JPH01159966A - Method for shutdown of phosphoric acid type fuel cell power-generating device - Google Patents

Method for shutdown of phosphoric acid type fuel cell power-generating device

Info

Publication number
JPH01159966A
JPH01159966A JP62317148A JP31714887A JPH01159966A JP H01159966 A JPH01159966 A JP H01159966A JP 62317148 A JP62317148 A JP 62317148A JP 31714887 A JP31714887 A JP 31714887A JP H01159966 A JPH01159966 A JP H01159966A
Authority
JP
Japan
Prior art keywords
raw material
fuel
fuel cell
reformer
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317148A
Other languages
Japanese (ja)
Inventor
Atsutomo Ooyama
大山 敦智
Toshio Hirota
広田 俊夫
Tomoyoshi Kamoshita
友義 鴨下
Takashi Ujiie
氏家 孝
Takashi Ouchi
崇 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62317148A priority Critical patent/JPH01159966A/en
Publication of JPH01159966A publication Critical patent/JPH01159966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To eliminate danger such as explosion of residual hydrogen at the time of stopping by shutting off supply of crude material to a modifier in compli ance with a given abnormality signal, closing the outlet valve of a blower, then opening an inert gas supply valve, and supplying nitrogen gas to the crude material heating part of the modifier. CONSTITUTION:An abnormality sensor 33 senses any abnormality in a combus tion air blower 3 during a fuel cell power generator in operation, and an electric signal is emitted. In compliance with this electric signal, supply of raw material to a modifier 2 is stopped by stopping a raw material pump 6 and shutting a raw material supply valve 15. The outlet side air supply valve 32 of the blower 3 is closed, and an inert gas supply valve 31 is opened. The residual raw material 20 is modified into fuel gas 21 at a modificational reaction part 2B, and power generation is continued until a heater 2A and reaction part 2B are purged with nitrogen 28. A reactive air blower 4 is stopped, and a valve on its discharge side is closed, and a nitrogen purging valve 18 and an exhaust valve 19 are opened to perform nitrogen replacement in the air chamber of the fuel cell. Now stop is made.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、燃料改質器を有するりん酸型燃料電池発電
装置の発電運転の停止方法、ことに燃料改質器のバーナ
に空気を供給する燃焼空気ブロワが故障した場合の緊急
停止方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for stopping power generation operation of a phosphoric acid fuel cell power generation device having a fuel reformer, and in particular a method for stopping the power generation operation of a phosphoric acid fuel cell power generation device having a fuel reformer, and in particular, a method for stopping the power generation operation of a phosphoric acid fuel cell power generation device having a fuel reformer. The present invention relates to an emergency stop method in the event that a combustion air blower that is used in a combustion engine breaks down.

〔従来の技術〕[Conventional technology]

第2図は従来のりん酸型燃料電池を示す配管系統図であ
り、1はりん酸型燃料電池本体、2は改質器、7は各種
炭化水素等の原料タンクであり、原料タンクマから原料
ポンプ6および原料供給弁15を介して改質器2の加熱
部2A、改質反応部2Bに送られた原料20は、改質器
2の燃焼室2D内に設けられたバーナ2Cの燃焼熱によ
って吸熱反応である改質反応に必要な所定温度に過熱さ
れて水素(H2)濃度の高い燃料ガス21 に変換され
、燃料電池1の大口弁10を介して燃料室に供給される
。一方燃料電池1の空気室には反応空気ブロワ4および
弁14を介して反応空気22が送られ、燃料ガス21お
よび反応空気22が燃料電池1の燃料電極(水素極)お
よび酸素極とそれぞれ接触して電気化学反応を起こすこ
とにより発電が行われる。燃料電池1の電気化学反応は
発熱反応なので、その発生熱は冷却空気ブロワ5を介し
て燃料電池1の空冷室に供給される冷却空気23によっ
て冷却され、反応空気22および冷却空気23は排出口
22A、23Aを通って排出される。
Figure 2 is a piping system diagram showing a conventional phosphoric acid fuel cell, in which 1 is the phosphoric acid fuel cell body, 2 is a reformer, and 7 is a tank for raw materials such as various hydrocarbons. The raw material 20 sent to the heating section 2A and reforming reaction section 2B of the reformer 2 via the pump 6 and the raw material supply valve 15 is heated by the combustion heat of the burner 2C provided in the combustion chamber 2D of the reformer 2. The fuel gas 21 is heated to a predetermined temperature necessary for an endothermic reforming reaction, converted into a fuel gas 21 with a high hydrogen (H2) concentration, and supplied to the fuel chamber via the large mouth valve 10 of the fuel cell 1. On the other hand, reaction air 22 is sent to the air chamber of the fuel cell 1 via the reaction air blower 4 and the valve 14, and the fuel gas 21 and reaction air 22 come into contact with the fuel electrode (hydrogen electrode) and oxygen electrode of the fuel cell 1, respectively. Electricity is generated by causing an electrochemical reaction. Since the electrochemical reaction in the fuel cell 1 is an exothermic reaction, the generated heat is cooled by the cooling air 23 supplied to the air cooling chamber of the fuel cell 1 via the cooling air blower 5, and the reaction air 22 and the cooling air 23 are It is discharged through 22A and 23A.

燃料室で水素が消費されて水素濃度が低下した使用済燃
料ガス24 は出口弁11 を介してバーナ2Cに送ら
れ、燃焼用空気ブロワ3からバーナ2Cに供給される支
燃空気25 と混合されて燃焼し、そのvA燃焼室2D
に発生ずる熱エネルギーを利用して原料20を水素リッ
チな燃料ガス21に改質する改質反応が行われる。
The spent fuel gas 24 whose hydrogen concentration has decreased due to hydrogen consumption in the fuel chamber is sent to the burner 2C via the outlet valve 11 and mixed with combustion supporting air 25 supplied from the combustion air blower 3 to the burner 2C. The vA combustion chamber 2D
A reforming reaction is performed in which the raw material 20 is reformed into a hydrogen-rich fuel gas 21 using the thermal energy generated.

また、燃料電池の発電運転を停止しようとする場合の停
止方法としては、原料ポンプ6を停止するとともに原料
供給弁15.燃料室の大口弁10.および出目弁11を
閉じて燃料室への燃料ガスの供給を停止するとともに、
バイパス弁12を開いて改質器2内の残存原料から発生
ずる燃料ガス21をバーナ2Cに導いて燃焼さセる。一
方反応空気22の供給を止め、燃料室の排出弁19.燃
料室パージ弁17.および反応空気室パージ弁18を開
いて窒素ボンへ9から不活性ガスとしての窒素26゜2
7を燃料室および反応空気室に送り、両室内を窒素ガス
に置換する。この置換操作を終了した時点で冷却空気ブ
ロワ5を停止し、パージ弁17および18を閉じること
により、燃料電池1内は不活性ガスに置換されて安全性
が保持される。また、バーナ2Cで燃え残った低濃度の
燃料ガスは燃焼室2Dの出口2E側に図示しない触媒燃
焼器を設けておくことによりほぼ完全に燃焼させること
ができる。
Furthermore, when attempting to stop the power generation operation of the fuel cell, the method of stopping is to stop the raw material pump 6 and the raw material supply valve 15. Fuel chamber large mouth valve 10. and closes the outlet valve 11 to stop the supply of fuel gas to the fuel chamber,
The bypass valve 12 is opened and the fuel gas 21 generated from the remaining raw material in the reformer 2 is guided to the burner 2C and burned. On the other hand, the supply of reaction air 22 is stopped, and the fuel chamber exhaust valve 19. Fuel chamber purge valve 17. and open the reaction air chamber purge valve 18 to supply nitrogen 26°2 as an inert gas to the nitrogen bomb 9.
7 is sent to the fuel chamber and reaction air chamber, and both chambers are replaced with nitrogen gas. When this replacement operation is completed, the cooling air blower 5 is stopped and the purge valves 17 and 18 are closed, thereby replacing the inside of the fuel cell 1 with inert gas and maintaining safety. Moreover, the low concentration fuel gas left unburned by the burner 2C can be almost completely combusted by providing a catalytic combustor (not shown) on the outlet 2E side of the combustion chamber 2D.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来装置においては、発電運転中に何らかの原因で燃焼
空気ブロワ3が異常停止した場合、支燃空気25の供給
停止によってノ\−す2Cが消火してしまうために、改
質器2の温度が徐々に低下し、改質されない原料が燃料
電池1に送られてしまい、燃料電池が発電不能に陥る危
険性があった。また、バーナの消火によって未燃焼の使
用済燃料ガスが支燃空気の供給が停止した状態の燃焼室
2D内に滞留することになり、燃料電池の再起動時に引
火爆発する危険性があり、さらに未燃焼ガスが燃焼空気
ブロワ3側に逆流した場合にはブロワに再び損傷を与え
る可能性があった。
In the conventional device, if the combustion air blower 3 abnormally stops for some reason during power generation operation, the temperature of the reformer 2 will decrease because the supply of the combustion support air 25 is stopped and the combustion air blower 2C is extinguished. There was a risk that raw material that would gradually decrease and not be reformed would be sent to the fuel cell 1, causing the fuel cell to be unable to generate electricity. In addition, when the burner is extinguished, unburned spent fuel gas remains in the combustion chamber 2D where the supply of combustion-supporting air is stopped, and there is a risk of ignition and explosion when the fuel cell is restarted. If the unburned gas flows back to the combustion air blower 3 side, there is a possibility that the blower will be damaged again.

この発明の目的は、燃焼空気ブロワの故障を早期に検出
して燃料電池の発電運転を安全に停止させる停止方法を
得ることにある。
An object of the present invention is to provide a stopping method for detecting failure of a combustion air blower at an early stage and safely stopping power generation operation of a fuel cell.

〔問題点を解決するための手段] 上記問題点を解決するために、この発明方法によれば、
原料ポンプおよび原料供給弁を介して改質器に送られる
原料を水素リッチな燃料ガスに改質して燃料電池に送っ
て発電を行うとともに、燃料電池の使用済燃料ガスと燃
焼空気ブロワから供給弁を介して送られる支燃空気とを
前記改質器のバーナに送って燃焼させ改質器の熱源とす
るものにおいて、前記燃焼空気ブロワの異常停止を検出
する異常検出器と、不活性ガス供給弁を介して前記原料
供給弁の改質器側に連通ずる改質器パージ系とを具備し
、前記燃焼空気ブロワの異常停止を前記検知器で検知し
、前記原料供給弁および支燃空気の供給弁を閉した後、
前記不活性ガス供給弁を開いて不活性ガスを改質器2燃
料電池、およびバーナからなる燃料系に供給し、燃料系
中で残存燃料を消費させるとともに、前記燃料系および
燃焼室を不活性ガスに置換することとする。
[Means for solving the problems] In order to solve the above problems, according to the method of this invention,
The raw material sent to the reformer via the raw material pump and raw material supply valve is reformed into hydrogen-rich fuel gas and sent to the fuel cell to generate electricity, and is also supplied from the fuel cell's spent fuel gas and combustion air blower. Combustion-supporting air sent through a valve is sent to the burner of the reformer to be combusted and used as a heat source for the reformer, an abnormality detector for detecting abnormal stoppage of the combustion air blower, and an inert gas a reformer purge system that communicates with the reformer side of the raw material supply valve via a supply valve, the detector detects abnormal stoppage of the combustion air blower, and the raw material supply valve and the combustion air After closing the supply valve of
The inert gas supply valve is opened to supply inert gas to the fuel system consisting of the reformer 2 fuel cell and the burner, thereby consuming the remaining fuel in the fuel system, and inactivating the fuel system and the combustion chamber. It will be replaced with gas.

〔作用〕[Effect]

上記手段において、燃焼空気ブロワの異常検出器として
の電気的故障の検出リレーまたは吐出圧低下、風速低下
の検知器と、窒素ボンベ、不活性ガス供給弁を介して原
料供給弁の散出器側に連通ずる改質器パージ系とを設け
、燃焼空気ブロワの故障を異常検出器で検知し、その出
力異常信号に基づいて、改質器への原料の供給を遮断し
、ブロワの出口弁を閉じた後、不活性ガス供給弁を開い
て窒素ガスを改質器の原料加熱部に供給するようにした
ことにより、先ず加熱部中に残存する原料は窒素ガス圧
によって反応部側に押し出されつつ燃料ガスGこ改質さ
れて燃料電池に供給され、電気化学反応に寄与して水素
濃度が低下した使用済燃料ガスは改質器のバーナで燃焼
室内の残留酸素と混合してしばらくの間燃焼が持続する
。やがて加熱部9反応部、燃料室バーナの順で窒素パー
ジが進む時点ではバーナの燃焼は停止するが、燃焼室内
の残留燃料ガスは窒素ガスと混合して水素濃度が一層低
下し、燃焼排ガスの排気口から排出されることにより燃
料電池および改質器内はすべて窒素ガスに置換され、停
止時点では残留水素の爆発等の危険性が完全に排除され
る。
In the above means, an electrical failure detection relay as an abnormality detector of a combustion air blower or a detector for a drop in discharge pressure or a drop in wind speed is connected to a nitrogen cylinder and an inert gas supply valve on the dispersion side of the raw material supply valve. A failure of the combustion air blower is detected by an abnormality detector, and based on the output abnormality signal, the supply of raw material to the reformer is cut off, and the outlet valve of the blower is closed. After closing, the inert gas supply valve is opened to supply nitrogen gas to the raw material heating section of the reformer, so that the raw material remaining in the heating section is first pushed out to the reaction section side by the nitrogen gas pressure. The spent fuel gas is reformed and supplied to the fuel cell, and the spent fuel gas, whose hydrogen concentration has decreased due to the electrochemical reaction, is mixed with the residual oxygen in the combustion chamber in the burner of the reformer and remains for a while. Burning continues. Eventually, combustion in the burner stops when nitrogen purge progresses from the heating section 9 reaction section to the fuel chamber burner, but the residual fuel gas in the combustion chamber mixes with nitrogen gas and the hydrogen concentration further decreases, causing the combustion exhaust gas to By being discharged from the exhaust port, the inside of the fuel cell and reformer are all replaced with nitrogen gas, and the danger of explosion of residual hydrogen is completely eliminated at the time of shutdown.

〔実施例〕〔Example〕

以下この発明方法を実施例に基づいて説明する。 The method of this invention will be explained below based on examples.

第1図はこの発明の実施例方法を説明するためのりん酸
型燃料電池発電装置の配管系統図であり、従来装置と同
じ部分には同一参照符号を付すことにより詳細な説明を
省略する。図において、燃焼空気ブロワ3にはその吐出
側に空気供給弁32が、そして電気系または送風系の異
常検出器33が設けられる。また不活性ガスとしての窒
素を貯蔵する窒素ボンへ9は不活性ガス供給弁31を介
して原料供給弁15の改質器2側に連通して改質器パー
ジ系30が形成される。このように構成された燃料電池
発電装置において、その発電運転は不活性ガス系の弁1
7.18.および31 と、バイパス弁12 と、排出
弁9とが閉じ、他の弁は開いた状態で従来装置について
既に説明したと同様な方法によって行われる。
FIG. 1 is a piping system diagram of a phosphoric acid fuel cell power generation apparatus for explaining an embodiment of the method of the present invention, and the same parts as in the conventional apparatus are given the same reference numerals and a detailed explanation will be omitted. In the figure, the combustion air blower 3 is provided with an air supply valve 32 on its discharge side, and an abnormality detector 33 in the electrical system or the blowing system. Further, a nitrogen tank 9 that stores nitrogen as an inert gas communicates with the reformer 2 side of the raw material supply valve 15 via an inert gas supply valve 31 to form a reformer purge system 30. In the fuel cell power generation device configured in this way, the power generation operation is performed using the inert gas system valve 1.
7.18. and 31 , the bypass valve 12 and the discharge valve 9 are closed, and the other valves are open, in a manner similar to that already described for the conventional device.

燃料電池発電装置の運転中に燃焼空気ブロワ3の電気系
統または送風系統に異常が発生したと仮定すると、異常
検出器33がこれを検知して電気信号を発するので、こ
の電気信号に基づいて原料ポンプ6の停止、原料供給弁
15の閉鎖により改質器2への原料の供給を停止させ、
ブロワ3の出口側空気供給弁32を閉じ、不活性ガス供
給弁31 を開く動作を順次実行する。この一連の動作
は所定のパルスシーケンスによって自動的に行ってもよ
く、また手動操作によって行ってもよい。
Assuming that an abnormality occurs in the electrical system or air blowing system of the combustion air blower 3 during operation of the fuel cell power generation device, the abnormality detector 33 detects this and issues an electrical signal. The supply of raw materials to the reformer 2 is stopped by stopping the pump 6 and closing the raw material supply valve 15,
The operation of closing the air supply valve 32 on the outlet side of the blower 3 and opening the inert gas supply valve 31 is executed in sequence. This series of operations may be performed automatically using a predetermined pulse sequence, or may be performed manually.

不活性ガス供給弁31が開くことによって改質器2内の
加熱部2Aに残存する原料を改質反応部2Bに向けて押
し出す圧力が窒素ガス28によって発生し、残存原料2
0は改質反応部2BT:燃料ガス21 に改質され、燃
料電池本体1の燃料室に送られ、加熱部2A、反応部2
B内が窒素28によってパージされるまで発電が持続す
る。また燃料室から排出される水素濃度が低下した使用
済燃料ガス24 は改質器2のバーナ2cに送られて燃
焼室2D内の残存空気と混合して燃焼する。やがて、窒
素ガス28が燃料室に到達しバーナ2Cがら吹き出す使
用済燃料ガス24中の窒素濃度が高まるとバーナ2Cの
燃焼は停止し、燃焼室2D内は窒素ガス28によってパ
ージされる。この状態では燃料電池本体1の電気出力も
低下するので、反応空気ブロワ4を停止し、その吐出側
の弁14を閉じるとともに、窒素パージ弁18および排
出弁19を開いて燃料電池の空気室の窒素置換を行い、
不活性ガス供給弁31および出口弁11を閉じ、冷却空
気ブロワ5を停止することにより、燃料電池発電装置を
残存水素の爆発の危険性が完全に排除された状態で停止
させることができる。
When the inert gas supply valve 31 opens, pressure is generated by the nitrogen gas 28 to push out the raw material remaining in the heating section 2A in the reformer 2 toward the reforming reaction section 2B, and the remaining raw material 2
0 is reformed into reforming reaction part 2BT: fuel gas 21, sent to the fuel chamber of the fuel cell main body 1, heated part 2A, reaction part 2
Power generation continues until B is purged with nitrogen 28. Also, the spent fuel gas 24 discharged from the fuel chamber and having a reduced hydrogen concentration is sent to the burner 2c of the reformer 2, where it is mixed with the remaining air in the combustion chamber 2D and combusted. Eventually, when the nitrogen gas 28 reaches the fuel chamber and the nitrogen concentration in the spent fuel gas 24 blown out from the burner 2C increases, combustion in the burner 2C stops and the inside of the combustion chamber 2D is purged with the nitrogen gas 28. In this state, the electrical output of the fuel cell main body 1 also decreases, so the reaction air blower 4 is stopped, its discharge side valve 14 is closed, and the nitrogen purge valve 18 and exhaust valve 19 are opened to drain the air chamber of the fuel cell. Perform nitrogen replacement,
By closing the inert gas supply valve 31 and the outlet valve 11 and stopping the cooling air blower 5, the fuel cell power generation device can be stopped in a state where the danger of explosion of residual hydrogen is completely eliminated.

上述のように、実施例方法においては、燃焼空気ブロワ
3の故障を異常検出器33が検知して原料および支燃空
気の供給を遮断した後、改質器パージ系30から供給さ
れる不活性ガス28を加圧源とし、残存原料の改質、燃
料電池の発電による水素の消費、および燃焼室残存空気
による使用済燃料ガスの燃焼を通常の発電運転に近い状
態で暫らくの間持続させることができるので、改質器2
の残存原料のほとんど大部分が消費され、かつその後は
改質器および燃料電池内が不活性ガスにほぼ完全に置換
されるので、高度に安全性を保持して燃料電池発電装置
を停止させることができる。
As described above, in the embodiment method, after the abnormality detector 33 detects a failure of the combustion air blower 3 and cuts off the supply of raw material and combustion support air, the inert gas supplied from the reformer purge system 30 The gas 28 is used as a pressurized source, and the reforming of the remaining raw material, the consumption of hydrogen by the power generation of the fuel cell, and the combustion of the spent fuel gas by the air remaining in the combustion chamber are continued for a while in a state close to normal power generation operation. Since it is possible, reformer 2
Most of the remaining raw material is consumed, and the inside of the reformer and fuel cell are almost completely replaced with inert gas, so it is possible to shut down the fuel cell power generation device with a high degree of safety. Can be done.

また燃焼空気ブロワの故障によらない通常の停止におい
ても、改質器パージ系を利用して改質器全体を不活性ガ
ス置換することにより、より安全性の高い状態に燃料電
池発電装置を保持することができる。なお、この場合に
は、原料供給弁15を閉じ、支燃空気の供給を続けた状
態で、燃料ガスをバイパス弁12を介してバーナ2Cに
環流させて燃焼させることにより、燃料電池本体1と改
質器2との不活性ガスパージを切離した状態で運転を停
止させることができる。
In addition, even during normal shutdowns that are not due to combustion air blower failure, the fuel cell power generation system is maintained in a safer state by using the reformer purge system to replace the entire reformer with inert gas. can do. In this case, the fuel gas is circulated through the bypass valve 12 to the burner 2C for combustion while the raw material supply valve 15 is closed and the combustion support air is continued to be supplied. The operation can be stopped with the inert gas purge disconnected from the reformer 2.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、燃焼空気ブロワの異常を異常
検出器で検知し、その出ノj信号に基づいて原料の供給
および支燃空気の供給路を遮断した後、改質器のパージ
系から改質器の原料加熱部に不活性ガスを供給して改質
器および燃料電池本体の燃料室を含む燃料系全体を不活
性ガス置換するよう燃料電池装置の異常停止方法を構成
した。その結果、改質器パージ系から供給される不活性
ガスが加圧源となって改質器中の残存原料の改質。
As described above, this invention detects an abnormality in the combustion air blower using an abnormality detector, cuts off the supply of raw materials and the supply path of combustion support air based on the output signal, and then shuts off the purge system of the reformer. A method for abnormally stopping a fuel cell device was configured to supply inert gas from the fuel cell heating section of the reformer to the inert gas in the entire fuel system including the reformer and the fuel chamber of the fuel cell main body. As a result, the inert gas supplied from the reformer purge system becomes a pressurized source to reform the remaining raw material in the reformer.

燃料電池の発電、および燃焼室残存空気を支燃空気とす
る使用済燃料ガスの燃焼が通常の発電運転に近い状態で
暫らく持続して残存原料中の水素の大部分が消費され、
その後は改質器の燃焼室を含む系全体が不活性ガス置換
されるので、従来装置において問題となった、原料が改
質されないまま燃料電池に供給されて発電不能に陥った
り、燃焼室に可燃ガスが滞留して再起動時に燃焼爆発す
るなどの不測の事態が完全に排除され、燃料電池発電装
置を関度に安全性を保持して停止させる異常発生時の停
止方法を提供することができる。また、この方法は燃料
電池の普常の停止方法としても利用でき、改質器を不活
性ガスで完全にガス置換できるのでより高い安全性が得
られる。さらに、支燃空気の遮断弁を設りたことにより
、燃焼室から使用済燃料ガスが燃焼空気ブロワ側に逆流
し逆火を生ずる危険性が排除される。
The power generation of the fuel cell and the combustion of the spent fuel gas using the remaining air in the combustion chamber as combustion supporting air continue for a while in a state similar to normal power generation operation, and most of the hydrogen in the remaining raw material is consumed.
After that, the entire system, including the combustion chamber of the reformer, is replaced with inert gas, which causes problems with conventional equipment, such as the raw material being supplied to the fuel cell without being reformed, resulting in the inability to generate electricity, or It is possible to completely eliminate unexpected situations such as combustible gas accumulating and causing a combustion explosion upon restart, and to provide a method for stopping a fuel cell power generation device in the event of an abnormality while maintaining safety. can. Furthermore, this method can also be used as a normal stopping method for fuel cells, and the reformer can be completely replaced with inert gas, resulting in higher safety. Furthermore, the provision of the combustion support air cutoff valve eliminates the risk of spent fuel gas flowing back from the combustion chamber to the combustion air blower and causing backfire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例方法を説明するための燃料電
池発電装置を示す配管系統図、第2図は従来装置を示す
配管系統図である。 1・・燃料電池本体、2・・・改質器、3・・燃焼空気
ブロワ、4・・・反応空気ブロワ、5・・・冷却空気ブ
ロワ、6・・・原料ポンプ、7・・・原料タンク、9・
・・窒素ボンへ、15・・・原料供給弁、30・・・改
質器パージ系、31・・・不活性ガス供給弁、32・・
・(支燃)空気供給弁、33・・・異常検出器、20・
・・原料、21・・燃料ガス、22・・反応空気、24
・・・使用済燃料ガス、25・・・支燃空気、26、2
7,28・・・不活性ガス(窒素ガス)。
FIG. 1 is a piping system diagram showing a fuel cell power generation apparatus for explaining an embodiment method of the present invention, and FIG. 2 is a piping system diagram showing a conventional apparatus. 1... Fuel cell body, 2... Reformer, 3... Combustion air blower, 4... Reaction air blower, 5... Cooling air blower, 6... Raw material pump, 7... Raw material Tank, 9.
...To nitrogen bomb, 15... Raw material supply valve, 30... Reformer purge system, 31... Inert gas supply valve, 32...
・(Combustion support) air supply valve, 33... Abnormality detector, 20・
...Raw material, 21..Fuel gas, 22..Reaction air, 24
... Spent fuel gas, 25 ... Combustion supporting air, 26, 2
7,28...Inert gas (nitrogen gas).

Claims (1)

【特許請求の範囲】[Claims] 1)原料ポンプおよび原料供給弁を介して改質器に送ら
れる原料を水素リッチな燃料ガスに改質して燃料電池に
送って発電を行うとともに、燃料電池の使用済燃料ガス
と燃焼空気ブロワから供給弁を介して送られる支燃空気
とを前記改質器のバーナに送って燃焼させ改質器の熱源
とするものにおいて、前記燃焼空気ブロワの異常停止を
検出する異常検出器と、不活性ガス供給弁を介して前記
原料供給弁の改質器側に連通する改質器パージ系とを具
備し、前記燃焼空気ブロワの異常停止を前記検知器で検
知し、前記原料供給弁および支燃空気の供給弁を閉じた
後、前記不活性ガス供給弁を開いて不活性ガスを改質器
、燃料電池、およびバーナからなる燃料系に供給し、燃
料系中で残存燃料を消費させるとともに、前記燃料系お
よび燃焼室を不活性ガスに置換することを特徴とするり
ん酸型燃料電池発電装置の停止方法。
1) The raw material sent to the reformer via the raw material pump and the raw material supply valve is reformed into hydrogen-rich fuel gas and sent to the fuel cell to generate electricity, and the spent fuel gas of the fuel cell and combustion air blower are The combustion air blower is sent to a burner of the reformer to be combusted and used as a heat source for the reformer, and an abnormality detector for detecting abnormal stoppage of the combustion air blower; a reformer purge system communicating with the reformer side of the raw material supply valve via an active gas supply valve, the detector detects abnormal stoppage of the combustion air blower, and the raw material supply valve and support After closing the fuel air supply valve, the inert gas supply valve is opened to supply the inert gas to the fuel system consisting of the reformer, the fuel cell, and the burner, and consume the remaining fuel in the fuel system. . A method for shutting down a phosphoric acid fuel cell power generation apparatus, comprising replacing the fuel system and combustion chamber with an inert gas.
JP62317148A 1987-12-15 1987-12-15 Method for shutdown of phosphoric acid type fuel cell power-generating device Pending JPH01159966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317148A JPH01159966A (en) 1987-12-15 1987-12-15 Method for shutdown of phosphoric acid type fuel cell power-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317148A JPH01159966A (en) 1987-12-15 1987-12-15 Method for shutdown of phosphoric acid type fuel cell power-generating device

Publications (1)

Publication Number Publication Date
JPH01159966A true JPH01159966A (en) 1989-06-22

Family

ID=18084976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317148A Pending JPH01159966A (en) 1987-12-15 1987-12-15 Method for shutdown of phosphoric acid type fuel cell power-generating device

Country Status (1)

Country Link
JP (1) JPH01159966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040684A2 (en) * 2002-11-01 2004-05-13 Toyota Jidosha Kabushiki Kaisha Hydrogen operated power system
JP2006286249A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Gas purge mechanism of fuel reformer in fuel cell power generation system
US7192669B2 (en) 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
KR100737580B1 (en) * 2006-07-05 2007-07-10 현대자동차주식회사 A long term keeping device of a fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192669B2 (en) 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
US8486572B2 (en) 2001-11-30 2013-07-16 Panasonic Corporation System and method of fuel cell power generation
WO2004040684A2 (en) * 2002-11-01 2004-05-13 Toyota Jidosha Kabushiki Kaisha Hydrogen operated power system
WO2004040684A3 (en) * 2002-11-01 2006-09-21 Toyota Motor Co Ltd Hydrogen operated power system
CN100454637C (en) * 2002-11-01 2009-01-21 丰田自动车株式会社 Hydrogen operated power system
US7967572B2 (en) 2002-11-01 2011-06-28 Toyota Jidosha Kabushiki Kaisha Hydrogen operated power system
JP2006286249A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Gas purge mechanism of fuel reformer in fuel cell power generation system
KR100737580B1 (en) * 2006-07-05 2007-07-10 현대자동차주식회사 A long term keeping device of a fuel cell

Similar Documents

Publication Publication Date Title
US8728675B2 (en) Fuel cell system
WO2008035776A1 (en) Hydrogen generator, method of operating hydrogen generator, and fuel cell system
CN116338261B (en) Low-power high-temperature solid oxide fuel cell stack test system
JP5204757B2 (en) Hydrogen generator, operating method thereof, and fuel cell system,
WO2006041185A1 (en) Fuel cell system and operation method of the same
CN113023674A (en) Natural gas reformer and SOFC power generation system
JPS61233977A (en) Gas replacement of fuel cell
JP5836044B2 (en) Gas turbine combined power generation system having high temperature fuel cell and operation method of gas turbine combined power generation system having high temperature fuel cell
JP3722868B2 (en) Fuel cell system
JPH01159966A (en) Method for shutdown of phosphoric acid type fuel cell power-generating device
JP5002220B2 (en) Fuel cell system
JPH0624129B2 (en) Fuel cell power plant
JP4097193B2 (en) Combined power generation facilities for fuel cells and gas turbines and their start / stop methods
JP2010238520A (en) Fuel cell system
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JPS59149664A (en) Fuel-cell system
JPS63155564A (en) Fuel cell power generation system
JP3383091B2 (en) How to start the fuel cell power plant
JP5646000B2 (en) Fuel cell system
JPS6182678A (en) Fuel cell power generation system
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JP2006310291A (en) Fuel cell system
JPH0293207A (en) Hot air room-heater
JP3413925B2 (en) Fuel cell power generation equipment
JPH10223236A (en) Fuel cell electricity-generating apparatus