JPS6179856A - Method of starting turbo-compressor - Google Patents

Method of starting turbo-compressor

Info

Publication number
JPS6179856A
JPS6179856A JP59202804A JP20280484A JPS6179856A JP S6179856 A JPS6179856 A JP S6179856A JP 59202804 A JP59202804 A JP 59202804A JP 20280484 A JP20280484 A JP 20280484A JP S6179856 A JPS6179856 A JP S6179856A
Authority
JP
Japan
Prior art keywords
compressor
compressed air
starting
turbine
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59202804A
Other languages
Japanese (ja)
Other versions
JPH0353457B2 (en
Inventor
Yoshiyuki Taguma
良行 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59202804A priority Critical patent/JPS6179856A/en
Publication of JPS6179856A publication Critical patent/JPS6179856A/en
Publication of JPH0353457B2 publication Critical patent/JPH0353457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/11Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump driven by other drive at starting only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a stable starting by operating a stabilizing furnace after starting a turbo-compressor by means of a compressed air form a starting compressed-air supply unit when starting a system, and making said turbo- compressor operate by itself by means of the combustion gas from said furnace. CONSTITUTION:When starting a system, first, valves 4, 6, 10 are closed and valves 14, 17 are opened, to start a starting compressed-air supply unit 15. A compressed air form the unit 15 is introduced into a turbine 2a through a compressor 2b, piping 5, a starting bypass piping 16, and a system exhaust gas piping 7, to start a turbo-compressor 2. In this condition, a regulator valve 10 is opened to introduce the compressed air into a stabilizing furnace 9, while fuel is fed from a fuel feeding piping 11 to start the combustion of the stabilizing furnace 9. A combustion exhaust gas produced here is introduced into the turbine 2a together with said compressed air and, when a temp. necessary for the operation of the turbo-compressor 2 by itself is attained, the selector valve 4 is opened to stop said supply unit 15 and make the turbo-compressor 2 operate by itself.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はシステムからの排ガスエネルギーをタービン
の駆動力に利用し、タービンと同軸上に設置された圧縮
機によりシステムが必要とする空気を供給するターボ圧
縮機システムの起動方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention uses exhaust gas energy from a system to drive a turbine, and supplies the air required by the system by a compressor installed coaxially with the turbine. The present invention relates to a method for starting a turbo compressor system.

〔従来の技術〕[Conventional technology]

この種のターボ圧縮機はシステムの排ガスエネルギーを
無駄に捨てることなくシステム内で有効にエネルギー回
収を図るものであるが、その代表的なものとして燃料電
池発電システムがある。以下、−例としてこの燃料電池
発電システムについて説明する。
This type of turbo compressor aims to effectively recover energy within the system without wastefully discarding the exhaust gas energy of the system, and a typical example is a fuel cell power generation system. This fuel cell power generation system will be described below as an example.

燃料電池発電システムは、従来の汽力発電に比べ高効率
が期待できること、環境保全性が良い等の利点があり、
実用化を目指し近年盛んに開発が進められている。燃料
電池発電システムは、空気極、燃料極及び電解質層から
成る燃料電池本体と。
Fuel cell power generation systems have advantages over conventional steam power generation, such as higher efficiency and better environmental protection.
In recent years, development has been actively underway with the aim of putting it into practical use. A fuel cell power generation system consists of a fuel cell body consisting of an air electrode, a fuel electrode, and an electrolyte layer.

天然ガス等の炭化水素系燃料を改質して燃料電池本体に
燃料となる水素ガスを供給する改質器と。
A reformer that reforms hydrocarbon fuel such as natural gas and supplies hydrogen gas as fuel to the fuel cell body.

燃料電池本体及び改質器に空気を供給するターボ圧縮機
とを備えている。燃料電池本体の性能は反応ガスの圧力
の増大によって向上する傾向を示し。
It is equipped with a turbo compressor that supplies air to the fuel cell body and a reformer. The performance of the fuel cell itself shows a tendency to improve as the pressure of the reactant gas increases.

