obtained. The resulting mixture has an average particle size of 20
A silicon powder of μm was added at a weight ratio of 1: 5 with the mixture to obtain a mixed powder of polysilazane, polycarbosilane and silicon. Further, xylene was added to the obtained mixed powder solid content in a weight ratio of 1: 0.5, and the mixture was kneaded with a ball mill for 4 hours to prepare bonding compounds. The bonding compounds thus prepared were each about 30 g.

【0020】また、端面を平面に仕上げた直径10mm
φ、長さ30mmのシリコン棒を用意した。次いで、一
のシリコン棒の端面に上記で得られた各接合用コンパウ
ンドを石英ガラス棒で塗りつけ接合部を形成した後、他
のシリコン棒の端面と合わせて押付け接着させた。接着
したシリコン接着体を70℃で3時間乾燥させて接合部
を固着させた。その後、固着したシリコン接着体を窒素
ガス雰囲気中で表1に示した各温度でそれぞれ焼成し
た。焼成、形成したシリコン接合体の各引張強度を測定
した。その結果を表1に示した。
Further, the diameter of the end surface is finished to be 10 mm.
A silicon rod having φ and a length of 30 mm was prepared. Next, each bonding compound obtained above was applied to the end face of one silicon rod by a quartz glass rod to form a joint, and then the end faces of the other silicon rods were joined together and pressed and bonded. The bonded silicon bonded body was dried at 70 ° C. for 3 hours to fix the bonded portion. Then, the adhered silicon bonded body was fired at each temperature shown in Table 1 in a nitrogen gas atmosphere. Each tensile strength of the fired and formed silicon bonded body was measured. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】上記実施例及び比較例から明らかなよう
に、ポリカルボシランを添加しないでポリシラザン単独
の化合物から接合コンパウンドを作成した場合には、い
ずれの焼成温度においても引張強度が低く、特に120
℃及び1350℃での焼成後の引張強度が極めて低いこ
とが分かる。一方、ポリカルボシラン/ポリシラザン重
量比が0.2〜40、特に0.1〜20で混合された接
合コンパウンドが、ポリシラザン単独のものに比して、
焼成温度120〜1350℃で処理された後の引張強度
がいずれも向上していることが分かる。
As is clear from the above Examples and Comparative Examples, when the bonding compound was prepared from the compound of polysilazane alone without adding polycarbosilane, the tensile strength was low at any firing temperature, and particularly 120
It can be seen that the tensile strength after firing at ° C and 1350 ° C is extremely low. On the other hand, the bonding compound mixed at a polycarbosilane / polysilazane weight ratio of 0.2 to 40, particularly 0.1 to 20, is
It can be seen that the tensile strength after treatment at the firing temperature of 120 to 1350 ° C. is improved.

【0023】実施例10 ポリカルボシラン/ポリシラザン重量比を0.3とした
以外は実施例1と同様にして接合用コンパウンドを作成
した。得られた接合用コンパウンドを直径10mmφの
一の窒化珪素棒の端面に塗り、他の窒化珪素棒の端面と
突き合わせ接着した。その後、室温で乾燥し、更に空気
中250℃で熱処理した。熱処理後の接着窒化珪素棒
は、実施例1と同様に測定し引張強度0.5MPaの接
合強度を有していた。次いで、上記で得た接着窒化珪素
棒を窒素ガス雰囲気中で1000℃で焼成した結果、引
張強度10MPaの接合強度を有していた。また、焼成
温度1350℃では引張強度100MPaの接合強度が
得られた。
Example 10 A bonding compound was prepared in the same manner as in Example 1 except that the polycarbosilane / polysilazane weight ratio was 0.3. The obtained bonding compound was applied to the end face of one silicon nitride rod having a diameter of 10 mmφ, and was butt-bonded to the end faces of other silicon nitride rods. Then, it was dried at room temperature and further heat-treated at 250 ° C. in air. The bonded silicon nitride rod after the heat treatment had a bonding strength of 0.5 MPa measured in the same manner as in Example 1. Then, the bonded silicon nitride rod obtained above was fired at 1000 ° C. in a nitrogen gas atmosphere, and as a result, it had a bonding strength of 10 MPa in tensile strength. At a firing temperature of 1350 ° C., a tensile strength of 100 MPa and a bonding strength of 100 MPa were obtained.

