JP2002343386A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2002343386A
JP2002343386A JP2001143858A JP2001143858A JP2002343386A JP 2002343386 A JP2002343386 A JP 2002343386A JP 2001143858 A JP2001143858 A JP 2001143858A JP 2001143858 A JP2001143858 A JP 2001143858A JP 2002343386 A JP2002343386 A JP 2002343386A
Authority
JP
Japan
Prior art keywords
gas
fuel
flow path
fuel cell
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001143858A
Other languages
Japanese (ja)
Inventor
Akinari Nakamura
彰成 中村
Masataka Ozeki
正高 尾関
Tetsuya Ueda
哲也 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001143858A priority Critical patent/JP2002343386A/en
Publication of JP2002343386A publication Critical patent/JP2002343386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system enabled to realize a more stable and safer operation when operating, and enabled to realize a safer inert gas purge when stopping the operation. SOLUTION: A residual fuel gas flow path 25 and a combustion gas flow path 26 supplying respective gases to a combustion device 24 burning residual fuel gas exhausted from a fuel cell 21 and fuel gas supplied to outside, are installed. An electromagnetic valve 28, passing and blocking the supply of combustion gas by opening and closing the combustion gas flow path, a proportion valve 29 adjusting the flow volume of the residual combustion gas, and a check valve 30 preventing the back flow of the residual fuel gas, are mounted to the combustion gas flow path 26 from the upstream in this sequence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子形の燃
料電池を用いて発電を行う燃料電池システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system for generating electric power using a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】以下に、従来の燃料電池システムについ
て、図面を参照しながら説明する。
2. Description of the Related Art A conventional fuel cell system will be described below with reference to the drawings.

【0003】図3に示すように、従来の燃料電池システ
ムは、燃料ガスと酸化剤ガスを用いて発電を行う固体高
分子形の燃料電池1と、天然ガスなどを原料を水蒸気改
質し、水素リッチなガスを生成して燃料電池1に供給す
る燃料ガス生成部2と、燃料電池1に供給する燃料ガス
を加湿する燃料側加湿器3と、燃料電池1より排出され
る残余燃料ガスと燃焼ガスを燃焼する燃焼器4と、残余
燃料ガスを燃焼器4に供給する残余燃料ガス流路5と、
燃焼ガスを燃焼器4に供給する燃焼ガス流路6と、原料
を燃料ガス生成部2に供給する原料ガス流路7を備え
る。
As shown in FIG. 3, a conventional fuel cell system comprises a polymer electrolyte fuel cell 1 for generating electric power using a fuel gas and an oxidizing gas, and a steam reforming of raw material such as natural gas. A fuel gas generating unit 2 for generating a hydrogen-rich gas and supplying it to the fuel cell 1, a fuel-side humidifier 3 for humidifying the fuel gas supplied to the fuel cell 1, and a residual fuel gas discharged from the fuel cell 1; A combustor 4 for burning the combustion gas, a residual fuel gas passage 5 for supplying the residual fuel gas to the combustor 4,
A combustion gas flow path 6 for supplying combustion gas to the combustor 4 and a raw material gas flow path 7 for supplying raw material to the fuel gas generator 2 are provided.

【0004】また燃焼ガス流路6には、燃焼ガス流路6
を開閉する電磁弁8と、燃焼ガス流量を調整する比例弁
9を備えている。さらに原料ガス流路7には、窒素を供
給するための窒素供給口10と、原料ガス流路7を開閉
する電磁弁11を備えている。
The combustion gas passage 6 has a combustion gas passage 6.
And a proportional valve 9 for adjusting the combustion gas flow rate. Further, the source gas flow path 7 is provided with a nitrogen supply port 10 for supplying nitrogen and an electromagnetic valve 11 for opening and closing the source gas flow path 7.

【0005】燃料ガス生成部2で生成した燃料ガスに
は、水素以外に水蒸気と二酸化炭素や微量の一酸化炭素
を含む。燃料ガス生成部2で生成された燃料ガスは、燃
料側加湿器3で水を用いて加湿される。加湿された燃料
ガスは、燃料電池1へ供給され、発電を行う。
The fuel gas generated by the fuel gas generator 2 contains water vapor, carbon dioxide, and a trace amount of carbon monoxide in addition to hydrogen. The fuel gas generated by the fuel gas generator 2 is humidified by the fuel humidifier 3 using water. The humidified fuel gas is supplied to the fuel cell 1 to generate power.

【0006】燃料電池1からは、発電に用いられなかっ
た水素と水蒸気と二酸化炭素と一酸化炭素の混合ガスが
排出される。排出された残余燃料ガスは、残余燃料ガス
流路5を通じ燃焼器4に供給される。燃焼器4には燃焼
ガス流路6を通じて燃焼ガスも供給される。
From the fuel cell 1, a mixed gas of hydrogen, water vapor, carbon dioxide, and carbon monoxide, which has not been used for power generation, is discharged. The discharged residual fuel gas is supplied to the combustor 4 through the residual fuel gas passage 5. Combustion gas is also supplied to the combustor 4 through a combustion gas passage 6.

【0007】燃焼器4は燃料ガス生成部2の改質反応を
促進するためのものであり、起動時や低発電時等の残余
燃料ガスが多い場合は残余燃料ガスのみを燃焼し、燃料
ガス生成部2内の改質反応を司る部分の温度保持を行な
う。また、発電を開始し残余燃料ガスのみでは温度保持
が不可能な場合、残余燃料ガスと燃焼ガスの両方を燃焼
させることにより温度保持を行なう。つまり、残余燃料
ガスのみを燃焼するときは、電磁弁8および比例弁9を
閉にする。また燃焼ガスをも燃焼するときには、電磁弁
8を開にして、比例弁9の弁開度を調整することにより
燃焼ガス流量を調整する。
The combustor 4 is for promoting the reforming reaction of the fuel gas generator 2, and when starting or at the time of low power generation, etc., when the residual fuel gas is large, only the residual fuel gas is burned. The temperature of the portion in the generation section 2 that controls the reforming reaction is maintained. Further, when the power generation is started and the temperature cannot be maintained only by the residual fuel gas, the temperature is maintained by burning both the residual fuel gas and the combustion gas. That is, when burning only the residual fuel gas, the solenoid valve 8 and the proportional valve 9 are closed. When combustion gas is also combusted, the solenoid valve 8 is opened and the valve opening of the proportional valve 9 is adjusted to adjust the combustion gas flow rate.

【0008】また燃焼電池システムの運転終了時には、
電磁弁11を閉にして原料供給を停止するとともに、窒
素供給口10より窒素を供給し、燃料電池1および燃料
ガス生成部2を含む燃料ガス流路を窒素でパージする。
At the end of operation of the combustion cell system,
The supply of the raw material is stopped by closing the electromagnetic valve 11, nitrogen is supplied from the nitrogen supply port 10, and the fuel gas flow path including the fuel cell 1 and the fuel gas generator 2 is purged with nitrogen.

【0009】[0009]

【発明が解決しようとする課題】上記従来例において、
燃焼器4が残余燃焼ガスのみを燃焼している場合の電磁
弁8および比例弁9は閉である。残余燃料ガスには発電
に用いられなかった水素と水蒸気と二酸化炭素と一酸化
炭素が含まれている。残余燃料ガスの大部分は燃焼器4
で燃焼されるが、一部は拡散的に残余燃料ガス流路5と
燃焼ガス流路6の合流部から燃焼ガス流路6に流入し比
例弁9まで至る。その結果、残余燃料ガスに含まれる水
蒸気が比例弁9に結露する。これは、燃焼ガス供給時に
おいて燃焼ガス流量の安定供給を損ねる原因になるとと
もに、比例弁9の故障の原因となる。
In the above conventional example,
When the combustor 4 is burning only the residual combustion gas, the solenoid valve 8 and the proportional valve 9 are closed. The remaining fuel gas contains hydrogen, water vapor, carbon dioxide, and carbon monoxide that have not been used for power generation. Most of the remaining fuel gas is in the combustor 4
However, a part of the fuel gas diffusely flows into the combustion gas flow path 6 from the junction of the residual fuel gas flow path 5 and the combustion gas flow path 6 and reaches the proportional valve 9. As a result, the water vapor contained in the residual fuel gas is condensed on the proportional valve 9. This causes a loss of stable supply of the combustion gas flow rate during the supply of the combustion gas, and also causes a failure of the proportional valve 9.

【0010】また、上記従来例の窒素パージでは、電磁
弁11を閉にして、窒素供給口10より窒素を供給す
る。運転中は燃料ガス生成部2での水蒸気改質や、燃料
側加湿器3での加湿、燃焼器4での燃焼等の諸反応によ
り燃料ガス流路の圧力損失は大きい。運転中の燃料ガス
生成部2の入口ゲージ圧は10〜20kPaくらいであ
る。そのため、システム運転直後に窒素供給口10から
窒素を供給するときは高い吐出圧で供給する。現状の電
磁弁11は2次側口に10kPa程度の圧力を加える
と、弁が閉であっても圧力により弁が開き逆流する。そ
の結果、原料ガス流路7の電磁弁11より上流側に窒素
が混在してしまう。
In the conventional nitrogen purge, the solenoid valve 11 is closed and nitrogen is supplied from the nitrogen supply port 10. During operation, pressure loss in the fuel gas flow path is large due to various reactions such as steam reforming in the fuel gas generation unit 2, humidification in the fuel-side humidifier 3, and combustion in the combustor 4. The gauge pressure at the inlet of the fuel gas generator 2 during operation is about 10 to 20 kPa. Therefore, when supplying nitrogen from the nitrogen supply port 10 immediately after the system operation, supply is performed at a high discharge pressure. When a pressure of about 10 kPa is applied to the secondary port of the current electromagnetic valve 11, even if the valve is closed, the valve opens due to the pressure and flows backward. As a result, nitrogen is mixed in the source gas flow path 7 upstream of the solenoid valve 11.

【0011】そこで本発明は、上述したこのような従来
の燃料電池システムが有する課題を考慮して、燃料電池
システム運転時における、残余燃料ガスと燃焼ガスを燃
焼させる燃焼器の、より安定かつ安全な燃焼を実現でき
る燃料電池システムを提供することを目的とするもので
ある。
In view of the above-mentioned problems of the conventional fuel cell system, the present invention provides a more stable and safer combustor for combusting residual fuel gas and combustion gas during operation of the fuel cell system. It is an object of the present invention to provide a fuel cell system capable of realizing efficient combustion.

【0012】また燃料電池システム運転終了時におけ
る、より安全な不活性ガスパージを実現できる燃料電池
システムを提供することを目的とするものである。
It is another object of the present invention to provide a fuel cell system which can realize safer inert gas purging at the end of fuel cell system operation.

【0013】[0013]

【課題を解決するための手段】第1の本発明(請求項1
に対応)は、原料を改質して水素リッチな燃料ガスを生
成する燃料生成手段と、前記燃料ガスと酸化剤ガスを用
いて発電を行う固体高分子形の燃料電池と、前記燃料電
池より排出される残余燃料ガスと燃焼ガスのいずれか一
方または両方を燃焼する燃焼器と、前記燃焼器に前記残
余燃料ガスを供給する残余燃料ガス流路と、前記燃焼器
に前記燃焼ガスを供給する燃焼ガス流路と、前記燃焼ガ
ス流路に設けられ、前記燃焼ガスの流量を調整する燃焼
ガス流量調整手段とを具備し、前記残余燃料ガス流路と
前記燃焼ガス流路の合流部と前記燃焼ガス流量調整手段
の間の前記燃焼ガス流路に、残余燃料ガス逆流防止弁が
設けられている燃料電池システムである。
Means for Solving the Problems The first invention (claim 1)
A) a fuel generating means for reforming a raw material to generate a hydrogen-rich fuel gas, a polymer electrolyte fuel cell for generating power using the fuel gas and the oxidizing gas, and A combustor for burning one or both of the residual fuel gas and the combustion gas to be discharged, a residual fuel gas flow path for supplying the residual fuel gas to the combustor, and supplying the combustion gas to the combustor A combustion gas flow path, and a combustion gas flow rate adjusting means provided in the combustion gas flow path to adjust a flow rate of the combustion gas; and a junction of the residual fuel gas flow path and the combustion gas flow path, A fuel cell system in which a residual fuel gas check valve is provided in the combustion gas flow path between the combustion gas flow rate adjusting means.

【0014】第2の本発明(請求項2に対応)は、前記
残余燃料ガス逆流防止弁が、電磁弁であり、前記電磁弁
は前記合流部の方向からの流入に対して閉止機能を有す
る第1の本発明の燃料電池システムである。
According to a second aspect of the present invention (corresponding to claim 2), the residual fuel gas check valve is a solenoid valve, and the solenoid valve has a closing function against inflow from the direction of the junction. 1 is a fuel cell system according to a first invention.

【0015】第3の本発明(請求項3に対応)は、原料
を改質して水素リッチな燃料ガスを生成する燃料生成手
段と、前記燃料ガスと酸化剤ガスを用いて発電を行う固
体高分子形の燃料電池と、原料を前記燃料生成手段へ供
給するための原料流路と、前記原料流路に設けられ、原
料流路に不活性ガスを供給する不活性ガス供給口と、前
記不活性ガス供給口より上流の原料流路の部分に設けら
れた前記不活性ガス逆流防止弁とを備え、システムの運
転終了時に、前記燃料生成手段、燃料ガスの流路および
前記燃料電池を前記不活性ガスでパージする燃料電池シ
ステムである。
A third aspect of the present invention (corresponding to claim 3) is a fuel generating means for reforming a raw material to generate a hydrogen-rich fuel gas, and a solid-state for generating power using the fuel gas and the oxidizing gas. A polymer fuel cell, a raw material flow path for supplying a raw material to the fuel generating means, an inert gas supply port provided in the raw material flow path, for supplying an inert gas to the raw material flow path, The inert gas check valve provided in a portion of the raw material flow path upstream of the inert gas supply port, when the operation of the system is completed, the fuel generation means, the fuel gas flow path and the fuel cell This is a fuel cell system for purging with an inert gas.

【0016】第4の本発明(請求項4に対応)は、前記
不活性ガス逆流防止弁が電磁弁であり、前記電磁弁は前
記不活性ガス供給口の方向からの流入に対して閉止機能
を有する第3の本発明の燃料電池システムである。
According to a fourth aspect of the present invention (corresponding to claim 4), the inert gas check valve is a solenoid valve, and the solenoid valve has a closing function against inflow from the direction of the inert gas supply port. It is a fuel cell system of the third invention having the following.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を、図
面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施の形態1)図1は、本発明の実施の
形態1に係る燃料電池システムを示す構成図である。本
実施の形態における燃料電池システムは、燃料ガスと酸
化剤ガスを用いて発電を行う固体高分子形の燃料電池2
1と、天然ガスなどを原料を水蒸気改質し、水素リッチ
なガスを生成して燃料電池21に供給する燃料ガス生成
部22と、燃料電池21に供給する燃料ガスを加湿する
燃料側加湿器23と、燃料電池21より排出される残余
燃料ガスと燃焼ガスを燃焼する燃焼器24と、残余燃料
ガスを燃焼器24に供給する残余燃料ガス流路25と、
燃焼ガスを燃焼器24に供給する燃焼ガス流路26と、
原料を燃料ガス生成部22に供給する原料ガス流路27
を備える。
(Embodiment 1) FIG. 1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention. The fuel cell system according to the present embodiment is a polymer electrolyte fuel cell 2 that generates power using a fuel gas and an oxidizing gas.
1, a fuel gas generating unit 22 that generates a hydrogen-rich gas by steam reforming a raw material such as natural gas and supplies it to a fuel cell 21, and a fuel-side humidifier that humidifies the fuel gas supplied to the fuel cell 21 23, a combustor 24 for burning the residual fuel gas and the combustion gas discharged from the fuel cell 21, a residual fuel gas flow path 25 for supplying the residual fuel gas to the combustor 24,
A combustion gas passage 26 for supplying combustion gas to the combustor 24;
Source gas flow path 27 that supplies a source material to fuel gas generation unit 22
Is provided.

【0019】また燃焼ガス流路26には、燃焼ガス流路
を開閉し燃焼ガスの供給・遮断をする電磁弁28と燃焼
ガス流量を調整する比例弁29、残余燃焼ガスの逆流を
防止する残余燃料ガス逆流防止弁30を備えている。
The combustion gas passage 26 has a solenoid valve 28 for opening and closing the combustion gas passage to supply and shut off the combustion gas, a proportional valve 29 for adjusting the flow rate of the combustion gas, and a residual valve for preventing the backflow of the remaining combustion gas. The fuel gas check valve 30 is provided.

【0020】燃料ガス生成部22で生成した燃料ガスに
は、水素以外に水蒸気と二酸化炭素や微量の一酸化炭素
を含む。燃料ガス生成部22で生成された燃料ガスは、
燃料側加湿器23で水を用いることにより適切な湿度に
加湿される。加湿された燃料ガスは、燃料電池21へ供
給され、発電を行う。燃料電池21からは、発電に用い
られなかった水素と水蒸気と二酸化炭素と一酸化炭素の
混合ガスが排出される。排出された残余燃料ガスは、残
余燃料ガス流路25を通じ燃焼器24に供給される。燃
焼器24には燃焼ガス流路26を通じて燃焼ガスも供給
される。
The fuel gas generated by the fuel gas generator 22 contains water vapor, carbon dioxide, and a trace amount of carbon monoxide in addition to hydrogen. The fuel gas generated by the fuel gas generator 22 is
By using water in the fuel-side humidifier 23, humidification is performed to an appropriate humidity. The humidified fuel gas is supplied to the fuel cell 21 to generate power. From the fuel cell 21, a mixed gas of hydrogen, water vapor, carbon dioxide, and carbon monoxide that has not been used for power generation is discharged. The discharged residual fuel gas is supplied to the combustor 24 through the residual fuel gas passage 25. Combustion gas is also supplied to the combustor 24 through a combustion gas passage 26.

【0021】燃焼器24は燃料ガス生成部22の改質反
応を促進するためのものであり、起動時や低発電時等の
残余燃料ガスが多い場合は残余燃料ガスのみを燃焼し、
燃料ガス生成部22内の改質反応を司る部分の温度保持
を行なう。また、発電を開始し残余燃料ガスのみでは温
度保持が不可能な場合、残余燃料ガスと燃焼ガスの両方
を燃焼させることにより温度保持を行なう。
The combustor 24 is for accelerating the reforming reaction of the fuel gas generating section 22. When the residual fuel gas is large at the time of starting or at the time of low power generation, the combustor 24 burns only the residual fuel gas.
The temperature of the portion that controls the reforming reaction in the fuel gas generator 22 is maintained. Further, when the power generation is started and the temperature cannot be maintained only by the residual fuel gas, the temperature is maintained by burning both the residual fuel gas and the combustion gas.

【0022】つまり、残余燃料ガスのみを燃焼するとき
は、電磁弁28、比例弁29および残余燃料ガス逆流防
止弁30を閉にする。また燃焼ガスと残余燃料ガスの両
方を燃焼するときには、電磁弁8および残余燃料ガス逆
流防止弁30を開にして、比例弁29の開度を調整する
ことにより燃焼ガス流量を調整する。
That is, when only the residual fuel gas is burned, the solenoid valve 28, the proportional valve 29 and the residual fuel gas check valve 30 are closed. When both the combustion gas and the residual fuel gas are burned, the solenoid valve 8 and the residual fuel gas check valve 30 are opened, and the opening of the proportional valve 29 is adjusted to adjust the combustion gas flow rate.

【0023】なお本実施の形態では燃焼器24は燃料ガ
ス生成部22の改質反応を促進するための燃焼器とした
が、燃焼器24は、燃焼熱を水との熱交換により給湯・
暖房等に熱利用する燃焼器であってもよい。
In the present embodiment, the combustor 24 is a combustor for accelerating the reforming reaction of the fuel gas generator 22. However, the combustor 24 uses hot water for heat exchange by exchanging combustion heat with water.
A combustor utilizing heat for heating or the like may be used.

【0024】上記本実施の形態における燃料電池システ
ムの構成をとると、燃焼器24で残余燃料ガスのみを燃
焼するときは、電磁弁28、比例弁29および残余燃料
ガス逆流防止弁30を閉にする。そのため、残余燃料ガ
スは残余燃料ガス逆流防止弁30より上流には逆流する
ことも、また拡散的に流入することもできない。
With the configuration of the fuel cell system according to the present embodiment, when only the residual fuel gas is burned in the combustor 24, the solenoid valve 28, the proportional valve 29 and the residual fuel gas check valve 30 are closed. I do. Therefore, the residual fuel gas cannot flow back upstream of the residual fuel gas check valve 30 nor can it diffusely flow.

【0025】この結果、比例弁29に水滴が結露するこ
ともなくなり、この後の燃焼ガス供給時において燃焼ガ
ス流量の安定供給を実現でき、水滴による比例弁29の
故障を防ぐことを実現できる。当然、残余燃料ガスの電
磁弁28、比例弁29上流への逆流は起こらない。
As a result, water droplets do not condense on the proportional valve 29, so that a stable supply of the combustion gas flow rate can be realized during the subsequent supply of the combustion gas, and the failure of the proportional valve 29 due to water droplets can be prevented. Naturally, backflow of the residual fuel gas upstream of the solenoid valve 28 and the proportional valve 29 does not occur.

【0026】なお、残余燃料ガスの燃焼ガス流路26へ
の逆流および拡散的流入は、比例弁29の出口部の圧力
より、残余燃料ガス流路25と燃焼ガス流路26との合
流部の圧力のほうが高いときに従来の燃料電池システム
ではより顕著に起こる。そのため残余燃料ガス逆流防止
弁30として電磁弁を用い、比例弁29を通過した燃焼
ガスが電磁弁のOUT側口から電磁弁に入り、IN側口
から出て燃焼器24に供給されるように設置することは
有効である。
The backflow and diffusive inflow of the residual fuel gas into the combustion gas passage 26 are caused by the pressure at the outlet of the proportional valve 29 at the junction of the residual fuel gas passage 25 and the combustion gas passage 26. This is more pronounced in conventional fuel cell systems when the pressure is higher. Therefore, an electromagnetic valve is used as the residual fuel gas check valve 30 so that the combustion gas that has passed through the proportional valve 29 enters the electromagnetic valve from the OUT port of the electromagnetic valve, exits from the IN port, and is supplied to the combustor 24. Installation is effective.

【0027】すなわち、残余燃料ガスの流れに対しては
電磁弁は順方向に設置されているため、残余燃料ガスの
圧力が増加した場合でも残余燃料ガスの逆流を防ぐこと
ができる。
That is, since the solenoid valve is disposed in the forward direction with respect to the flow of the residual fuel gas, it is possible to prevent the residual fuel gas from flowing backward even when the pressure of the residual fuel gas increases.

【0028】(実施の形態2)図2は、本発明の実施の
形態2に係る燃料電池システムを示す構成図である。本
実施の形態2における燃料電池システムは、燃料ガスと
酸化剤ガスを用いて発電を行う固体高分子形の燃料電池
21と、天然ガスなどを原料を水蒸気改質し、水素リッ
チなガスを生成して燃料電池21に供給する燃料ガス生
成部22と、燃料電池21に供給する燃料ガスを加湿す
る燃料側加湿器23と、反応に使用されなかった燃料ガ
スを燃料電池21から排出する残余燃料ガス流路25
と、原料を燃料ガス生成部22に供給する原料ガス流路
27を備える。
(Embodiment 2) FIG. 2 is a configuration diagram showing a fuel cell system according to Embodiment 2 of the present invention. The fuel cell system according to the second embodiment includes a polymer electrolyte fuel cell 21 that generates power using a fuel gas and an oxidizing gas, and a process in which a raw material such as natural gas is subjected to steam reforming to generate a hydrogen-rich gas. And a fuel-side humidifier 23 for humidifying the fuel gas supplied to the fuel cell 21, and a residual fuel for discharging the fuel gas not used for the reaction from the fuel cell 21. Gas flow path 25
And a raw material gas flow path 27 that supplies a raw material to the fuel gas generation unit 22.

【0029】また原料ガス流路27には、不活性ガスを
供給するための不活性ガス供給口31と、原料ガス流路
27を開閉し原料ガスの供給・遮断をする電磁弁32
と、不活性ガス供給口より上流の原料ガス流路に不活性
ガスの逆流を防止する不活性ガス逆流防止弁33を備え
ている。
The source gas passage 27 has an inert gas supply port 31 for supplying an inert gas, and an electromagnetic valve 32 for opening and closing the source gas passage 27 to supply and shut off the source gas.
And an inert gas backflow prevention valve 33 for preventing backflow of the inert gas in the source gas flow path upstream of the inert gas supply port.

【0030】燃料電池システムの運転終了時には、まず
電磁弁32と不活性ガス逆流防止弁33を閉にする。次
いで、不活性ガス供給口31より不活性ガスを供給し、
燃料ガス生成部22、燃料側加湿器23、燃料電池21
と燃料ガス流路を不活性ガスでパージする。
At the end of the operation of the fuel cell system, first, the solenoid valve 32 and the inert gas check valve 33 are closed. Next, an inert gas is supplied from the inert gas supply port 31,
Fuel gas generator 22, fuel humidifier 23, fuel cell 21
And the fuel gas flow path is purged with an inert gas.

【0031】上記本実施の形態における燃料電池システ
ムの構成をとると、燃料電池システムの運転が停止した
直後の不活性ガス吐出圧が高い場合でも、不活性ガス逆
流防止弁33を閉にしているために、電磁弁32の原料
ガスに対して出口側の圧力は高くならず、閉状態である
電磁弁32の弁が開くことはない。すなわち,原料ガス
流路27の電磁弁32より上流側への窒素の混在を防止
することを実現できる。
With the configuration of the fuel cell system according to the present embodiment, the inert gas check valve 33 is closed even when the inert gas discharge pressure is high immediately after the operation of the fuel cell system is stopped. Therefore, the pressure on the outlet side with respect to the raw material gas of the electromagnetic valve 32 does not increase, and the valve of the electromagnetic valve 32 in the closed state does not open. That is, it is possible to prevent nitrogen from being mixed upstream of the electromagnetic valve 32 in the source gas flow path 27.

【0032】なお、不活性ガスの逆流は、電磁弁32の
入口部の圧力より不活性ガス供給口31と原料ガス流路
27との合流部の圧力の方がより高い場合に従来のシス
テムでは起こる。そのため不活性ガス逆流防止弁33と
して電磁弁を用い、電磁弁32を通過した原料が電磁弁
のOUT側口から電磁弁に入り、IN側口から出て燃料
ガス生成部22に供給されるように設置することは有効
である。すなわち、不活性ガスの流れに対しては電磁弁
は順方向に設置されているため、不活性ガスの圧力が増
加した場合でも不活性ガスの逆流を防ぐことができる。
The backflow of the inert gas occurs in the conventional system when the pressure at the junction between the inert gas supply port 31 and the source gas flow path 27 is higher than the pressure at the inlet of the solenoid valve 32. Occur. Therefore, an electromagnetic valve is used as the inert gas check valve 33 so that the raw material that has passed through the electromagnetic valve 32 enters the electromagnetic valve from the OUT side port of the electromagnetic valve, exits from the IN side port, and is supplied to the fuel gas generation unit 22. Is effective. That is, since the solenoid valve is installed in the forward direction with respect to the flow of the inert gas, the reverse flow of the inert gas can be prevented even when the pressure of the inert gas increases.

【0033】[0033]

【発明の効果】以上説明したことから明らかなように、
本発明は、燃料電池システム運転時における、残余燃料
ガスと燃焼ガスを燃焼させる燃焼器の、より安定かつ安
全な燃焼を実現できる燃料電池システムを提供すること
ができる。
As is apparent from the above description,
ADVANTAGE OF THE INVENTION This invention can provide the fuel cell system which can implement | achieve more stable and safe combustion of the combustor which burns a residual fuel gas and a combustion gas at the time of operation of a fuel cell system.

【0034】また燃料電池システム運転終了時におけ
る、より安全な不活性ガスパージを実現できる燃料電池
システムを提供することができる。
Further, it is possible to provide a fuel cell system capable of realizing safer inert gas purging at the end of operation of the fuel cell system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における燃料電池システ
ムを示す構成図である。
FIG. 1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2における燃料電池システ
ムを示す構成図である。
FIG. 2 is a configuration diagram illustrating a fuel cell system according to Embodiment 2 of the present invention.

【図3】従来の固体高分子形燃料電池システムを示す構
成図である。
FIG. 3 is a configuration diagram showing a conventional polymer electrolyte fuel cell system.

【符号の説明】[Explanation of symbols]

1、21 燃料電池 2、22 燃料ガス生成部 3、23 燃料側加湿器 4、24 燃焼器 5、25 残余燃料ガス流路 6、26 燃焼ガス流路 7、27 原料ガス流路 8、11、28、32 電磁弁 9、29 比例弁 10 窒素供給口 30 残余燃料ガス逆流防止弁 31 不活性ガス供給口 33 不活性ガス逆流防止弁 1, 21 Fuel cell 2, 22 Fuel gas generator 3, 23 Fuel humidifier 4, 24 Combustor 5, 25 Residual fuel gas flow path 6, 26 Combustion gas flow path 7, 27 Source gas flow path 8, 11, 28, 32 Solenoid valve 9, 29 Proportional valve 10 Nitrogen supply port 30 Residual fuel gas check valve 31 Inert gas supply port 33 Inert gas check valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 哲也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 5H027 AA06 BA01 BA19 KK21 KK26 MM13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tetsuya Ueda 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料を改質して水素リッチな燃料ガスを
生成する燃料生成手段と、前記燃料ガスと酸化剤ガスを
用いて発電を行う固体高分子形の燃料電池と、前記燃料
電池より排出される残余燃料ガスと燃焼ガスのいずれか
一方または両方を燃焼する燃焼器と、前記燃焼器に前記
残余燃料ガスを供給する残余燃料ガス流路と、前記燃焼
器に前記燃焼ガスを供給する燃焼ガス流路と、前記燃焼
ガス流路に設けられ、前記燃焼ガスの流量を調整する燃
焼ガス流量調整手段とを具備し、前記残余燃料ガス流路
と前記燃焼ガス流路の合流部と前記燃焼ガス流量調整手
段の間の前記燃焼ガス流路に、残余燃料ガス逆流防止弁
が設けられている燃料電池システム。
1. A fuel generating means for reforming a raw material to generate a hydrogen-rich fuel gas, a polymer electrolyte fuel cell for generating electric power by using the fuel gas and an oxidizing gas, and A combustor for burning one or both of the residual fuel gas and the combustion gas to be discharged, a residual fuel gas flow path for supplying the residual fuel gas to the combustor, and supplying the combustion gas to the combustor A combustion gas flow path, and a combustion gas flow rate adjusting means provided in the combustion gas flow path to adjust a flow rate of the combustion gas; and a junction of the residual fuel gas flow path and the combustion gas flow path, A fuel cell system, wherein a residual fuel gas check valve is provided in the combustion gas flow path between the combustion gas flow rate adjusting means.
【請求項2】 前記残余燃料ガス逆流防止弁は電磁弁で
あり、前記電磁弁は前記合流部の方向からの流入に対し
て閉止機能を有する請求項1記載の燃料電池システム。
2. The fuel cell system according to claim 1, wherein the residual fuel gas check valve is an electromagnetic valve, and the electromagnetic valve has a closing function against inflow from the direction of the junction.
【請求項3】 原料を改質して水素リッチな燃料ガスを
生成する燃料生成手段と、前記燃料ガスと酸化剤ガスを
用いて発電を行う固体高分子形の燃料電池と、原料を前
記燃料生成手段へ供給するための原料流路と、前記原料
流路に設けられ、原料流路に不活性ガスを供給する不活
性ガス供給口と、前記不活性ガス供給口より上流の原料
流路の部分に設けられた前記不活性ガス逆流防止弁とを
備え、 システムの運転終了時に、前記燃料生成手段、燃料ガス
の流路および前記燃料電池を前記不活性ガスでパージす
る燃料電池システム。
3. A fuel generating means for reforming a raw material to generate a hydrogen-rich fuel gas, a polymer electrolyte fuel cell for generating power using the fuel gas and an oxidizing gas, and A raw material flow path for supplying to the generating means, an inert gas supply port provided in the raw material flow path for supplying an inert gas to the raw material flow path, and a raw material flow path upstream of the inert gas supply port. A fuel cell system comprising: an inert gas check valve provided in a portion thereof; and purging the fuel generating means, the fuel gas flow path, and the fuel cell with the inert gas when the operation of the system is completed.
【請求項4】 前記不活性ガス逆流防止弁は電磁弁であ
り、前記電磁弁は前記不活性ガス供給口の方向からの流
入に対して閉止機能を有する請求項3記載の燃料電池シ
ステム。
4. The fuel cell system according to claim 3, wherein the inert gas check valve is a solenoid valve, and the solenoid valve has a closing function against inflow from the direction of the inert gas supply port.
JP2001143858A 2001-05-14 2001-05-14 Fuel cell system Pending JP2002343386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143858A JP2002343386A (en) 2001-05-14 2001-05-14 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143858A JP2002343386A (en) 2001-05-14 2001-05-14 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2002343386A true JP2002343386A (en) 2002-11-29

Family

ID=18989929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143858A Pending JP2002343386A (en) 2001-05-14 2001-05-14 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2002343386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020359A1 (en) * 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method for stopping operation of fuel cell system
JP2007109529A (en) * 2005-10-14 2007-04-26 Mitsubishi Electric Corp Method of controlling fuel cell power generation system
US8765314B2 (en) 2003-08-25 2014-07-01 Panasonic Corporation Fuel cell system and method for stopping operation of fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212779A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPS5850380U (en) * 1981-10-02 1983-04-05 シ−ケ−デイコントロ−ルズ株式会社 Backflow prevention solenoid valve
JPH02199001A (en) * 1989-01-26 1990-08-07 Fuji Electric Corp Res & Dev Ltd Fuel reformer of fuel cell
JPH08111227A (en) * 1994-10-12 1996-04-30 Toshiba Corp Starting method for fuel cell power-generating facility
JPH08190924A (en) * 1995-01-12 1996-07-23 Mitsubishi Heavy Ind Ltd Fuel cell power generating equipment and power generating system using fuel cell
JPH08315845A (en) * 1995-05-17 1996-11-29 Fuji Electric Co Ltd Phosphoric acid type fuel cell power generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212779A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPS5850380U (en) * 1981-10-02 1983-04-05 シ−ケ−デイコントロ−ルズ株式会社 Backflow prevention solenoid valve
JPH02199001A (en) * 1989-01-26 1990-08-07 Fuji Electric Corp Res & Dev Ltd Fuel reformer of fuel cell
JPH08111227A (en) * 1994-10-12 1996-04-30 Toshiba Corp Starting method for fuel cell power-generating facility
JPH08190924A (en) * 1995-01-12 1996-07-23 Mitsubishi Heavy Ind Ltd Fuel cell power generating equipment and power generating system using fuel cell
JPH08315845A (en) * 1995-05-17 1996-11-29 Fuji Electric Co Ltd Phosphoric acid type fuel cell power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020359A1 (en) * 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method for stopping operation of fuel cell system
US8765314B2 (en) 2003-08-25 2014-07-01 Panasonic Corporation Fuel cell system and method for stopping operation of fuel cell system
JP2007109529A (en) * 2005-10-14 2007-04-26 Mitsubishi Electric Corp Method of controlling fuel cell power generation system

Similar Documents

Publication Publication Date Title
US6838062B2 (en) Integrated fuel processor for rapid start and operational control
US6790548B2 (en) Staged venting of fuel cell system during rapid shutdown
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
US8530104B2 (en) Method of operating a fuel cell system
US8728675B2 (en) Fuel cell system
KR20210029213A (en) Fuel cell system and control method thereof
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
JP2002093436A (en) Fuel cell device
US20060166056A1 (en) Fuel cell power generation system
WO2007119736A1 (en) Hydrogen generator, fuel cell system equipped therewith and method of operating the same
JP4855688B2 (en) Fuel cell power generation system
JP2002343386A (en) Fuel cell system
JP5002220B2 (en) Fuel cell system
JP2005206414A (en) Hydrogen producing apparatus
JP2003157876A (en) Fuel cell system
JP2004018357A (en) Reforming reactor system
JP2003142134A (en) Fuel cell system
JP2004247122A (en) Fuel cell power generation system
JP3680671B2 (en) Power generator
JP2002134140A (en) Fuel cell system
JP2004315284A (en) Reformer, and system using reformer
JPH08315845A (en) Phosphoric acid type fuel cell power generation device
JP2010108770A (en) Fuel cell power generation system, and control method of fuel cell power generation system
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP6399953B2 (en) Fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612