このため燃料、空気、各反応ガスの動作圧力は例えば4
〜6kg/c+/g程度に加圧維持される。このとき、
空気の圧縮には多大の動力を必要とするが。
For this reason, the operating pressure of fuel, air, and each reaction gas is, for example, 4
The pressure is maintained at about 6 kg/c+/g. At this time,
Compressing air requires a lot of power.

この動力は改質器からの燃焼排ガス及び燃料電池本体の
空気極からの余剰空気を導入するターボ圧縮機のタービ
ンによりまかなわれる。即ち、このターボ圧縮機は、シ
ステムの排ガスエネルギーをクーピンで回収し、同軸上
の圧縮機で必要な圧縮空気を供給することによってシス
テム内部で動力を回収をし、システム効率の向上を図る
ものである。
This power is provided by the turbine of the turbo compressor, which introduces the combustion exhaust gas from the reformer and surplus air from the air electrode of the fuel cell main body. In other words, this turbo compressor recovers the system's exhaust gas energy using a coupin, and supplies the necessary compressed air with a coaxial compressor, thereby recovering power within the system and improving system efficiency. be.

さて、このような燃料電池発電システムにおいて、シス
テムを起動するには先ずターボ圧縮機を起動させろ必要
があるが、初期には駆動源となろシステム排ガスが得ら
れないため何等かの外部エネルギーを付与してターボ圧
縮機を立ち上げる必要がある。
Now, in such a fuel cell power generation system, in order to start the system, it is first necessary to start the turbo compressor, but since system exhaust gas is not available as a driving source in the initial stage, some external energy must be applied. It is necessary to start up the turbo compressor.

この具体的な従来の方法として2例えば、特願昭59−
16685号に開示されているものがあり、そのシステ
ムを第1図に示す。図において、(1)は燃料電池本体
、改質器等で構成された燃焼炉を含むシステム、 (2
)はシステム(1)からの排ガスによって駆動され、シ
ステム(1)に必要な圧縮空気を供給するタービン(2
a)とこのタービン(2a)と同軸上に配置された圧縮
i (2b)とから成るターボ圧縮機。
For example, two specific conventional methods include:
There is a system disclosed in No. 16685, and the system is shown in FIG. In the figure, (1) is a system including a combustion furnace consisting of a fuel cell body, a reformer, etc.; (2)
) is driven by the exhaust gas from the system (1) and provides the necessary compressed air to the system (1).
a) and a compressor i (2b) arranged coaxially with this turbine (2a).

(3)はこのターボ圧縮機(2)の圧縮機(2b)の入
口側に設置されtこ給気配管、(4)はこの給気配管(
3)に設置された切換弁、(5)は圧縮機(2b)の出
口側に設置され圧縮機(2b)からの空気をシステム(
1)に供給する空気供給配管、(6)はこの空気供給配
管(5)に設置された調節弁、(7)はシステム(1)
からの排ガスをタービン(2&)へ導くシステム排ガス
配管、(8)は空気供給配管(5)とシステム排ガス配
管(7)とをバイパスするバイパス配管、 (9)はこ
のバイパス配管(8)に設置されたタービン動力を付勢
する助燃炉、 (10)はバイパス配管(8)に設置さ
れた調節弁であり、助燃炉(9)に供給される空気量の
調節を行う。(11)は助燃炉(9)に燃料を供給する
燃料供給配管、  (12)は起動用圧縮空気供給装置
(3) is the air supply pipe installed on the inlet side of the compressor (2b) of this turbo compressor (2), and (4) is this air supply pipe (
The switching valve (5) is installed on the outlet side of the compressor (2b) and directs the air from the compressor (2b) to the system (3).
1), (6) is the control valve installed in this air supply pipe (5), and (7) is the system (1).
The system exhaust gas piping that guides the exhaust gas from the turbine (2 &) to the turbine (2 &), (8) is the bypass piping that bypasses the air supply piping (5) and the system exhaust gas piping (7), and (9) is installed in this bypass piping (8). (10) is a control valve installed in the bypass pipe (8), which adjusts the amount of air supplied to the auxiliary combustion furnace (9). (11) is a fuel supply pipe that supplies fuel to the auxiliary combustion furnace (9), and (12) is a compressed air supply device for startup.

