JPH06244011A - Corrosion-resistant rare earth magnet and manufacture thereof - Google Patents

Corrosion-resistant rare earth magnet and manufacture thereof

Info

Publication number
JPH06244011A
JPH06244011A JP5343574A JP34357493A JPH06244011A JP H06244011 A JPH06244011 A JP H06244011A JP 5343574 A JP5343574 A JP 5343574A JP 34357493 A JP34357493 A JP 34357493A JP H06244011 A JPH06244011 A JP H06244011A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
compound
earth magnet
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5343574A
Other languages
Japanese (ja)
Other versions
JP3471876B2 (en
Inventor
Koichi Yano
浩一 矢野
Hiroki Tokuhara
宏樹 徳原
Yuji Kaneko
裕治 金子
Akimasa Tasaka
明政 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP34357493A priority Critical patent/JP3471876B2/en
Publication of JPH06244011A publication Critical patent/JPH06244011A/en
Application granted granted Critical
Publication of JP3471876B2 publication Critical patent/JP3471876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a corrosion-resistant rare-earth magnet whose surface is chemically stable in various kinds of atmosphere. CONSTITUTION:A rare-earth magnet is subjected to fluorinating treatment in a fluorine group gas atmosphere or a fluorine gas-contained atmosphere, thereby forming a mixture which comprises an RF3 compound which is stabilized to corrosion resistance or ROxFy compound or both compounds on a front surface layer of the rare-earth magnet. It is also possible to enhance the corrosion resistance of a raw-material of the rare-earth magnet dramatically by performing a specified heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高磁気特性を有しか
つ耐食性にすぐれた希土類磁石に係り、磁石体表面にフ
ッ素化処理を施すことにより、該磁石表層部に種々の雰
囲気に対して安定な希土類とフッ素の化合物を形成させ
て、希土類磁石の素材自体の耐食性を著しく向上させた
希土類磁石とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having high magnetic properties and excellent corrosion resistance, and by subjecting the surface of the magnet body to a fluorination treatment, the surface layer of the magnet is exposed to various atmospheres. The present invention relates to a rare earth magnet in which a stable compound of rare earth and fluorine is formed to remarkably improve the corrosion resistance of the raw material of the rare earth magnet, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
(Yを含む希土類元素の少なくとも1種以上)−Fe−
B系永久磁石(特公昭61−34242号等)は、三元
系正方晶化合物の主相とRリッチ相を有する組織にて高
磁石特性を発現し、iHcが25kOe以上、(BH)
maxが45MGOe以上と従来の高性能希土類コバル
ト磁石と比較しても、格段に高い磁石特性を発揮する。
また、用途に応じ、選定された種々の磁石特性を発揮す
るよう、種々組成のR−Fe−B系永久磁石が提案され
ている。
2. Description of the Related Art Today, R is a typical high-performance permanent magnet.
(At least one or more rare earth elements including Y) -Fe-
B-based permanent magnets (Japanese Patent Publication No. 61-34242, etc.) exhibit high magnet characteristics in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, iHc of 25 kOe or more, (BH)
Even when compared with the conventional high-performance rare earth cobalt magnet with a max of 45 MGOe or more, it exhibits remarkably high magnet characteristics.
Further, R-Fe-B based permanent magnets of various compositions have been proposed so as to exhibit various selected magnet characteristics according to the application.

【0003】しかしながら、上記のすぐれた磁気特性を
有するR−Fe−B系永久磁石は、主成分として空気中
で容易に酸化あるいは水酸化し、酸化物あるいは水酸化
物を生成し易い希土類元素及び鉄を含有するため、R−
Fe−B系永久磁石を磁気回路に組込んだ場合に磁石表
面に生成する酸化物あるいは水酸化物により、磁気回路
の出力低下及び磁気回路間の磁性のばらつきを惹起し、
また、表面に生成した酸化物の脱落による周辺機器への
汚染の問題があった。
However, the R-Fe-B based permanent magnet having the above-mentioned excellent magnetic characteristics contains a rare earth element and a rare earth element which are easily oxidized or hydroxylated in the air as a main component to easily generate an oxide or a hydroxide. Since it contains iron, R-
When an Fe-B system permanent magnet is incorporated in a magnetic circuit, an oxide or hydroxide generated on the surface of the magnet causes a decrease in output of the magnetic circuit and a variation in magnetism between the magnetic circuits.
Further, there is a problem that peripheral devices are contaminated due to the oxides formed on the surface falling off.

【0004】特に、R−Fe−B系焼結永久磁石の場合
は、その構成層がR2Fe14B相、Rリッチ相、Bリッ
チ相などから構成されており、そのうち、R2Fe14
相の粒界部に存在するRリッチ相は、Rを多量に含有す
る相であるため極めて酸化あるいは水酸化され易く、磁
石表面層において大気中の水分を吸収して体積膨張を起
こし、R2Fe14B相の磁石表面層からの脱粒及び水酸
化物そのものも脱落する問題があった。
Particularly, in the case of an R-Fe-B system sintered permanent magnet, its constituent layers are composed of R 2 Fe 14 B phase, R rich phase, B rich phase, etc., among which R 2 Fe 14 B
Since the R-rich phase existing in the grain boundary portion of the phase is a phase containing a large amount of R, it is extremely apt to be oxidized or hydroxylated, and absorbs moisture in the atmosphere in the magnet surface layer to cause volume expansion and R 2 There was a problem that the particles of Fe 14 B phase from the magnet surface layer and the hydroxide itself fell off.

【0005】そこで、上記のR−Fe−B系永久磁石の
耐食性を改善するため、磁石体表面に無電解めっき法あ
るいは電解めっき法により耐食性金属めっき層を被覆し
たり(特開昭60−54406号)、耐食性樹脂を浸漬
法や塗布法にてコーティングしたり(特開昭60−63
901号)、気相成膜法にてAl等の耐食性金属、合金
被膜を形成したり(特開昭61−150201号)、耐
食性金属薄片を含む樹脂層を被着形成したり(特開昭6
3−166944号)、さらには異種の耐食性被膜を積
層形成する(特開平1−152602号)などの耐食性
被膜を設ける技術が提案された。
Therefore, in order to improve the corrosion resistance of the above R-Fe-B permanent magnet, the surface of the magnet is coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating (Japanese Patent Laid-Open No. 60-54406). No.), a corrosion resistant resin is coated by a dipping method or a coating method (Japanese Patent Laid-Open No. 60-63).
No. 901), a corrosion resistant metal such as Al or an alloy film is formed by a vapor deposition method (JP-A-61-150201), or a resin layer containing a corrosion-resistant metal thin film is deposited (JP-A-61-150201). 6
No. 3-166944), and further, a technique of providing a corrosion-resistant coating such as stacking different types of corrosion-resistant coatings (JP-A-1-152602) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、無電解めっき
法あるいは電解めっき法は、R−Fe−B系永久磁石を
酸性あるいはアルカリ性溶液中で処理する為、磁石表面
が腐食され磁気特性の劣化およびばらつきを生じるばか
りでなく、めっき被膜にピンホールが存在するため、塩
水噴霧テストなどの過酷な試験に対しては十分な耐食性
が得られない。特に、構成相として酸化され易いRリッ
チ相を含有するR−Fe−B系焼結永久磁石において
は、上述の無電解めっき法あるいは電解めっき法などの
いわゆる湿式めっき法では、めっき処理時に使用する酸
性溶剤やアルカリ溶剤により該Rリッチ相が優先的に腐
食されて、その腐食部分から該溶剤が磁石体内部にまで
侵入するため、磁石体表面にめっき層を被覆しても、磁
石体内部に残留する溶剤がRリッチ相を腐食し続け、最
終的には内部腐食により、磁石体そのものが崩壊すると
いった問題があった。
However, in the electroless plating method or the electrolytic plating method, since the R-Fe-B system permanent magnet is treated in an acidic or alkaline solution, the surface of the magnet is corroded and the magnetic characteristics are deteriorated. In addition to variations, pinholes are present in the plating film, so sufficient corrosion resistance cannot be obtained for severe tests such as salt spray tests. In particular, in an R-Fe-B system sintered permanent magnet containing an R-rich phase that is easily oxidized as a constituent phase, it is used at the time of plating in the so-called wet plating method such as the above-mentioned electroless plating method or electrolytic plating method. The R-rich phase is preferentially corroded by the acidic solvent or the alkaline solvent, and the solvent penetrates into the magnet body from the corroded portion. Therefore, even if the magnet body surface is coated with the plating layer, There is a problem that the residual solvent continues to corrode the R-rich phase, and eventually the internal corrosion causes the magnet itself to collapse.

【0007】一方、耐食性樹脂を浸漬法や塗布法あるい
は電着法でコーティングした場合、ピンホールは存在し
ないが、樹脂被膜の透水率が金属被膜と比較して大きい
ため十分な耐食性が得られない問題があった。すなわ
ち、従来の耐食性被膜などの表面処理では、下地となる
磁石素材の耐食性があまり考慮されていないため、上記
のような問題を引き起こすのである。そこで、上述のよ
うな種々の表面処理を施す前に、予め磁石素材に種々の
添加元素、例えば耐食性にすぐれるCo、Ni、Al等
を添加して磁石素材そのものの耐食性を向上させる方法
も提案されているが、上記の添加元素は、耐食性の効果
を得るためには多量の添加が必要となり、そのために磁
気特性が劣化したり、また、コストが高くなるなどの問
題があった。
On the other hand, when a corrosion-resistant resin is coated by a dipping method, a coating method, or an electrodeposition method, no pinholes are present, but sufficient water resistance of the resin film is larger than that of the metal film, so that sufficient corrosion resistance cannot be obtained. There was a problem. That is, in the conventional surface treatment such as the corrosion resistant coating, the above-mentioned problems are caused because the corrosion resistance of the base magnet material is not considered so much. Therefore, a method of improving the corrosion resistance of the magnet material itself by adding various additive elements to the magnet material in advance, such as Co, Ni, and Al, which have excellent corrosion resistance, is also proposed before performing the various surface treatments as described above. However, in order to obtain the effect of corrosion resistance, it is necessary to add a large amount of the above-mentioned additional elements, which causes problems such as deterioration of magnetic characteristics and high cost.

【0008】この発明は、上述の種々の問題を解決する
ことを目的に、具体的には、種々の雰囲気に対して化学
的に安定した表面を有し、希土類磁石素材そのものの耐
食性を向上させることが可能な耐食性のすぐれた希土類
磁石及びその製造方法の提供を目的としている。
In order to solve the above-mentioned various problems, the present invention specifically has a chemically stable surface in various atmospheres and improves the corrosion resistance of the rare earth magnet material itself. It is an object of the present invention to provide a rare earth magnet having excellent corrosion resistance and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】発明者は、公知組成の各
種希土類磁石素材自体の耐食性を向上させる磁石表層に
ついて検討し、磁石表層を種々の雰囲気に対し安定な化
合物に変化させることに着目して、表面処理方法につい
て種々検討した結果、フッ素化処理にて希土類(R)と
フッ素(F)の化合物、すなわち、磁石の表層部にRF
3化合物またはROXY化合物あるいはその両化合物の
混合物を生成させると、磁石素材自体の耐食性を著しく
向上させることが可能であることを知見し、この発明を
完成した。すなわち、この発明は、希土類磁石の表層部
にRF3化合物またはROXY化合物あるいはその両化
合物の混合物を有することを特徴とする耐食性のすぐれ
た希土類磁石である。
Means for Solving the Problems The inventor has investigated a magnet surface layer for improving the corrosion resistance of various rare earth magnet materials having a known composition, and paid attention to changing the magnet surface layer to a compound that is stable in various atmospheres. As a result of various studies on the surface treatment method, a compound of rare earth (R) and fluorine (F) by the fluorination treatment, that is, RF on the surface layer part of the magnet
It was found that it is possible to remarkably improve the corrosion resistance of the magnet material itself by forming a 3 compound or a RO X F Y compound or a mixture of both compounds, and completed the present invention. That is, the present invention is a rare earth magnet having excellent corrosion resistance, which comprises an RF 3 compound or a RO X F Y compound or a mixture of both compounds in the surface layer portion of the rare earth magnet.

【0010】また、この発明は、希土類磁石(希土類元
素Rのうち少なくとも1種以上含有)をフッ素系ガス雰
囲気中またはフッ素系ガスを含有する雰囲気中でフッ素
化処理して、該磁石の表層部にRF3化合物またはROX
Y化合物あるいはその両化合物の混合物を形成させ、
あるいはさらに200℃〜1200℃の温度で熱処理を
施すことを特徴とする耐食性のすぐれた希土類磁石の製
造方法である。
Further, according to the present invention, a rare earth magnet (containing at least one kind of rare earth element R) is fluorinated in a fluorine-containing gas atmosphere or an atmosphere containing a fluorine-containing gas to obtain a surface layer portion of the magnet. RF 3 compound or RO X
Forming a F Y compound or a mixture of both compounds,
Alternatively, it is a method for producing a rare earth magnet having excellent corrosion resistance, which is characterized by performing heat treatment at a temperature of 200 ° C to 1200 ° C.

【0011】希土類磁石 この発明において、希土類磁石としては、Yを含む希土
類元素Rを少なくとも1種以上含有する公知組成のあら
ゆる希土類磁石を対象とし、また磁石形態としても、公
知の焼結磁石をはじめとして、鋳造磁石、圧延磁石、ボ
ンド磁石などあらゆる形態を対象とし、あるいはさらに
ボンド磁石用の原料粉末など、あらゆる組成、製造方法
で得られる磁石、またはそれらの原料粉末などに適用す
ることができる。特に希土類磁石が、R、Fe(Feの
一部をCo等の遷移金属元素で置換することができ
る)、B(ボロン)を主成分をするR−Fe−B永久磁
石材料である場合には、この発明による効果が顕著に得
られる。すなわち、上記の種々の希土類磁石を構成する
構成相に少なくともR214B相を有する希土類磁石、
あるいは少なくともR214B相及びRリッチ相を有す
る希土類磁石であれば、この発明のフッ素化処理を行な
うことにより、耐食性向上の効果が期待できる。なお、
Rリッチ相とは、希土類元素と遷移金属元素との化合
物、または、希土類元素と遷移金属元素に一部半金属元
素等が含まれる化合物で、希土類元素の量が遷移金属元
素など希土類元素以外の量よりも多く含有されるものい
う。この発明によるフッ素化処理に効果がある化合物と
しては、R3TM、RTM5、R2TM7、RTM3、RT
2、R2TM3、R2TM17、R5TM19、Dy6Fe2
RTM、R2TM14B、R1.11TM44(TMは遷移金
属元素のうち少なくとも一種)などである。
Rare Earth Magnet In the present invention, as the rare earth magnet, any rare earth magnet having a known composition containing at least one or more rare earth element R containing Y is targeted, and the magnet form includes a known sintered magnet. The present invention can be applied to all forms such as cast magnets, rolled magnets, and bonded magnets, or can be applied to magnets obtained by any composition and manufacturing method such as raw material powder for bonded magnets, or raw material powders thereof. In particular, when the rare earth magnet is an R—Fe—B permanent magnet material containing R, Fe (a part of Fe can be replaced with a transition metal element such as Co), and B (boron) as a main component, The effect of the present invention is remarkably obtained. That is, a rare earth magnet having at least R 2 T 14 B phase in the constituent phases constituting the above various rare earth magnets,
Alternatively, in the case of a rare earth magnet having at least R 2 T 14 B phase and R rich phase, the effect of improving the corrosion resistance can be expected by performing the fluorination treatment of the present invention. In addition,
The R-rich phase is a compound of a rare earth element and a transition metal element, or a compound in which the rare earth element and the transition metal element partially include a metalloid element, and the amount of the rare earth element is other than the rare earth element such as the transition metal element. It is said to be contained in a larger amount than the amount. The compounds effective for the fluorination treatment according to the present invention include R 3 TM, RTM 5 , R 2 TM 7 , RTM 3 and RT.
M 2 , R 2 TM 3 , R 2 TM 17 , R 5 TM 19 , Dy 6 Fe 2 ,
RTM, R 2 TM 14 B, R 1.11 TM 4 B 4 (TM is at least one of transition metal elements) and the like.

【0012】表層化合物 この発明において、希土類磁石の表層部に形成させるR
3化合物またはROXY化合物あるいはその両化合物
の混合物は、それぞれが極めて安定な化合物であり、各
化合物中のRは水分などと容易には反応しない。なお、
上記のROXYは、X,Yの各々の値が0<X<1.5
でかつ2X+Y=3を満足する化合物である。上記の化
合物は、希土類磁石を構成するR214B相やRリッチ
相を後述するフッ素化処理することによりRF3化合物
やROXY化合物あるいはその両化合物の混合物を形成
する。この発明において、希土類磁石の表層部に形成さ
せるRF3化合物またはROXY化合物あるいはその両
化合物の混合物の形成厚みは、フッ素系ガスの雰囲気、
フッ素化処理時間、フッ素化処理温度、フッ素化処理後
の熱処理条件などを変化させることにより、自由にコン
トロールすることができ、その厚みが極めて僅かでも耐
食性に対する効果が期待できるが、形成厚みを厚くする
に従いフッ素化処理に要する時間が長くなり工業的規模
での量産性が低下し、また磁気特性が劣化する傾向があ
るので、該化合物の形成厚みは500μm以下が好まし
く、さらに工業的規模の量産性や耐食性に対する信頼性
を考慮すると1μm〜100μmがさらに好ましい範囲
である。
Surface Layer Compound In the present invention, R formed on the surface layer portion of the rare earth magnet is used.
The F 3 compound, the RO X F Y compound, or a mixture of both compounds are extremely stable compounds, and R in each compound does not easily react with water or the like. In addition,
In the above RO X F Y , each value of X and Y is 0 <X <1.5.
And a compound satisfying 2X + Y = 3. The above compound forms an RF 3 compound, a RO X F Y compound, or a mixture of both compounds by subjecting the R 2 T 14 B phase and the R rich phase constituting the rare earth magnet to a fluorination treatment described later. In the present invention, the formation thickness of the RF 3 compound or the RO X F Y compound or the mixture of both compounds formed on the surface layer portion of the rare earth magnet is as follows:
It can be freely controlled by changing the fluorination treatment time, fluorination treatment temperature, heat treatment conditions after fluorination treatment, etc. Even if the thickness is extremely small, an effect on corrosion resistance can be expected, but a thick formation thickness As the fluorination process takes longer, the mass productivity on an industrial scale tends to decrease, and the magnetic properties tend to deteriorate. Therefore, the compound formation thickness is preferably 500 μm or less. Considering the reliability of corrosion resistance and corrosion resistance, 1 μm to 100 μm is a more preferable range.

【0013】この発明による表層部にRF3化合物また
はROXY化合物あるいはその両化合物の混合物を有す
る希土類磁石はそれだけでも十分な耐食性を有するが、
例えば、極めて苛酷な環境下で本希土類磁石を使用する
場合など、なお一層の高耐食性が要求される場合は、公
知の表面処理方法により、希土類磁石を金属、合金、樹
脂などで被覆することもできる。公知の表面処理方法と
しては、金属、合金、樹脂等やまたそれらに各種添加物
を混合したものなどを、電解めっき法、無電解めっき
法、電着塗装法、スプレー塗装法、浸漬法、気相成膜法
等により被覆するものである。また、例えば、めっき法
により金属等を被覆したのち、さらに樹脂で被覆した
り、気相成膜法により金属を被着させたのち、クロム酸
塩処理を行なうなど、公知の表面処理材質および表面処
理方法を種々組み合せて被覆することもできる。
The rare earth magnet having the RF 3 compound or the RO X F Y compound or the mixture of both compounds in the surface layer according to the present invention has sufficient corrosion resistance by itself.
For example, when even higher corrosion resistance is required, such as when the present rare earth magnet is used in an extremely harsh environment, the rare earth magnet may be coated with a metal, an alloy, a resin, etc. by a known surface treatment method. it can. Known surface treatment methods include metals, alloys, resins, etc., and those mixed with various additives, such as electrolytic plating method, electroless plating method, electrodeposition coating method, spray coating method, dipping method, and vapor coating method. The coating is performed by a phase film forming method or the like. In addition, for example, after coating a metal or the like by a plating method, further coating with a resin, or by depositing a metal by a vapor phase film forming method, and then performing chromate treatment, known surface treatment materials and surfaces Coating can be performed by combining various treatment methods.

【0014】フッ素化処理 この発明において、フッ素化処理は、例えば、希土類磁
石をフッ素系ガス雰囲気中またはフッ素系ガスを含有す
る雰囲気中に晒すだけの簡単な方法にて行なうことがで
きる。また、反応を促進させるために、予め表面を加工
するか、または加工後熱処理を施した希土類磁石を、吸
排気できる容器内に入れ、容器内を一旦真空状態にした
後、フッ素系ガスを容器内へ所定圧力まで導入し、所定
温度で所要時間保持したり、またフッ素系ガスを流気さ
せた容器内に希土類磁石を挿入することによりフッ素化
処理が行なえる。また、プラズマ処理によるフッ素化処
理を行なうこともでき、例えば、フッ素系ガス雰囲気中
またはフッ素系ガスを含有する雰囲気(不活性ガスとフ
ッ素系ガスの混合ガス)中でプラズマ処理を行なう方
法、酸素とフッ素系ガスとの混合ガス雰囲気中でプラズ
マ処理を行なう方法、酸素雰囲気中でプラズマ処理を行
なった後フッ素系ガス雰囲気中でプラズマ処理を行なう
方法、フッ素系ガス雰囲気中でプラズマ処理を行なった
後酸素雰囲気中でプラズマ処理を行なう方法のうちいず
れの方法でも処理可能である。この発明において、フッ
素化処理に用いるフッ素系ガスとしては、F2、NF3
24、N22、NOF、NO2F、HF、CF4、CH
3、CH22、C26、C38、SiF4、SF6、O
2、BF3、PF3、PF5、ClF3、WF6、MoF6
等を用いることができ、また、フッ素系ガスとその他
のガスとの混合ガス、例えばフッ素系ガスと窒素ガス、
あるいはフッ素系ガスと酸素ガスなどとを混合したガス
でも有効である。この発明によるフッ素化処理は、室温
でも行なえるが、希土類磁石とフッ素系ガスとの反応を
促進させるために、希土類磁石を所要の温度に加熱する
ことも有効な手段である。しかし、フッ素化処理温度が
高すぎると、希土類磁石とフッ素系ガスとの反応が急激
に進行しすぎて、希土類磁石の表層部に形成するRF3
化合物またはROXY化合物あるいはその両化合物の混
合物の形成厚みを制御できないため、フッ素化処理は約
600℃以下で行なうことが好ましい。この発明のフッ
素化処理において、フッ素系ガスの圧力は使用するフッ
素系ガスの種類によって異なるが、分圧が10-8mmH
g程度以上の雰囲気が好ましく、また、フッ素化処理時
間は約1秒以上であれば充分であるが、フッ素系ガスの
圧力及びフッ素化処理時間は、前述したフッ素系ガスの
種類やそのガスに含有されるフッ素濃度、またフッ素化
処理温度や処理する希土類磁石の組成や形態、さらには
形成する化合物の厚みによって大きく変動するので、適
宜最適条件を選定して行なうことが望ましい。
Fluorination Treatment In the present invention, the fluorination treatment can be carried out by a simple method, for example, by exposing the rare earth magnet to a fluorine-containing gas atmosphere or an atmosphere containing a fluorine-containing gas. In order to accelerate the reaction, a rare earth magnet whose surface is previously processed or subjected to heat treatment after processing is put in a container capable of sucking and exhausting, and the inside of the container is once evacuated, and then a fluorine-based gas is supplied to the container. The fluorination treatment can be carried out by introducing a pressure up to a predetermined pressure and maintaining it at a predetermined temperature for a required time, or by inserting a rare earth magnet in a container in which a fluorine-based gas is made to flow. Further, fluorination treatment by plasma treatment can also be performed. For example, a method of performing plasma treatment in a fluorine-based gas atmosphere or an atmosphere containing a fluorine-based gas (mixed gas of inert gas and fluorine-based gas), oxygen. Method of plasma treatment in mixed gas atmosphere of fluorine and fluorine gas, method of plasma treatment in oxygen atmosphere and then plasma treatment in fluorine gas atmosphere, plasma treatment in fluorine gas atmosphere Any of the methods of performing plasma treatment in a post oxygen atmosphere can be performed. In the present invention, the fluorine-based gas used for the fluorination treatment includes F 2 , NF 3 ,
N 2 F 4 , N 2 F 2 , NOF, NO 2 F, HF, CF 4 , CH
F 3 , CH 2 F 2 , C 2 F 6 , C 3 F 8 , SiF 4 , SF 6 , O
F 2 , BF 3 , PF 3 , PF 5 , ClF 3 , WF 6 , MoF 6
Etc., and a mixed gas of a fluorine-based gas and another gas, for example, a fluorine-based gas and a nitrogen gas,
Alternatively, a gas in which a fluorine-based gas and oxygen gas are mixed is also effective. The fluorination treatment according to the present invention can be performed at room temperature, but heating the rare earth magnet to a required temperature is also an effective means for promoting the reaction between the rare earth magnet and the fluorine-based gas. However, if the fluorination temperature is too high, the reaction between the rare earth magnet and the fluorine-based gas will proceed too rapidly, and RF 3 formed on the surface layer of the rare earth magnet will be generated.
The fluorination treatment is preferably performed at about 600 ° C. or lower because the formation thickness of the compound or the RO X F Y compound or the mixture of both compounds cannot be controlled. In the fluorination treatment of the present invention, the pressure of the fluorine-based gas varies depending on the type of the fluorine-based gas used, but the partial pressure is 10 −8 mmH.
An atmosphere of about g or more is preferable, and a fluorination treatment time of about 1 second or more is sufficient, but the pressure of the fluorinated gas and the fluorination treatment time depend on the type of the fluorinated gas and the gas. Since it greatly varies depending on the concentration of fluorine contained, the fluorination temperature, the composition and morphology of the rare earth magnet to be treated, and the thickness of the compound to be formed, it is desirable to appropriately select the optimum conditions.

【0015】この発明によるフッ素化処理は、全工程を
乾式処理にて行なうことを特徴とする。すなわち、湿式
処理方式によるフッ素化処理では、磁石素材の溶出が避
けられないが、乾式処理方式によるフッ素化処理では、
フッ素系ガス(気相)と希土類磁石(固相)との気相−
固相反応であることから、磁石素材の溶出はほとんどな
く、磁石素材そのものの耐食性を向上させることができ
る。また、従来の電解めっきや無電解めっきなどのいわ
ゆる湿式処理による耐食性被膜の如く、処理時の前処理
に用いる酸性溶剤やアルカリ溶剤などの残留による磁石
内部からの腐食などの問題を一掃できるうえ、従来の表
面処理に比べても極めて優れた耐食性を発揮できる。さ
らに、フッ素系ガスの雰囲気、フッ素化処理時間、フッ
素化処理温度、フッ素化処理後の熱処理条件などを変化
させることにより、希土類磁石の表層に形成させるRF
3化合物またはROXY化合物あるいはその両化合物の
混合物の形成厚みを自由にコントロールすることができ
る。この発明におけるフッ素化処理は、上述の如くフッ
素系ガス雰囲気中またはフッ素系ガスを含有する雰囲気
中に希土類磁石を晒す方法やプラズマ処理などの乾式処
理で行なうことが最も好ましいが、例えば、フッ素系溶
剤中やフッ素系溶剤を含有する溶液中に希土類磁石を浸
漬するなどのいわゆる湿式処理によってもフッ素化を行
なうことができる。しかし、湿式によるフッ素化処理に
おいては、若干は磁石素材が溶出するので、フッ素系溶
剤やフッ素系溶剤を含有する溶液の濃度を最適な濃度に
維持して磁石素材の溶出を極力少なくすることが望まし
い。
The fluorination treatment according to the present invention is characterized in that all the steps are performed by dry treatment. That is, in the fluorination treatment by the wet treatment method, elution of the magnet material is inevitable, but in the fluorination treatment by the dry treatment method,
Gas phase of fluorinated gas (gas phase) and rare earth magnet (solid phase)
Since it is a solid-phase reaction, there is almost no elution of the magnet material, and the corrosion resistance of the magnet material itself can be improved. In addition, as with conventional corrosion-resistant coatings by so-called wet treatment such as electroplating and electroless plating, it is possible to eliminate problems such as corrosion from inside the magnet due to residual acidic solvent or alkaline solvent used for pretreatment during treatment. It can exhibit extremely excellent corrosion resistance compared to conventional surface treatments. Further, by changing the atmosphere of the fluorine-based gas, the fluorination treatment time, the fluorination treatment temperature, the heat treatment condition after the fluorination treatment, etc., the RF formed on the surface layer of the rare earth magnet.
The formation thickness of the 3 compound or the RO X F Y compound or a mixture of both compounds can be freely controlled. The fluorination treatment in the present invention is most preferably carried out by a dry treatment such as a method of exposing the rare earth magnet to an atmosphere containing a fluorine-based gas or an atmosphere containing a fluorine-based gas or a plasma treatment as described above. Fluorination can also be performed by so-called wet treatment such as immersing the rare earth magnet in a solvent or a solution containing a fluorine-based solvent. However, in wet fluorination treatment, the magnet material is slightly eluted.Therefore, it is possible to keep the concentration of the fluorinated solvent or the solution containing the fluorinated solvent at the optimum concentration to minimize the elution of the magnet material. desirable.

【0016】熱処理 この発明において、フッ素化処理後に所要の熱処理を施
すことにより、その機構は不明であるが、RF3化合物
またはROXY化合物あるいはその両化合物の混合物組
織などの緻密化、安定化に寄与し、希土類磁石の耐食性
をより一層向上させることができるため有効である。上
記の熱処理温度は、200℃以下ではRF3化合物また
はROXY化合物あるいはその両化合物の混合物の緻密
化、安定化の促進に多大な時間を要し、また1200℃
を超えると希土類磁石が溶融してしまうため、好ましい
熱処理温度は200℃〜1200℃であり、また、熱処
理時間及び熱処理雰囲気は、最適の条件を適宜選定して
行なうことが好ましい。上記の熱処理を、予め時効処理
を施した永久磁石に施す場合は、200℃〜当該時効処
理温度以下の範囲で熱処理を行なうことが好ましい。こ
れは、熱処理が時効処理温度を超えると、事前に施した
時効処理効果がなくなり、磁気特性が低下するためであ
る。さらに、当該時効処理温度以上の熱処理を行なった
後、時効処理を施したり、熱処理と同時に時効処理を行
なうことも可能である。
Heat Treatment In the present invention, the mechanism of the heat treatment is unknown by performing the required heat treatment after the fluorination treatment, but densification and stability of the RF 3 compound or the RO X F Y compound or a mixture of both compounds, etc. This is effective because it contributes to the realization and can further improve the corrosion resistance of the rare earth magnet. If the heat treatment temperature is 200 ° C. or lower, it takes a long time to promote the densification and stabilization of the RF 3 compound, the RO X F Y compound, or the mixture of both compounds, and 1200 ° C.
If it exceeds, the rare earth magnet will be melted, so that the preferable heat treatment temperature is 200 ° C to 1200 ° C, and it is preferable that the heat treatment time and the heat treatment atmosphere are appropriately selected and performed. When the above heat treatment is applied to a permanent magnet that has been subjected to an aging treatment in advance, it is preferable to perform the heat treatment within a range of 200 ° C. to the aging treatment temperature. This is because when the heat treatment exceeds the aging treatment temperature, the aging treatment effect applied in advance disappears and the magnetic properties deteriorate. Further, it is possible to perform the aging treatment after performing the heat treatment at the aging treatment temperature or higher, or to perform the aging treatment at the same time as the heat treatment.

【0017】[0017]

【作用】この発明は、希土類磁石をフッ素系ガス雰囲気
中またはフッ素系ガスを含有する雰囲気中に晒しフッ素
化処理することにより、希土類磁石の表層にRF3化合
物またはROXY化合物あるいはその両化合物の混合物
からなる安定な化合物を形成させ、あるいはさらに所要
の熱処理を施すことにより該化合物の緻密化、安定化を
一層促進させて、希土類磁石の耐食性を著しく向上させ
ることができる。また、この発明によるフッ素化処理
は、フッ素系ガス(気相)と希土類磁石(固相)との気
相−固相反応であるために、処理中に磁石素材の溶出が
ほとんどなく、さらに電解めっきや無電解めっきなどの
いわゆる湿式処理による酸性溶剤やアルカリ溶剤などの
残留の問題が解消できるため、特に表面処理を行なわな
くともすぐれた耐食性が得られ、また表面処理する際の
下地処理としてもすぐれた効果を発揮する。
According to the present invention, the rare earth magnet is exposed to a fluorine-containing gas atmosphere or an atmosphere containing a fluorine-containing gas for fluorination treatment, whereby the RF 3 compound or the RO X F Y compound or both of them is formed on the surface layer of the rare earth magnet. By forming a stable compound composed of a mixture of compounds or further subjecting it to a required heat treatment, the densification and stabilization of the compound can be further promoted, and the corrosion resistance of the rare earth magnet can be remarkably improved. Further, since the fluorination treatment according to the present invention is a gas-solid reaction between a fluorine-based gas (gas phase) and a rare earth magnet (solid phase), there is almost no elution of the magnet material during the treatment, and further electrolysis Since the problem of residual acidic solvent or alkaline solvent due to so-called wet treatment such as plating or electroless plating can be solved, excellent corrosion resistance can be obtained without performing surface treatment, and also as a surface treatment during surface treatment. Shows excellent effects.

【0018】[0018]

【実施例】【Example】

実施例1 試料として、組成がNd31.51.15残部Fe(重量%)
からなるR−T−B系焼結永久磁石に全面研削加工を施
した試料を、吸排気できる容器内に挿入し、該容器内を
10-5mmHg以下まで真空排気したのち、F2とN2
混合ガス(10%F2、90%N2、純度99.9%)を
10-2mmHg容器内に導入し、10分間試料を放置す
るフッ素化処理を施して、磁石表層部にRF3化合物お
よびROXY化合物あるいはその両化合物の混合物を形
成したこの発明による磁石を得た(試料No.1)。上
記試料に形成された化合物の厚みをEPMAにより測定
したところ、化合物の形成厚みは約10μmであった。
また、上記試料のP.C.T試験(温度125℃、湿度
85%、圧力2atm)を12時間と120時間の条件
で行ない、試験後の酸化による重量変化量の比較により
耐食性を評価した。試験の結果を表1に示す。
Example 1 As a sample, the composition was Nd 31.5 B 1.15 balance Fe (% by weight)
A sample obtained by subjecting the R-T-B system sintered permanent magnet consisting of 10 to the whole surface grinding process is inserted into a container capable of sucking and exhausting, and the inside of the container is evacuated to 10 -5 mmHg or less, then F 2 and N 2. A mixed gas of 2 (10% F 2 , 90% N 2 , purity 99.9%) was introduced into a 10 -2 mmHg container, and the sample was left for 10 minutes for fluorination treatment, and the magnet surface layer was exposed to RF. A magnet according to the present invention was obtained in which a 3 compound and a RO X F Y compound or a mixture of both compounds were formed (Sample No. 1). When the thickness of the compound formed in the above sample was measured by EPMA, the formed thickness of the compound was about 10 μm.
In addition, the P. C. A T test (temperature 125 ° C., humidity 85%, pressure 2 atm) was performed for 12 hours and 120 hours, and corrosion resistance was evaluated by comparing the amount of weight change due to oxidation after the test. The test results are shown in Table 1.

【0019】実施例2 実施例1と同組成のR−T−B系焼結永久磁石に加工を
施した試料に、実施例1と同様なフッ素化処理を施した
のち、10-5mmHg以下まで真空排気したのち、該容
器内を400℃の温度に加熱し60分保持した後、磁石
表層部にRF3化合物およびROXY化合物あるいはそ
の両化合物の混合物を形成したこの発明による磁石を得
た(試料No.2)。上記試料に形成された化合物の厚
みをEPMAにより測定したところ、化合物の形成厚み
は約10μmであった。また、上記試料に実施例1と同
じP.C.T試験を行ない、試験後の酸化による重量変
化量の比較により耐食性を評価した結果を表1に示す。
Example 2 A sample obtained by processing an RTB based sintered permanent magnet having the same composition as in Example 1 was subjected to the same fluorination treatment as in Example 1, and then 10 -5 mmHg or less. After evacuation to vacuum, the container was heated to a temperature of 400 ° C. and held for 60 minutes, and then the magnet according to the present invention was formed with the RF 3 compound and the RO X F Y compound or a mixture of both compounds on the surface layer of the magnet. Obtained (Sample No. 2). When the thickness of the compound formed in the above sample was measured by EPMA, the formed thickness of the compound was about 10 μm. In addition, the same P.I. C. Table 1 shows the results of evaluating the corrosion resistance by performing a T test and comparing the amount of weight change due to oxidation after the test.

【0020】実施例3 実施例1と同組成のR−T−B系焼結永久磁石に加工を
施した試料を、吸排気できる容器内に挿入し、該容器内
を10-5mmHg以下まで真空排気したのち、該容器内
を200℃の温度に加熱し、さらにNF3(三フッ化窒
素:純度99.9%)を10-4mmHg容器内に導入
し、30分間試料を放置するフッ素化処理を施したの
ち、10-5mmHg以下の真空雰囲気下で400℃、6
0分の熱処理を施して、磁石表層部にRF3化合物およ
びROXY化合物あるいはその両化合物の混合物を形成
したこの発明による磁石を得た(試料No.3)。上記
試料に形成された化合物の厚みをEPMAにより測定し
たところ、化合物の形成厚みは約5μmであった。ま
た、上記試料に実施例1と同じP.C.T試験を行な
い、試験結果を表1に示す。
Example 3 A sample obtained by processing an RTB sintered permanent magnet having the same composition as in Example 1 was inserted into a container capable of sucking and discharging, and the inside of the container was controlled to 10 −5 mmHg or less. After evacuation, the container is heated to a temperature of 200 ° C., NF 3 (nitrogen trifluoride: purity 99.9%) is further introduced into the 10 −4 mmHg container, and the sample is left for 30 minutes. After the chemical treatment, it is heated at 400 ° C. in a vacuum atmosphere of 10 −5 mmHg or less for 6
Heat treatment for 0 minutes was performed to obtain a magnet according to the present invention in which the RF 3 compound and the RO X F Y compound or a mixture of both compounds were formed on the surface layer of the magnet (Sample No. 3). When the thickness of the compound formed on the above sample was measured by EPMA, the formed thickness of the compound was about 5 μm. In addition, the same P.I. C. The T test was performed and the test results are shown in Table 1.

【0021】実施例4 実施例1と同組成のR−T−B系焼結永久磁石に加工を
施した試料を、吸排気できる容器内に挿入し、該容器内
を10-5mmHg以下まで真空排気したのち、該容器内
を400℃の温度に加熱し、さらにCF4(四フッ化メ
タン:純度99.9%)を10mmHg容器内に導入
し、10分間試料を放置するフッ素化処理を施して、磁
石表層部にRF3化合物およびROXY化合物あるいは
その両化合物の混合物を形成したこの発明による磁石を
得た(試料No.4)。上記試料に形成された化合物の
厚みをEPMAにより測定したところ、化合物の形成厚
みは約20μmであった。また、上記試料に実施例1と
同じP.C.T試験を行ない、試験結果を表1に示す。
Example 4 A sample obtained by processing an R-T-B system sintered permanent magnet having the same composition as in Example 1 was inserted into a container capable of sucking and discharging, and the inside of the container was controlled to 10 -5 mmHg or less. After evacuation, the inside of the container is heated to a temperature of 400 ° C., CF 4 (tetrafluoromethane: purity 99.9%) is further introduced into the 10 mmHg container, and the sample is allowed to stand for 10 minutes for fluorination. Thus, a magnet according to the present invention was obtained in which the RF 3 compound and the RO X F Y compound or a mixture of both compounds were formed on the surface layer of the magnet (Sample No. 4). When the thickness of the compound formed in the above sample was measured by EPMA, the formed thickness of the compound was about 20 μm. In addition, the same P.I. C. The T test was performed and the test results are shown in Table 1.

【0022】実施例5 実施例1と同組成のR−T−B系焼結永久磁石に加工を
施したのち、500℃、60分の時効処理を施した試料
を、吸排気できる容器内に挿入し、該容器内を10-5
mHg以下まで真空排気したのち、HF(フッ化水素:
純度99.9%)を流気させた雰囲気中に1分間試料を
放置するフッ素化処理を施したのち、10-5mmHg以
下の真空雰囲気下で500℃、60分の熱処理を施し
て、磁石表層部にRF3化合物およびROXY化合物あ
るいはその両化合物の混合物を形成したこの発明による
磁石を得た(試料No.5)。上記試料に形成された化
合物の厚みをEPMAにより測定したところ、化合物の
形成厚みは約100μmであった。また、上記試料に実
施例1と同じP.C.T試験を行ない、試験結果を表1
に示す。
Example 5 An R-T-B system sintered permanent magnet having the same composition as in Example 1 was processed, and then a sample aged at 500 ° C. for 60 minutes was placed in a container capable of sucking and discharging. Insert and put 10 -5 m inside the container
After evacuation to mHg or less, HF (hydrogen fluoride:
(Purity 99.9%) The sample was left for 1 minute in the flowing atmosphere, then fluorinated, and then heat-treated at 500 ° C. for 60 minutes in a vacuum atmosphere of 10 −5 mmHg or less to give a magnet. A magnet according to the present invention was obtained in which the RF 3 compound and the RO X F Y compound or a mixture of both compounds were formed on the surface layer (Sample No. 5). When the thickness of the compound formed in the above sample was measured by EPMA, the formed thickness of the compound was about 100 μm. In addition, the same P.I. C. T test was conducted and the test results are shown in Table 1.
Shown in.

【0023】比較例 実施例と同じ組成のR−T−B系焼結永久磁石に、焼結
後加工を施しただけで、フッ素化処理を全く施さないも
の(試料No.6)、及び組成がNd31.51.15Co
5.0残部Fe(重量%)からなりCoを添加して予め素
材の耐食性を向上させたR−T−B系焼結永久磁石に、
焼結後加工を施しただけでフッ素化処理を全く施さない
もの(試料No.7)とを得た。上記比較例の試料につ
いて実施例1と同じP.C.T試験を行ない、試験結果
を表1に示す。
Comparative Example An RTB-based sintered permanent magnet having the same composition as that of the example was processed only after sintering but not subjected to fluorination (sample No. 6), and the composition. Is Nd 31.5 B 1.15 Co
5.0 The balance consists of Fe (wt%) and Co is added to the RTB sintered permanent magnet to improve the corrosion resistance of the material in advance.
There was obtained a sample (Sample No. 7) which was processed after sintering but not subjected to fluorination at all. For the sample of the above comparative example, the same P.I. C. The T test was performed and the test results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、フッ素化処理を
施さない磁石(試料No.6)は、P.C.T試験のよ
うな厳しい環境下では、時間の経過とともに酸化が著し
く進行し、重量の変化が激しい。また、Coの添加によ
り予め素材の耐食性を向上させた磁石(試料No.7)
であっても、時間の経過とともに酸化が進行しており、
耐食性が劣る。これに対して、フッ素化処理を施したこ
の発明による希土類磁石(試料No.1〜5)は、種々
の条件でフッ素化処理を行ったいづれのものについて
も、極めて苛酷な状況下において酸化せずに、すぐれた
耐食性を有していることがわかる。特に、フッ素化処理
を施した後、熱処理を施した磁石(試料No.2,3,
5)は、P.C.T試験に寄る重量変化が全くなく、極
めてすぐれた耐食性を有していることがわかる。これ
は、この発明によるフッ素化処理を施した希土類磁石の
表層部に、水分等に対して極めて安定なRF3化合物お
よびROXY化合物あるいはその両化合物の混合物が形
成されているためである。
As is apparent from Table 1, the magnet not subjected to the fluorination treatment (Sample No. 6) was manufactured by P.P. C. Under a harsh environment such as the T test, the oxidation significantly progresses with the passage of time, and the weight changes drastically. In addition, a magnet in which the corrosion resistance of the material has been previously improved by adding Co (Sample No. 7)
Even then, oxidation is progressing over time,
Inferior corrosion resistance. On the other hand, the rare earth magnets (Sample Nos. 1 to 5) according to the present invention which have been subjected to the fluorination treatment, even those which are desired to be subjected to the fluorination treatment under various conditions, are oxidized under extremely severe conditions. It can be seen that it has excellent corrosion resistance. In particular, magnets that were heat treated after being fluorinated (Sample Nos. 2, 3,
5) is a P. C. It can be seen that there is no change in weight due to the T test and that it has extremely excellent corrosion resistance. This is because the RF 3 compound and the RO X F Y compound, or a mixture of both compounds, which are extremely stable against moisture and the like, are formed on the surface layer of the fluorinated rare earth magnet according to the present invention. .

【0026】また、実施例1によりフッ素系ガスを含有
する雰囲気中にてフッ素化処理を施した磁石(試料N
o.1)及び実施例2によりフッ素系ガスを含有する雰
囲気中にてフッ素化処理を施した後、さらに熱処理を施
した磁石(試料No.2)の各々について、磁石表層部
のX線回折(ターゲットにCu−kαを使用)を行っ
た。X線回折の結果をフッ素化処理を全く施さない未処
理の磁石(試料No.6)についての結果とともに図1
に示す。なお、図1のAは試料No.2の実施例2磁
石、Bは試料No.1の実施例1磁石、Cは未処理の磁
石(試料No.6)のX線回折の結果を示す。図1から
明らかなように、フッ素化処理を施さない未処理の磁石
(試料No.6)については、該磁石の構成層であるN
2Fe14B及びNdが存在していることがわかる。こ
れらのNd2Fe14B及びNdは先述の如く、非常に容
易に酸化され易く、一旦酸化物が形成されるとそれらの
酸化物は吸湿性であることから、磁石表面において容易
に大気中の水分と反応して、体積膨張を起こし、R2
14B相を初めとする磁石構成相の脱粒、脱落を引き起
こすのである。一方、フッ素化処理を施したもの(試料
No.1)及びフッ素化処理後、熱処理を施したもの
(試料No.2)については、磁石表層部の前記のNd
などのほぼ全体がNdF3及びNdOFあるいはその両
化合物の混合物を主体とする希土類元素とフッ素の化合
物が存在していることがわかる。上記の如く、希土類磁
石にフッ素化処理を施すか、あるいはフッ素化処理を施
した後さらに熱処理をすることにより、希土類磁石構成
相のうち、特に耐食性に悪影響を及ぼす希土類やその酸
化物などをNdF3またはNdOFあるいはその両化合
物の混合物を主体とする希土類元素とフッ素の化合物に
することができ、希土類磁石の素材そのものの耐食性を
大幅に向上させることができる。
Further, according to the first embodiment, the magnet fluorinated in the atmosphere containing the fluorine-based gas (Sample N
o. For each of the magnets (Sample No. 2) which had been subjected to fluorination treatment in an atmosphere containing a fluorine-based gas according to Example 1) and Example 2 and further heat treatment, X-ray diffraction (target) Cu-kα was used). The result of X-ray diffraction is shown in FIG.
Shown in. In addition, A of FIG. Example 2 magnet of No. 2, B is sample No. 1 shows the result of X-ray diffraction of an untreated magnet (Sample No. 6). As is clear from FIG. 1, regarding the untreated magnet (Sample No. 6) which was not subjected to the fluorination treatment, N which is the constituent layer of the magnet was used.
It can be seen that d 2 Fe 14 B and Nd are present. As described above, these Nd 2 Fe 14 B and Nd are very easily oxidized, and once an oxide is formed, these oxides are hygroscopic, so that the surface of the magnet is easily exposed to the atmosphere. Reacts with water to cause volume expansion and R 2 F
This causes the particles constituting the magnet phase, including the e 14 B phase, to shed and fall off. On the other hand, regarding the one subjected to the fluorination treatment (Sample No. 1) and the one subjected to the heat treatment after the fluorination treatment (Sample No. 2), the above-mentioned Nd of the magnet surface layer portion was used.
It can be seen that a compound of a rare earth element and fluorine mainly containing NdF 3 and NdOF or a mixture of both compounds is present. As described above, by subjecting the rare earth magnet to fluorination treatment, or by subjecting the rare earth magnet to further heat treatment, the rare earth magnet constituent phases, such as rare earth elements and their oxides, which adversely affect the corrosion resistance, can be removed. A compound of rare earth element and fluorine mainly composed of 3 or NdOF or a mixture of both compounds can be used, and the corrosion resistance of the material itself of the rare earth magnet can be greatly improved.

【0027】[0027]

【発明の効果】この発明は、希土類磁石にフッ素系ガス
雰囲気中もしくはフッ素系ガスを含有する雰囲気中にお
いてフッ素化処理を施して、希土類磁石の表層部に耐食
性に対して安定なRF3化合物またはROXY化合物あ
るいはその両化合物からなる混合物を形成させ、あるい
はさらに所要の熱処理を施すことにより、希土類磁石の
素材そのものの耐食性を大幅に向上させることができ
る。また、この発明によるフッ素化処理は、処理自体が
非常に容易で、しかもフッ素系ガス(気相)と希土類磁
石(固相)との気相−固相反応であるために、処理中に
磁石素材の溶出がほとんどなく、さらに電解めっきや無
電解めっきなどのいわゆる湿式処理による酸性溶剤や、
アルカリ溶剤などの残留の問題が解消できるうえ、希土
類磁石素材そのものの耐食性を向上できるため、表面処
理する際の下地処理としてもすぐれた効果を発揮し、さ
らには、特に表面処理を行なわなくとも、苛酷な環境下
で希土類磁石を使用することが可能となる。
INDUSTRIAL APPLICABILITY According to the present invention, a rare earth magnet is subjected to a fluorination treatment in a fluorine-based gas atmosphere or in an atmosphere containing a fluorine-based gas, and the surface layer of the rare earth magnet is provided with an RF 3 compound which is stable to corrosion resistance or By forming a RO X F Y compound or a mixture of both compounds, or by further subjecting it to a required heat treatment, the corrosion resistance of the raw material of the rare earth magnet itself can be greatly improved. Further, the fluorination treatment according to the present invention is very easy to perform, and since it is a gas-solid reaction between the fluorine-based gas (gas phase) and the rare earth magnet (solid phase), the magnet during the treatment is processed. Almost no elution of the material, furthermore, acidic solvent by so-called wet treatment such as electrolytic plating and electroless plating,
In addition to solving the problem of residual alkaline solvent and improving the corrosion resistance of the rare earth magnet material itself, it exhibits an excellent effect as a surface treatment during surface treatment, and even without any particular surface treatment, It is possible to use the rare earth magnet in a harsh environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁石表層部のX線回折結果を示す回折パターン
図であり、Aは試料No.2の実施例2磁石、Bは試料
No.1の実施例1磁石、Cは未処理の磁石(試料N
o.6)のX線回折の結果を示す。
FIG. 1 is a diffraction pattern diagram showing an X-ray diffraction result of a magnet surface layer portion, where A is sample No. Example 2 magnet of No. 2, B is sample No. Example 1 of 1 magnet, C is an untreated magnet (Sample N
o. The result of X-ray diffraction of 6) is shown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 7/02 Z (72)発明者 田坂 明政 京都府京都市西京区大原野上里勝山町14− 9─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 7/02 Z (72) Inventor Akinori Tasaka 14-14, Katsuyama-cho, Ohara Nogami-sato, Nishikyo-ku, Kyoto Prefecture 9

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石(希土類元素Rのうち少なく
とも1種以上含有)の表層部にRF3化合物またはROX
Y化合物あるいはその両化合物の混合物を有すること
を特徴とする耐食性のすぐれた希土類磁石。
1. A rare earth magnet (containing at least one kind of rare earth element R) has an RF 3 compound or RO X on a surface layer portion thereof.
A rare earth magnet having excellent corrosion resistance, which comprises an F Y compound or a mixture of both compounds.
【請求項2】 希土類磁石(希土類元素Rのうち少なく
とも1種以上含有)をフッ素系ガス雰囲気中またはフッ
素系ガスを含有する雰囲気中でフッ素化処理して、該磁
石の表層部にRF3化合物またはROXY化合物あるい
はその両化合物の混合物を形成させることを特徴とする
耐食性のすぐれた希土類磁石の製造方法。
2. A rare earth magnet (containing at least one kind of rare earth element R) is fluorinated in a fluorine gas atmosphere or an atmosphere containing a fluorine gas, and an RF 3 compound is added to the surface layer of the magnet. Alternatively, a method for producing a rare earth magnet having excellent corrosion resistance, which comprises forming a RO X F Y compound or a mixture of both compounds.
【請求項3】 希土類磁石(希土類元素Rのうち少なく
とも1種以上含有)をフッ素系ガス雰囲気中またはフッ
素系ガスを含有する雰囲気中でフッ素化処理して、該磁
石の表層部にRF3化合物またはROXY化合物あるい
はその両化合物の混合物を形成させたのち、さらに20
0℃〜1200℃の温度で熱処理を施すことを特徴とす
る耐食性のすぐれた希土類磁石の製造方法。
3. A rare earth magnet (containing at least one kind of rare earth element R) is fluorinated in a fluorine-containing gas atmosphere or an atmosphere containing a fluorine-containing gas to form an RF 3 compound on the surface layer portion of the magnet. Alternatively, after forming a RO X F Y compound or a mixture of both compounds, an additional 20
A method for producing a rare earth magnet having excellent corrosion resistance, which comprises performing heat treatment at a temperature of 0 ° C to 1200 ° C.
JP34357493A 1992-12-26 1993-12-15 Rare earth magnet with excellent corrosion resistance and method of manufacturing the same Expired - Lifetime JP3471876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34357493A JP3471876B2 (en) 1992-12-26 1993-12-15 Rare earth magnet with excellent corrosion resistance and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-358197 1992-12-26
JP35819792 1992-12-26
JP34357493A JP3471876B2 (en) 1992-12-26 1993-12-15 Rare earth magnet with excellent corrosion resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06244011A true JPH06244011A (en) 1994-09-02
JP3471876B2 JP3471876B2 (en) 2003-12-02

Family

ID=26577560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34357493A Expired - Lifetime JP3471876B2 (en) 1992-12-26 1993-12-15 Rare earth magnet with excellent corrosion resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3471876B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043348A1 (en) * 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2006303435A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2006303433A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2006303434A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2007053351A (en) * 2005-07-22 2007-03-01 Shin Etsu Chem Co Ltd Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
JP2007194599A (en) * 2005-12-22 2007-08-02 Hitachi Ltd Low-loss magnet, and magnetic circuit using same
EP1843360A1 (en) * 2004-12-16 2007-10-10 Japan Science and Technology Agency Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
WO2007119553A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Process for producing rare-earth permanent magnet material
WO2007119551A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
EP1705670A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
EP1705671A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
EP1705668A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
EP1705669A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
EP1923893A1 (en) * 2006-11-17 2008-05-21 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JP2008270699A (en) * 2007-03-29 2008-11-06 Hitachi Ltd Rare earth magnet and its manufacturing method
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet
US7696662B2 (en) 2006-08-30 2010-04-13 Hitachi, Ltd. High resistance magnet and motor using the same
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP2012039017A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Magnet material, magnet molding and rotary machine
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
KR101245465B1 (en) * 2005-07-22 2013-03-25 신에쓰 가가꾸 고교 가부시끼가이샤 Rare-earth permanent magnet, process for preparing the same and permanent magnet rotating machine
WO2013179337A1 (en) 2012-05-30 2013-12-05 株式会社 日立製作所 Sintered magnet and process for production thereof
WO2013186864A1 (en) 2012-06-13 2013-12-19 株式会社 日立製作所 Sintered magnet and production process therefor
JP5573848B2 (en) * 2009-12-28 2014-08-20 日立金属株式会社 Corrosion-resistant magnet and manufacturing method thereof
WO2014148356A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
US9242296B2 (en) 2009-10-10 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Rare earth magnet material and method for producing the same

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet
WO2006043348A1 (en) * 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8377233B2 (en) 2004-10-19 2013-02-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
TWI413135B (en) * 2004-10-19 2013-10-21 Shinetsu Chemical Co A rare earth permanent magnet material and method for the preparation thereof
EP1843360A1 (en) * 2004-12-16 2007-10-10 Japan Science and Technology Agency Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
EP1843360A4 (en) * 2004-12-16 2010-05-05 Japan Science & Tech Agency Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
EP2267729A3 (en) * 2005-03-23 2011-09-07 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7488393B2 (en) 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
KR101030267B1 (en) * 2005-03-23 2011-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth permanent magnet
EP2267730A3 (en) * 2005-03-23 2011-04-20 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
JP2006303434A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
EP1705670A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
EP1705671A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
EP1705668A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
EP1705669A3 (en) * 2005-03-23 2008-02-13 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
JP4702546B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Rare earth permanent magnet
EP2267731A3 (en) * 2005-03-23 2011-04-20 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
EP2267732A3 (en) * 2005-03-23 2011-06-22 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
US7488394B2 (en) 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
JP4702548B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Functionally graded rare earth permanent magnet
US7488395B2 (en) 2005-03-23 2009-02-10 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
US7520941B2 (en) 2005-03-23 2009-04-21 Shin-Etsu Chemical Co., Ltd. Functionally graded rare earth permanent magnet
JP2006303433A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP4702547B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Functionally graded rare earth permanent magnet
JP4702549B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Rare earth permanent magnet
JP2006303435A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Gradient functionality rare earth permanent magnet
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP4656325B2 (en) * 2005-07-22 2011-03-23 信越化学工業株式会社 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP2007053351A (en) * 2005-07-22 2007-03-01 Shin Etsu Chem Co Ltd Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
KR101245465B1 (en) * 2005-07-22 2013-03-25 신에쓰 가가꾸 고교 가부시끼가이샤 Rare-earth permanent magnet, process for preparing the same and permanent magnet rotating machine
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP2007194599A (en) * 2005-12-22 2007-08-02 Hitachi Ltd Low-loss magnet, and magnetic circuit using same
JP4605396B2 (en) * 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
KR101361556B1 (en) * 2006-04-14 2014-02-12 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing rare earth permanent magnet material
EP1890301A4 (en) * 2006-04-14 2010-04-21 Shinetsu Chemical Co Method for producing rare earth permanent magnet material
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
WO2007119553A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Process for producing rare-earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
EP1890301A1 (en) * 2006-04-14 2008-02-20 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
US8075707B2 (en) 2006-04-14 2011-12-13 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
WO2007119551A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing rare earth permanent magnet material
JP2007284738A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet material
US8222785B2 (en) 2006-08-30 2012-07-17 Hitachi, Ltd. High resistance magnet and motor using the same
US7972450B2 (en) 2006-08-30 2011-07-05 Hitachi, Ltd. High resistance magnet and motor using the same
US7696662B2 (en) 2006-08-30 2010-04-13 Hitachi, Ltd. High resistance magnet and motor using the same
EP1923893A1 (en) * 2006-11-17 2008-05-21 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JP2008270699A (en) * 2007-03-29 2008-11-06 Hitachi Ltd Rare earth magnet and its manufacturing method
US9242296B2 (en) 2009-10-10 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Rare earth magnet material and method for producing the same
JP5573848B2 (en) * 2009-12-28 2014-08-20 日立金属株式会社 Corrosion-resistant magnet and manufacturing method thereof
JP2012039017A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Magnet material, magnet molding and rotary machine
WO2013179337A1 (en) 2012-05-30 2013-12-05 株式会社 日立製作所 Sintered magnet and process for production thereof
CN104350554A (en) * 2012-05-30 2015-02-11 株式会社日立制作所 Sintered magnet and process for production thereof
WO2013186864A1 (en) 2012-06-13 2013-12-19 株式会社 日立製作所 Sintered magnet and production process therefor
WO2014148356A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
US20160273091A1 (en) 2013-03-18 2016-09-22 Intermetallics Co., Ltd. RFeB SYSTEM SINTERED MAGNET PRODUCTION METHOD AND RFeB SYSTEM SINTERED MAGNET

Also Published As

Publication number Publication date
JP3471876B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3471876B2 (en) Rare earth magnet with excellent corrosion resistance and method of manufacturing the same
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
EP0361308B1 (en) Corrosion-resistant permanent magnet and method for preparing the same
JPH11307328A (en) Corrosion resistant permanent magnet and its manufacture
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH09223617A (en) Rare earth-b-fe sintered magnet superior in corrosion resistance and magnetic characteristic and manufacturing method thereof
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
WO1999002337A1 (en) High temperature passivation of rare earth magnets
JP3208057B2 (en) Corrosion resistant permanent magnet
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP2553843B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
JPH0554683B2 (en)
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPS63255376A (en) Production of corrosion resistant permanent magnet
JP3234306B2 (en) Corrosion resistant permanent magnet
JPH01147806A (en) Manufacture of resin-bonded type magnet
JPH06140226A (en) Corrosion-resistant permanent magnet
JP2001135540A (en) Nickel plating method for corrosion resistant miniaturized magnet
JPS63238240A (en) Corrosion-resisting permanent magnet
JPH08330121A (en) Permanent magnet body
JPH01149403A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP4899928B2 (en) Rare earth magnet manufacturing method
JP3411605B2 (en) Corrosion resistant permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

EXPY Cancellation because of completion of term