JPS6011635A - Turbocompressor system - Google Patents

Turbocompressor system

Info

Publication number
JPS6011635A
JPS6011635A JP58118606A JP11860683A JPS6011635A JP S6011635 A JPS6011635 A JP S6011635A JP 58118606 A JP58118606 A JP 58118606A JP 11860683 A JP11860683 A JP 11860683A JP S6011635 A JPS6011635 A JP S6011635A
Authority
JP
Japan
Prior art keywords
compressor
starting
turbine
inlet
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58118606A
Other languages
Japanese (ja)
Other versions
JPH0454048B2 (en
Inventor
Hisashi Mitani
三谷 寿
Toshiichi Suefuji
末藤 敏一
Hidefumi Saito
英文 斎藤
Munehiro Hayashi
林 宗浩
Masanao Ando
昌尚 安藤
Hiroshi Isaka
猪坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58118606A priority Critical patent/JPS6011635A/en
Publication of JPS6011635A publication Critical patent/JPS6011635A/en
Publication of JPH0454048B2 publication Critical patent/JPH0454048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make the starting of a compressor performable with the irreducible minimum of energy without fail, by feeding the compressor with a starting ags from the inlet side, while decreasing the feed pressure by degrees in proportion to an increase in the heat energy quantity given to the inlet side of a turbine. CONSTITUTION:In time of starting, a charging valve 3 is closed, while a control valve 13 for a starting gas feed device 9 is opened instead. With this constitution, a high pressure starting gas discharged out of a high pressure gas source 11 is fed to an inlet 1a of a compressor 1 and simultaneously the starting ags passing through the compressor 1 is led into an inlet 2b of a turbine 2 whereby both the turbine 2 and the compressor 1 get rotating. Under this condition, it the amount of heat energy given from an air chamber 7 of a fuel cell 6 and a combustion furnace 8 to the side of the turbine inlet 2b is gradually increased, power of the turnbine 2 increases. With increment of the heat energy quantity, opening of the control valve 13 is gradually decreased, and at the point that feed pressure drops up to atmospheric pressure, the charging valve 3 is opened and made to change over to self-excitation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、航空機用のジェット・エンジンや燃料電池発
電プラントをはじめとする各種産業プラント等に適用可
能なターボ・コンプレッサシステムに関するものである
[Detailed description of the invention] (a) Industrial application field The present invention relates to a turbo compressor system that can be applied to various industrial plants such as jet engines for aircraft and fuel cell power generation plants. .

(ロ)従来技術 ジェット・エンジンに代表されるターボ・コンプレッサ
システムとして、第1図に示すように入口を大気に開口
させたコンプレッサaと、入口をガス通路すを介して前
記コンプレッサaの出口に接続したコンプレッサ駆動用
のタービンCと、前記ガス通路すの途中に介設され前記
タービンCの入口側に熱エネルギを付与する熱付加手段
dとを具備してなるものがある。ところが、この種のシ
ステムは、始動に難点があり、多くの問題を有している
。すなわち、従来のシステムでは、始動時に前記コンプ
レッサaおよびタービンCの回転軸eにモータ等の駆動
源fを変速機gを介して接続する。そして、前記駆動源
fを作動させて前記コンプレッサaおよびタービンCを
回転させ、前記コンプレッサaが一定の圧縮比を有した
ときに前記熱イ」加手段dに点火して自励運転に移行す
るようにしている。このため、ターボ・コンプレッザ以
外の始動用駆動源が必要であり、これは、通常きわめて
大きな回転速度を必要とする。そのため、各種の保護回
路が必要となり、僅かな誤動作でも大きな不具合に到る
欠陥を有しているとともに、システJ、全体が複雑かつ
大がかりなものになるという問題がある。
(b) Prior Art As a turbo compressor system typified by a jet engine, as shown in Fig. 1, there is a compressor a whose inlet is open to the atmosphere, and an inlet connected to the outlet of the compressor a via a gas passage. Some devices include a connected turbine C for driving a compressor, and a heat adding means d that is interposed in the middle of the gas passage and applies thermal energy to the inlet side of the turbine C. However, this type of system is difficult to start up and has many problems. That is, in the conventional system, a drive source f such as a motor is connected to the rotating shaft e of the compressor a and the turbine C via a transmission g at the time of startup. Then, the drive source f is operated to rotate the compressor a and the turbine C, and when the compressor a has a constant compression ratio, the heat atomizing means d is ignited to shift to self-excited operation. That's what I do. This requires a starting drive source other than a turbo compressor, which typically requires very high rotational speeds. Therefore, various protection circuits are required, and there are problems in that the system J as a whole becomes complicated and large-scale in addition to having defects that can lead to major malfunctions even with the slightest malfunction.

なお、モーフ等の機械的な駆動源を用いない始動方法と
しては、前記タービンの入口に始動用の高圧ガスを吹込
むことが考えられているが、この方法では、始動時にお
けるコンプレッサ側の流量が非常に少ないため、該コン
プレッサがサージングを起こし易いという問題がある。
In addition, as a starting method that does not use a mechanical drive source such as a morph, it is considered to blow high-pressure gas for starting into the inlet of the turbine, but in this method, the flow rate on the compressor side at the time of starting is There is a problem in that the compressor is prone to surging because there is very little.

(ハ) 目0勺 本発明は、このような事情に着目してなされたもので、
複雑かつ大がかりな始動装置を要することなく最小のエ
ネルギで確実に始動を行なうことが可能であり、しかも
、始動時に発生しゃすいコンプレッサ部でのサージング
を有効に防止することができるターボ・コンプレッサシ
ステムを提゛′・;供することを目的とする。
(c) The present invention was made with attention to such circumstances,
We have developed a turbo compressor system that enables reliable starting with minimal energy without the need for a complex and large-scale starting device, and that can effectively prevent surging in the compressor that easily occurs during startup. The purpose is to provide.

(ニ)構成 本発明は、かかる目的を達成するために、コンプレッサ
の入口側から始動ガスを供給するとともに、この始動ガ
スの供給圧を熱付加手段からタービンの入口側に付与さ
れる熱エネルギ量の増大に伴わせて漸減させ、該供給圧
が大気圧にまで低下した段階で自励運転に移行し得るよ
うに構成したことを特徴とするものである。
(D) Structure In order to achieve the above object, the present invention supplies starting gas from the inlet side of the compressor, and increases the supply pressure of this starting gas by the amount of thermal energy applied from the heat adding means to the inlet side of the turbine. The supply pressure is gradually decreased as the supply pressure increases, and when the supply pressure has decreased to atmospheric pressure, self-excited operation can be started.

(ホ)実施例 以下、本発明を燃料電池発電プラントの空気圧縮部分に
適用した場合の一実施例につき、第2図を参照して説明
する。
(E) Example Hereinafter, an example in which the present invention is applied to an air compression section of a fuel cell power generation plant will be described with reference to FIG.

第2図に示すように、本発明に係るターボ・コンプレッ
サシステムは、コンプレッサ1を可変ノズル2aを有し
たタービン2により駆動するようにしている。そして、
前記コンプレッサ1の入口1aを給気バルブ3を介設し
た給気通路4を介して大気に開口させるとともに、前記
コンプレッサ1の出口1bと前記タービン2の入口2b
とをガス通路5を介して接続している。ガス通路5はメ
イン通路部5aとサブ通路部5bとを並列に設けてなる
もので、前記メイン通路部5aの途中には、熱付加手段
として機能する燃料電池6の空気室7が介設しであると
ともに、前記サブ通路部5bの途中には、第2の熱付加
手段たる燃焼器8が介設しである。また、前記給気通路
4の前記給気バルブ3よりも後段部分に始動ガス供給手
段9を設けている。始動ガス供給手段9は、高圧の始動
ガスを吐出するボンベ等の高圧ガス源11と、この高圧
ガス源11を前記給気通路4に接続する始動ガス案内路
12と、この始動ガス案内路12の途中に介設され該案
内路12を無段階に開閉する制御バルブ13とを具備し
てなる。
As shown in FIG. 2, in the turbo compressor system according to the present invention, a compressor 1 is driven by a turbine 2 having a variable nozzle 2a. and,
The inlet 1a of the compressor 1 is opened to the atmosphere via an air supply passage 4 with an air supply valve 3 interposed therebetween, and the outlet 1b of the compressor 1 and the inlet 2b of the turbine 2 are connected to each other.
and are connected via a gas passage 5. The gas passage 5 is formed by providing a main passage part 5a and a sub passage part 5b in parallel, and an air chamber 7 of a fuel cell 6 which functions as a heat adding means is interposed in the middle of the main passage part 5a. In addition, a combustor 8 serving as a second heat adding means is interposed in the middle of the sub-passage portion 5b. Further, a starting gas supply means 9 is provided in a portion of the air supply passage 4 subsequent to the air supply valve 3. The starting gas supply means 9 includes a high-pressure gas source 11 such as a cylinder that discharges high-pressure starting gas, a starting gas guide path 12 that connects this high-pressure gas source 11 to the air supply passage 4, and this starting gas guide path 12. A control valve 13 is provided in the middle of the guideway 12 to open and close the guideway 12 steplessly.

次いで、この実施例の作動を説明する。始動ニFJAし
ては、給気バルブ3を閉じるとともに、始動ガス供給手
段9の制御バルブ13を開成させる。
Next, the operation of this embodiment will be explained. When starting FJA, the air supply valve 3 is closed and the control valve 13 of the starting gas supply means 9 is opened.

5− そうすると、高圧ガス源11から吐出される高圧の始動
ガスがコンプレッサ1の入口1aに供給されるとともに
、このコンプレッサ1を通過した始動ガスがタービン2
の入口2bに導入されることになり、前記タービン2お
よびコンプレッサ1が回転を始める。この状態で燃料電
池6の空気室7および燃焼炉8から前記タービン2の入
口2b側に付与される熱エネルギの量を増加させていく
とこのタービン2のパワーが増加傾向を示すため、前記
始動ガスの供給圧を低下させても運転は続行される。し
かして、前記タービン2の作動を維持できる範囲内で前
記始動ガス供給手段9の制御バルブ13の開度を漸減さ
せ、前記始動ガスの供給圧が大気圧にまで低下した段階
で給気バルブ3を開いて自励運転に移行させる。この段
階を式を用いて説明すれば次のようになる。コンプレッ
サ1の仕事量をHCとすると、該Hcは、 なる式で表わされる。ここで、Cpaはガスの比熱6一 WCはガスの質量流m、’rlcはフンプレッサ効率、
TCin はコンプレッサ1の入口温度、pcin は
入口圧力、pcoutは出口圧力、kは比熱比である。
5- Then, the high-pressure starting gas discharged from the high-pressure gas source 11 is supplied to the inlet 1a of the compressor 1, and the starting gas that has passed through the compressor 1 is supplied to the turbine 2.
The turbine 2 and compressor 1 start rotating. In this state, if the amount of thermal energy applied from the air chamber 7 of the fuel cell 6 and the combustion furnace 8 to the inlet 2b side of the turbine 2 is increased, the power of the turbine 2 tends to increase, so that the power of the turbine 2 tends to increase. Operation continues even if the gas supply pressure is lowered. Therefore, the opening degree of the control valve 13 of the starting gas supply means 9 is gradually reduced within a range that allows the operation of the turbine 2 to be maintained, and when the supply pressure of the starting gas has decreased to atmospheric pressure, the intake valve 13 is Open to switch to self-excited operation. This step can be explained using a formula as follows. Letting the amount of work of the compressor 1 be HC, the Hc is expressed by the following formula. Here, Cpa is the specific heat of the gas 6, WC is the mass flow m of the gas, 'rlc is the humppressor efficiency,
TCin is the inlet temperature of the compressor 1, pcin is the inlet pressure, pcout is the outlet pressure, and k is the specific heat ratio.

一方、タービン2の仕事量をHtとすると、該Htは、
なる式で表わされる。ここで、Cptはガスの比熱県は
ガスの質量流量、Ntはタービン効率、Ttinはター
ビン2の入口温度、ptin は入口圧力、pto+j
tは出口圧力、1(′は比熱比である。コンプレッサ1
とタービン2とが作動している場合には、Hc = H
jなる関係が成立するが、前記空気室7および燃焼器8
から始動ガスに付与される熱量が増加してタービン2の
入口温度Ttin が上昇すると(1)式で示されるタ
ービン2の仕事量l−1tが増加していく。そのため、
その供給熱量の増加に伴わせて(2)式で示されるコン
プレッサ1の仕事量も増大させることが可能となり、コ
ンプレッサ1の入口圧力pcin を漸次減小させるこ
とができる。そして前記入口圧力pcin が大気圧に
達した時点で完全な自励運転に円滑に移行させることが
できるものである。ところで、この実施例における自励
運転では、前記燃焼器8の燃焼量とタービン2の可変ノ
ズル2aの開度とを適宜制御して、前記燃料電池6の空
気室7に常に一定圧、例えば5 ataの空気を供給す
るようになっている。
On the other hand, if the amount of work of the turbine 2 is Ht, then the Ht is
It is expressed by the following formula. Here, Cpt is the specific heat ratio of the gas, the mass flow rate of the gas, Nt is the turbine efficiency, Ttin is the inlet temperature of the turbine 2, ptin is the inlet pressure, pto+j
t is the outlet pressure, 1(' is the specific heat ratio. Compressor 1
and turbine 2 are operating, Hc = H
j holds true, but the air chamber 7 and the combustor 8
When the amount of heat given to the starting gas increases and the inlet temperature Ttin of the turbine 2 rises, the amount of work l-1t of the turbine 2 shown by equation (1) increases. Therefore,
As the amount of heat supplied increases, the amount of work of the compressor 1 expressed by equation (2) can also be increased, and the inlet pressure pcin of the compressor 1 can be gradually reduced. Then, when the inlet pressure pcin reaches atmospheric pressure, it is possible to smoothly shift to complete self-excitation operation. By the way, in the self-excited operation in this embodiment, the combustion amount of the combustor 8 and the opening degree of the variable nozzle 2a of the turbine 2 are appropriately controlled to maintain a constant pressure in the air chamber 7 of the fuel cell 6, e.g. It is designed to supply ATA air.

なお、前記実施例では、本発明を燃料電池発電プラント
の空気圧縮部分に適用した場合について説明したが、本
発明はかならずしもこのようなものに限らず、他の種類
のターボ・フンプレッサシステムにも同様に適用が可能
である。
In the above embodiments, the present invention was applied to the air compression part of a fuel cell power generation plant, but the present invention is not limited to this type of system, but can also be applied to other types of turbo compressor systems. The same applies.

また、始動ガス供給手段は、ガスボンベ等ヲ用いたもの
に限らず、ブロワや小形の空気圧縮機を用いたものであ
ってもよい。
Further, the starting gas supply means is not limited to one using a gas cylinder or the like, but may be one using a blower or a small air compressor.

さらに、作動ガスは空気に限らない。Furthermore, the working gas is not limited to air.

(へ)効果 本発明は、以上のような構成であるから、次のような効
果が得られる。
(f) Effects Since the present invention has the above-described configuration, the following effects can be obtained.

まず、モータや変速機等の高速回転機械あるいは各種の
保護装置を用いることなしに、始動を行なうことができ
るので、システムの簡略化を図ることができるとともに
、始動に要するエネルギを最小にすることができる。
First, since starting can be performed without using high-speed rotating machinery such as a motor or transmission, or various protective devices, the system can be simplified and the energy required for starting can be minimized. I can do it.

また、タービンの入口側へ直接始動ガスを供給する代わ
りに、コンプレッサの入口側へ始動ガスを供給するよう
にしているので、始動運転モードにおいても、コンプレ
ッサの流量を十分に確保することができる。そのため、
始動時に発生し易いサージングを有効に防止することが
でき、安定した始動性を確保することが可能となる。
Further, since the starting gas is supplied to the inlet side of the compressor instead of directly to the inlet side of the turbine, a sufficient flow rate of the compressor can be ensured even in the starting operation mode. Therefore,
It is possible to effectively prevent surging, which tends to occur at the time of starting, and to ensure stable starting performance.

さらに、余剰の高圧ガスがあれば、そのガスを始動ガス
供給手段を利用してコンプレッサの入口に供給すること
ができるので、燃焼器等の熱付加手段を停止させたまま
で、アイドリング運転を行なうことができるという便利
さもある。
Furthermore, if there is surplus high-pressure gas, that gas can be supplied to the inlet of the compressor using the starting gas supply means, so idling operation can be performed with the heat addition means such as the combustor stopped. There is also the convenience of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示すシステム説明図、第2図は本発明
の一実施例を示すシステム説明図である。 1・・・コンプレッサ 9− 1a・・・人口 1b・・・出1」 2・・・タービン 2b・・・入口 3・・・給気バルブ 5・・・ガスA路7・・・熱付加
手段(空気室) 8・・・熱付加手段(燃焼器) 9・・・始動ガス供給手段 代理人 弁理士 赤澤−博 10− 第2図 第1頁の続き (塑合 明 者 安藤昌尚 京都市中京区西)京桑原町1番 地株式会社島津製作所三条工場 内 (塑発 明 者 猪坂弘 京都市中京区西)京桑原町1番 地株式会社島津製作所三条工場 内
FIG. 1 is a system explanatory diagram showing a conventional example, and FIG. 2 is a system explanatory diagram showing an embodiment of the present invention. 1...Compressor 9-1a...Population 1b...Output 1'' 2...Turbine 2b...Inlet 3...Air supply valve 5...Gas A path 7...Heat adding means (Air chamber) 8...Heat addition means (combustor) 9...Starting gas supply means Agent Patent attorney Hiroshi Akazawa 10- Continuation of Figure 2, page 1 (Plastic combination Author: Masanao Ando Nakagyo, Kyoto City) Shimadzu Corporation Sanjo Factory, 1 Kyokuwabara-cho (West) Kyokuwabara-cho (Plastic inventor: Isaka Hirokyo City) Inside Sanjo Factory, Shimadzu Corporation, 1 Kyokuwabara-cho, West Nakagyo-ku

Claims (1)

【特許請求の範囲】[Claims] 入口を給気バルブを介して大気に開口させたコンプレッ
サと、入口をガス通路を介して前記コンプレッサの出口
に接続しかつ出口を大気に開放したコンプレッサ駆動用
のタービンと、前記ガス通路の途中に介設され前記ター
ビンの入口側に熱エネルギを付与する熱付加手段と、前
記給気バルブが閉じる始動時に前記コンプレッサの入口
に大気圧以上の始動ガスを供給して前記タービンを作動
させるとともに該タービンの作動を維持できる条件を満
しつつ前記始動ガスの供給圧を前記熱付加手段による供
給熱量の増大に伴わせて漸減させる始動ガス供給手段と
を具備してなり、前記始動ガスの供給圧が大気圧にまで
低下した段階で前記給気バルブを開いて自励運転に移行
させ得るように構成したことを特徴とするターボ・コン
プレッサシステム。
a compressor whose inlet is open to the atmosphere via an air supply valve; a turbine for driving the compressor whose inlet is connected to the outlet of the compressor via a gas passage and whose outlet is open to the atmosphere; a heat adding means which is interposed and applies thermal energy to the inlet side of the turbine; and a starting gas having a pressure higher than atmospheric pressure is supplied to the inlet of the compressor at the time of startup when the air supply valve closes to operate the turbine; and a starting gas supply means for gradually decreasing the supply pressure of the starting gas in accordance with an increase in the amount of heat supplied by the heat adding means, while satisfying the condition that the operation of the starting gas can be maintained, the supply pressure of the starting gas is A turbo compressor system characterized in that it is configured to open the air supply valve and shift to self-excited operation when the air pressure drops to atmospheric pressure.
JP58118606A 1983-06-29 1983-06-29 Turbocompressor system Granted JPS6011635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118606A JPS6011635A (en) 1983-06-29 1983-06-29 Turbocompressor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118606A JPS6011635A (en) 1983-06-29 1983-06-29 Turbocompressor system

Publications (2)

Publication Number Publication Date
JPS6011635A true JPS6011635A (en) 1985-01-21
JPH0454048B2 JPH0454048B2 (en) 1992-08-28

Family

ID=14740720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118606A Granted JPS6011635A (en) 1983-06-29 1983-06-29 Turbocompressor system

Country Status (1)

Country Link
JP (1) JPS6011635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179856A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Method of starting turbo-compressor
WO2014069413A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system and method for activating fuel cell in power generation system
JP2014095371A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Power generation system, and method of starting fuel cell in power generation system
JP2018152181A (en) * 2017-03-10 2018-09-27 株式会社豊田自動織機 Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179856A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Method of starting turbo-compressor
JPH0353457B2 (en) * 1984-09-26 1991-08-15 Mitsubishi Electric Corp
WO2014069413A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system and method for activating fuel cell in power generation system
CN104756295A (en) * 2012-10-31 2015-07-01 三菱日立电力系统株式会社 Power generation system and method for activating fuel cell in power generation system
US9979033B2 (en) 2012-10-31 2018-05-22 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method for activating fuel cell in power generation system
US10490832B2 (en) 2012-10-31 2019-11-26 Mitsubishi Hitachi Power Systems, Ltd. Power generation system and method for activating fuel cell in power generation system
JP2014095371A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Power generation system, and method of starting fuel cell in power generation system
JP2018152181A (en) * 2017-03-10 2018-09-27 株式会社豊田自動織機 Fuel cell system

Also Published As

Publication number Publication date
JPH0454048B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
EP3623604B1 (en) Hybrid expander cycle with pre-compression cooling and turbo-generator
US6003298A (en) Steam driven variable speed booster compressor for gas turbine
US4085583A (en) Method for selectively switching motive fluid supply to an aft turbine of a multicycle engine
US3938328A (en) Multicycle engine
US3584459A (en) Gas turbine engine with combustion chamber bypass for fuel-air ratio control and turbine cooling
US7690188B2 (en) Combination engines for aircraft
EP1990518B1 (en) Power generation system for an aircraft
EP1990517B1 (en) Power generation system for an aircraft
US3659422A (en) Method and apparatus for aircraft propulsion
US4555902A (en) Heat recovery system
RU2140001C1 (en) Method of operation of supersonic hybrid air-jet engine plant
JP2002517652A (en) Gas turbine and turbine stage cooling method
US5557919A (en) Method of operating a gas turbine installation
US3705496A (en) Reaction propulsion engine and method of operation
US3740949A (en) Fuel cooled ram air reaction propulsion engine
US4640091A (en) Apparatus for improving acceleration in a multi-shaft gas turbine engine
GB1225759A (en)
JPS6011635A (en) Turbocompressor system
JPS5941012B2 (en) Gas turbine engine fuel control method and device
US3984784A (en) Expander open cycle gas dynamic laser
US3444686A (en) Gas turbine smog control for internal combustion engine
US2748566A (en) Compound gas-turbine engine with lowpressure compressor and turbine bypass
US3721093A (en) Reaction propulsion engine with vaporized fuel driven turbine
US3540214A (en) Fuel systems for gas turbine engines
GB1257072A (en)