(13)はこの起動用圧縮空気供給装置(12)からの
空気を圧縮機(2b)の入口側給気配管(3)に導(導
入配管、 (14)ζよこの導入配管(13)に設置さ
れた切換弁である。
(13) introduces the air from this starting compressed air supply device (12) to the inlet air supply pipe (3) of the compressor (2b) (introduction pipe, (14) to the introduction pipe (13) on the ζ side. This is the installed switching valve.

次いで1上記のように構成されtこ従来のシステムにお
いて、ターボ圧縮機の起動動作に°つぃて説明する。先
ず始動に際し、切換弁(4)、調節弁(6)を閉じ、切
換弁(14)、調節弁(10)を開き、起動用圧縮空気
供給装置(12)から圧縮空気を吐出させろ。
Next, the starting operation of the turbo compressor in the conventional system configured as described above will be explained. First, when starting, close the switching valve (4) and regulating valve (6), open the switching valve (14) and regulating valve (10), and discharge compressed air from the starting compressed air supply device (12).

これにより、圧縮空気が圧縮機(2b)を通過し助燃炉
(9)に導かれるが、このとき、助燃炉(9)に燃料供
給配管(11)から燃料を供給して助燃炉(9)を燃焼
させることにより、圧縮空気が加熱されてそのままター
ビン(2&)に投入される。圧縮空気の温度上昇に伴っ
てターボ圧縮機(2)は起動を開始し同時に空気は昇圧
される。ターボ圧縮機(2)の自力運転に必要な温度に
達した時点で、切換弁(4)を開き、起動用圧縮空気供
給装置(12)を停止し、切換弁(14)を閉じること
により、ターボ圧縮機(2)は自力運転に移行する。こ
の状態はいわば待機状態でありシステム(1)の必要に
応じていつでも空気を送り出すことができる。即ち、調
節弁(6)を開くことにより圧縮空気がシステム(1)
へ供給され、同時にシステム(1)の中で圧縮空気が燃
焼その他に利用された後、排ガスとしてシステム排ガス
配管(7)を経由してタービン(2a)に導かれる。
As a result, the compressed air passes through the compressor (2b) and is guided to the auxiliary combustion furnace (9), but at this time, fuel is supplied to the auxiliary combustion furnace (9) from the fuel supply pipe (11) and the auxiliary combustion furnace (9) By burning the compressed air, the compressed air is heated and directly input into the turbine (2&). As the temperature of the compressed air increases, the turbo compressor (2) starts to start up, and at the same time the air pressure increases. When the temperature necessary for self-operation of the turbo compressor (2) is reached, the switching valve (4) is opened, the startup compressed air supply device (12) is stopped, and the switching valve (14) is closed. The turbo compressor (2) shifts to self-operation. This state is, so to speak, a standby state, and air can be sent out at any time as required by the system (1). That is, by opening the control valve (6), compressed air is supplied to the system (1).
At the same time, the compressed air is used for combustion and other purposes in the system (1), and is then led as exhaust gas to the turbine (2a) via the system exhaust gas pipe (7).

しかるに、このような従来のシステムのものは。However, traditional systems like this.

ターボ圧縮機(2)の起動に際し、先に助燃炉(9)を
燃焼させた後、この助燃炉(9)のエネルギーによって
ターボ圧縮機(2)を起動するようにしているが1次の
理由により助燃炉(9)の燃焼が安定せず失火し易いと
いう欠点を有している。即ち、この場合助燃炉(9)は
燃焼効率を上げるために通常。
When starting the turbo compressor (2), the auxiliary combustion furnace (9) is first combusted, and then the turbo compressor (2) is started using the energy of this auxiliary combustion furnace (9). This has the drawback that combustion in the auxiliary combustion furnace (9) is unstable and misfires are likely to occur. That is, in this case, the auxiliary combustion furnace (9) is normally used to increase combustion efficiency.

直接加熱方式が用いられ、助燃炉(9)本体に設けられ
た燃焼バーナ(図示せず)の燃焼による排ガスがそのま
まシステム排ガス配管「7)に合流してタービン(2a
)に投入される。一方、ターボ圧縮機(2)が起動する
ときの回転上昇は速やかに行われ。
A direct heating method is used, and the exhaust gas from the combustion of the combustion burner (not shown) installed in the main body of the auxiliary combustion furnace (9) directly flows into the system exhaust gas pipe ``7'' and is fed to the turbine (2a).
). On the other hand, when the turbo compressor (2) starts up, the rotation speed increases quickly.

僅かの時間(例えば数秒以下のオーダ)の間に、空気供
給配管(5)、バイパス配管(8)、システム排ガス配
管(7)上の圧縮空気の圧力は上昇する。このときに、
助燃炉(9)の燃焼に急激な圧力変化が伴い、燃焼バー
ナの燃焼が不安定となり失火し易くなる。従って安定し
たターボ圧縮機(2)の自力運転か得られないという欠
点が生じていた。
During a short period of time (for example on the order of a few seconds or less), the pressure of the compressed air on the air supply line (5), the bypass line (8) and the system exhaust gas line (7) increases. At this time,
Combustion in the auxiliary combustion furnace (9) is accompanied by rapid pressure changes, making combustion in the combustion burner unstable and prone to misfires. Therefore, there has been a drawback that stable self-operation of the turbo compressor (2) cannot be achieved.

〔発明の概要〕[Summary of the invention]

この発明は上記のようなものの欠点に鑑みてなされたも
のであり、システム起動時に、起動用圧縮空気供給装置
を起動して起動用圧縮空気供給装置からの圧縮空気を助
燃炉を通さずにバイパスしてタービンに投入してターボ
圧縮機を立ち上げた後、助燃炉に圧縮空気を供給して助
燃炉を点火し。
This invention was made in view of the drawbacks of the above-mentioned systems, and when the system is started, the startup compressed air supply device is started and the compressed air from the startup compressed air supply device is bypassed without passing through the auxiliary combustion furnace. After the compressed air is fed into the turbine and the turbo compressor is started, compressed air is supplied to the auxiliary combustion furnace and the auxiliary combustion furnace is ignited.

助燃炉の燃焼エネルギをタービンに付与してターボ圧縮
機を自力運転させることにより、安定したターボ圧縮機
の自力運転を実現できるターボ圧縮機システムの起動方
法を提供することを目的としている。
The object of the present invention is to provide a method for starting a turbo compressor system that can realize stable self-operation of a turbo compressor by applying combustion energy of an auxiliary combustion furnace to a turbine and causing the turbo compressor to operate on its own.

〔発明の実施例〕[Embodiments of the invention]

a下、この発明の一実施例を第2図に基づいて説明する
。図において、(1)〜(11>、 (13)、  (
14)は上述した従来のシステムの構成と同様である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (1) to (11>, (13), (
14) is similar to the configuration of the conventional system described above.

(15)はターボ圧縮機(2)を初起動させるのに十分
な容景を持った起動用圧縮空気供給装置であり。
(15) is a starting compressed air supply device that has a sufficient appearance to start up the turbo compressor (2) for the first time.

例えば電動ブロワ、電動コンプレッサあるいは高圧タン
クなどの利用が考えられる。(16)はシステム起動時
に使用する起動用バイパス配管であり。
For example, it is possible to use an electric blower, an electric compressor, or a high-pressure tank. (16) is a startup bypass piping used when starting the system.

圧縮I (2b)からの空気の内、助燃炉(9)の燃焼
用として利用する空気量を除いた残りの空気量を空気供
給配管(5)からシステム排ガス配管(7)にバイパス
させるものであり、調節弁(17)が併置されている。
Of the air from Compression I (2b), the remaining amount of air, excluding the amount of air used for combustion in the auxiliary combustion furnace (9), is bypassed from the air supply pipe (5) to the system exhaust gas pipe (7). There is a control valve (17) located side by side.

次いで動作について説明する。システム始動時において
、先ず切換弁(4)、調節弁(6)、 (10)を閉じ
、切換弁(14) 、調節弁(17)を開き、起動用圧
縮空気供給装置(15)を起動する。起動用圧縮空気供
給装置(15)からの圧縮空気は圧縮機(2b)を通り
Next, the operation will be explained. When starting the system, first close the switching valve (4), control valves (6), (10), open the switching valve (14) and control valve (17), and start the startup compressed air supply device (15). . Compressed air from the startup compressed air supply device (15) passes through the compressor (2b).

空気供給配管(5)、起動用バイパス配管(1B)、シ
ステム排ガス配管(7)を経由してタービン(2a)に
投入される。このとき、ターボ圧縮tfi (2)は起
動し、同時に圧縮機(2b)からの圧縮空気の圧力が上
昇する。この状態で調節弁(10)を開き助燃炉(9)
に空気を導入するとともに燃料供給配管(11)より燃
料も導入し、助燃炉(9)の燃焼を開始する。助燃炉(
9)の燃焼排ガスは起動用バイパス配管(16)を通っ
て戻ってくる圧縮空気とシステム排ガス配管(7)内で
合流してタービン(2a)に投入される。
The air is fed into the turbine (2a) via the air supply pipe (5), the startup bypass pipe (1B), and the system exhaust gas pipe (7). At this time, the turbo compression tfi (2) is activated, and at the same time the pressure of the compressed air from the compressor (2b) increases. In this state, open the control valve (10) and open the auxiliary combustion furnace (9).
At the same time, air is introduced into the combustion chamber, and fuel is also introduced through the fuel supply pipe (11) to start combustion in the auxiliary combustion furnace (9). Auxiliary combustion furnace (
The combustion exhaust gas 9) is combined with the compressed air returning through the startup bypass piping (16) in the system exhaust gas piping (7) and is input into the turbine (2a).

タービン(2a)への投入ガス温度の上昇とともにター
ビン動力が増し、圧縮機(2b)の吐出空気圧力もさら
に増加する。ターボ圧縮機(2)の自力運転に必要な温
度に達した時点で切換#(4)を開いて起動用圧縮空気
供給装置(15)を停止させて切換弁(14)を閉しろ
。これによりターボ圧縮機(2)は自力運転状態となる
。このあと調節弁(6)の漸開操作、調節弁(17)の
漸開操作により、起動用バイパス配管(16)を経由す
る空気は徐々にシステム(1)の方へ切り換えられ、圧
縮機(2b)からの圧縮空気はシステム(1)へ投入さ
れるようになる。
As the temperature of the gas input to the turbine (2a) increases, the turbine power increases, and the discharge air pressure of the compressor (2b) also increases. When the temperature necessary for self-operation of the turbo compressor (2) is reached, open switch # (4) to stop the starting compressed air supply device (15) and close the switch valve (14). This causes the turbo compressor (2) to become self-operating. After that, by gradually opening the control valve (6) and gradually opening the control valve (17), the air passing through the startup bypass piping (16) is gradually switched to the system (1), and the compressor ( Compressed air from 2b) becomes input to the system (1).

このようなターボ圧縮機(2)の起動過程における圧縮
空気の流量、圧力、温度の変化の状態を従来方法と比較
したものを第3図に示し、第3図(a)は従来方法の起
動モード図、第3図(b)はこの発明の方法による起動
モード図をそれぞれ示す。先ず。
Figure 3 shows a comparison of the changes in compressed air flow rate, pressure, and temperature during the startup process of the turbo compressor (2) with the conventional method, and Figure 3(a) shows the startup process of the conventional method. Mode Diagram FIG. 3(b) shows a startup mode diagram according to the method of the present invention, respectively. First.

従来方法の第3図(a)において、A点で起動用圧縮空
気供給装置(12)を起動したあと、8点で助燃炉(9
)を点火し燃焼を開始する。これに伴うタービン(21
)入口の空気温度の上昇により、0点でターボ圧縮機(
2)が起動するが、同時に急激な圧力上昇をl!hう。
In FIG. 3(a) of the conventional method, after starting the starting compressed air supply device (12) at point A, the auxiliary combustion furnace (9) is started at point 8.
) to start combustion. The accompanying turbine (21
) Due to the increase in air temperature at the inlet, the turbo compressor (
2) starts, but at the same time a sudden pressure rise occurs. Yes.

試算によれば、定格圧縮空気圧力4 kg/cnrgの
例で、0点で約3kg/crjの急激な圧力上昇がある
。従って、上述したように助燃炉(9)において不安定
燃焼や失火が生じ易くなるのはこの時点である。そのあ
と0点において起動用圧縮空気供給装置(12)を停止
し自力運転に移行する。一方。
According to trial calculations, in an example where the rated compressed air pressure is 4 kg/cnrg, there is a sudden pressure rise of about 3 kg/crj at the 0 point. Therefore, as described above, it is at this point that unstable combustion and misfire tend to occur in the auxiliary combustion furnace (9). Thereafter, the starting compressed air supply device (12) is stopped at the 0 point, and the system shifts to self-operation. on the other hand.

第3図(blのこの発明の方法においては、A点、0点
で示すように起動用圧縮空気供給装置(15)の起動と
ほぼ同時にターボ圧縮機(2)が起動し圧力が上昇する
。そのあと8点で助燃炉(9)を点火し燃焼を開始する
。そのあと十分温度上昇が得られたD点で起動用圧縮空
気供給装置(15)を停止し自力運転に移行する。即ち
、この発明の方法は、助燃炉(9)を点火し燃焼を開始
する以前にターボ圧縮機(2)の起動を終えているので
、従来方法で生じていた助燃炉(9)の燃焼状態での急
激な圧力変動がなく、従って不安定燃焼や失火のない安
定したターボ圧縮機(2)の起動を行わせることができ
る。
In the method of the present invention shown in FIG. 3 (bl), the turbo compressor (2) is started and the pressure increases almost simultaneously with the start-up of the start-up compressed air supply device (15), as shown by points A and 0. Thereafter, at point 8, the auxiliary combustion furnace (9) is ignited to start combustion.Then, at point D, when the temperature has risen sufficiently, the starting compressed air supply device (15) is stopped and the operation shifts to self-powered operation. In the method of the present invention, the turbo compressor (2) is started up before the auxiliary combustion furnace (9) is ignited and combustion starts, so that the combustion state of the auxiliary combustion furnace (9), which occurs in the conventional method, is not changed. The turbo compressor (2) can be started stably without sudden pressure fluctuations and therefore without unstable combustion or misfires.

なお、上記実施例では起動用圧縮空気供給装置(15)
をターボ圧縮機(2)の圧縮機(2b)の入口側系統、
即ち、給気配管(3)に設けた場合について述へたが、
起動用圧縮空気供給袋W (151をターボ圧縮機(2
)の圧縮機(2b)の出口側系統、即ち、空気供給配管
(5)に設けてもよく、上記実施例と同様の効果を奏す
る。
In addition, in the above embodiment, the starting compressed air supply device (15)
the inlet side system of the compressor (2b) of the turbo compressor (2),
That is, although the case where it is provided in the air supply pipe (3) has been described,
Compressed air supply bag W for startup (151 to turbo compressor (2
) may be provided in the outlet side system of the compressor (2b), that is, in the air supply pipe (5), and the same effect as in the above embodiment can be obtained.

ところで、上記実施例でζよシステムとして燃料電池発
電システムを対象とした場合について述べたが、その他
化学プラント等のシステムを対象とできることは言うま
でもなく、要するにターボ圧m機を利用するシステムに
この発明を適用することができる。
By the way, in the above embodiment, the case where a fuel cell power generation system was targeted as the ζ system was described, but it goes without saying that it can be applied to other systems such as chemical plants, and in short, the present invention can be applied to systems that utilize turbo pressure machines. can be applied.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、システム起動時に、起動
用圧縮空気供給装置を起動して起動用圧縮空気供給装置
からの圧縮空気を助燃炉を通さずにバイパスしてタービ
ンに投入してターボ圧縮機を立ち上げt二後、助燃炉に
圧縮空気を供給して助燃炉を点火し、助燃炉の燃焼エネ
ルギーをタービンに付与してターボ圧縮機を自力運転さ
せろようにしたことにより、助燃炉の燃焼に不安定をも
たらせる急激な圧力変動が生じないので、安定しtコタ
ーボ圧縮機の自力運転を実現することができる。
As explained above, when the system is started, this invention starts the startup compressed air supply device and bypasses the compressed air from the startup compressed air supply device without passing through the auxiliary combustion furnace, and inputs it into the turbine to generate the turbo compressor. After startup, compressed air is supplied to the auxiliary combustion furnace, the auxiliary combustion furnace is ignited, and the combustion energy of the auxiliary combustion furnace is given to the turbine, allowing the turbo compressor to operate on its own, thereby reducing the combustion in the auxiliary combustion furnace. Since sudden pressure fluctuations that can cause instability do not occur, stable self-operation of the t-coturbo compressor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のターボ圧縮機システムの起動方法を示す
系統図、第2図はこの発明の一実施例によるターボ圧縮
機システムの起動方法を示す系統図、第3図はこの発明
に係る起動過程状態を示す起動モード図である。 図において、(1)はシステム、(2)はターボ圧縮機
、 (2a)はタービン、 (2b)は圧縮機、(5)
は空気供給配管、(7)はシステム排ガス配管、(8)
はバイパス配管、(9)は助燃炉、 (Is)は起動用
圧縮空気供給装置、 (16)は起動用バイパス配管で
ある。 尚2図中同一符号は同−又は相当部分を示す。
Fig. 1 is a system diagram showing a starting method of a conventional turbo compressor system, Fig. 2 is a system diagram showing a starting method of a turbo compressor system according to an embodiment of the present invention, and Fig. 3 is a system diagram showing a starting method of a turbo compressor system according to an embodiment of the present invention. FIG. 3 is a startup mode diagram showing process states; In the figure, (1) is the system, (2) is the turbo compressor, (2a) is the turbine, (2b) is the compressor, (5)
is air supply piping, (7) is system exhaust gas piping, (8) is
(9) is the auxiliary combustion furnace, (Is) is the compressed air supply device for startup, and (16) is the bypass piping for startup. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] システムからの排ガスにより駆動されるタービンとこの
タービンと同軸上に直結されシステムに必要な圧縮空気
を供給する圧縮機とから構成されるターボ圧縮機と、こ
のターボ圧縮機のタービンの入口側系統に上記圧縮機か
らの空気の一部をバイパスして供給するバイパス配管上
に設置され上記タービンの不足動力を補う助燃炉と、上
記圧縮機の入口側系統又は出口側系統に設置された起動
用圧縮空気供給装置を備えたターボ圧縮機システムにお
いて、システム起動時に、上記起動用圧縮空気供給装置
を起動して上記起動用圧縮空気供給装置からの圧縮空気
を上記助燃炉を通さずにバイパスして上記タービンに投
入して上記ターボ圧縮機を立ち上げた後、上記助燃炉に
圧縮空気を供給して上記助燃炉を点火し、上記助燃炉の
燃焼エネルギーを上記タービンに付与して上記ターボ圧
縮機を自力運転させることを特徴とするターボ圧縮機シ
ステムの起動方法。
A turbo compressor consisting of a turbine driven by exhaust gas from the system and a compressor that is directly connected coaxially with this turbine and supplies the compressed air necessary for the system, and a system on the inlet side of the turbine of this turbo compressor. An auxiliary combustion furnace installed on the bypass piping that bypasses and supplies a part of the air from the compressor to supplement the insufficient power of the turbine, and a startup compressor installed in the inlet side system or the outlet side system of the compressor. In a turbo compressor system equipped with an air supply device, when the system is started, the startup compressed air supply device is started and the compressed air from the startup compressed air supply device is bypassed without passing through the auxiliary combustion furnace. After supplying compressed air to the turbine to start up the turbo compressor, compressed air is supplied to the auxiliary combustion furnace to ignite the auxiliary combustion furnace, and the combustion energy of the auxiliary combustion furnace is applied to the turbine to start the turbo compressor. A method for starting a turbo compressor system characterized by self-operation.
JP59202804A 1984-09-26 1984-09-26 Method of starting turbo-compressor Granted JPS6179856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202804A JPS6179856A (en) 1984-09-26 1984-09-26 Method of starting turbo-compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202804A JPS6179856A (en) 1984-09-26 1984-09-26 Method of starting turbo-compressor

Publications (2)

Publication Number Publication Date
JPS6179856A true JPS6179856A (en) 1986-04-23
JPH0353457B2 JPH0353457B2 (en) 1991-08-15

Family

ID=16463469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202804A Granted JPS6179856A (en) 1984-09-26 1984-09-26 Method of starting turbo-compressor

Country Status (1)

Country Link
JP (1) JPS6179856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021902A (en) * 1988-02-17 1991-06-04 Hitachi, Ltd. Tape changer for loading and unloading a magazine of magnetic tape cartridges
US5050019A (en) * 1988-02-19 1991-09-17 Hitachi, Ltd. Method for automatic continuous changing of cartridge-type magnetic tapes
JPH09144558A (en) * 1995-11-24 1997-06-03 Toshiba Corp Hydrogen combustion gas turbine plant its starting method thereof
WO2014069413A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system and method for activating fuel cell in power generation system
JP2014089933A (en) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd Power generation system and method for starting up fuel cell in power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011635A (en) * 1983-06-29 1985-01-21 Shimadzu Corp Turbocompressor system
JPS60124361A (en) * 1983-12-07 1985-07-03 Toshiba Corp Fuel cell control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011635A (en) * 1983-06-29 1985-01-21 Shimadzu Corp Turbocompressor system
JPS60124361A (en) * 1983-12-07 1985-07-03 Toshiba Corp Fuel cell control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021902A (en) * 1988-02-17 1991-06-04 Hitachi, Ltd. Tape changer for loading and unloading a magazine of magnetic tape cartridges
US5050019A (en) * 1988-02-19 1991-09-17 Hitachi, Ltd. Method for automatic continuous changing of cartridge-type magnetic tapes
JPH09144558A (en) * 1995-11-24 1997-06-03 Toshiba Corp Hydrogen combustion gas turbine plant its starting method thereof
WO2014069413A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system and method for activating fuel cell in power generation system
JP2014089933A (en) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd Power generation system and method for starting up fuel cell in power generation system
US9979033B2 (en) 2012-10-31 2018-05-22 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method for activating fuel cell in power generation system
US10490832B2 (en) 2012-10-31 2019-11-26 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method for activating fuel cell in power generation system

Also Published As

Publication number Publication date
JPH0353457B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
JP6228752B2 (en) Power generation system and method for starting power generation system
JP2009205930A (en) Combined system
JP2009205932A (en) Combined system
US4685287A (en) Compressor system and start-up method therefor
JP2002298889A (en) Solid electrolyte fuel cell system
JPS6179856A (en) Method of starting turbo-compressor
JP4097193B2 (en) Combined power generation facilities for fuel cells and gas turbines and their start / stop methods
JP2003097290A (en) Power generation plant and operating method therefor
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP3312498B2 (en) Fuel cell generator
JP2002305009A (en) Fuel cell type complex power generation device
JP2004022430A (en) Fuel cell/gas turbine complex power generation plant
JPH036332B2 (en)
JP4158131B2 (en) Fuel cell power generator
CN116044610B (en) Double-expansion circulation liquid rocket engine system
JPS60160579A (en) Starting of fuel cell power generation system
JPS60160580A (en) Starting of fuel cell power generation system
JP4212089B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
JP2004111130A (en) Thermoelectric ratio changing method for fuel cell-micro gas turbine combined power generation facility
JPH0217696B2 (en)
JPS6255423A (en) Turbo compressor system
JP3269148B2 (en) Operating method when starting the fuel cell power generator
JPS6255422A (en) Turbo compressor system
JPH11107779A (en) Compressed air storage type gas turbine plant
JPH09213354A (en) Fuel cell generating equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees