JPH06244103A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH06244103A
JPH06244103A JP5048531A JP4853193A JPH06244103A JP H06244103 A JPH06244103 A JP H06244103A JP 5048531 A JP5048531 A JP 5048531A JP 4853193 A JP4853193 A JP 4853193A JP H06244103 A JPH06244103 A JP H06244103A
Authority
JP
Japan
Prior art keywords
film
nickel
amorphous silicon
silicon
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5048531A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Kouyuu Chiyou
宏勇 張
Toru Takayama
徹 高山
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5048531A priority Critical patent/JPH06244103A/en
Priority to DE69428387T priority patent/DE69428387T2/en
Priority to KR1019940002798A priority patent/KR0171923B1/en
Priority to US08/196,856 priority patent/US5639698A/en
Priority to CN94103241A priority patent/CN1052110C/en
Priority to EP01200990A priority patent/EP1119053B1/en
Priority to EP94301075A priority patent/EP0612102B1/en
Priority to TW083101369A priority patent/TW371784B/en
Priority to TW089101225A priority patent/TW509999B/en
Priority to TW087103916A priority patent/TW484190B/en
Publication of JPH06244103A publication Critical patent/JPH06244103A/en
Priority to US08/462,770 priority patent/US5608232A/en
Priority to US08/718,895 priority patent/US5897347A/en
Priority to US08/769,114 priority patent/US6084247A/en
Priority to US08/768,535 priority patent/US6997985B1/en
Priority to US08/893,361 priority patent/US5956579A/en
Priority to KR1019980007675A priority patent/KR0180503B1/en
Priority to KR1020000044980A priority patent/KR100305135B1/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a crystalline silicon film by a method wherein after clusters or the like are formed on a silicon film in the amorphous state, and reacted with amorphous silicon, catalyst material which has not yet reacted is eliminated, and annealing is performed at a temperature lower than the crystallization temperature of ordinary amorphous silicon. CONSTITUTION:A substratum silicon oxide film 12 of 2000Angstrom in thickness is formed by a plasma CVD method. An amorphous silicon film 13 is deposited to be 1500Angstrom thick by a plasma CVD method, and a nickel film 14 is deposited by a sputtering method. After that, the nickel film is made to react with the amorphous silicon film 13, and a thin crystalline silicon layer 15 is formed on the interface. Then annealing is performed for 8 hours in a nitrogen atmosphere at 450-580 deg.C in an annealing furnace. By the above process, the amorphous silicon film is crystallized, and a crystalline silicon film 16 can be obtaied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜状の絶縁ゲイト型
電界効果トランジスタ(薄膜トランジスタもしくはTF
T)等の薄膜デバイスに用いられる結晶性半導体を得る
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film insulating gate type field effect transistor (thin film transistor or TF).
The present invention relates to a method for obtaining a crystalline semiconductor used in a thin film device such as T).

【0002】[0002]

【従来の技術】従来、薄膜状の絶縁ゲイト型電界効果ト
ランジスタ(TFT)等の薄膜デバイスに用いられる結
晶性シリコン半導体薄膜は、絶縁基板等の絶縁表面上に
プラズマCVD法や熱CVD法で形成されたアモルファ
スシリコン膜を電気炉等の装置の中で600℃以上の温
度で12時間以上の長時間にわたって結晶化させて作製
された。特に十分な特性(高い電解効果移動度や高い信
頼性)を得るためにはより長時間の熱処理が求められて
いた。
2. Description of the Related Art Conventionally, a crystalline silicon semiconductor thin film used for a thin film device such as a thin film insulating gate type field effect transistor (TFT) is formed on an insulating surface such as an insulating substrate by a plasma CVD method or a thermal CVD method. The obtained amorphous silicon film was crystallized in a device such as an electric furnace at a temperature of 600 ° C. or more for a long time of 12 hours or more. In particular, a longer heat treatment was required to obtain sufficient characteristics (high electrolytic effect mobility and high reliability).

【0003】[0003]

【発明が解決しようする課題】しかしながら、このよう
な従来の方法は多くの課題を抱えていた。1つはスルー
プットが低く、したがって、コストが高くなることであ
る。例えば、この結晶化工程に24時間の時間を要する
ものとすると、基板1枚当たりの処理時間を2分とすれ
ば720枚の基板を同時に処理しなければならなかっ
た。しかしながら、例えば、通常使用される管状炉で
は、1度に処理できる基板の枚数は50枚がせいぜい
で、1つの装置(反応管)だけを使用した場合には1枚
当たり30分も時間がかかってしまった。すなわち、1
枚当たりの処理時間を2分とするには、反応管を15本
も使用しなければならなかった。このことは投資規模が
拡大することと、その投資の減価償却が大きく、製品の
コストに跳ね返ることを意味していた。
However, such a conventional method has many problems. One is low throughput and therefore high cost. For example, if it takes 24 hours for this crystallization step, 720 substrates must be processed at the same time if the processing time per substrate is 2 minutes. However, for example, in a commonly used tubular furnace, the number of substrates that can be processed at one time is 50 at most, and when only one apparatus (reaction tube) is used, it takes as long as 30 minutes per substrate. I got it. Ie 1
To achieve a processing time of 2 minutes per sheet, 15 reaction tubes had to be used. This meant that the scale of the investment increased and that the depreciation of the investment was large, and that it was reflected in the cost of the product.

【0004】もう1つの問題は、熱処理の温度であっ
た。通常、TFTの作製に用いられる基板は石英ガラス
のような純粋な酸化珪素からなるものと、コーニング社
7059番(以下、コーニング7059という)のよう
な無アルカリのホウ珪酸ガラスに大別される。このう
ち、前者は、耐熱性が優れており、通常の半導体集積回
路のウェファープロセスと同じ取扱いができるため、温
度に関しては何ら問題がない。しかしながら、そのコス
トが高く、基板面積の増加と共に指数関数的に急激に増
大する。したがって、現在のところ、比較的小面積のT
FT集積回路にのみ使用されている。
Another problem was the temperature of the heat treatment. In general, substrates used for manufacturing TFTs are roughly classified into those made of pure silicon oxide such as quartz glass, and non-alkali borosilicate glass such as Corning No. 7059 (hereinafter, Corning 7059). Of these, the former has excellent heat resistance and can be handled in the same manner as a normal semiconductor integrated circuit wafer process, and therefore has no problem with temperature. However, its cost is high, and it exponentially increases exponentially as the substrate area increases. Therefore, at present, T
Used only in FT integrated circuits.

【0005】一方、無アルカリガラスは、石英に比べれ
ばコストは十分に低いが、耐熱性の点で問題があり、一
般に歪み点が550〜650℃程度、特に入手しやすい
材料では600℃以下であるので、600℃の熱処理で
は基板に不可逆的な収縮やソリという問題が生じた。特
に基板が対角10インチを越えるような大きなものでは
顕著であった。以上のような理由から、シリコン半導体
膜の結晶化に関しては、550℃以下、4時間以内とい
う熱処理条件がコスト削減に不可欠とされていた。本発
明はこのような条件をクリアする半導体の作製方法およ
び、そのような半導体を用いた半導体装置の作製方法を
提供することを目的とする。
On the other hand, alkali-free glass has a sufficiently low cost as compared with quartz, but has a problem in heat resistance, and generally has a strain point of about 550 to 650 ° C., and particularly easily available materials at 600 ° C. or lower. Therefore, the heat treatment at 600 ° C. causes irreversible shrinkage and warpage of the substrate. In particular, it was remarkable in a large substrate having a diagonal of more than 10 inches. For the above reasons, regarding the crystallization of the silicon semiconductor film, the heat treatment condition of 550 ° C. or lower and within 4 hours has been indispensable for cost reduction. An object of the present invention is to provide a method for manufacturing a semiconductor that satisfies such conditions and a method for manufacturing a semiconductor device using such a semiconductor.

【0006】[0006]

【課題を解決するための手段】本発明は、アモルファス
状態、もしくは実質的にアモルファス状態と言えるよう
な乱雑な結晶状態(例えば、結晶性のよい部分とアモル
ファスの部分が混在しているような状態)にあるシリコ
ン膜上にニッケル、鉄、コバルト、白金のうち少なくと
も1つを含有する膜や粒子、クラスター等(以下、触媒
材料という)を形成し、これを最初にアモルファスシリ
コンと反応させたのち、未反応の触媒材料を除去し、次
いで通常のアモルファスシリコンの結晶化温度よりも低
い温度、好ましくは20〜150℃低い温度、例えば5
80℃以下の温度でアニールすることによって結晶性シ
リコン膜を得ることを特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a disordered crystalline state which can be said to be an amorphous state or a substantially amorphous state (for example, a state where a portion having good crystallinity and an amorphous portion are mixed) Film, particles, clusters (hereinafter referred to as catalyst material) containing at least one of nickel, iron, cobalt, and platinum (hereinafter referred to as catalyst material) are formed on the silicon film in (1), and this is first reacted with amorphous silicon. Unreacted catalyst material is removed, and then the temperature is lower than the crystallization temperature of normal amorphous silicon, preferably 20 to 150 ° C. lower, eg 5
It is characterized in that a crystalline silicon film is obtained by annealing at a temperature of 80 ° C. or lower.

【0007】本発明人は、従来の固相結晶化の考えとは
全く別に、何らかの触媒作用によって、前記の過程の障
壁エネルギーを低下させることを考えた。本発明人はニ
ッケル(Ni)、鉄(Fe)、コバルト(Co)、白金
(Pt)がシリコンと結合しやすく、例えば、ニッケル
の場合、容易に珪化ニッケル(化学式NiSix 、0.
4≦x≦2.5)となり、かつ、珪化ニッケルの格子定
数がシリコン結晶のものに近いことに着目した。そこ
で、結晶シリコン−珪化ニッケル−アモルファスシリコ
ンという3元系のエネルギー等をシミュレーションした
結果、アモルファスシリコンは珪化ニッケルとの界面で
容易に反応して、 アモルファスシリコン+珪化ニッケル →珪化ニッケル+結晶シリコン という反応が生じることが明らかになった。この反応の
ポテンシャル障壁は十分に低く、反応の温度も低い。
The present inventor has considered that the barrier energy of the above process is lowered by some catalytic action, in addition to the conventional idea of solid phase crystallization. The present inventors have nickel (Ni), iron (Fe), cobalt (Co), platinum (Pt) are likely to bind to the silicon, for example, in the case of nickel, easily nickel silicide (Formula NiSi x, 0.
It was noted that 4 ≦ x ≦ 2.5) and that the lattice constant of nickel silicide is close to that of silicon crystal. Therefore, as a result of simulating the energy of the ternary system of crystalline silicon-nickel silicide-amorphous silicon, amorphous silicon easily reacts at the interface with nickel silicide, and the reaction of amorphous silicon + nickel silicide → nickel silicide + crystalline silicon It has become clear that The potential barrier of this reaction is sufficiently low and the reaction temperature is also low.

【0008】この反応式は、ニッケル原子がアモルファ
スシリコンを結晶シリコンに造り変えることを示してい
る。実際には、580℃以下で、反応が開始され、45
0℃でも反応が観測されることが明らかになった。ま
た、この反応によって得られた結晶シリコンは結晶性が
良好であった。ただし、ニッケル原子そのものは半導体
材料としてのシリコンにとっては好ましくない。そこ
で、ニッケル原子を除去する工程が必要である。これに
は、塩酸(HCl)もしくはフッ酸(HF)を用いれば
よい。これらの酸はニッケルおよび珪化ニッケルは浸食
するが、アモルファスシリコン、結晶シリコンは侵さな
い。
This reaction equation shows that nickel atoms transform amorphous silicon into crystalline silicon. Actually, at 580 ° C. or lower, the reaction starts and
It became clear that the reaction was observed even at 0 ° C. The crystalline silicon obtained by this reaction had good crystallinity. However, nickel atoms themselves are not preferable for silicon as a semiconductor material. Therefore, a step of removing nickel atoms is necessary. For this, hydrochloric acid (HCl) or hydrofluoric acid (HF) may be used. These acids attack nickel and nickel silicide, but do not attack amorphous silicon and crystalline silicon.

【0009】ニッケル原子を除去しても、上記の反応に
よって形成された結晶シリコンが残存していれば、これ
を核として結晶化をおこなえる。前述の通り、上記の反
応によって生成されたシリコン結晶はその結晶性が良好
であるので、これを核としてアモルファスシリコンの結
晶化が促進されることが明らかになった。典型的には、
通常のアモルファスシリコンの結晶化温度に比較して2
0〜150℃低い温度で結晶化できることが示された。
また、結晶成長に要する時間も従来より短縮された。当
然のことであるが、温度が高いほど結晶化の進行する速
度が速い。また、鉄、コバルト、白金でも、ニッケルよ
りも劣るが同様な反応が見られた。
Even if the nickel atoms are removed, if the crystalline silicon formed by the above reaction remains, crystallization can be performed using this as a nucleus. As described above, it has been clarified that the crystallinity of the silicon crystal produced by the above reaction is good, and the crystallization of amorphous silicon is promoted by using the crystal as a nucleus. Typically,
2 compared to the crystallization temperature of normal amorphous silicon
It was shown that crystallization can be performed at a temperature of 0 to 150 ° C lower.
In addition, the time required for crystal growth has been shortened as compared with the conventional one. As a matter of course, the higher the temperature, the faster the crystallization proceeds. Similar reactions were observed with iron, cobalt, and platinum, although inferior to nickel.

【0010】本発明では、ニッケル、鉄、コバルト、白
金単体もしくはその珪化物等を含有する膜、粒子、クラ
スター等を触媒材料として用いることが好ましい。ただ
し、上記元素を酸化物は好ましくない。これは、酸化物
は安定な化合物で、上記反応を開始することができない
からである。
In the present invention, it is preferable to use a film, particles, clusters or the like containing nickel, iron, cobalt, platinum simple substance or its silicide, etc. as the catalyst material. However, oxides of the above elements are not preferable. This is because the oxide is a stable compound and cannot initiate the above reaction.

【0011】また、本発明では、特に上記触媒材料を選
択的に設けることによって、結晶成長の方向を制御する
ことができる。このような手法を用いて得られた結晶シ
リコンは、従来の固相エピタキシャル成長とは異なり、
長距離にわたって結晶性の連続性のよい、単結晶に近い
構造を有するものであるので、TFT等の半導体素子に
利用するうえでは都合がよい。
In the present invention, the crystal growth direction can be controlled by providing the above-mentioned catalyst material selectively. The crystalline silicon obtained by using such a method is different from the conventional solid phase epitaxial growth,
Since it has a structure close to a single crystal with good crystallinity continuity over a long distance, it is convenient for use in a semiconductor element such as a TFT.

【0012】また、この結晶化の出発材料としてのアモ
ルファスシリコン膜は水素濃度が少ないほど良好な結果
(結晶化速度)が得られた。ただし、結晶化の進行にし
たがって、水素が放出されるので、得られたシリコン膜
中の水素濃度は出発材料のアモルファスシリコン膜の水
素濃度とはそれほど明確な相関は見られなかった。本発
明による結晶シリコン中の水素濃度は、典型的には0.
01原子%以上5原子%以下であった。さらに、良好な
結晶性を得るためには、アモルファスシリコン膜中には
炭素、窒素、酸素の濃度は少ないほど良く、1×1019
cm-3以下であることが望まれる。
Further, the amorphous silicon film as a starting material for this crystallization has a better result (crystallization rate) as the hydrogen concentration is lower. However, since hydrogen is released as crystallization progresses, the hydrogen concentration in the obtained silicon film was not so clearly correlated with the hydrogen concentration in the amorphous silicon film as the starting material. The hydrogen concentration in crystalline silicon according to the present invention is typically 0.
The content was 01 at% or more and 5 at% or less. Furthermore, in order to obtain good crystallinity, the amorphous silicon film in the carbon, nitrogen, oxygen concentration may as small, 1 × 10 19
It is desired to be cm −3 or less.

【0013】[0013]

【実施例】〔実施例1〕 コーニング7059ガラス基
板上のニッケル膜を形成し、これを触媒としてアモルフ
ァスシリコン膜の結晶化をおこない、結晶シリコン膜を
得る方法について図1をもとに説明する。基板11上
に、厚さ2000Åの下地酸化珪素膜12をプラズマC
VD法によって形成した。次にプラズマCVD法によっ
てアモルファスシリコン膜13を500〜3000Å、
例えば1500Å堆積し、窒素雰囲気中430℃、0.
1〜2時間、例えば0.5時間水素出しをおこなった。
引き続き、スパッタ法によってニッケル膜14を厚さ1
00〜1000Å、例えば500Å堆積した。ニッケル
の成膜時には基板を100〜500℃、好ましくは18
0〜250℃に加熱しておくと良好な結果が得られた。
これは下地のシリコン膜とニッケル膜とも密着性が向上
するためである。ニッケルの代わりに珪化ニッケルを用
いてもよかった。(図1(A))
EXAMPLES Example 1 A method of forming a nickel film on a Corning 7059 glass substrate, crystallizing an amorphous silicon film using this as a catalyst to obtain a crystalline silicon film will be described with reference to FIG. A base silicon oxide film 12 having a thickness of 2000Å is formed on the substrate 11 by plasma C
It was formed by the VD method. Next, the amorphous silicon film 13 is deposited by plasma CVD to 500 to 3000 Å,
For example, 1500 Å is deposited, 430 ℃ in a nitrogen atmosphere, 0.
Hydrogen was discharged for 1 to 2 hours, for example, 0.5 hours.
Subsequently, the nickel film 14 having a thickness of 1 is formed by the sputtering method.
The accumulated amount is from 00 to 1000Å, for example, 500Å. The substrate is 100 to 500 ° C., preferably 18 when the nickel film is formed.
Good results were obtained by heating to 0-250 ° C.
This is because the adhesion is improved between the underlying silicon film and the nickel film. It was also possible to use nickel silicide instead of nickel. (Fig. 1 (A))

【0014】その後、450〜580℃で1〜10分だ
け加熱して、上記ニッケル膜14とアモルファスシリコ
ン膜13とを反応させ、その界面に薄い結晶シリコン層
15を形成した。この結晶シリコン層の厚さは反応温
度、時間に依存するが、550℃、10分の条件では、
約300Åであった。(図1(B))
After that, the nickel film 14 and the amorphous silicon film 13 were reacted by heating at 450 to 580 ° C. for 1 to 10 minutes to form a thin crystalline silicon layer 15 at the interface. The thickness of this crystalline silicon layer depends on the reaction temperature and time, but at 550 ° C. for 10 minutes,
It was about 300Å. (Fig. 1 (B))

【0015】次に、ニッケル膜および、ニッケル膜と反
応して生じた珪化ニッケル膜を5〜30%の塩酸でエッ
チングした。このエッチングではアモルファスシリコン
と(珪化)ニッケルとの反応によって生じた結晶シリコ
ンには影響がなかった。(図1(C)) 次いで、これをアニール炉中450〜580℃、例えば
550℃で8時間窒素雰囲気中でアニールした。この工
程によってアモルファスシリコン膜を結晶化させ、結晶
シリコン膜16を得ることができた。このとき得られた
結晶シリコンのラマン散乱分光およびX線回折の結果を
図3、図4に示す。図3において、C−Siは標準試料
である単結晶シリコンのラマンスペクトルである。ま
た、(a)は本実施例で得られたラマンスペクトル、
(b)は触媒材料を有しない通常のアモルファスシリコ
ンを上記の条件でアニールしたときのラマンスペクトル
である。本発明によって良好な結晶シリコンが得られた
ことがわかる。
Next, the nickel film and the nickel silicide film formed by reaction with the nickel film were etched with 5 to 30% hydrochloric acid. This etching did not affect the crystalline silicon produced by the reaction of amorphous silicon and (silicicated) nickel. (FIG. 1C) Next, this was annealed in a nitrogen atmosphere at 450 to 580 ° C., for example, 550 ° C. for 8 hours in an annealing furnace. By this step, the amorphous silicon film was crystallized and the crystalline silicon film 16 could be obtained. The results of Raman scattering spectroscopy and X-ray diffraction of the crystalline silicon obtained at this time are shown in FIGS. 3 and 4. In FIG. 3, C-Si is a Raman spectrum of single crystal silicon which is a standard sample. Further, (a) is a Raman spectrum obtained in this example,
(B) is a Raman spectrum when normal amorphous silicon having no catalyst material is annealed under the above conditions. It can be seen that good crystalline silicon was obtained by the present invention.

【0016】〔実施例2〕 本実施例を図2に示す。コ
ーニング7059ガラス基板21上に厚さ2000Åの
下地酸化珪素膜22をプラズマCVD法によって形成し
た。次にプラズマCVD法によってアモルファスシリコ
ン膜23を500〜3000Å、例えば500Åおよび
1500Å堆積し、窒素雰囲気中430℃、0.1〜2
時間、例えば0.5時間水素出しをおこなった。
Example 2 This example is shown in FIG. A 2000 Å-thick underlying silicon oxide film 22 was formed on a Corning 7059 glass substrate 21 by plasma CVD. Next, an amorphous silicon film 23 is deposited to a thickness of 500 to 3000 Å, for example, 500 Å and 1500 Å by the plasma CVD method, and the amorphous silicon film 23 is deposited in a nitrogen atmosphere at 430 ° C. for 0.1 to 2
Hydrogen was degassed for a time, for example, 0.5 hours.

【0017】その後、スパッタ法によってニッケル膜を
厚さ100〜1000Å、例えば500Å堆積した。ニ
ッケルの代わりに珪化ニッケルを用いてもよかった。こ
のようにして形成したニッケル膜をエッチングして、図
に示すようなパターン24a、24b、24cを形成し
た。(図2(A)) その後、450〜580℃で1〜10分だけ加熱して、
上記ニッケル膜24a〜24cとアモルファスシリコン
膜23とを反応させ、その界面に薄い結晶シリコン領域
25a、25b、25cを形成した。(図2(B))
Then, a nickel film having a thickness of 100 to 1000 Å, for example, 500 Å was deposited by the sputtering method. It was also possible to use nickel silicide instead of nickel. The nickel film thus formed was etched to form patterns 24a, 24b and 24c as shown in the figure. (FIG. 2 (A)) Then, it heats at 450-580 degreeC for 1-10 minutes,
The nickel films 24a to 24c and the amorphous silicon film 23 were made to react with each other to form thin crystalline silicon regions 25a, 25b and 25c at their interfaces. (Fig. 2 (B))

【0018】次に、ニッケル膜および、ニッケル膜と反
応して生じた珪化ニッケル膜を5〜30%の塩酸でエッ
チングした。このエッチングではアモルファスシリコン
と(珪化)ニッケルとの反応によって生じた結晶シリコ
ン25a〜25cには影響がなかった。(図2(C)) 次に、これをアニール炉中450〜580℃、例えば5
50℃で4時間窒素雰囲気中でアニールした。図2
(D)は、その中間状態で、先に形成された結晶シリコ
ン領域25a〜25bから結晶化が進行して、結晶シリ
コン領域26a、26b、26cがアモルファス領域2
3中に拡大してゆく様子を示す。
Next, the nickel film and the nickel silicide film formed by reaction with the nickel film were etched with 5 to 30% hydrochloric acid. This etching did not affect the crystalline silicon 25a to 25c produced by the reaction between amorphous silicon and (silicified) nickel. (FIG. 2 (C)) Next, this is placed in an annealing furnace at 450 to 580 ° C., for example, 5
Annealing was performed at 50 ° C. for 4 hours in a nitrogen atmosphere. Figure 2
In (D), in the intermediate state, crystallization proceeds from the previously formed crystalline silicon regions 25a to 25b, and the crystalline silicon regions 26a, 26b, and 26c become amorphous regions 2.
It shows how it expands in 3.

【0019】最終的にはアモルファスシリコン膜を全て
結晶化させて結晶シリコン膜27を得た。実施例1で
は、結晶成長の方向が表面から基板側というように垂直
に進行するのに対して、本実施例では、ニッケルパター
ンから横方向に進行する。例えば、図2(D)に示す結
晶シリコン領域26a〜26cは、それぞれ単結晶に近
い構造を有している。このため、横方向に粒界等のポテ
ンシャル障壁が生じることが比較的少なく、TFT等に
利用するうえで都合がよい。ただし、例えば、結晶シリ
コン領域26aと26bが衝突する部分では結晶の欠陥
が大きいので、その部分を用いることは好ましくない。
図5には、本実施例による結晶化速度を測定した結果を
示す。シリコン膜が厚いほど速く結晶化が進行すること
が明らかになった。
Finally, the amorphous silicon film was entirely crystallized to obtain a crystalline silicon film 27. In the first embodiment, the crystal growth direction proceeds vertically from the surface to the substrate side, whereas in the present embodiment, it proceeds laterally from the nickel pattern. For example, the crystalline silicon regions 26a to 26c shown in FIG. 2D each have a structure close to a single crystal. Therefore, potential barriers such as grain boundaries are relatively unlikely to occur in the lateral direction, which is convenient for use in TFTs and the like. However, for example, since crystal defects are large in the portion where the crystalline silicon regions 26a and 26b collide, it is not preferable to use that portion.
FIG. 5 shows the results of measuring the crystallization rate according to this example. It was revealed that the thicker the silicon film, the faster the crystallization proceeded.

【0020】[0020]

【発明の効果】以上、述べたように、本発明はアモルフ
ァスシリコン結晶化の低温化、短時間化を促進するとい
う意味で画期的なものであり、また、そのための設備、
装置、手法は極めて一般的で、かつ量産性に優れたもの
であるので、産業にもたらす利益は図りしえないもので
ある。
INDUSTRIAL APPLICABILITY As described above, the present invention is epoch-making in the sense that it accelerates the crystallization of amorphous silicon at a low temperature and in a short time.
Since the devices and methods are extremely general and are excellent in mass productivity, the benefits to the industry are immeasurable.

【0021】例えば、従来の固相成長法においては、少
なくとも24時間のアニールが必要とされたために、1
枚当たりの基板処理時間を2分とすれば、アニール炉は
15本も必要とされたのであるが、本発明によって、4
時間以内に短縮することができたので、アニール炉の数
を1/6以下に削減することができる。このことによる
生産性の向上、設備投資額の削減は、基板処理コストの
低下につながり、ひいてはTFT価格の低下とそれによ
る新規需要の喚起につながるものである。このように本
発明は工業上、有益であり、特許されるにふさわしいも
のである。
For example, since the conventional solid phase growth method requires annealing for at least 24 hours,
If the substrate processing time per sheet was 2 minutes, 15 annealing furnaces were required.
Since it can be shortened within the time, the number of annealing furnaces can be reduced to 1/6 or less. The improvement in productivity and the reduction in capital investment resulting from this result in a reduction in the substrate processing cost, which in turn leads to a reduction in the TFT price and thereby a new demand. As described above, the present invention is industrially useful and is suitable for patent.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の工程の断面図を示す。(実施例
1)
FIG. 1 is a sectional view showing a process of an example. (Example 1)

【図2】 実施例の工程の断面図を示す。(実施例
2)
FIG. 2 is a sectional view showing a process of an example. (Example 2)

【図3】 結晶シリコン膜のラマン散乱分光結果を示
す。(実施例1)
FIG. 3 shows a result of Raman scattering spectroscopy of a crystalline silicon film. (Example 1)

【図4】 結晶シリコン膜のX線回折結果を示す。
(実施例1)
FIG. 4 shows an X-ray diffraction result of a crystalline silicon film.
(Example 1)

【図5】 シリコンの結晶化速度を示す。(実施例
2)
FIG. 5 shows a crystallization rate of silicon. (Example 2)

【符号の説明】[Explanation of symbols]

11・・・基板 12・・・下地酸化珪素膜 13・・・アモルファスシリコン膜 14・・・ニッケル膜(粒子、クラスター) 15・・・結晶シリコン領域 16・・・結晶シリコン領域 11 ... Substrate 12 ... Base silicon oxide film 13 ... Amorphous silicon film 14 ... Nickel film (particles, clusters) 15 ... Crystal silicon region 16 ... Crystal silicon region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 保彦 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Takemura 398 Hase, Atsugi, Kanagawa Prefecture Semiconductor Energy Research Institute Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に実質的にアモルファス状態のシ
リコン膜を形成する第1の工程と、前記シリコン膜上に
ニッケル、鉄、コバルト、白金のうち少なくとも1つを
含有する触媒材料を形成する第2の工程と、前記アモル
ファスシリコンの表面と触媒材料を反応させる第3の工
程と、前記工程後、触媒材料を除去する第4の工程と、
前記工程後、基板をアモルファスシリコンの結晶化温度
よりも低い温度でアニールする第5の工程と、を有する
ことを特徴とする半導体の製造方法。
1. A first step of forming a substantially amorphous silicon film on a substrate, and forming a catalyst material containing at least one of nickel, iron, cobalt and platinum on the silicon film. A second step, a third step of reacting the surface of the amorphous silicon with a catalyst material, and a fourth step of removing the catalyst material after the step,
A fifth step of annealing the substrate at a temperature lower than the crystallization temperature of amorphous silicon after the above step, and a fifth step of manufacturing a semiconductor.
【請求項2】 請求項1において、第2の工程で使用さ
れる触媒材料は珪素とニッケルを含有し、その組成比
は、珪素/ニッケル=0.4〜2.5であることを特徴
とする半導体の製造方法。
2. The catalyst material according to claim 1, wherein the catalyst material used in the second step contains silicon and nickel, and the composition ratio thereof is silicon / nickel = 0.4 to 2.5. Manufacturing method of semiconductor.
【請求項3】 請求項1において、第5の工程のアニー
ル温度は通常のアモルファスシリコンの結晶化温度より
20〜150℃低いことを特徴とする半導体の製造方
法。
3. The method for producing a semiconductor according to claim 1, wherein the annealing temperature in the fifth step is lower than the crystallization temperature of normal amorphous silicon by 20 to 150 ° C.
【請求項4】 請求項2において、第4の工程は、塩酸
もしくはフッ酸を用いておこなわれることを特徴とする
半導体の製造方法。
4. The method for manufacturing a semiconductor according to claim 2, wherein the fourth step is performed using hydrochloric acid or hydrofluoric acid.
JP5048531A 1993-02-15 1993-02-15 Manufacture of semiconductor Withdrawn JPH06244103A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP5048531A JPH06244103A (en) 1993-02-15 1993-02-15 Manufacture of semiconductor
DE69428387T DE69428387T2 (en) 1993-02-15 1994-02-15 Manufacturing process for a crystallized semiconductor layer
KR1019940002798A KR0171923B1 (en) 1993-02-15 1994-02-15 Semiconductor device and method for fabricating the same
US08/196,856 US5639698A (en) 1993-02-15 1994-02-15 Semiconductor, semiconductor device, and method for fabricating the same
CN94103241A CN1052110C (en) 1993-02-15 1994-02-15 Semiconductor, semiconductor device, and method for fabricating the same
EP01200990A EP1119053B1 (en) 1993-02-15 1994-02-15 Method for fabricating TFT semiconductor device
EP94301075A EP0612102B1 (en) 1993-02-15 1994-02-15 Process for the fabrication of a crystallised semiconductor layer
TW087103916A TW484190B (en) 1993-02-15 1994-02-18 Semiconductor and semiconductor device
TW089101225A TW509999B (en) 1993-02-15 1994-02-18 Semiconductor and a method of manufacturing a semiconductor device
TW083101369A TW371784B (en) 1993-02-15 1994-02-18 Method for fabricating semiconductor device
US08/462,770 US5608232A (en) 1993-02-15 1995-06-05 Semiconductor, semiconductor device, and method for fabricating the same
US08/718,895 US5897347A (en) 1993-02-15 1996-09-24 Semiconductor, semiconductor device, and method for fabricating the same
US08/769,114 US6084247A (en) 1993-02-15 1996-12-18 Semiconductor device having a catalyst enhanced crystallized layer
US08/768,535 US6997985B1 (en) 1993-02-15 1996-12-18 Semiconductor, semiconductor device, and method for fabricating the same
US08/893,361 US5956579A (en) 1993-02-15 1997-07-15 Semiconductor, semiconductor device, and method for fabricating the same
KR1019980007675A KR0180503B1 (en) 1993-02-15 1998-03-09 Crystallized semiconductor layer semiconductor device using the same and process for their fabrication
KR1020000044980A KR100305135B1 (en) 1993-02-15 2000-08-03 A method of manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5048531A JPH06244103A (en) 1993-02-15 1993-02-15 Manufacture of semiconductor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000108179A Division JP3566623B2 (en) 1993-02-15 2000-04-10 Method for manufacturing semiconductor device
JP2001209896A Division JP3590366B2 (en) 2001-07-10 2001-07-10 Method for manufacturing thin film transistor

Publications (1)

Publication Number Publication Date
JPH06244103A true JPH06244103A (en) 1994-09-02

Family

ID=12805951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5048531A Withdrawn JPH06244103A (en) 1993-02-15 1993-02-15 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPH06244103A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275806A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
JPH06275808A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
JPH06275807A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
JPH08250423A (en) * 1994-12-28 1996-09-27 Lg Electron Inc Preparation of poly crystalline silicon
US5619044A (en) * 1994-04-15 1997-04-08 Sharp Kabushiki Kaisha Semiconductor device formed with seed crystals on a layer thereof
US5710050A (en) * 1994-08-25 1998-01-20 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US5744824A (en) * 1994-06-15 1998-04-28 Sharp Kabushiki Kaisha Semiconductor device method for producing the same and liquid crystal display including the same
US5797999A (en) * 1995-09-08 1998-08-25 Sharp Kabushiki Kaisha Solar cell and method for fabricating the same
US5814835A (en) * 1994-11-22 1998-09-29 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US5818068A (en) * 1994-09-22 1998-10-06 Sharp Kabushiki Kaisha Thin film transistor circuit and an active matrix type display device
US5851860A (en) * 1994-07-15 1998-12-22 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
KR19990006832A (en) * 1997-06-10 1999-01-25 야마자끼 순페이 Semiconductor Thin Films and Semiconductor Devices
US6013544A (en) * 1995-03-13 2000-01-11 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US6055028A (en) * 1996-02-14 2000-04-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device
US6093937A (en) * 1996-02-23 2000-07-25 Semiconductor Energy Laboratory Co. Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
US6099672A (en) * 1996-03-23 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal device
US6118148A (en) * 1996-11-04 2000-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6130455A (en) * 1996-03-21 2000-10-10 Sharp Kabushiki Kaisha Semiconductor device, thin film transistor having an active crystal layer formed by a line containing a catalyst element
JP2001044445A (en) * 1995-02-16 2001-02-16 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit manufacturing method
KR100271812B1 (en) * 1997-05-24 2001-04-02 구자홍 A method of crystallizing an amorphus material layer
US6294441B1 (en) 1998-08-18 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6323142B1 (en) 1995-09-08 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US6337229B1 (en) * 1994-12-16 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of making crystal silicon semiconductor and thin film transistor
US6380007B1 (en) 1998-12-28 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US6396105B1 (en) 1996-02-23 2002-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and its manufacturing method and semiconductor device and its manufacturing method
US6420246B1 (en) 1997-02-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Method of gettering a metal element for accelerating crystallization of silicon by phosphorous
US6436745B1 (en) 1999-11-02 2002-08-20 Sharp Kabushiki Kaisha Method of producing a semiconductor device
US6449024B1 (en) 1996-01-26 2002-09-10 Semiconductor Energy Laboratory Co., Inc. Liquid crystal electro-optical device utilizing a polymer with an anisotropic refractive index
US6448118B2 (en) 1997-02-26 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film manufacturing with selective introduction of crystallization promoting material
US6555448B2 (en) 2000-05-11 2003-04-29 Sharp Kabushiki Kaisha Semiconductor manufacturing method
KR100384499B1 (en) * 1999-09-29 2003-05-22 가부시끼가이샤 도시바 Crystalline semiconductor thin film and method of manufacturing the same and thin film transistor and method of manufacturing the same
KR100387982B1 (en) * 2000-10-05 2003-06-18 한국과학기술원 Method of forming a microcrystalline silicon thin film and method of fabricating a thin-film silicon solar cell using the same
US6590230B1 (en) 1996-10-15 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6639245B2 (en) 2001-04-16 2003-10-28 Sharp Kabushiki Kaisha Active matrix display device having high intensity and high precision and manufacturing method thereof
US6653687B1 (en) 1996-08-13 2003-11-25 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device
US6697129B1 (en) 1996-02-14 2004-02-24 Semiconductor Energy Laboratory Co., Ltd. Guest-host mode liquid crystal display device of lateral electric field driving type
US6703643B2 (en) * 1995-02-15 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with an integrated circuit covered with a sealing material
US6787806B1 (en) 1996-02-23 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6822293B2 (en) 1998-07-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US6844910B2 (en) 1999-12-28 2005-01-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US6878968B1 (en) 1999-05-10 2005-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6927107B1 (en) 1999-09-22 2005-08-09 Sharp Kabushiki Kaisha Method of producing semiconductor device
US6933182B1 (en) 1995-04-20 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US7023518B1 (en) 1995-12-19 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-conductive material or a weakly conductive material applied to a side edge of a substrate and a method of fabricating the same
US7046312B2 (en) 1995-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix liquid crystal display and method of fabricating same
KR100567273B1 (en) * 1998-08-27 2006-05-25 엘지.필립스 엘시디 주식회사 Thin film transistor and its manufacturing method
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
KR100676201B1 (en) * 2005-05-24 2007-01-30 삼성전자주식회사 Method of manufacturing semiconductor device used Atomic Layer DepositionALD
CN1328797C (en) * 1996-02-23 2007-07-25 株式会社半导体能源研究所 Thin film semiconductor semiconductor device and method for producing thin film transistor
US7339235B1 (en) 1996-09-18 2008-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having SOI structure and manufacturing method thereof
US7393723B2 (en) 1995-09-08 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2008166698A (en) * 2006-12-29 2008-07-17 Samsung Sdi Co Ltd Transistor, method of manufacturing transistor and flat panel display device
US7517774B2 (en) 1995-02-02 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
KR100984618B1 (en) * 2008-12-16 2010-09-30 하이디스 테크놀로지 주식회사 Manufacturing method of thin silicon solar cells
US8293626B2 (en) 2008-09-05 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101304286B1 (en) * 2008-06-09 2013-09-11 드리테 파텐트포트폴리오 베타일리궁스게젤샤프트 엠베하 운트 코. 카게 A method for producing polycrystalline layers
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275808A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
JPH06275807A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
JPH06275806A (en) * 1993-03-22 1994-09-30 Semiconductor Energy Lab Co Ltd Semiconductor circuit and its manufacture
US5619044A (en) * 1994-04-15 1997-04-08 Sharp Kabushiki Kaisha Semiconductor device formed with seed crystals on a layer thereof
US5837569A (en) * 1994-04-15 1998-11-17 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US5744824A (en) * 1994-06-15 1998-04-28 Sharp Kabushiki Kaisha Semiconductor device method for producing the same and liquid crystal display including the same
US5851860A (en) * 1994-07-15 1998-12-22 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US5710050A (en) * 1994-08-25 1998-01-20 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US5818068A (en) * 1994-09-22 1998-10-06 Sharp Kabushiki Kaisha Thin film transistor circuit and an active matrix type display device
US5814835A (en) * 1994-11-22 1998-09-29 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US6337229B1 (en) * 1994-12-16 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of making crystal silicon semiconductor and thin film transistor
JPH08250423A (en) * 1994-12-28 1996-09-27 Lg Electron Inc Preparation of poly crystalline silicon
US7939435B2 (en) 1995-02-02 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US7517774B2 (en) 1995-02-02 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method
US6703643B2 (en) * 1995-02-15 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with an integrated circuit covered with a sealing material
US7425931B1 (en) 1995-02-16 2008-09-16 Semiconductor Energy Laboratory Co. Ltd. Display unit of a helmet or a vehicle or an airplane
US7375782B2 (en) 1995-02-16 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2005051207A (en) * 1995-02-16 2005-02-24 Semiconductor Energy Lab Co Ltd Helmet, windshield, windshield glass, and method of manufacturing them
JP2004297084A (en) * 1995-02-16 2004-10-21 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7361519B2 (en) 1995-02-16 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP2001044445A (en) * 1995-02-16 2001-02-16 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit manufacturing method
JP2001053290A (en) * 1995-02-16 2001-02-23 Semiconductor Energy Lab Co Ltd Manufacture of thin-film integrated circuit
JP2001060697A (en) * 1995-02-16 2001-03-06 Semiconductor Energy Lab Co Ltd Thin-film integrated circuit
US8497509B2 (en) 1995-02-16 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6998282B1 (en) 1995-02-16 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6013544A (en) * 1995-03-13 2000-01-11 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US7569440B2 (en) 1995-04-20 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US6933182B1 (en) 1995-04-20 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US6706648B2 (en) 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US7491659B2 (en) 1995-09-08 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US6323142B1 (en) 1995-09-08 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US7393723B2 (en) 1995-09-08 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5797999A (en) * 1995-09-08 1998-08-25 Sharp Kabushiki Kaisha Solar cell and method for fabricating the same
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving
US7046312B2 (en) 1995-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix liquid crystal display and method of fabricating same
US7023518B1 (en) 1995-12-19 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-conductive material or a weakly conductive material applied to a side edge of a substrate and a method of fabricating the same
US6449024B1 (en) 1996-01-26 2002-09-10 Semiconductor Energy Laboratory Co., Inc. Liquid crystal electro-optical device utilizing a polymer with an anisotropic refractive index
US7038754B2 (en) 1996-01-26 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device
US7136128B2 (en) 1996-01-26 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device
US7728942B2 (en) 1996-01-26 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device
US8199300B2 (en) 1996-01-26 2012-06-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device utilizing electric field parallel to substrate
US8514361B2 (en) 1996-01-26 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal having common electrode
US7511776B2 (en) 1996-02-14 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device and method of driving the same
US6055028A (en) * 1996-02-14 2000-04-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optical device
US6697129B1 (en) 1996-02-14 2004-02-24 Semiconductor Energy Laboratory Co., Ltd. Guest-host mode liquid crystal display device of lateral electric field driving type
CN100355044C (en) * 1996-02-23 2007-12-12 株式会社半导体能源研究所 Semiconductor thin film, Semiconductor device and mfg. method thereof
US6396105B1 (en) 1996-02-23 2002-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and its manufacturing method and semiconductor device and its manufacturing method
US7172929B2 (en) 1996-02-23 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6787806B1 (en) 1996-02-23 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6093937A (en) * 1996-02-23 2000-07-25 Semiconductor Energy Laboratory Co. Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
KR100447311B1 (en) * 1996-02-23 2004-11-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor thin film, semiconductor device and manufacturing method thereof
US7372073B2 (en) 1996-02-23 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US7091519B2 (en) 1996-02-23 2006-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US7375401B2 (en) 1996-02-23 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Static random access memory using thin film transistors
CN1328797C (en) * 1996-02-23 2007-07-25 株式会社半导体能源研究所 Thin film semiconductor semiconductor device and method for producing thin film transistor
US6909148B2 (en) 1996-02-23 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and its manufacturing method and semiconductor device and its manufacturing method
KR100467557B1 (en) * 1996-02-23 2005-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor thin film and semiconductor device
US6323072B1 (en) 1996-02-23 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor thin film
US6611022B2 (en) 1996-02-23 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and its manufacturing method and semiconductor device and its manufacturing method
US6097465A (en) * 1996-03-01 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate
US6492213B1 (en) 1996-03-21 2002-12-10 Sharp Kabushiki Kaisha Semiconductor device, thin film transistor and method for producing the same, and liquid crystal display apparatus and method for producing the same
US6130455A (en) * 1996-03-21 2000-10-10 Sharp Kabushiki Kaisha Semiconductor device, thin film transistor having an active crystal layer formed by a line containing a catalyst element
US6326225B1 (en) 1996-03-23 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal device
US6099672A (en) * 1996-03-23 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing liquid crystal device
US6653687B1 (en) 1996-08-13 2003-11-25 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device
US7339235B1 (en) 1996-09-18 2008-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having SOI structure and manufacturing method thereof
US6590230B1 (en) 1996-10-15 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6251733B1 (en) 1996-11-04 2001-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6690075B2 (en) 1996-11-04 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with channel having plural impurity regions
US6118148A (en) * 1996-11-04 2000-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7619282B2 (en) 1997-01-18 2009-11-17 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US6949418B2 (en) 1997-02-17 2005-09-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6420246B1 (en) 1997-02-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Method of gettering a metal element for accelerating crystallization of silicon by phosphorous
US7374978B2 (en) 1997-02-17 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7186597B2 (en) 1997-02-17 2007-03-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing transistors
US6448118B2 (en) 1997-02-26 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film manufacturing with selective introduction of crystallization promoting material
KR100271812B1 (en) * 1997-05-24 2001-04-02 구자홍 A method of crystallizing an amorphus material layer
KR19990006832A (en) * 1997-06-10 1999-01-25 야마자끼 순페이 Semiconductor Thin Films and Semiconductor Devices
US6822293B2 (en) 1998-07-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US7078768B2 (en) 1998-07-16 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US7709844B2 (en) 1998-07-16 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and processes for production thereof
US6620711B2 (en) 1998-08-18 2003-09-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6294441B1 (en) 1998-08-18 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
KR100567273B1 (en) * 1998-08-27 2006-05-25 엘지.필립스 엘시디 주식회사 Thin film transistor and its manufacturing method
US6380007B1 (en) 1998-12-28 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US6878968B1 (en) 1999-05-10 2005-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7700947B2 (en) 1999-05-10 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6927107B1 (en) 1999-09-22 2005-08-09 Sharp Kabushiki Kaisha Method of producing semiconductor device
KR100384499B1 (en) * 1999-09-29 2003-05-22 가부시끼가이샤 도시바 Crystalline semiconductor thin film and method of manufacturing the same and thin film transistor and method of manufacturing the same
US6436745B1 (en) 1999-11-02 2002-08-20 Sharp Kabushiki Kaisha Method of producing a semiconductor device
US6844910B2 (en) 1999-12-28 2005-01-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US7679710B2 (en) 1999-12-28 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US8648995B2 (en) 1999-12-28 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US6555448B2 (en) 2000-05-11 2003-04-29 Sharp Kabushiki Kaisha Semiconductor manufacturing method
KR100387982B1 (en) * 2000-10-05 2003-06-18 한국과학기술원 Method of forming a microcrystalline silicon thin film and method of fabricating a thin-film silicon solar cell using the same
US6639245B2 (en) 2001-04-16 2003-10-28 Sharp Kabushiki Kaisha Active matrix display device having high intensity and high precision and manufacturing method thereof
KR100676201B1 (en) * 2005-05-24 2007-01-30 삼성전자주식회사 Method of manufacturing semiconductor device used Atomic Layer DepositionALD
JP2008166698A (en) * 2006-12-29 2008-07-17 Samsung Sdi Co Ltd Transistor, method of manufacturing transistor and flat panel display device
KR101304286B1 (en) * 2008-06-09 2013-09-11 드리테 파텐트포트폴리오 베타일리궁스게젤샤프트 엠베하 운트 코. 카게 A method for producing polycrystalline layers
US8293626B2 (en) 2008-09-05 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR100984618B1 (en) * 2008-12-16 2010-09-30 하이디스 테크놀로지 주식회사 Manufacturing method of thin silicon solar cells

Similar Documents

Publication Publication Date Title
JPH06244103A (en) Manufacture of semiconductor
JP3562588B2 (en) Method for manufacturing semiconductor device
JP2001007024A (en) Method of forming of polycrystalline silicon film
JPH10291897A (en) Formation of polycrystalline film by crystallization of microcrystalline film, formation of thin-film transistors and liquid crystal display formed by the method
JPH07140454A (en) Manufacture of glass panel for silicon device
JP3041497B2 (en) Semiconductor manufacturing method
US5893949A (en) Solid phase epitaxial crystallization of amorphous silicon films on insulating substrates
JP2852853B2 (en) Method for manufacturing semiconductor device
JP3566623B2 (en) Method for manufacturing semiconductor device
JP3590366B2 (en) Method for manufacturing thin film transistor
JP4871502B2 (en) Manufacturing method of polycrystalline silicon thin film and thin film transistor using polycrystalline silicon manufactured using the same
JP3241515B2 (en) Method for manufacturing semiconductor device
JP3574037B2 (en) Manufacturing method of insulated gate field effect transistor
JP3574040B2 (en) Method for manufacturing semiconductor device
EP0782178A1 (en) Solid phase epitaxial crystallization of amorphous silicon films on insulating substrates
JP3125931B2 (en) Semiconductor fabrication method
JP3186621B2 (en) Method for manufacturing semiconductor device
JP3455721B2 (en) Method for manufacturing semiconductor device
JP3287558B2 (en) Method for manufacturing semiconductor device
JP3455695B2 (en) Method for manufacturing semiconductor device
US6451637B1 (en) Method of forming a polycrystalline silicon film
KR100366960B1 (en) silicon crystallization method
JP2004158685A (en) Polycrystalline silicon thin film and its fabricating process
JP4019584B2 (en) Method for forming semiconductor film
JP2535654B2 (en) Method of manufacturing thin film transistor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040217