【0024】実施例11〜17及び比較例2〜3 平均分子量約1300のヘキサメチルシクロトリシラザ
ン重合体に対して、実施例1で使用したポリカルボシラ
ンを重量比1:0.2の割合で秤量して添加して化合物
の混合物を得た。得られた混合物に平均粒径2μmの炭
化珪素粉末を表2に示した重量割合で添加して混合粉末
を得た。更に、トルエン/ヘキサン比が5/1の混合溶
媒に、混合溶媒と同重量の上記で得た混合粉末を加え
て、ボールミルで良く混練して接合用コンパウンドを作
成した。一方、5×5×25(mm)の炭化珪素セラミ
ックス角棒を用意し、上記のようにして作成した接合用
コンパウンドを用い、実施例1と同様にして、5×5
(mm)の端面に塗布、2本の炭化珪素セラミックス角
棒の端面接着した。次いで、室温で乾燥した後、アルゴ
ンガス雰囲気中で表2に示した各温度で焼成し、曲げ強
度を、四点曲げ加重法を用い測定した。その結果を表2
に示した。
Examples 11 to 17 and Comparative Examples 2 to 3 The polycarbosilane used in Example 1 was added to the hexamethylcyclotrisilazane polymer having an average molecular weight of about 1300 at a weight ratio of 1: 0.2. Weighed and added to give a mixture of compounds. Silicon carbide powder having an average particle size of 2 μm was added to the obtained mixture at a weight ratio shown in Table 2 to obtain a mixed powder. Further, the mixed powder having the same weight as that of the mixed solvent was added to a mixed solvent having a toluene / hexane ratio of 5/1 and kneaded well with a ball mill to prepare a bonding compound. On the other hand, a 5 × 5 × 25 (mm) silicon carbide ceramic square bar was prepared, and the bonding compound prepared as described above was used.
(Mm) was applied to the end face, and two silicon carbide ceramic square rods were adhered to the end face. Then, after drying at room temperature, it was fired at each temperature shown in Table 2 in an argon gas atmosphere, and the bending strength was measured by a four-point bending weighting method. The results are shown in Table 2.
It was shown to.

【0025】[0025]

【表2】 [Table 2]

【0026】上記実施例及び比較例より明らかなよう
に、ポリシラザン類及びポリカルボシラン類の化合物混
合物にセラミック粉末のSiCを添加しない比較例2の
接合用コンパウンドは、本発明の接合用コンパウンドが
焼成温度の上昇と共に曲げ強度が増大するのに対し、焼
成温度によることなく焼成後の曲げ強度は低く、且つ変
化することもない。また、化合物混合物に対し、SiC
を40倍を超えて、50倍添加した比較例3の接合用コ
ンパウンドは、接着能自体が発現されないことが分か
る。
As is clear from the above Examples and Comparative Examples, the bonding compound of Comparative Example 2 in which the ceramic powder SiC was not added to the compound mixture of polysilazanes and polycarbosilanes was burned by the bonding compound of the present invention. The flexural strength increases as the temperature rises, but the flexural strength after firing is low and does not change regardless of the firing temperature. In addition, for the compound mixture, SiC
It can be seen that the bonding compound of Comparative Example 3 in which the addition amount was more than 40 times and 50 times was not exhibited the adhesive ability itself.

【0027】実施例18 実施例1で用いたペルヒドロポリシラザン5g、平均分
子量約40000のポリシラスチレン5g、平均粒径2
0μmのアルミナ粉末80g、平均粒径1μmのアルミ
ナ粉末45g、及び、キシレン30gを混合してボール
ミルで混練し、接合用コンパウンドを得た。一方、5×
5×25(mm)のアルミナセラミックスの角棒を用意
し、上記のようにして作成した接合用コンパウンドを用
い、実施例1と同様にして、5×5(mm)の端面に塗
布、2本のアルミナセラミックス角棒の端面接着した。
次いで、室温で乾燥して固着した。各アルミナセラミッ
ク固着棒を空気中で500℃及び1200℃でそれぞれ
焼成し、実施例11と同様にして曲げ強度を測定した。
その結果、それぞれ3MPa及び60MPaの曲げ強度
を有していた。
Example 18 5 g of perhydropolysilazane used in Example 1, 5 g of polysilastyrene having an average molecular weight of about 40,000, and an average particle size of 2
80 g of 0 μm alumina powder, 45 g of alumina powder having an average particle size of 1 μm, and 30 g of xylene were mixed and kneaded with a ball mill to obtain a bonding compound. Meanwhile, 5x
A square rod of alumina ceramics of 5 × 25 (mm) was prepared, and using the bonding compound prepared as described above, coating was applied to the end face of 5 × 5 (mm) in the same manner as in Example 1, and two rods were applied. The end faces of the alumina ceramics square rods were bonded.
Then, it was dried and fixed at room temperature. Each alumina ceramic stick was fired in air at 500 ° C. and 1200 ° C., and the bending strength was measured in the same manner as in Example 11.
As a result, they had bending strengths of 3 MPa and 60 MPa, respectively.

【0028】実施例19 平均分子量約2000のトリメチルヒドロポリシラザン
50g、ポリカルボシラン5g、平均粒径5μmのシリ
コン粉末200g、ジエチレングリコールブトキシアセ
テート60g及びキシレン30gを混合し、ボールミル
で十分混練して接合用コウンパウンドを得た。得られた
接合用コンパウンドを用い、30×30(mm)角で、
厚さ0.8mmの窒化アルミニウムのセラミック板にス
クリーン印刷し、その上に同じ大きさのシリコンセラミ
ック板をのせて圧接し、乾燥させて固着した。得られた
セラミック固着板を窒素ガス雰囲気中で1200℃で加
熱焼成した結果、強固な窒化アルミニウムとシリコンと
の接合体が得られた。
Example 19 50 g of trimethylhydropolysilazane having an average molecular weight of about 2000, 5 g of polycarbosilane, 200 g of silicon powder having an average particle size of 5 μm, 60 g of diethylene glycol butoxyacetate and 30 g of xylene were mixed and sufficiently kneaded with a ball mill to obtain a bonding compound. I got a pound. Using the obtained bonding compound, in a 30 × 30 (mm) square,
Screen printing was performed on an aluminum nitride ceramic plate having a thickness of 0.8 mm, a silicon ceramic plate of the same size was placed thereon, and the plate was pressure-welded, dried, and fixed. As a result of heating and firing the obtained ceramic fixing plate at 1200 ° C. in a nitrogen gas atmosphere, a strong bonded body of aluminum nitride and silicon was obtained.

【0029】[0029]

【発明の効果】本発明のセラミック接合用コンパウンド
は、常温乾燥で十分な固着力を有し、且つ、焼成等の高
温加熱処理時にもその固着力を保持すると共に、接合強
度を増加させて、接合部の欠損や剥れ等を生じることな
く種々のセラミックスを簡便な工程で強固なセラミック
接合体として大型化及び複雑形状化して得ることができ
る。更に、本発明のセラミック接合用コンパウンドは、
セラミックス粉末の他、主にSi、O、N、C及びHの
元素から構成される化合物を構成成分として用いること
ができ、半導体汚染物の混入を極力抑制することがで
き、半導体製造工程の各種セラミック部材の接合材や充
填材としても有用である。また、形成される接合層部
は、高純度、高耐熱性、高耐薬品性等に優れる。
The ceramic bonding compound of the present invention has a sufficient adhesive strength when dried at room temperature, retains the adhesive strength even during high temperature heat treatment such as firing, and increases the adhesive strength. Various ceramics can be obtained in a large size and in a complicated shape as a strong ceramic bonded body in a simple process without causing damage or peeling of the bonded portion. Further, the ceramic bonding compound of the present invention is
In addition to ceramic powder, compounds mainly composed of Si, O, N, C and H elements can be used as constituent components, and contamination of semiconductor contaminants can be suppressed as much as possible, and various semiconductor manufacturing processes can be performed. It is also useful as a bonding material or a filler for ceramic members. Further, the formed bonding layer portion is excellent in high purity, high heat resistance, high chemical resistance and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリシラザン類化合物、ポリカルボシラン類化
合物またはポリシラザン類化合物及びポリカルボシラン
類化合物の等量混合物における焼成温度と接着強度の関
係図である。
FIG. 1 is a graph showing the relationship between the firing temperature and the adhesive strength in a polysilazane compound, a polycarbosilane compound, or an equal mixture of a polysilazane compound and a polycarbosilane compound.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリシラザン化合物、ポリカルボシラン
化合物、セラミック粉末及び溶媒からなることを特徴と
するセラミック接合用コンパウンド。
1. A ceramic bonding compound comprising a polysilazane compound, a polycarbosilane compound, a ceramic powder and a solvent.
【請求項2】 該セラミック粉末が、被接合セラミック
スと同種または熱膨張係数が近似する請求項1記載のセ
ラミック接合用コンパウンド。
2. The compound for ceramic bonding according to claim 1, wherein the ceramic powder has the same kind of thermal expansion coefficient as the ceramic to be bonded or a coefficient of thermal expansion similar to that of the ceramic to be bonded.
【請求項3】 該ポリシラザン化合物と該ポリカルボシ
ラン化合物との重量比が1:0.05〜40である請求
項1または2記載のセラミック接合用コンパウンド。
3. The compound for ceramic bonding according to claim 1, wherein the weight ratio of the polysilazane compound to the polycarbosilane compound is 1: 0.05 to 40.
【請求項4】 該ポリシラザン化合物及び該ポリカルボ
シラン化合物との総量と該セラミック粉末との重量比が
1:2〜40である請求項1、2または3記載のセラミ
ック接合用コンパウンド。
4. The ceramic bonding compound according to claim 1, wherein the weight ratio of the total amount of the polysilazane compound and the polycarbosilane compound to the ceramic powder is 1: 2-40.
JP5065909A 1993-03-03 1993-03-03 Compound for ceramic joining Expired - Fee Related JP3017372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065909A JP3017372B2 (en) 1993-03-03 1993-03-03 Compound for ceramic joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065909A JP3017372B2 (en) 1993-03-03 1993-03-03 Compound for ceramic joining

Publications (2)

Publication Number Publication Date
JPH06256067A true JPH06256067A (en) 1994-09-13
JP3017372B2 JP3017372B2 (en) 2000-03-06

Family

ID=13300566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065909A Expired - Fee Related JP3017372B2 (en) 1993-03-03 1993-03-03 Compound for ceramic joining

Country Status (1)

Country Link
JP (1) JP3017372B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337648B2 (en) * 2001-12-03 2012-12-25 F.M. Technologies, Inc. Ceramic joining
JP2016155751A (en) * 2012-04-05 2016-09-01 ゲネラル アトミクスGeneral Atomics High durability joint between ceramic articles, and method for producing and using the same
WO2017213258A1 (en) * 2016-06-09 2017-12-14 国立研究開発法人産業技術総合研究所 Method for producing conjugate, and conjugate
WO2017213257A1 (en) * 2016-06-09 2017-12-14 国立研究開発法人産業技術総合研究所 Method for producing conjugate, and conjugate
CN109400167A (en) * 2018-10-15 2019-03-01 广东工业大学 A kind of SiC ceramic and its preparation method and application with fine and close articulamentum
CN109516828A (en) * 2018-10-15 2019-03-26 广东工业大学 The silicon carbide ceramics of a kind of connection method and its preparation of nucleus silicon carbide ceramics and application
CN111187092A (en) * 2019-05-20 2020-05-22 中国科学院上海硅酸盐研究所 Suspension slurry and method for reactive joining of silicon carbide ceramics
CN111470878A (en) * 2020-04-07 2020-07-31 广东工业大学 Method for connecting polysilazane ceramic precursor with silicon carbide ceramic
CN114920575A (en) * 2022-04-21 2022-08-19 广东工业大学 High-performance ceramic connecting piece and preparation method and application thereof
US20230174724A1 (en) * 2020-05-07 2023-06-08 Merck Patent Gmbh Polycarbosilazane, and composition comprising the same, and method for producing silicon-containing film using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337648B2 (en) * 2001-12-03 2012-12-25 F.M. Technologies, Inc. Ceramic joining
JP2016155751A (en) * 2012-04-05 2016-09-01 ゲネラル アトミクスGeneral Atomics High durability joint between ceramic articles, and method for producing and using the same
WO2017213258A1 (en) * 2016-06-09 2017-12-14 国立研究開発法人産業技術総合研究所 Method for producing conjugate, and conjugate
WO2017213257A1 (en) * 2016-06-09 2017-12-14 国立研究開発法人産業技術総合研究所 Method for producing conjugate, and conjugate
JPWO2017213258A1 (en) * 2016-06-09 2019-03-07 国立研究開発法人産業技術総合研究所 Manufacturing method of joined body and joined body
CN109400167A (en) * 2018-10-15 2019-03-01 广东工业大学 A kind of SiC ceramic and its preparation method and application with fine and close articulamentum
CN109516828A (en) * 2018-10-15 2019-03-26 广东工业大学 The silicon carbide ceramics of a kind of connection method and its preparation of nucleus silicon carbide ceramics and application
CN111187092A (en) * 2019-05-20 2020-05-22 中国科学院上海硅酸盐研究所 Suspension slurry and method for reactive joining of silicon carbide ceramics
CN111187092B (en) * 2019-05-20 2021-10-01 中国科学院上海硅酸盐研究所 Suspension slurry and method for reactive joining of silicon carbide ceramics
CN111470878A (en) * 2020-04-07 2020-07-31 广东工业大学 Method for connecting polysilazane ceramic precursor with silicon carbide ceramic
US20230174724A1 (en) * 2020-05-07 2023-06-08 Merck Patent Gmbh Polycarbosilazane, and composition comprising the same, and method for producing silicon-containing film using the same
CN114920575A (en) * 2022-04-21 2022-08-19 广东工业大学 High-performance ceramic connecting piece and preparation method and application thereof

Also Published As

Publication number Publication date
JP3017372B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
JP2005082451A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
EP2138474A1 (en) SIC material
JP3017372B2 (en) Compound for ceramic joining
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JP2984169B2 (en) Ceramic bonding compound and ceramic bonded body
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JPH0753278A (en) Ceramics-metal joined body
EP0639165B1 (en) A CERAMIC COMPOSITE, PARTICULARLY FOR USE AT TEMPERATURES ABOVE 1400 oC
US7651726B2 (en) Process for obtaining silicon nitride (SI3N4) surface coatings on ceramic components and pieces
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JP2736386B2 (en) Silicon nitride sintered body
JP3020383B2 (en) Silicon member bonding method and silicon bonding structure
JP3154770B2 (en) Silicon nitride ceramics joints
JP2008184352A (en) Ceramic connector and its manufacturing method
JP2000109367A (en) Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP2588554B2 (en) Member for molten aluminum and method for producing the same
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JP4054098B2 (en) Firing jig
JP2508511B2 (en) Alumina composite
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JP2581128B2 (en) Alumina-sialon composite sintered body
JPS5864271A (en) Silicon nitride sintered body
JP3005650B2 (en) Chemically modified silicon carbide ceramic powder and method for producing silicon carbide ceramic
JP3141582B2 (en) Porcelain and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees