JPH0624129B2 - Fuel cell power plant - Google Patents

Fuel cell power plant

Info

Publication number
JPH0624129B2
JPH0624129B2 JP58059693A JP5969383A JPH0624129B2 JP H0624129 B2 JPH0624129 B2 JP H0624129B2 JP 58059693 A JP58059693 A JP 58059693A JP 5969383 A JP5969383 A JP 5969383A JP H0624129 B2 JPH0624129 B2 JP H0624129B2
Authority
JP
Japan
Prior art keywords
valve
air
fuel
exhaust gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059693A
Other languages
Japanese (ja)
Other versions
JPS59186273A (en
Inventor
光雄 佐藤
琢磨 湯浅
正嗣 吉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58059693A priority Critical patent/JPH0624129B2/en
Publication of JPS59186273A publication Critical patent/JPS59186273A/en
Publication of JPH0624129B2 publication Critical patent/JPH0624129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電プラントにおいて、特にその緊急
時に安全にプラント停止が可能な構成の燃料電池発電プ
ラントに関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a fuel cell power plant, and more particularly to a fuel cell power plant having a configuration capable of safely stopping the plant in an emergency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池発電プラントは燃料極ガス室と空気極ガス室と
を有する燃料電池本体と、1本以上の改質管を有しこの
改質管を通る原燃料を管外からの加熱により改質して燃
料電池本体の燃料極ガス室に供給する燃料改質器と、排
熱を回収してタービンを駆動しこれによりコンプレッサ
を回転させて加圧された空気を燃料電池本体の空気極ガ
ス室および燃料改質器の管外の加熱部に供給するタービ
ン・コンプレッサと、燃料電池本体の空気極ガス室、燃
料改質器の管外からの加熱部からの排ガスおよびターピ
ン・コンプレッサからの空気が供給され且つタービン・
コンプレッサへのエネルギ供給を加減して適切な作動範
囲に制御する補助燃焼器とを構成要素としている。
A fuel cell power plant has a fuel cell body having a fuel electrode gas chamber and an air electrode gas chamber, one or more reforming tubes, and raw fuel passing through the reforming tubes is reformed by heating from outside the tubes. And a fuel reformer that supplies the fuel gas to the fuel electrode gas chamber of the fuel cell main body and a turbine that drives the turbine by recovering the exhaust heat to rotate the compressor and pressurize the compressed air into the air electrode gas chamber of the fuel cell main body. The turbine / compressor that supplies the heating part outside the pipe of the fuel reformer, the air electrode gas chamber of the fuel cell body, the exhaust gas from the heating part outside the pipe of the fuel reformer, and the air from the turpin compressor And turbine
The auxiliary combustor that adjusts the energy supply to the compressor and controls it to an appropriate operating range is a component.

ところで、このような燃料電池発電プラントにおいて
は、各部において必要な流量、温度を満足するように運
転することは当然のことであるが、異常時および緊急時
に特に留意しなければならないことはプラントを安全に
停止させる必要がある。そのためには燃料電池本体の燃
料極ガス室と空気極ガス室との圧力差をある範囲内にで
きるだけ抑えることと、燃料改質器の反応管内の圧力が
反応管外の圧力よりも大きくなるようにすることが要求
される。
By the way, in such a fuel cell power generation plant, it is natural to operate so as to satisfy the required flow rate and temperature in each part, but it is important to pay attention to the plant in the event of an abnormality or an emergency. It is necessary to stop it safely. For that purpose, the pressure difference between the fuel electrode gas chamber and the air electrode gas chamber of the fuel cell body should be suppressed within a certain range, and the pressure inside the reaction tube of the fuel reformer should be higher than the pressure outside the reaction tube. Required to.

〔発明の目的〕[Object of the Invention]

本発明はかかる要求を満たすべくなされたもので、その
目的は電源喪失、計装空気喪失などの緊急かつ重大な故
障のときにもフェイルセーフ方式によりプラントを安全
に停止することができる燃料電池発電プラントを提供し
ようとするものである。
The present invention has been made to meet such requirements, and an object thereof is a fuel cell power generation system capable of safely stopping a plant by a fail-safe method even in the case of an emergency and a serious failure such as a loss of power source or a loss of instrumentation air. It is intended to provide a plant.

〔発明の概要〕[Outline of Invention]

本発明はかかる目的を達成するため、タービンと、この
タービンにより回転駆動され加圧された空気を送り出す
コンプレッサと、原燃料及び前記コンプレッサからの空
気が供給され前記タービンへのエネルギ供給を加減して
前記コンプレッサを適切な作動範囲に制御する補助燃焼
器と、原燃料を通す改質管と前記コンプレッサからの空
気及び少なくとも起動時には原燃料が供給され前記改質
管を加熱してこの改質管を通る原燃料を改質させるとと
もにその排ガスを前記補助燃焼器に供給する燃焼室とを
有する燃料改質器と、この燃料改質器から得られる燃料
改質ガスが供給され且つその残余のガスを前記燃料改質
器の燃焼室に供給する燃料極ガス室と前記コンプレッサ
からの空気が供給され空気極での電極反応を行なわせた
残余の空気を前記補助燃焼器に供給する空気極ガス室と
を有する燃料電池本体とを備え、原燃料の各供給系にし
ゃ断弁を設けると共に、前記コンプレッサからの各空気
供給系にしゃ断弁を設け、前記コンプレッサの吐出側に
空気放出系統を設けて該空気放出系統に空気放出弁を設
け、また前記燃料改質器の燃焼室より排出される排ガス
と前記燃料電池本体の空気極ガス室より排出される残余
の空気とを合流させて前記補助燃焼器に供給する共通経
路の補助燃焼器の入口側に隔離弁を設けると共に該隔離
弁の上流の共通経路に排ガス放出系統を設けて該排ガス
放出系統に排ガス放出弁を設ける構成とし、前記しゃ断
弁及び隔離弁はプラントの正常運転時に入力される弁へ
の駆動信号により開の位置に保持し、プラントの緊急時
に弁への駆動信号が喪失すると閉の位置に動作する機能
を有し、前記排ガス放出弁及び空気排出弁はプラントの
正常運転時に入力される弁への駆動信号により閉の位置
に保持し、プラントの緊急時に弁への駆動信号が喪失す
ると開の位置に動作する機能を有し、且つ排ガス放出弁
の口径を前記隔離弁の口径よりも小さくしたことを特徴
としている。
In order to achieve such an object, the present invention provides a turbine, a compressor that is driven to rotate by the turbine and sends out compressed air, a raw fuel and air from the compressor, and adjusts the energy supply to the turbine. An auxiliary combustor for controlling the compressor to an appropriate operating range, a reforming pipe for passing the raw fuel, air from the compressor, and at least the raw fuel at the time of start-up are supplied to heat the reforming pipe to heat the reforming pipe. A fuel reformer having a combustion chamber that reforms the raw fuel passing through and supplies the exhaust gas to the auxiliary combustor, and the fuel reformed gas obtained from this fuel reformer is supplied and the remaining gas is Air from the anode gas chamber and the compressor, which is supplied to the combustion chamber of the fuel reformer, is supplied and the residual air that has undergone the electrode reaction at the air electrode is A fuel cell main body having an air electrode gas chamber for supplying to the auxiliary combustor is provided, and a cutoff valve is provided for each supply system of raw fuel, and a cutoff valve is provided for each air supply system from the compressor, An air release system is provided on the discharge side, an air release valve is provided in the air release system, and the exhaust gas discharged from the combustion chamber of the fuel reformer and the residual gas discharged from the air electrode gas chamber of the fuel cell body are An isolation valve is provided on the inlet side of the auxiliary combustor of the common path that joins with the air and is supplied to the auxiliary combustor, and an exhaust gas emission system is provided in the common path upstream of the isolation valve to emit exhaust gas to the exhaust gas emission system. A valve is provided, and the shutoff valve and isolation valve are held in the open position by the drive signal to the valve input during normal operation of the plant, and closed when the drive signal to the valve is lost in an emergency of the plant. The exhaust gas discharge valve and the air discharge valve are held in the closed position by the drive signal input to the valve during normal operation of the plant, and the drive signal to the valve is lost in the event of an emergency of the plant. Then, it has a function of operating in the open position, and is characterized in that the diameter of the exhaust gas discharge valve is made smaller than the diameter of the isolation valve.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図面を参照して説明する。第1
図は燃料電池発電プラントの系統構成例を示すものであ
る。第1図に示すように燃料電池本体1は複数組の燃料
極2、空気極3および電解室4とを積層して構成したも
ので、図ではその1組を代表して示してある。そしてこ
の燃料電池本体1は燃料極2に接して燃料極ガス室5、
また空気極3に接して空気極ガス室6が形成されてお
り、燃料電池本体1の外部より後述する改質燃料ガス
(水素リッチガス)および空気をそれぞれ受け入れ、残
余のガスを排出するようになっている。また燃料改質器
7はプロセス側の改質触媒が充填されている複数本の改
質管(図では1本の改質管を代表して示してある)8と
この改質管8を外部より加熱して改質反応を行なわしめ
る燃焼室9とから構成されている。そして燃焼室9には
外部より主燃料として燃料電池本体1の燃料極ガス室5
から排出される残余の燃料と配化剤としての空気とが供
給されるようになっており、またパイロット燃料として
外部より別の原燃料が供給できるように構成されてい
る。さらに補助燃焼器10はプラントの起動時に原燃料
によりタービン11を起動し、このタービンによってコ
ンプレッサ12を自立運転させる。また、プラント通常
運転時には燃料改質器7から供給される改質燃料ガス
(水素リッチガス)により燃焼させ、プラント全体に必
要な空気を供給するコンプレッサ12を駆動するタービ
ンへの供給エネルギを調整するものである。
An embodiment of the present invention will be described below with reference to the drawings. First
The figure shows a system configuration example of a fuel cell power plant. As shown in FIG. 1, the fuel cell body 1 is constructed by stacking a plurality of sets of fuel electrode 2, air electrode 3 and electrolysis chamber 4, and one set is shown as a representative in the figure. The fuel cell body 1 is in contact with the fuel electrode 2, and the fuel electrode gas chamber 5 is
Further, an air electrode gas chamber 6 is formed in contact with the air electrode 3 so as to receive a reformed fuel gas (hydrogen rich gas) and air, which will be described later, from the outside of the fuel cell body 1 and discharge the remaining gas. ing. Further, the fuel reformer 7 includes a plurality of reforming pipes (represented by one reforming pipe as a representative in the figure) 8 filled with a reforming catalyst on the process side and the reforming pipes 8 externally. It is composed of a combustion chamber 9 which is further heated to carry out a reforming reaction. Then, the fuel electrode gas chamber 5 of the fuel cell main body 1 is used as the main fuel from the outside in the combustion chamber 9.
The remaining fuel exhausted from the air and the air as a distributive agent are supplied, and another raw fuel can be supplied from the outside as a pilot fuel. Further, the auxiliary combustor 10 starts the turbine 11 with the raw fuel when the plant is started, and causes the compressor 12 to operate independently by the turbine. Further, during normal operation of the plant, the reformed fuel gas (hydrogen rich gas) supplied from the fuel reformer 7 is burned to adjust the energy supplied to the turbine that drives the compressor 12 that supplies the air required for the entire plant. Is.

原燃料(一般には天然ガス)は図示していない貯蔵タン
クまたは導管よりプラントに供給されるようになってお
り、プラント側においてその供給管13を必要に応じて
分岐し、燃料改質器7のプロセス側の改質管8および燃
焼室9へ、また補助燃焼器10へそれぞれ供給されるよ
うになっている。
The raw fuel (generally natural gas) is supplied to the plant from a storage tank or a conduit (not shown), and the supply pipe 13 is branched on the plant side as necessary so that the fuel reformer 7 The reforming pipe 8 and the combustion chamber 9 on the process side are supplied to the auxiliary combustor 10.

而して、第1図において、14〜16は供給管13を通
して燃料改質器7の改質管8および燃焼室9、補助燃焼
器10へそれぞれ原燃料が供給される供給系に設けられ
た主原燃料供給しゃ断弁、17〜21は燃料改質器7の
改質管8および燃焼室9、補助燃焼器10、燃料電池本
体1の燃料極ガス室5の排出側および空気極ガス室6に
対してプラントの緊急時それぞれ窒素ガスを供給する各
供給系に設けられた窒素ガス供給弁、22,23は燃料
改質器7の改質管8から燃料電池本体1の燃料極ガス室
5と補助燃焼器10とに対して改質燃料ガスをそれぞれ
供給する供給系に設けられた改質燃料供給しゃ断弁、2
4は燃料改質器7の燃焼室9、燃料電池本体1の空気極
ガス室6の排出ガスが合流されて補助燃焼器10に供給
される合流点以降の供給系に設けられた隔離弁である。
また、25はこの隔離弁24が設けられている排出ガス
供給系に接続されている排ガス放出系に設けられた排ガ
ス放出弁、29はコンプレッサ12の出側空気供給系に
接続されている空気放出系に設けられた空気放出弁、2
6〜28はコンプレッサ12から送出される空気を燃料
電池本体1の空気極ガス室6、燃料改質器7の燃料室9
および補助燃料器10にそれぞれ供給する空気供給系に
設けられた空気供給しゃ断弁である。
Thus, in FIG. 1, 14 to 16 are provided in the supply system for supplying the raw fuel to the reforming pipe 8 of the fuel reformer 7, the combustion chamber 9, and the auxiliary combustor 10 through the supply pipe 13. Main raw fuel supply cutoff valves 17 to 21 are the reforming pipe 8 and the combustion chamber 9 of the fuel reformer 7, the auxiliary combustor 10, the discharge side of the fuel electrode gas chamber 5 of the fuel cell body 1 and the air electrode gas chamber 6. On the other hand, nitrogen gas supply valves 22 and 23 provided in each supply system for respectively supplying nitrogen gas in an emergency of the plant, are the reforming pipe 8 of the fuel reformer 7 and the fuel electrode gas chamber 5 of the fuel cell main body 1. And a reforming fuel supply cutoff valve provided in a supply system for supplying reforming fuel gas to the auxiliary combustor 10 and 2
Reference numeral 4 denotes an isolation valve provided in the supply system after the confluence point where the exhaust gas from the combustion chamber 9 of the fuel reformer 7 and the exhaust gas chamber 6 of the fuel cell body 1 are merged and supplied to the auxiliary combustor 10. is there.
Further, 25 is an exhaust gas discharge valve provided in an exhaust gas discharge system connected to the exhaust gas supply system provided with this isolation valve 24, and 29 is an air discharge connected to the outlet side air supply system of the compressor 12. Air release valve provided in the system, 2
Reference numerals 6 to 28 denote the air discharged from the compressor 12 for the air electrode gas chamber 6 of the fuel cell body 1 and the fuel chamber 9 of the fuel reformer 7.
And an air supply cutoff valve provided in an air supply system for supplying to the auxiliary fuel unit 10, respectively.

ここで、各供給系に設けられた弁において、黒塗りの弁
はプラントの緊急時にはフェイルセーフで閉となる弁で
あり、また白抜きの弁はフェイルセーフで開となる弁を
示している。また、これらの各弁はプラントの正常運転
時に入力される弁への駆動信号により閉または開の位置
に保持する駆動源を有し、プラントの緊急時に弁への駆
動信号が喪失すると弁内部に保育する駆動体により開ま
たは閉の位置に移動させる機能を有し、緊急時にプラン
トを安全に停止させるべく動作、つまりフェイルセーフ
側に動作するようになっている。
Here, in the valves provided in each supply system, the black-painted valves are fail-safe valves that are closed in an emergency of the plant, and the white valves are fail-safe valves that are opened. In addition, each of these valves has a drive source that holds the valve in the closed or open position by the drive signal input to the valve during normal operation of the plant. It has a function of moving it to an open or closed position by a driving body for childcare, and operates to safely stop the plant in an emergency, that is, to operate on the fail-safe side.

なお、プラントの各系には制御弁、オリフィス、各種の
計測器などがあるが、本図では省略してある。
Although each system of the plant has a control valve, an orifice, various measuring instruments, etc., they are omitted in this figure.

次に上記のように構成された燃料電池発電プラントの作
用について述べる。まず、通常運転時にはプラントへの
原燃料は供給管13を経て開となっているしゃ断弁14
〜16を通って図示しない制御弁またはオリフィス等に
より必要な量が燃料改質器7のプロセス側の改質管8お
よび燃焼室9へ、また補助燃焼器10へそれぞれ供給さ
れている。この場合、窒素ガス供給系は通常運転時に窒
素ガスがプロセスに供給されないように各窒素ガス供給
弁17〜21は閉としてある。
Next, the operation of the fuel cell power plant configured as described above will be described. First, during normal operation, the raw fuel for the plant is opened via the supply pipe 13 and the shutoff valve 14
A required amount is supplied to the reforming pipe 8 and the combustion chamber 9 on the process side of the fuel reformer 7, and to the auxiliary combustor 10 through control valves (not shown) or orifices, etc. In this case, in the nitrogen gas supply system, the nitrogen gas supply valves 17 to 21 are closed so that nitrogen gas is not supplied to the process during normal operation.

燃料改質器7で改質された改質燃料ガス(水素リッチガ
ス)は図示していない制御弁により流量が制御されて燃
料電池本体1および補助燃料器10へ通常運転時開とな
るしゃ断弁22,23を通して必要量供給される。燃料
電池本体1に供給された改質燃料ガスは燃料極ガス室5
に供給され、燃料極2で既知の電極反応H2→2H++2
-が行なわれる。そして残余の改質燃料ガスは燃料改
質器7の燃焼質9へ導びかれ、燃焼して改質管8を加熱
し、この改質管8を通過する原料ガスを水素リッチの改
質燃料ガスへと改質される。また燃料改質器7の燃焼室
9より排出された燃焼排ガスは燃料電池本体1の空気極
ガス室6から排出された排出ガスと合流し、開となって
いる隔離弁24を通して補助燃焼器10に送られタービ
ン11への供給エネルギが調整される。
The flow rate of the reformed fuel gas (hydrogen-rich gas) reformed by the fuel reformer 7 is controlled by a control valve (not shown) to the fuel cell main body 1 and the auxiliary fuel device 10 and the shutoff valve 22 is opened during normal operation. , 23 to supply the required amount. The reformed fuel gas supplied to the fuel cell body 1 is the fuel electrode gas chamber 5
To the known electrode reaction H 2 → 2H + +2 at the fuel electrode 2.
e - is performed. Then, the remaining reformed fuel gas is guided to the combustible substance 9 of the fuel reformer 7, burns to heat the reforming pipe 8, and the raw material gas passing through the reforming pipe 8 is converted into hydrogen-rich reformed fuel. Reformed into gas. Further, the combustion exhaust gas discharged from the combustion chamber 9 of the fuel reformer 7 merges with the exhaust gas discharged from the air electrode gas chamber 6 of the fuel cell main body 1, and passes through the isolation valve 24 that is open to the auxiliary combustor 10. Is supplied to the turbine 11 and the energy supplied to the turbine 11 is adjusted.

一方プラントで必要な空気はコンプレッサ12より送ら
れ、燃料電池本体1の空気極ガス室6へ開となっている
しゃ断弁26を通して供給される。空気極3では既知の
電極反応2H++1/2O2+2e-2Oが行なわれる。そ
して残余の空気および反応生成蒸気は隔離弁24を通し
て補助燃焼器10へ供給される。また空気の一部は燃料
改質器7の燃焼室9へ開となっているしゃ断弁27を通
して燃焼用酸化剤として供給され、さらに空気の一部は
補助燃焼器10へ開となっているしゃ断弁28を通して
酸化剤として供給される。
On the other hand, the air required in the plant is sent from the compressor 12 and supplied to the air electrode gas chamber 6 of the fuel cell main body 1 through the shutoff valve 26 which is open. At the air electrode 3, the known electrode reaction 2H + + 1 / 2O 2 + 2e 2 O is performed. Then, the remaining air and reaction product vapor are supplied to the auxiliary combustor 10 through the isolation valve 24. Further, a part of the air is supplied to the combustion chamber 9 of the fuel reformer 7 as a combustion oxidant through the cutoff valve 27 which is open, and a part of the air is opened to the auxiliary combustor 10. Delivered as oxidant through valve 28.

このようにプラントの通常運転時には主原燃料供給しゃ
断弁14〜16、改質燃料ガス供給しゃ断弁22,2
3、隔離弁24および空気供給しゃ断弁26〜28を全
て開とし、排ガス放出弁25、空気放出弁29を閉とし
て各供給系を運用している。
As described above, during the normal operation of the plant, the main raw fuel supply cutoff valves 14 to 16 and the reformed fuel gas supply cutoff valves 22 and 2 are provided.
3, the isolation valve 24 and the air supply cutoff valves 26 to 28 are all opened, and the exhaust gas release valve 25 and the air release valve 29 are closed to operate each supply system.

さて、通常時のプラント停止過程においては図示してい
ない多数の制御弁を用いることによりプラントの各所が
安全に経過するようにすることができる。しかし乍ら、
電源喪失や制御用空気喪失などのような外部からの信号
またはタービン駆動エネルギの供給が不能のときにはプ
ラントの個有の装置にて安全にプラントを停止させる必
要がある。以下このような緊急時にプラントを停止させ
る場合の作用について述べる。
By the way, in the normal plant shutdown process, a large number of control valves (not shown) can be used so that each part of the plant can safely pass through. However,
When the supply of external signals or turbine drive energy such as loss of power supply or loss of control air is impossible, it is necessary to stop the plant safely with the plant's own device. The operation when the plant is stopped in such an emergency will be described below.

プラント停止過程においては燃焼火炎を消し、原料ガス
および改質燃料ガスを窒素ガスにて安全にパージするこ
とが重要である。このとき燃料電池本体1の燃料極ガス
室5と空気極ガス室6との間の圧力差をできるだけ小さ
くすること、および燃料改質器7の改質管8の中の圧力
が燃焼室9内の圧力より大きくなるように配慮しつつ窒
素パージを行なうことが必要である。このためには単に
放出弁を多数設けてパージすることではなくて充分考慮
されたパージ方法を採ることが望まれている。
In the process of shutting down the plant, it is important to extinguish the combustion flame and safely purge the raw material gas and the reformed fuel gas with nitrogen gas. At this time, the pressure difference between the fuel electrode gas chamber 5 and the air electrode gas chamber 6 of the fuel cell body 1 is made as small as possible, and the pressure in the reforming pipe 8 of the fuel reformer 7 is set in the combustion chamber 9. It is necessary to carry out nitrogen purging while taking into consideration that the pressure becomes higher than the pressure. For this purpose, it is desired to adopt a purging method that takes into consideration rather than simply providing a large number of discharge valves for purging.

今、外部からの信号や計装空気源が喪失した場合を考え
ると、第1図において黒塗りの弁はフェイルセーフで閉
となる。これにより原料ガスの供給はしゃ断されるが、
プラント内にはまだ改質燃料ガスの一部が保有してい
る。また白抜きの弁はフェイルセーフで開としてあるの
で、窒素ガスが図示していない貯蔵源より供給される。
窒素ガス供給弁17,18はそれぞれ燃料改質器7の燃
焼室9内のパージと補助燃焼器10内のパージを行なう
ための弁であり、パイロット燃焼用の原料ガスをそれぞ
れパージした後に、それぞれの燃焼部をパージするため
に用いられる。また窒素ガス供給弁17は燃料改質器7
の改質管8へ供給された原料ガスをパージするための弁
であり、窒素ガス供給弁20は燃料極ガス室5の下流お
よび燃料改質器7の燃焼室9をパージするための弁であ
る。燃料系においては窒素ガス供給弁17より供給され
た窒素ガスは改質管8内の原料ガスおよび改質燃料ガス
をパージしつつしゃ断弁22を通して窒素ガス供給弁2
0よりの供給窒素ガスと混合しつつ放出弁25より排出
される。他方空気系は空気供給しゃ断弁26〜28を閉
として余剰の空気を放出する。したがって、タービン1
1は燃焼エネルギ、空気の供給が断たれて停止すること
になる。
Considering now the case where the signal from the outside and the instrumentation air source are lost, the black valve in FIG. 1 is closed in a fail-safe manner. This cuts off the supply of raw material gas,
Some of the reformed fuel gas is still held in the plant. Further, since the white valve is opened in a fail-safe manner, nitrogen gas is supplied from a storage source (not shown).
The nitrogen gas supply valves 17 and 18 are valves for purging the combustion chamber 9 of the fuel reformer 7 and the auxiliary combustor 10, respectively, and after purging the raw material gases for pilot combustion, respectively. Used to purge the combustion section of the. The nitrogen gas supply valve 17 is used for the fuel reformer 7.
Is a valve for purging the raw material gas supplied to the reforming pipe 8 and the nitrogen gas supply valve 20 is a valve for purging the downstream side of the fuel electrode gas chamber 5 and the combustion chamber 9 of the fuel reformer 7. is there. In the fuel system, the nitrogen gas supplied from the nitrogen gas supply valve 17 is passed through the shutoff valve 22 while purging the raw material gas and the reformed fuel gas in the reforming pipe 8 and the nitrogen gas supply valve 2
It is discharged from the discharge valve 25 while being mixed with the nitrogen gas supplied from 0. On the other hand, the air system closes the air supply cutoff valves 26 to 28 to discharge excess air. Therefore, the turbine 1
In No. 1, the supply of combustion energy and air is cut off and the engine stops.

また窒素ガス供給弁21の開により燃料電池本体1の空
気極ガス室6には窒素ガスが供給され、空気極ガス室6
内をパージしつつ排ガス放出弁25より放出される。
Further, by opening the nitrogen gas supply valve 21, nitrogen gas is supplied to the air electrode gas chamber 6 of the fuel cell main body 1, and the air electrode gas chamber 6
The gas is discharged from the exhaust gas discharge valve 25 while purging the inside.

以上は空気系、窒素ガス供給系の各弁の説明であるが、
この場合隔離弁24はフェイルセーフで閉となり、通常
運転では開となるようにしてある。何故なら緊急時にこ
の弁を開とすると、一般に弁口径が大きいので、空気極
ガス室6および燃焼極ガス室5の中の圧力降下が大きく
なる可能性が大となる。このため電源喪失とか計装空気
源喪失などの緊急時には隔離弁24を閉として排ガス放
出弁25を開としている。この場合、排ガス放出弁25
の口径は一般に隔離弁24に比して著しく小さい口径に
してある。
The above is a description of each valve of the air system and the nitrogen gas supply system,
In this case, the isolation valve 24 is closed in a fail-safe manner, and is opened in normal operation. Because when the valve is opened in an emergency, the valve diameter is generally large, and therefore the pressure drop in the air electrode gas chamber 6 and the combustion electrode gas chamber 5 is likely to be large. For this reason, the isolation valve 24 is closed and the exhaust gas discharge valve 25 is opened in an emergency such as a loss of power source or a loss of instrumentation air source. In this case, the exhaust gas discharge valve 25
The diameter of the valve is generally smaller than that of the isolation valve 24.

したがって、窒素ガス供給弁17〜21から供給される
パージ窒素ガスの量よりも排ガス放出弁25より放出さ
れる排気量の方がわずかに多くなるようにその弁口径を
選択するか、または図示していないが、これらの弁と組
となって配設されるオリフィスの口径とか、手動弁など
の口径や開度を選択することにより、燃料極ガス室5と
空気極ガス室6との圧力差を小さくしつつ系内のガスを
安全に徐々に排出できることになる。このとき、当然の
ことであるが燃料改質器7の改質管8の圧力は燃焼室9
の圧力よりわずかながら大きくしつつガスを排出できる
とともに系内の圧力もゆっくり低下させることが可能と
なり、燃料電池発電プラントを安全に停止することがで
きる。
Therefore, the valve diameter is selected such that the amount of exhaust gas discharged from the exhaust gas discharge valve 25 is slightly larger than the amount of purge nitrogen gas supplied from the nitrogen gas supply valves 17 to 21, or the illustrated valve size is shown. However, the pressure difference between the fuel electrode gas chamber 5 and the air electrode gas chamber 6 is selected by selecting the diameter of the orifice arranged in combination with these valves or the diameter and opening of the manual valve. The gas in the system can be safely and gradually discharged while reducing At this time, as a matter of course, the pressure of the reforming pipe 8 of the fuel reformer 7 is equal to that of the combustion chamber 9
It is possible to discharge the gas while slightly increasing the pressure to a value lower than that of (1), and it is also possible to slowly lower the pressure in the system, so that the fuel cell power generation plant can be safely stopped.

第2図は第1図と同一部分には同一記号を付して示す本
発明の他の実施例を示すものである。すなわち、本実施
例では第2図に示すように補助燃焼器10からタービン
11へ供給されるエネルギ供給系にフェイルセーフで開
となるエネルギ放出弁30を設けて緊急時にこのエネル
ギ放出弁を開としてエネルギを外部へ放出するようにし
たものである。このようにすれば、第1図に示す作用に
加えてタービン11をより早く停止することができる。
FIG. 2 shows another embodiment of the present invention in which the same parts as in FIG. That is, in this embodiment, as shown in FIG. 2, the energy supply system for supplying energy from the auxiliary combustor 10 to the turbine 11 is provided with an energy release valve 30 that opens in a fail-safe manner, and this energy release valve is opened in an emergency. It is designed to release energy to the outside. In this way, in addition to the operation shown in FIG. 1, the turbine 11 can be stopped earlier.

なお、第1図及び第2図に示す各実施例ではプラントの
緊急時に燃料改質器7の燃焼室9に窒素ガスを供給する
系に設けられたフェイルセーフで開となる窒素ガス供給
弁20を省略するようにしてもよい。
In each of the embodiments shown in FIGS. 1 and 2, a nitrogen gas supply valve 20 that is opened in a fail-safe manner is provided in a system that supplies nitrogen gas to the combustion chamber 9 of the fuel reformer 7 in case of an emergency of the plant. May be omitted.

この他、本発明はその要旨を変更しない範囲内で種々変
形して実施できるものである。
Besides, the present invention can be implemented by being modified in various ways within the scope of the invention.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、電源喪失、計装空気
喪失など緊急かつ重大な故障のときにもフェイルセーフ
方式によりプラントを安全に停止することができる燃料
電池発電プラントを提供することができる。
As described above, according to the present invention, it is possible to provide a fuel cell power plant that can safely stop the plant by a fail-safe method even in the case of an emergency and a serious failure such as a power loss and instrument air loss. it can.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による燃料電池発電プラントの一実施例
を示す系統構成図、第2図は本発明の他の実施例を示す
系統構成図である。 1……燃料電池本体、7……燃料改質器、8……改質
管、10……補助燃焼器、11……タービン、12……
コンプレッサ、14〜16……主原燃料供給しゃ断弁、
22,23……改質燃料ガス供給しゃ断弁、24……隔
離弁、25……排ガス放出弁、29……空気放出弁、2
6〜28……空気供給しゃ断弁、17〜21……窒素ガ
ス供給弁。
FIG. 1 is a system configuration diagram showing an embodiment of a fuel cell power plant according to the present invention, and FIG. 2 is a system configuration diagram showing another embodiment of the present invention. 1 ... Fuel cell main body, 7 ... Fuel reformer, 8 ... Reforming tube, 10 ... Auxiliary combustor, 11 ... Turbine, 12 ...
Compressor, 14 to 16 ... Main raw fuel supply cutoff valve,
22, 23 ... Reformed fuel gas supply cutoff valve, 24 ... Isolation valve, 25 ... Exhaust gas release valve, 29 ... Air release valve, 2
6 to 28 ... Air supply cutoff valve, 17 to 21 ... Nitrogen gas supply valve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タービンと、このタービンにより回転駆動
され加圧された空気を送り出すコンプレッサと、原燃料
及び前記コンプレッサからの空気が供給され前記タービ
ンへのエネルギ供給を加減して前記コンプレッサを適切
な作動範囲に制御する補助燃焼器と、原燃料を通す改質
管と前記コンプレッサからの空気及び少なくとも起動時
には原燃料が供給され前記改質管を加熱してこの改質管
を通る原燃料を改質させるとともにその排ガスを前記補
助燃焼器に供給する燃焼室とを有する燃料改質器と、こ
の燃料改質器から得られる燃料改質ガスが供給され且つ
その残余のガスを前記燃料改質器の燃焼室に供給する燃
料極ガス室と前記コンプレッサからの空気が供給され空
気極での電極反応を行なわせた残余の空気を前記補助燃
焼器に供給する空気極ガス室とを有する燃料電池本体と
を備え、 原燃料の各供給系にしゃ断弁を設けると共に、前記コン
プレッサからの各空気供給系にしゃ断弁を設け、前記コ
ンプレッサの吐出側に空気放出系統を設けて該空気放出
系統に空気放出弁を設け、また前記燃料改質器の燃焼室
より排出される排ガスと前記燃料電池本体の空気極ガス
室より排出される残余の空気とを合流させて前記補助燃
焼器に供給する共通経路の補助燃焼器の入口側に隔離弁
を設けると共に該隔離弁の上流の共通経路に排ガス放出
系統を設けて該排ガス放出系統に排ガス放出弁を設ける
構成とし、 前記しゃ断弁及び隔離弁はプラントの正常運転時に入力
される弁への駆動信号により開の位置に保持し、プラン
トの緊急時に弁への駆動信号が喪失すると閉の位置に動
作する機能を有し、 前記空気放出弁及び排ガス放出弁はプラントの正常運転
時に入力される弁への駆動信号により閉の位置に保持
し、プラントの緊急時に弁への駆動信号が喪失すると開
の位置に動作する機能を有し、且つ排ガス放出弁の口径
を前記隔離弁の口径よりも小さくしたことを特徴とする
燃料電池発電プラント。
Claim: What is claimed is: 1. A turbine, a compressor that is driven to rotate by the turbine and sends out compressed air, and a raw fuel and air from the compressor are supplied to adjust the energy supply to the turbine to adjust the compressor appropriately. The auxiliary combustor for controlling the working range, the reforming pipe for passing the raw fuel, the air from the compressor, and the raw fuel are supplied at least at the time of start-up to heat the reforming pipe to modify the raw fuel passing through the reforming pipe. A fuel reformer having a combustion chamber for improving the quality of the exhaust gas and supplying the exhaust gas to the auxiliary combustor; and a fuel reformed gas obtained from the fuel reformer, and the remaining gas is supplied to the fuel reformer. Of the fuel electrode gas chamber to be supplied to the combustion chamber and the air supplied from the compressor to cause the electrode reaction at the air electrode to be performed, and the remaining air to be supplied to the auxiliary combustor. A fuel cell main body having a polar gas chamber and a cutoff valve is provided in each feed system of raw fuel, and a cutoff valve is provided in each air supply system from the compressor, and an air discharge system is provided on the discharge side of the compressor. An air release valve is provided in the air release system, and the exhaust gas discharged from the combustion chamber of the fuel reformer and the residual air discharged from the air electrode gas chamber of the fuel cell main body are combined to form the air discharge valve. A structure in which an isolation valve is provided on the inlet side of the auxiliary combustor of the common path for supplying to the auxiliary combustor, an exhaust gas emission system is provided in the common path upstream of the isolation valve, and an exhaust gas emission valve is provided in the exhaust gas emission system; The shutoff valve and isolation valve have the function of holding in the open position by the drive signal input to the valve during normal operation of the plant, and operating in the closed position when the drive signal to the valve is lost in an emergency of the plant. However, the air release valve and the exhaust gas release valve are held in the closed position by the drive signal input to the valve during normal operation of the plant, and operate in the open position when the drive signal to the valve is lost in an emergency of the plant. A fuel cell power plant having a function and having a diameter of an exhaust gas discharge valve smaller than that of the isolation valve.
【請求項2】タービンと、このタービンにより回転駆動
され加圧された空気を送り出すコンプレッサと、原燃料
及び前記コンプレッサからの空気が供給され前記タービ
ンへのエネルギ供給を加減して前記コンプレッサを適切
な作動範囲に制御する補助燃焼器と、原燃料を通す改質
管と前記コンプレッサからの空気及び少なくとも起動時
には原燃料が供給され前記改質管を加熱してこの改質管
を通る原燃料を改質させるとともにその排ガスを前記補
助燃焼器に供給する燃焼室とを有する燃料改質器と、こ
の燃料改質器から得られる燃料改質ガスが供給され且つ
その残余のガスを前記燃料改質器の燃焼室に供給する燃
料極ガス室と前記コンプレッサからの空気が供給され空
気極での電極反応を行なわせた残余の空気を前記補助燃
焼器に供給する空気極ガス室とを有する燃料電池本体と
を備え、 原燃料の各供給系にしゃ断弁を設けると共に、前記コン
プレッサからの各空気供給系にしゃ断弁を設け、前記コ
ンプレッサの吐出側に空気放出系統を設けて該空気放出
系統に空気放出弁を設け、また前記燃料改質器の燃焼室
より排出される排ガスと前記燃料電池本体の空気極ガス
室より排出される残余の空気とを合流させて前記補助燃
焼器に供給する共通経路の補助燃焼器の入口側に隔離弁
を設けると共に該隔離弁の上流の共通経路に排ガス放出
系統を設けて該排ガス放出系統に排ガス放出弁を設け、
さらにプラントの緊急時及び通常運転時の必要な時期に
窒素ガスを供給する窒素ガス供給系を設けると共に、こ
の窒素ガス供給系を各原燃料供給系に設けられた前記し
ゃ断弁の後流側及び前記燃料電池本体の空気極ガス室の
入口側に設けられた前記しゃ断弁の後流側に窒素ガス供
給連結配管系を介して接続し、該各窒素ガス供給連結配
管系の前記各接続部上流側に窒素供給弁を設ける構成と
し、 前記しゃ断弁及び隔離弁はプラントの正常運転時に入力
される弁への駆動信号により開の位置に保持し、プラン
トの緊急時に弁への駆動信号が喪失すると閉の位置に動
作する機能を有し、 前記空気排出弁、排ガス放出弁及び窒素供給弁はプラン
トの正常運転時に入力される弁への駆動信号により閉の
位置に保持し、プラントの緊急時に弁への駆動信号が喪
失すると開の位置に動作する機能を有し、且つ排ガス放
出弁の口径を前記隔離弁の口径よりも小さくしたことを
特徴とする燃料電池発電プラント。
2. A turbine, a compressor rotatably driven by the turbine to send out compressed air, and a raw fuel and air from the compressor are supplied to adjust the energy supply to the turbine to adjust the compressor appropriately. The auxiliary combustor for controlling the working range, the reforming pipe for passing the raw fuel, the air from the compressor, and the raw fuel are supplied at least at the time of start-up to heat the reforming pipe to modify the raw fuel passing through the reforming pipe. A fuel reformer having a combustion chamber for improving the quality of the exhaust gas and supplying the exhaust gas to the auxiliary combustor; and a fuel reformed gas obtained from the fuel reformer, and the remaining gas is supplied to the fuel reformer. Of the fuel electrode gas chamber to be supplied to the combustion chamber and the air supplied from the compressor to cause the electrode reaction at the air electrode to be performed, and the remaining air to be supplied to the auxiliary combustor. A fuel cell main body having a polar gas chamber and a cutoff valve is provided in each feed system of raw fuel, and a cutoff valve is provided in each air supply system from the compressor, and an air discharge system is provided on the discharge side of the compressor. An air release valve is provided in the air release system, and the exhaust gas discharged from the combustion chamber of the fuel reformer and the residual air discharged from the air electrode gas chamber of the fuel cell main body are combined to form the air discharge valve. An isolation valve is provided on the inlet side of the auxiliary combustor of the common path supplied to the auxiliary combustor, and an exhaust gas release system is provided in the common path upstream of the isolation valve, and an exhaust gas release valve is provided in the exhaust gas release system,
Further, a nitrogen gas supply system for supplying nitrogen gas at the time of emergency and normal operation of the plant is provided, and this nitrogen gas supply system is provided at the downstream side of the shutoff valve provided in each raw fuel supply system and Connected to the downstream side of the shutoff valve provided on the inlet side of the cathode gas chamber of the fuel cell main body through a nitrogen gas supply connection piping system, and upstream of each connection part of each nitrogen gas supply connection piping system. A nitrogen supply valve is provided on the side, and the shutoff valve and isolation valve are held in the open position by a drive signal to the valve input during normal operation of the plant, and when the drive signal to the valve is lost in an emergency of the plant, It has a function of operating in the closed position, the air discharge valve, the exhaust gas discharge valve and the nitrogen supply valve are held in the closed position by a drive signal to the valve input during normal operation of the plant, and the valve is opened during an emergency of the plant. Drive to Fuel cell power plant, characterized in that the issue of the loss has a function to operate in the open position, and the diameter of the exhaust gas discharge valve is made smaller than the diameter of the isolation valve.
JP58059693A 1983-04-05 1983-04-05 Fuel cell power plant Expired - Lifetime JPH0624129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059693A JPH0624129B2 (en) 1983-04-05 1983-04-05 Fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059693A JPH0624129B2 (en) 1983-04-05 1983-04-05 Fuel cell power plant

Publications (2)

Publication Number Publication Date
JPS59186273A JPS59186273A (en) 1984-10-23
JPH0624129B2 true JPH0624129B2 (en) 1994-03-30

Family

ID=13120543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059693A Expired - Lifetime JPH0624129B2 (en) 1983-04-05 1983-04-05 Fuel cell power plant

Country Status (1)

Country Link
JP (1) JPH0624129B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227375A (en) * 1985-03-30 1986-10-09 Toshiba Corp Fuel cell power generation system
JPS6298572A (en) * 1985-10-25 1987-05-08 Mitsubishi Electric Corp Controlling method for turbocompressor system
JPH06103631B2 (en) * 1986-01-23 1994-12-14 株式会社日立製作所 Air supply system device for fuel cell system
JPS62237674A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Fuel cell power generating system
JPS6310471A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JPS63298973A (en) * 1987-05-29 1988-12-06 Asahi Eng Kk Exhaust gas combustion process of reformer
JPS6481177A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Fuel cell plant
JPH04102510U (en) * 1991-01-31 1992-09-03 昭和電線電纜株式会社 multi-pair cable
JP2916289B2 (en) * 1991-03-20 1999-07-05 株式会社東芝 Control unit for fuel cell power generation system
JP2005190962A (en) * 2003-12-26 2005-07-14 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generating equipment and purging method of inflammable gas in fuel cell power generating equipment

Also Published As

Publication number Publication date
JPS59186273A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
US8728675B2 (en) Fuel cell system
JPH0624129B2 (en) Fuel cell power plant
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JPS62190660A (en) Suspending method for fuel cell power generating plant
JP2887346B2 (en) Fuel cell generator
JPS6224910B2 (en)
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JP2002124278A (en) Fuel cell system
JPH0287480A (en) Operation stopping method of fuel cell power generation device
JPH01195671A (en) Fuel cell power generating system and operating method thereof
JP2001028270A (en) Fuel cell power generating device with raw fuel changeover apparatus and operation method therefor
JPH053043A (en) Fuel cell device
JPH1064571A (en) Fuel cell power generating system
JP3383091B2 (en) How to start the fuel cell power plant
WO2010134317A1 (en) Hydrogen generation device and fuel cell system
JPS6313277A (en) In-system gas replacement of fuel cell
JPH0690930B2 (en) Start / stop control method for fuel cell power generation equipment
JPS6179856A (en) Method of starting turbo-compressor
JPH01159966A (en) Method for shutdown of phosphoric acid type fuel cell power-generating device
JP4158131B2 (en) Fuel cell power generator
JPH09213354A (en) Fuel cell generating equipment
JP2002343386A (en) Fuel cell system
JPS61227372A (en) Fuel cell power generation system
JP2004238267A (en) Hydrogen producing apparatus, fuel cell power generation system, and operation method of hydrogen producing apparatus