JP2006310291A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006310291A
JP2006310291A JP2006100622A JP2006100622A JP2006310291A JP 2006310291 A JP2006310291 A JP 2006310291A JP 2006100622 A JP2006100622 A JP 2006100622A JP 2006100622 A JP2006100622 A JP 2006100622A JP 2006310291 A JP2006310291 A JP 2006310291A
Authority
JP
Japan
Prior art keywords
fuel
line
power generation
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100622A
Other languages
Japanese (ja)
Inventor
Yasuhiro Arai
康弘 新井
Hideo Miyahara
秀夫 宮原
Masatoshi Tanaka
正俊 田中
Tatsuya Kuze
達也 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2006100622A priority Critical patent/JP2006310291A/en
Publication of JP2006310291A publication Critical patent/JP2006310291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fuel cell system, having high efficiency of fuel treatment system and high power generation efficiency, and capable of realizing energy-saving and economical operation. <P>SOLUTION: The fuel cell system has a combustor 10 which has integrated in common a starting burner for burning a starting fuel obtained through a starting fuel line 29 at starting of a fuel cell body 2 and a combustion burner for burning a power generation fuel at power generation of the fuel cell body 2, and is equipped with a fuel reformer 6 which performs fuel reforming by burning the fuel by the combustor 10 and supplies the reformed fuel to the fuel electrode of the main body 2, a process gas line 42 to transfer the fuel reformed by the reformer 6 to the fuel electrode of the body 2, an off-gas fuel line 30 to transfer the fuel remaining non-reacted at the main body 2 to the reformer 6, a degassing line 7 for degassing an inert gas existing in the process gas line 42 at starting before power generation of the body 2 and a shut-off valve for degassing 23 provided in the degassing line 17, and an off-gas fuel line check valve 24 which makes the starting fuel line 29 and the off-gas fuel line 29 communicate and separates them 29, 30 at starting before power generation of the body 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市ガス或いはLPGと水蒸気を燃料改質器(反応器)を経て抽出した水素を、燃料電池に供給し電気エネルギを得るための燃料電池システムに関する。   The present invention relates to a fuel cell system for obtaining electric energy by supplying, to a fuel cell, hydrogen obtained by extracting city gas or LPG and water vapor through a fuel reformer (reactor).

近年、燃料電池を使った家庭住宅用電源システムが将来的に有望視され、その技術開発競争が各企業間で激しさを増して来ている。これらのシステムは、電池電力の利用のみならず、電池排熱を利用するコージェネレーションシステムが一般的である。   In recent years, power supply systems for homes using fuel cells are considered promising in the future, and the technological development competition is becoming more intense among companies. In these systems, not only the use of battery power but also a cogeneration system that uses battery exhaust heat is common.

燃料電池には電解質の分類により多くの種類があるが、例えば固体高分子型燃料電池は、電気エネルギの発生とともに、約100℃以下の排熱を生じる。これは、電池効率が100%にならない限り、つまり電池本体温度が周囲温度のままで発電が可能にならない限り、温度の高い電池温度から周囲温度への放熱分が熱として発生することを示している。   There are many types of fuel cells depending on the type of electrolyte. For example, a polymer electrolyte fuel cell generates exhaust heat of about 100 ° C. or less with generation of electric energy. This indicates that the heat released from the high battery temperature to the ambient temperature is generated as heat unless the battery efficiency reaches 100%, that is, unless power generation is possible with the battery body temperature at the ambient temperature. Yes.

一方、燃料を水素に改質するための燃料処理システムにおいても、通常、改質器等の改質反応の加熱に燃焼器を使うため、燃焼排ガスや燃料処理器からの排熱が生じる。これらの排熱は、給湯やお風呂等の温水利用に適しており、熱回収が多ければ、電気と熱を合わせた総合効率を80%近くまで向上させることが可能である。すなわち、このようなコージェネレーション運転は、従来の系統電力利用に比べて、エネルギ効率が高く、省エネルギで地球環境に優しく、より経済的な運転を行うことが実現できるため、ユーザにとってはメリットが大きい。   On the other hand, also in a fuel processing system for reforming fuel to hydrogen, since a combustor is usually used for heating a reforming reaction of a reformer or the like, combustion exhaust gas or exhaust heat from the fuel processor is generated. These waste heats are suitable for hot water use such as hot water supply and baths, and if there is much heat recovery, the total efficiency of electricity and heat can be improved to nearly 80%. In other words, such cogeneration operation is more energy efficient than conventional grid power use, can save energy, is friendly to the global environment, and can be operated more economically. large.

図4は従来の燃料電池システムの一例を示す概略構成図である。図から分かるように、従来の改質用燃焼器10は起動用バーナ(スタートバーナ、以下起動バーナと称する)およびメイン用バーナ(メインバーナ、以下発電バーナと称する)から構成され、燃焼室空間に2本のバーナが配置されるため、燃焼室が狭くなり易いとともに、メイン燃料バーナを中心部に配置すると起動用バーナを斜めに配置せざるを得ない欠点がある。この従来例の場合、起動用バーナの燃焼は予混合燃焼、メイン燃料用バーナの燃焼は拡散燃焼の構成となっている。また、起動用バーナを冷却するための空気を流す必要があり、その影響でメイン燃料バーナの火炎形状は偏流し、改質触媒を加熱する熱効率は低下し易い。   FIG. 4 is a schematic diagram showing an example of a conventional fuel cell system. As can be seen from the figure, the conventional reforming combustor 10 includes a start burner (start burner, hereinafter referred to as start burner) and a main burner (main burner, hereinafter referred to as power generation burner), and is disposed in the combustion chamber space. Since the two burners are arranged, the combustion chamber tends to be narrow, and there is a drawback that if the main fuel burner is arranged in the center, the starting burner must be arranged obliquely. In the case of this conventional example, the combustion of the start burner is premixed combustion, and the combustion of the main fuel burner is diffusion combustion. In addition, it is necessary to flow air for cooling the starter burner, and as a result, the flame shape of the main fuel burner drifts, and the thermal efficiency for heating the reforming catalyst tends to decrease.

なお、図4の構成において、後述する本発明の実施形態を説明するための図1と同一部分には同一符号を付してその説明を省略する。   In the configuration of FIG. 4, the same parts as those in FIG. 1 for describing the embodiment of the present invention to be described later are denoted by the same reference numerals, and the description thereof is omitted.

このような燃料電池システムにおいては、燃料がメタンを主体とした都市ガスやLPGの場合、それらの燃料ガスを水素に改質するための改質器6が必要であり、改質触媒を活性化するために加熱する燃焼装置が必要となる。この燃焼装置に使われるバーナは、発電運転前の起動時に使用するバーナと発電時に使用するバーナの2種類に分けて運転する場合もあれば、両者の機能を有した1種類のバーナのみで運転する場合がある。   In such a fuel cell system, when the fuel is city gas or LPG mainly composed of methane, the reformer 6 for reforming the fuel gas into hydrogen is necessary, and the reforming catalyst is activated. In order to do so, a combustion device for heating is required. The burner used in this combustion device may be divided into two types: the burner used at start-up before power generation operation and the burner used at power generation, or it may be operated with only one type of burner having both functions. There is a case.

前者の運転のように2種類バーナを切り換える理由は、その燃料の主体が起動時は都市ガスあるいはプロパンであり、発電時は水素であり、燃焼速度が異なるため1種類のバーナで安定した火炎を形成することが困難であるためである。   The reason for switching between the two types of burners as in the former operation is that the main fuel is city gas or propane at start-up, hydrogen at power generation, and the combustion speed is different, so a stable flame is produced with one type of burner. This is because it is difficult to form.

この解決のため、後者の1種類のバーナでは、燃焼性を良好で安定させるために、特許文献1では、発電運転前の起動時に使用するバーナと発電時に使用するバーナを一体化して一種類のバーナのようにする工夫がなされている(特許文献1参照)
特開2004−6111公報
In order to solve this problem, in the latter one type of burner, in order to achieve good and stable flammability, in Patent Document 1, the burner used at the start before the power generation operation and the burner used at the time of power generation are integrated into one type. The device is made like a burner (see Patent Document 1).
JP 2004-6111 A

前述した発電運転前の起動時に使用するバーナと発電時に使用するバーナを一体化した一種類のバーナの場合、バーナ単独では想定される燃料ガスを燃焼させる上で問題はほとんど無い。   In the case of one type of burner that integrates the burner used at the start-up before the power generation operation and the burner used at the time of power generation, there is almost no problem in burning the assumed fuel gas with the burner alone.

しかしながら、一体型バーナを、図4の従来の燃料電池システムに組込み、起動から発電状態までスムーズに運転を移行させようとした場合、起動時の不着火、失火が発生、起動燃料からオフガス燃料への燃焼継続が困難になっている。   However, when the integrated burner is incorporated into the conventional fuel cell system of FIG. 4 and an attempt is made to smoothly shift the operation from the start-up to the power generation state, non-ignition and misfire occur at the start-up, and the start-up fuel changes to off-gas fuel. It has become difficult to continue burning.

本発明は、この種の問題を解決するためなされたものであり、起動時の着火性及び燃焼安定性が向上し、発電効率が高い燃料電池システムを提供することを目的とする。   The present invention has been made to solve this type of problem, and an object of the present invention is to provide a fuel cell system with improved ignitability and combustion stability at startup and high power generation efficiency.

前記目的を達成するため、請求項1に対応する発明は、燃料電池システムの起動時に使用するバーナと前記燃料電池システムの発電時に使用するバーナを一体化した燃焼器と、前記燃焼器に起動燃料を供給する起動燃料ラインと、前記燃焼器にオフガス燃料を供給するオフガス燃料ラインとを備え、かつ前記起動燃料ライン及び前記オフガス燃料ラインを連通した燃料電池システムにおいて、前記燃料電池の発電前起動時に前記起動燃料ラインと前記オフガス燃料ラインを切り離すと共に、前記プロセスラインの脱気を可能にする手段を具備したことを特徴とする燃料電池システムである。   In order to achieve the above object, an invention corresponding to claim 1 includes a burner used at the time of starting a fuel cell system, a combustor in which a burner used at the time of power generation of the fuel cell system is integrated, and a starting fuel in the combustor. In a fuel cell system comprising an activation fuel line for supplying gas and an off-gas fuel line for supplying off-gas fuel to the combustor and communicating the activation fuel line and the off-gas fuel line, when the fuel cell is activated before power generation A fuel cell system comprising means for separating the starting fuel line and the off-gas fuel line and enabling degassing of the process line.

前記目的を達成するため、請求項2に対応する発明は、電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、前記燃料電池本体の起動時に起動燃料ラインを介して得られる起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器を備え、燃料を燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器と、前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、前記燃料電池本体の発電前起動時に前記プロセスガスライン内に存在する不活性ガスを脱気する脱気手段とを具備したことを特徴とする燃料電池システムである。   In order to achieve the above object, the invention corresponding to claim 2 is a fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and oxygen electrode. And a starter burner that burns starter fuel obtained via a starter fuel line when the fuel cell body is started and a power generation burner that burns generated fuel when the fuel cell body generates power, and the starter burner, the power generation burner Provided with a combustor capable of supplying combustion air to the fuel, reforming the raw fuel by burning the fuel, and obtaining the reformed reformed fuel, and a fuel reformer from the fuel reformer A process gas line that transmits the reformed fuel to the fuel electrode of the fuel cell main body, and an off-gas that is communicated with the startup fuel line and that transmits unreacted fuel remaining in the fuel cell main body to the fuel reformer And charge line, a fuel cell system characterized by comprising a degassing means for degassing the inert gas present in the process gas in the line during power generation before activation of the fuel cell body.

前記目的を達成するため、請求項3に対応する発明は、電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、前記燃料電池本体の起動時に起動燃料ラインを介して得られる起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器を備え、燃料を燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器と、前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、前記燃料電池本体の発電前起動時に前記プロセスガスライン内に存在する不活性ガスを脱気する脱気手段と、前記起動燃料ラインと前記オフガス燃料ラインを連通し、前記燃料電池本体の発電前起動時に前記起動燃料ラインの起動燃料が前記オフガス燃料ラインに流出するのを阻止する燃料流通阻止手段とを具備したことを特徴とする燃料電池システムである。   In order to achieve the above object, the invention corresponding to claim 3 comprises a fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and oxygen electrode. And a starter burner that burns starter fuel obtained via a starter fuel line when the fuel cell body is started and a power generation burner that burns generated fuel when the fuel cell body generates power, and the starter burner, the power generation burner Provided with a combustor capable of supplying combustion air to the fuel, reforming the raw fuel by burning the fuel, and obtaining the reformed reformed fuel, and a fuel reformer from the fuel reformer A process gas line that transmits the reformed fuel to the fuel electrode of the fuel cell main body, and an off-gas that is communicated with the startup fuel line and that transmits unreacted fuel remaining in the fuel cell main body to the fuel reformer A fuel line, degassing means for degassing an inert gas present in the process gas line when the fuel cell main body is started before power generation, the starter fuel line and the offgas fuel line are communicated, and the fuel cell main body The fuel cell system further comprises a fuel flow blocking means for preventing starting fuel in the starting fuel line from flowing into the off-gas fuel line when starting before power generation.

前記目的を達成するため、請求項10に対応する発明は、電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、前記燃料電池本体の起動時に起動燃料を、燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器へ供給する起動燃料ラインと、前記起動燃料ラインに設けられ、かつ前記燃料電池本体の起動時に開路される起動燃料ライン遮断弁と、前記燃料改質器に対して原燃料の燃料改質を行うようにするためのものであって、前記起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器と、前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、前記オフガス燃料ラインに設けられ、前記起動用燃料が前記起動燃料ラインから前記オフガス燃料ラインに流出しないようにする逆止弁、又は前記オフガス燃料ラインに設けられ、前記オフガス燃料ラインの流路が開閉可能で、前記燃料電池本体が発電前起動時に、前記オフガス燃料ラインを閉路し、かつ前記燃料電池本体が非発電前起動時に、前記オフガス燃料ラインを開路するオフガス燃料ライン弁と、前記燃料電池本体をバイパスし、その一端が前記プロセスガスラインに接続され、その他端が排気側に連通するように設けられ脱気ラインと、前記脱気ラインに設けられ、前記燃料電池本体が発電前起動時に、前記脱気ラインを開路し、かつ前記燃料電池本体が非発電前起動時に、閉路する脱気ライン弁と、前記起動燃料ラインに設けられ、前記燃料電池本体が発電前起動時に、前記起動燃料ラインを開路し、かつ前記燃料電池本体が非発電前起動時に、閉路する起動燃料ライン弁と、前記燃焼器の起動バーナ及び発電バーナにそれぞれ燃焼空気を供給する共通の空気供給路を備え、前記空気供給路の途中に設けられ、前記燃料電池本体の起動時に開路され、予混合燃焼用空気及び拡散混合用空気を供給可能にする燃焼空気切換弁と、起動燃料ライン遮断弁と、前記オフガス燃料ライン弁と、前記脱気ライン弁と、前記燃焼空気切換弁とに対して、前記燃料電池本体が発電前起動状態、非発電前起動状態に応じて開閉指令を与える制御器とを具備したことを特徴とする燃料電池システムである。   In order to achieve the above object, an invention corresponding to claim 10 comprises a fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and oxygen electrode. A starting fuel line that performs fuel reforming of the raw fuel by burning the starting fuel when starting the fuel cell body and supplies the reformed fuel to the fuel reformer, and the startup A starting fuel line shut-off valve provided in a fuel line and opened when the fuel cell main body is started, and for fuel reforming of raw fuel to the fuel reformer, The starter burner for burning the starter fuel and the power generation burner for combusting the generated fuel at the time of power generation of the fuel cell main body, the starter burner, a combustor capable of supplying combustion air to the power generation burner, and the fuel reformer from A process gas line for transmitting quality fuel to the fuel electrode of the fuel cell body, and an off-gas fuel line that communicates with the starting fuel line and transmits unreacted fuel in the fuel cell body to the fuel reformer A check valve that is provided in the offgas fuel line and prevents the starting fuel from flowing out of the starting fuel line to the offgas fuel line, or provided in the offgas fuel line, and the flow path of the offgas fuel line An off-gas fuel line valve that closes the off-gas fuel line when the fuel cell body is started before power generation, and opens the off-gas fuel line when the fuel cell body is started before non-power generation, and the fuel Bypassing the battery body, one end is connected to the process gas line and the other end is connected to the exhaust side. A degassing line valve that is provided in the degassing line, opens the degassing line when the fuel cell body starts before power generation, and closes when the fuel cell body starts before power generation, and An activation fuel line valve provided in an activation fuel line, which opens the activation fuel line when the fuel cell body is activated before power generation; and is closed when the fuel cell body is activated before non-power generation; and activation of the combustor A common air supply path for supplying combustion air to each of the burner and the power generation burner is provided, provided in the middle of the air supply path, and opened when the fuel cell main body is started, to supply premixed combustion air and diffusion mixing air. The fuel cell body generates power for the combustion air switching valve, the start fuel line shut-off valve, the off-gas fuel line valve, the degassing line valve, and the combustion air switching valve that enable supply. A fuel cell system comprising: a controller that gives an opening / closing command in accordance with a pre-start state and a non-power generation start state.

本発明によれば、起動時の着火性及び燃焼安定性が向上し、発電効率が高い燃料電池システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the ignition property and combustion stability at the time of starting can improve, and a fuel cell system with high electric power generation efficiency can be provided.

以下、本発明の実施形態について、図1乃至図3を参照して説明する。図1に示すように、本発明の実施形態は、概略次のように構成したものである。すなわち、電解質膜(電解質体)16と、燃料極(アノード)13及び酸素極(カソード)14を備え、燃料極13及び酸素極14に燃料及び空気を供給することで電気エネルギを得る燃料電池本体2を備えている。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, the embodiment of the present invention is generally configured as follows. That is, a fuel cell body that includes an electrolyte membrane (electrolyte body) 16, a fuel electrode (anode) 13, and an oxygen electrode (cathode) 14, and obtains electric energy by supplying fuel and air to the fuel electrode 13 and the oxygen electrode 14. 2 is provided.

また、燃料電池本体2の起動時に起動燃料ライン29を介して得られる燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器10を備え、燃料を燃焼することで原燃料が吸熱反応による改質反応が促進され、これにより燃料改質が行われ、この改質された改質燃料を得る燃料改質器6を備えている。   Further, a starter burner that burns fuel obtained via the starter fuel line 29 when the fuel cell main body 2 is started up and a power generation burner that burns generated fuel when the fuel cell main body generates power are integrated into the starter burner and the power generation burner. A combustor 10 capable of supplying combustion air is provided, and the reforming reaction by the endothermic reaction of the raw fuel is promoted by burning the fuel, whereby the fuel reforming is performed, and the reformed reformed fuel is obtained. A fuel reformer 6 is provided.

さらに、燃料改質器6からの改質燃料を燃料電池本体2の燃料極に伝送するプロセスガスライン42と、起動燃料ライン29に連通され、燃料電池本体2で未反応のまま残った燃料を燃料改質器6に伝送するオフガス燃料ライン30と、燃料電池本体2の発電前起動時にプロセスガスライン42内に存在する不活性ガスを脱気する脱気手段例えば脱気ライン(バイパスライン)17と、この脱気ライン17の途中に設けた脱気用遮断弁(脱気ライン弁)23と、起動燃料ライン29とオフガス燃料ライン30を連通し、前記燃料電池本体の発電前起動時に前記起動燃料ライン29とオフガス燃料ライン30との間の燃料の流通を阻止する燃料流通阻止手段例えばオフガス燃料ライン逆止弁24を備えている。これ以外に、図4に示す従来例と同様に、ガス燃料供給装置3と、燃料遮断弁20と、脱硫器4と、燃料ポンプ40と、切換弁22と、水蒸気流量調節弁27と、水蒸気分離器9と、水切換弁36と、タンク12と、水道水調節弁37と、給湯槽35と、水ポンプ38と、熱交換器28とを備えている。   Furthermore, the process gas line 42 that transmits the reformed fuel from the fuel reformer 6 to the fuel electrode of the fuel cell main body 2 and the starting fuel line 29 are communicated, and the fuel that remains unreacted in the fuel cell main body 2 Off-gas fuel line 30 transmitted to the fuel reformer 6 and degassing means such as a degassing line (bypass line) 17 for degassing the inert gas present in the process gas line 42 when the fuel cell main body 2 is started before power generation. And a deaeration shut-off valve (deaeration line valve) 23 provided in the middle of the deaeration line 17, an activation fuel line 29, and an off-gas fuel line 30 communicate with each other, and the activation is performed when the fuel cell body is activated before power generation. A fuel flow blocking means for blocking the flow of fuel between the fuel line 29 and the off gas fuel line 30, for example, an off gas fuel line check valve 24 is provided. In addition to this, similarly to the conventional example shown in FIG. 4, the gas fuel supply device 3, the fuel shutoff valve 20, the desulfurizer 4, the fuel pump 40, the switching valve 22, the steam flow rate adjusting valve 27, the steam The separator 9, the water switching valve 36, the tank 12, the tap water control valve 37, the hot water tank 35, the water pump 38, and the heat exchanger 28 are provided.

また、燃料電池システムの発電前起動運転時に、燃焼器10の上流側において、燃料と空気を予め混合する予混合燃焼方式例えば燃焼用空気ブロア26と、燃焼空気切換弁25とを備えたもの、並びに燃料電池本体2の発電時に、燃焼器10の下流側において、燃料電池本体2で未反応のまま残ったオフガス燃料と空気を混合させて拡散燃焼を行う拡散燃焼方式例えば燃焼用空気ブロア26とを、さらに設けた燃料電池システムである。   In addition, a premix combustion method in which fuel and air are premixed, for example, a combustion air blower 26 and a combustion air switching valve 25 are provided upstream of the combustor 10 during the start-up operation before power generation of the fuel cell system. In addition, a diffusion combustion system, for example, a combustion air blower 26 that performs diffusion combustion by mixing off-gas fuel and air left unreacted in the fuel cell body 2 on the downstream side of the combustor 10 during power generation of the fuel cell body 2; Is a fuel cell system further provided.

さらに、前記予混合燃焼方式と前記拡散燃焼方式との切り換えは、前記予混合燃焼の余熱で前記オフガス燃料を自然着火させて燃焼形態を拡散燃焼に切り換える手段を、さらに備えた燃料電池システムである。   Further, the switching between the premixed combustion method and the diffusion combustion method is a fuel cell system further comprising means for spontaneously igniting the off-gas fuel with the residual heat of the premixed combustion and switching the combustion mode to diffusion combustion. .

次に、本発明の実施形態について、具体的に説明する。すなわち、オフガス燃料ライン30に設けられ、オフガス燃料ライン30の流路が開閉可能で、燃料電池本体2が発発電前起動時に、オフガス燃料ライン30を閉路し、かつ燃料電池本体2が非発電前起動時、具体的には発電運転中(発電燃焼運転中)に、オフガス燃料ライン30を機能的に開路する、例えばオフガス燃料ライン逆止弁24と、燃料電池本体2をバイパスし、その一端がプロセスガスライン42に接続され、その他端が排気側に連通するように設けられた脱気ライン17と、脱気ライン17に設けられ、燃料電池本体2が発電前起動時に、脱気ライン17を開路し、かつ燃料電池本体2が非発電前起動時具体的には発電運転中(発電燃焼運転中)に、閉路する脱気ライン弁例えば脱気用遮断弁23と、起動燃料ライン29に設けられ、燃料電池本体2が発電前起動時に、起動燃料ライン29を開路し、かつ燃料電池本体2が非発電前起動時具体的には発電運転中(発電燃焼運転中)に、閉路する起動燃料ライン弁(起動燃料遮断弁)21と、燃料電池本体2の状態が発電前起動状態、非発電前起動状態であるかを何等かの手段により検出し、これに応じて各弁20、21、23、25、29、36に対して、開閉指令を与えたり、ポンプ40、38、11に対して起動停止指令を与えたり、その他のブロア26、18、15に対して起動停止指令を与えたりする例えばマイコンのごとき制御器41を備えたものである。   Next, an embodiment of the present invention will be specifically described. In other words, the off-gas fuel line 30 is provided, the flow path of the off-gas fuel line 30 can be opened and closed, the fuel cell body 2 closes the off-gas fuel line 30 when the fuel cell body 2 is started before power generation, and the fuel cell body 2 During startup, specifically during power generation operation (power generation combustion operation), the offgas fuel line 30 is functionally opened, for example, the offgas fuel line check valve 24 and the fuel cell main body 2 are bypassed, and one end thereof is A degassing line 17 connected to the process gas line 42 and having the other end communicating with the exhaust side, and a degassing line 17 are provided. When the fuel cell main body 2 is started before power generation, When the fuel cell body 2 is opened and the fuel cell main body 2 is started before power generation, specifically during the power generation operation (power generation combustion operation), the deaeration line valve, for example, the deaeration shut-off valve 23 and the start fuel line 29 are closed. When the fuel cell body 2 is started before power generation, the startup fuel line 29 is opened, and when the fuel cell body 2 is started before non-power generation, specifically during power generation operation (power generation combustion operation), the start is closed. It is detected by some means whether the state of the fuel line valve (starting fuel cutoff valve) 21 and the fuel cell main body 2 is a starting state before power generation or a starting state before non-power generation, and the valves 20, 21 are detected accordingly. , 23, 25, 29, 36, an opening / closing command is given, pumps 40, 38, 11 are given a start / stop command, and other blowers 26, 18, 15 are given a start / stop command. For example, a controller 41 such as a microcomputer is provided.

ここで、燃焼器10を含む改質器6の一例について、図2及び図3を参照して説明する。改質器6は、燃焼器123(図1の10に相当する)と、水蒸気発生器105a、105b(図1の5に相当する)と、改質器本体とを備えている。このうち燃焼器123は従来別々に構成されていた起動燃料を燃焼するための起動バーナと、発電時に発電燃料つまりオフガス燃料を燃焼させるための発電バーナを一体化したものである。具体的には、改質器6の容器122の内部に形成されている燃焼室125と、連通するように設けられ、例えば円柱状の部材であって、中心軸位置に軸方向に貫通するように空気噴出口130が形成され、かつ空気噴出口130の外周側であって軸方向に貫通する複数の燃料噴出口131が形成され、この各燃料噴出口131の外周側であって軸方向に貫通する円環状の空気噴出口132が形成されており、オフガス燃料ライン30からのオフガス燃料を自然着火、つまり水素の発火温度以上に加温することにより自然に着火する。   Here, an example of the reformer 6 including the combustor 10 will be described with reference to FIGS. 2 and 3. The reformer 6 includes a combustor 123 (corresponding to 10 in FIG. 1), steam generators 105a and 105b (corresponding to 5 in FIG. 1), and a reformer body. Of these, the combustor 123 is a unit in which a starter burner for combusting starter fuel, which has been conventionally configured separately, and a power generation burner for combusting power generation fuel, that is, off-gas fuel, during power generation. Specifically, it is provided so as to communicate with the combustion chamber 125 formed in the interior of the container 122 of the reformer 6, and is, for example, a cylindrical member that penetrates the central axis position in the axial direction. Are formed on the outer peripheral side of the air jet 130, and a plurality of fuel jets 131 penetrating in the axial direction are formed. The outer peripheral side of each fuel jet 131 is formed in the axial direction. An annular air jet 132 penetrating therethrough is formed, and the off-gas fuel from the off-gas fuel line 30 is spontaneously ignited by spontaneous ignition, that is, by heating it above the ignition temperature of hydrogen.

改質器本体は、容器122の内部であって燃焼室125の外周面に配設されている例えば円筒状の改質触媒124と、この改質触媒124内にオフガス燃料を通過できるように例えば容器122の底面に形成されたオフガス燃料取込口125a及び改質触媒124内を通過することで得られる改質された水素を、燃料電池本体13に導けるように例えば容器122の側面に形成された水素取出口125bとを備えている。   The reformer main body is, for example, a cylindrical reforming catalyst 124 disposed on the outer peripheral surface of the combustion chamber 125 inside the container 122, and the off-gas fuel can pass through the reforming catalyst 124, for example. For example, it is formed on the side surface of the container 122 so that the reformed hydrogen obtained by passing through the off-gas fuel intake port 125a and the reforming catalyst 124 formed on the bottom surface of the container 122 can be guided to the fuel cell body 13. And a hydrogen outlet 125b.

水蒸気発生器105aは、伝熱管129aと断熱部材126と断熱部材128を備え、また水蒸気発生器105bは、伝熱管129bと蒸気発生容器129b0を備えており、以下のように構成されている。すなわち、容器122の内部に形成されている燃焼室125の底面にこれを貫通して形成された燃焼排ガス排気口122aと、燃焼室125の底面であって燃焼排ガス排気口122aの外周側に一端が載置された円筒状の断熱部材128と、断熱部材128の外周側に断熱部材128を取り囲むように配設され、タンク12内の水を通す伝熱管129aと、燃焼室125内であって伝熱管129aの外周側と燃焼室125の外周面との間に配設され、底面が上になるように配設した有底円筒状の断熱部材126とからなっている。   The steam generator 105a includes a heat transfer tube 129a, a heat insulating member 126, and a heat insulating member 128, and the water vapor generator 105b includes a heat transfer tube 129b and a steam generating container 129b0, and is configured as follows. That is, the combustion exhaust gas exhaust port 122a formed through the bottom surface of the combustion chamber 125 formed inside the container 122, and the bottom surface of the combustion chamber 125 at the outer peripheral side of the combustion exhaust gas exhaust port 122a. In the combustion chamber 125, a cylindrical heat insulating member 128, a heat transfer pipe 129a that is disposed so as to surround the heat insulating member 128 on the outer peripheral side of the heat insulating member 128, and allows water in the tank 12 to pass therethrough. It is comprised between the outer peripheral side of the heat exchanger tube 129a and the outer peripheral surface of the combustion chamber 125, and comprises a bottomed cylindrical heat insulating member 126 disposed so that the bottom surface is on the top.

このような構成により、燃焼器123により燃焼室125内で得られた燃焼ガスは、改質触媒124の配設されている内周壁と断熱部材126との間の空間を経て、断熱部材126と断熱部材128の間に配設されている伝熱管129aの周囲に循環しながら断熱部材128の内部に入り、燃焼排ガス排気口122aから外部に排気される。   With such a configuration, the combustion gas obtained in the combustion chamber 125 by the combustor 123 passes through the space between the inner peripheral wall where the reforming catalyst 124 is disposed and the heat insulating member 126, and the heat insulating member 126. While circulating around the heat transfer tube 129a disposed between the heat insulating members 128, the heat insulating member 128 enters the inside and is exhausted to the outside through the combustion exhaust gas exhaust port 122a.

水蒸気発生器105bは、容器122の外周側に容器122を取り囲むように形成され内部に、タンク12内の水を通す伝熱管129bと、伝熱管129bの周囲に配設されている水蒸気容器129b0を備えている。   The steam generator 105b is formed on the outer peripheral side of the container 122 so as to surround the container 122, and includes a heat transfer pipe 129b through which water in the tank 12 passes, and a steam container 129b0 disposed around the heat transfer pipe 129b. I have.

ここで、固体高分子型の燃料電池システムを例にあげて説明するが、これに限らず他の燃料電池システムの構成であってもよい。これは、主に燃料処理系(FPS;Fuel Processing System)1、燃料電池本体(CSA;Cell Stack Assembly)2から構成される。   Here, a solid polymer fuel cell system will be described as an example, but the present invention is not limited to this, and other fuel cell system configurations may be used. This is mainly composed of a fuel processing system (FPS) 1 and a fuel cell main body (CSA; Cell Stack Assembly) 2.

燃料処理系1は、ガス燃料供給装置3、脱硫器4、水蒸気発生器(水蒸気加熱器)5、燃料改質器6、COシフト反応器7、CO選択酸化器8、水蒸気分離器9、改質用燃焼器10、改質用水ポンプ11、排熱熱交換器&タンク12等から構成される。ガス燃料供給装置3により供給される燃料は、炭化水素系燃料、例えば都市ガスやプロパンガスである。   The fuel treatment system 1 includes a gas fuel supply device 3, a desulfurizer 4, a steam generator (steam heater) 5, a fuel reformer 6, a CO shift reactor 7, a CO selective oxidizer 8, a steam separator 9, It comprises a quality combustor 10, a reforming water pump 11, an exhaust heat exchanger & tank 12, and the like. The fuel supplied by the gas fuel supply device 3 is a hydrocarbon fuel, such as city gas or propane gas.

一方、燃料電池本体2は、燃料極13、酸素極14、電解質膜16から構成される。   On the other hand, the fuel cell body 2 includes a fuel electrode 13, an oxygen electrode 14, and an electrolyte membrane 16.

さらに、燃料処理系1並びに燃料電池本体2に共通な部品として、カソード極用空気ブロア15、CO選択酸化器用空気ブロア18等から構成される。   Further, the parts common to the fuel processing system 1 and the fuel cell main body 2 include a cathode electrode air blower 15, a CO selective oxidizer air blower 18, and the like.

ここで、発電原理を簡単に説明する。燃料に例えば都市ガスを使用する場合、都市ガスから水素ガスへの改質は、燃料処理系1で行われる。ガス燃料供給装置3からのガス燃料は、脱硫器4を通過し、ここで例えば活性炭やゼオライト吸着によって硫黄分が取り除かれ、次に改質器6を通過する。この手前の水蒸気発生器5で水が加熱され、ガス化した水蒸気が燃料ガスに合流する。改質器6では触媒により都市ガスと水蒸気の反応から、水素を生成するが同時にCOの生成も行われる。この水蒸気改質は吸熱反応のため、改質器6には加熱用の燃焼器10が含まれている。   Here, the principle of power generation will be briefly described. For example, when city gas is used as the fuel, reforming from city gas to hydrogen gas is performed in the fuel processing system 1. The gas fuel from the gas fuel supply device 3 passes through the desulfurizer 4, where sulfur is removed by, for example, activated carbon or zeolite adsorption, and then passes through the reformer 6. Water is heated by the steam generator 5 in front of this, and the gasified steam joins the fuel gas. In the reformer 6, hydrogen is generated from the reaction of city gas and water vapor by a catalyst, but at the same time, CO is also generated. Since this steam reforming is an endothermic reaction, the reformer 6 includes a combustor 10 for heating.

固体高分子型燃料電池システムは、燃料電池本体2の電解質膜16及び触媒層(図示せず)から構成されるMEA(Membrane Electrode Assembly)でのCO被毒が問題となるため、COはCOへ酸化させる必要がある。このため、COシフト反応器7ではHOによるシフト反応、CO選択酸化器8では、触媒によりCO被毒が発生しない程度に、空気ブロア18の空気供給により酸化反応を進める必要がある。また、簡単化のため図示しなかったが、改質器6を含めたこれらの触媒反応温度はそれぞれ異なり、改質器6の数百度からCO選択酸化器8の百数十度と、改質ガスの上流と下流の温度差が大きいため、実際には下流側温度を下げるための水熱交換器が必要となる。 Polymer electrolyte fuel cell system, since the CO poisoning in the electrolyte membrane 16 and the catalyst layer of the fuel cell main body 2 composed of (not shown) MEA (Membrane Electrode Assembly) becomes a problem, CO is CO 2 Need to be oxidized. For this reason, the CO shift reactor 7 needs to advance the shift reaction by H 2 O, and the CO selective oxidizer 8 needs to advance the oxidation reaction by supplying air from the air blower 18 to the extent that CO poisoning is not generated by the catalyst. Although not shown for simplification, these catalytic reaction temperatures including the reformer 6 are different from each other, from several hundred degrees of the reformer 6 to hundreds of degrees of the CO selective oxidizer 8. Since the temperature difference between the upstream and downstream of the gas is large, a water heat exchanger for reducing the downstream temperature is actually required.

次に、各触媒での主なプロセス反応を以下に示す。例えばメタン成分が主体の都市ガス改質の場合、水蒸気改質反応は(1)式、COシフト反応は(2)式、CO選択酸化反応は(3)式のようになる。   Next, main process reactions in each catalyst are shown below. For example, in the case of city gas reforming mainly composed of a methane component, the steam reforming reaction is represented by equation (1), the CO shift reaction is represented by equation (2), and the CO selective oxidation reaction is represented by equation (3).

CH+2HO→CO+4H…(1)
CO+HO→CO+H…(2)
2CO+O→2CO…(3)
CO選択酸化器8を通過した改質ガスは、主に水素、炭酸ガス及び余った水蒸気等より構成される。これらのガスが、燃料極13に送り込まれる。燃料極13に送り込まれた水素ガスは、MEAの触媒層を経てプロトンH+が電解質膜16を通過、酸素極用空気ブロア15により酸素極14を通過する空気中の酸素及び電子と結びついて水が生成される。したがって、燃料極13は−極、酸素極14は+極となり、電位を持って直流電圧を発電する。この電位間に電気負荷を持てば電源としての機能を持つことになる。発電に使われずに残った燃料極出口ガスは、水蒸気発生器5及び改質器6の加熱用燃焼ガスとして使われる。また、酸素極14の出口中の水蒸気及び燃焼排気ガス中の水蒸気は、排熱熱交換器12により、水分を回収し、システムでの水自立を図る。排熱熱交換器12で熱交換して暖められた温水は、貯湯槽35に蓄熱され、給湯やお風呂の温水として使われる。
CH 4 + 2H 2 O → CO 2 + 4H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
2CO + O 2 → 2CO 2 (3)
The reformed gas that has passed through the CO selective oxidizer 8 is mainly composed of hydrogen, carbon dioxide gas, excess steam, and the like. These gases are sent to the fuel electrode 13. The hydrogen gas sent to the fuel electrode 13 passes through the MEA catalyst layer, the proton H + passes through the electrolyte membrane 16, and is combined with oxygen and electrons in the air passing through the oxygen electrode 14 by the oxygen electrode air blower 15. Generated. Therefore, the fuel electrode 13 becomes a negative electrode and the oxygen electrode 14 becomes a positive electrode, and generates a DC voltage with a potential. If there is an electrical load between these potentials, it will function as a power source. The fuel electrode outlet gas remaining without being used for power generation is used as a combustion gas for heating the steam generator 5 and the reformer 6. Further, the water vapor in the outlet of the oxygen electrode 14 and the water vapor in the combustion exhaust gas are collected by the exhaust heat exchanger 12 to achieve water self-supporting in the system. The hot water heated by exchanging heat in the exhaust heat exchanger 12 is stored in the hot water storage tank 35 and used as hot water for the hot water supply or bath.

次に、本発明に密接に関係する本燃料電池システムの起動から発電までの運転方法について説明する。   Next, an operation method from the start-up of the fuel cell system closely related to the present invention to power generation will be described.

改質器6及びその周辺装置は、燃料遮断弁20、起動燃料ライン弁21、メイン燃料遮断弁22、脱気用遮断弁23、オフガス燃料逆止弁例えばオフガス燃料ライン逆止弁24、燃焼空気切換弁25、燃焼用空気ブロア26、水蒸気流量調節弁27、他から構成される。   The reformer 6 and its peripheral devices include a fuel cutoff valve 20, a start fuel line valve 21, a main fuel cutoff valve 22, a degassing cutoff valve 23, an offgas fuel check valve such as an offgas fuel line check valve 24, combustion air. It comprises a switching valve 25, a combustion air blower 26, a steam flow rate adjusting valve 27, and others.

まず、起動時の運転方法を示す。図2に示すように運転起動指令が制御器41に入力されると、燃焼空気切換弁25に対して開指令が与えられ、燃焼空気切換弁25が開いた状態で燃焼用空気ブロア26が起動し、改質器6内の燃焼室を空気パージする。この場合、燃焼用空気は燃焼用空気ブロア26より、起動燃料の予混合空気としてだけでなく、拡散空気としても燃焼室内に供給される。   First, the operation method at the time of starting is shown. As shown in FIG. 2, when an operation start command is input to the controller 41, an open command is given to the combustion air switching valve 25, and the combustion air blower 26 is started with the combustion air switching valve 25 open. Then, the combustion chamber in the reformer 6 is purged with air. In this case, the combustion air is supplied from the combustion air blower 26 not only as premixed air for the starting fuel but also as diffusion air into the combustion chamber.

燃焼室内の空気パージが完了すると、起動燃料着火のための例えば点火プラグ(図示せず)からの火花を燃焼室内で発生させる。メイン燃料遮断弁22を閉じ、脱気用遮断弁23を開いた状態で、燃料遮断弁20、起動燃料ライン弁21を開くと、燃料遮断弁20及び起動燃料ライン弁21を通過した起動用燃料は、燃焼室内で着火され火炎が形成される。燃焼室内で使用されるバーナは、起動用と発電用も兼ねた一体型バーナであり、メタン主体の起動燃料は発電時のオフガス燃料である水素主体の燃料より燃焼速度が遅く、吹き消え易いため、予混合燃焼させて燃焼性を向上させている。   When the air purge in the combustion chamber is completed, a spark from, for example, a spark plug (not shown) for starting fuel ignition is generated in the combustion chamber. When the fuel cutoff valve 20 and the startup fuel line valve 21 are opened with the main fuel cutoff valve 22 closed and the deaeration cutoff valve 23 opened, the startup fuel that has passed through the fuel cutoff valve 20 and the startup fuel line valve 21 Is ignited in the combustion chamber to form a flame. The burner used in the combustion chamber is an integrated burner for both start-up and power generation, and methane-based starter fuel has a lower combustion speed than hydrogen-based fuel, which is off-gas fuel during power generation, and is easily blown out. The premixed combustion improves the combustibility.

燃焼が継続し、燃焼ガスの加熱によって改質器6や、図示はしていないが電気ヒータ等で加熱されたCOシフト反応器7、CO選択酸化器8、水蒸気分離器9、他が所定の温度になると、水蒸気流量調節弁27が開き、水蒸気が水蒸気分離器9より供給された後、メイン燃料遮断弁22が開かれ、燃料が燃料処理系1内に供給され改質反応が始まる。燃料極13を通過したオフガス燃料が燃焼器10で着火されると同時に、起動燃料ライン弁21、脱気用遮断弁23及び燃焼空気切換弁25は閉じる。   Combustion continues, the reformer 6 is heated by the combustion gas, and the CO shift reactor 7, the CO selective oxidizer 8, the steam separator 9, and the like heated by an electric heater (not shown), etc. When the temperature is reached, the steam flow rate adjusting valve 27 is opened and steam is supplied from the steam separator 9, then the main fuel shut-off valve 22 is opened, and fuel is supplied into the fuel processing system 1 to start the reforming reaction. At the same time as the off-gas fuel that has passed through the fuel electrode 13 is ignited by the combustor 10, the starting fuel line valve 21, the deaeration cutoff valve 23, and the combustion air switching valve 25 are closed.

ここで、オフガス燃料ライン逆止弁24及び脱気用遮断弁23の役割を説明する。まず、起動運転が開始して間もなくは、予混合燃焼を行うバーナ部での圧力損失が比較的大きいため、もしオフガス燃料ライン逆止弁24が無ければ、起動用燃料はバーナ部を経由した燃焼室側だけでなく、オフガス燃料ライン側に燃料が流出するために、起動燃焼に必要な燃料量が減少し燃料希薄になり、燃焼が不安定になりやすく、失火を招き易い。やがて、改質器6の温度が上昇してくると、プロセスガスラインに溜まっていた水蒸気や窒素等の不活性ガスが温度膨張し、もし、改質用燃料が供給される前に脱気用遮断弁23が開いていないとこれら不活性ガスの逃げ場が無くなるため、今度はオフガスラインから起動燃料ラインに不活性ガスが入り込んで燃焼状態が不安定になり、結局失火を招くことになる。簡単に言うとどちらの弁も起動用燃料を安定して燃焼させるためには必要不可欠な部品と考える。   Here, the role of the off-gas fuel line check valve 24 and the deaeration shut-off valve 23 will be described. First, shortly after the start-up operation is started, the pressure loss in the burner section that performs premixed combustion is relatively large. Therefore, if the off-gas fuel line check valve 24 is not provided, the start-up fuel burns through the burner section. Since the fuel flows not only to the chamber side but also to the off-gas fuel line side, the amount of fuel required for the start-up combustion is reduced and the fuel becomes lean, the combustion is likely to become unstable, and misfire is likely to occur. Eventually, as the temperature of the reformer 6 rises, the temperature of the inert gas such as water vapor and nitrogen accumulated in the process gas line expands, and if the reformer 6 is supplied with the reforming fuel, it is used for degassing. If the shut-off valve 23 is not open, there is no place for these inert gases to escape, and this time, the inert gas enters the starting fuel line from the off-gas line and the combustion state becomes unstable, resulting in misfire. To put it simply, both valves are considered to be indispensable parts for stable combustion of starting fuel.

また、起動時にプロセスガスライン42に不活性ガスが残り易い理由は、残燃料を追い出すために、起動や停止時に窒素或いは蒸気パージが必要なためである。脱気用遮断弁23は改質燃料が供給されると同時に閉じられ、プロセスガスが、未燃分のまま大気に放出されることはない。   The reason why the inert gas tends to remain in the process gas line 42 at the time of start-up is that nitrogen or steam purge is required at the time of start-up or stop in order to drive out the remaining fuel. The deaeration shut-off valve 23 is closed at the same time as the reformed fuel is supplied, so that the process gas is not released to the atmosphere while remaining unburned.

プラントの運転状態に説明を戻す。改質反応が始まった後、CO選択酸化器8出口から出た改質ガスは、主として水素、炭酸ガス、水蒸気等の成分からなり、電池本体2の燃料極(アノード極)13に供給され、インバータが起動し(図示せず)発電が始まる。改質ガスが燃料極13に供給されると、水素ガスは、膜電極接合体MEAの触媒層(図示せず)を経てプロトンHが電解質膜16を流れ、酸素極用空気ブロア15から酸素極14に供給される空気中の酸素及び電子と結びついて水を生成する。したがって、燃料極13はマイナス(−)極、酸素極14はプラス(+)極になり、電位を持って直流電力を発電する。 Return the explanation to the operating state of the plant. After the reforming reaction has started, the reformed gas exiting from the outlet of the CO selective oxidizer 8 is mainly composed of components such as hydrogen, carbon dioxide, and water vapor, and is supplied to the fuel electrode (anode electrode) 13 of the battery body 2. The inverter is activated (not shown) and power generation begins. When the reformed gas is supplied to the fuel electrode 13, the proton gas H + flows through the electrolyte membrane 16 through the catalyst layer (not shown) of the membrane electrode assembly MEA, and the oxygen gas is supplied from the oxygen electrode air blower 15. It combines with oxygen and electrons in the air supplied to the pole 14 to generate water. Accordingly, the fuel electrode 13 becomes a negative (−) electrode and the oxygen electrode 14 becomes a positive (+) electrode, and generates DC power with a potential.

この電位間に電気負荷を存在させると、電源としての機能を持たせることができる。他方、発電に寄与しないまま残った燃料極13の出口から出るオフガスは、オフガス燃料ライン逆止弁24を通過後、改質用燃焼器10に供給される。   When an electric load is present between these potentials, a function as a power source can be provided. On the other hand, the off-gas exiting from the outlet of the fuel electrode 13 remaining without contributing to power generation passes through the off-gas fuel line check valve 24 and is then supplied to the reforming combustor 10.

改質用燃焼器10に供給される起動用燃料および空気は既に遮断され、燃焼室の温度は低下し始めるが、オフガスの水素メイン燃料を着火させるのに、未だ十分高温状態を保っている。したがって、改質用燃焼器10に供給されたオフガス燃料は容易に着火して、メイン燃料用空気と安定した拡散燃焼を開始する。その後酸素極空気が電池本体2に供給され、インバータが起動すると燃料電池本体2の発電が開始する。   The start-up fuel and air supplied to the reforming combustor 10 are already shut off, and the temperature of the combustion chamber starts to decrease, but is still sufficiently high to ignite off-gas hydrogen main fuel. Therefore, the off-gas fuel supplied to the reforming combustor 10 is easily ignited and starts stable diffusion combustion with the main fuel air. Thereafter, oxygen electrode air is supplied to the battery body 2, and when the inverter starts, power generation of the fuel cell body 2 starts.

前述した発電運転前の起動時に使用する起動バーナと、発電時に使用する発電バーナを一体化した一種類のバーナの場合、バーナ単独では想定される燃料ガスを燃焼させる上で問題はほとんど無い。しかしながら、一体型バーナを従来の燃料電池システムに組込み、起動から発電状態までスムーズに運転を移行させることができ、起動時の不着火を防止でき、失火の発生を防止でき、起動燃料からオフガス燃料への燃焼継続が容易に行なえる。   In the case of one type of burner in which the above-described start burner used at start-up before power generation operation and the power generation burner used during power generation are integrated, the burner alone has almost no problem in burning assumed fuel gas. However, an integrated burner can be incorporated into a conventional fuel cell system, and the operation can be smoothly transferred from start to power generation, non-ignition at start-up can be prevented, and misfire can be prevented. It is easy to continue burning.

この結果、本実施形態の燃料電池システムによれば起動時の着火性及び燃焼安定性が向上することで、燃料処理系1の効率及び発電効率が高く、地球環境にも優しい、非常に省エネで経済的な運転を実現することができる。   As a result, according to the fuel cell system of the present embodiment, the ignitability and combustion stability at the time of start-up are improved, so that the efficiency and power generation efficiency of the fuel processing system 1 are high, and it is friendly to the global environment and is very energy saving. Economic operation can be realized.

このように、図1に本発明の実施形態はバーナが、一体化しているため、火炎形状が均一で熱効率が向上するばかりでなく、機器コスト削減の効果も大きい。   Thus, in the embodiment of the present invention shown in FIG. 1, since the burner is integrated, not only the flame shape is uniform and the thermal efficiency is improved, but also the effect of reducing the equipment cost is great.

以上述べた実施形態によれば、次のような作用効果が得られる。   According to the embodiment described above, the following operational effects can be obtained.

1)起動時と発電時の燃焼を共通一体化したバーナを配置するシステムフローの構成において、発電前起動運転時は、起動燃料ライン29とオフガス燃料ライン30を切り離し、オフガス燃料ライン30の脱気を行うため、起動時の着火性及び燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成できる。これにより、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   1) In a system flow configuration in which a burner in which combustion at startup and power generation is commonly integrated is arranged, during startup operation before power generation, the startup fuel line 29 and the offgas fuel line 30 are disconnected, and the offgas fuel line 30 is deaerated. Therefore, the ignitability at start-up and the combustion stability are improved, and a flame can be uniformly formed in the combustion chamber space during start-up and power generation operation. Thereby, the fuel processor efficiency at the time of power generation operation becomes high, and it is possible to realize an economical and energy efficient operation with high power generation efficiency.

2)発電前起動運転時は、バーナの上流側で燃料と空気を予め混合した予混合燃焼を行い、発電時はバーナの下流で燃料と空気を混合させて拡散燃焼を行うことため、起動時や発電時の燃焼安定性や安全性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成出来る。これにより、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   2) During start-up before power generation, premixed combustion is performed by premixing fuel and air upstream of the burner. During power generation, diffusion combustion is performed by mixing fuel and air downstream of the burner. In addition, combustion stability and safety during power generation are improved, and a flame can be uniformly formed in the combustion chamber space during startup and power generation operation. Thereby, the fuel processor efficiency at the time of power generation operation becomes high, and it is possible to realize an economical and energy efficient operation with high power generation efficiency.

3)予混合燃焼から拡散燃焼に切り換える際、予混合燃焼の余熱で水素メインのオフガス燃料を自然着火させて燃焼形態を拡散燃焼に切り換えるため、起動時や発電時及びその移行時の燃焼安定性や安全性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成出来る。これにより、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   3) When switching from premixed combustion to diffusion combustion, the hydrogen main off-gas fuel is spontaneously ignited by the residual heat of premixed combustion, and the combustion mode is switched to diffusion combustion. Therefore, combustion stability at startup, power generation, and transition Safety can be improved, and a flame can be uniformly formed in the combustion chamber space during startup and power generation operation. Thereby, the fuel processor efficiency at the time of power generation operation becomes high, and it is possible to realize an economical and energy efficient operation with high power generation efficiency.

4)オフガス燃料ライン30にオフガス燃料ライン逆止弁24を設けて、燃料が起動燃料ライン29からオフガス燃料ライン30に流出させないような構成にしたため、起動時の着火性及び燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成出来る。これにより、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   4) Since the off-gas fuel line check valve 24 is provided in the off-gas fuel line 30 so that the fuel does not flow from the starting fuel line 29 to the off-gas fuel line 30, the ignitability and combustion stability at the time of starting are improved. A flame can be formed uniformly in the combustion chamber space during startup and power generation operation. Thereby, the fuel processor efficiency at the time of power generation operation becomes high, and it is possible to realize an economical and energy efficient operation with high power generation efficiency.

(変形例)
本発明は、前述の実施形態に限定されず、以下のように変形して実施できる。
(Modification)
The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)前述の実施形態では、オフガス燃料ライン30にオフガス燃料ライン逆止弁24を設けて、起動用燃料が起動燃料ラインからオフガス燃料ラインに流出させないような構成にしたが、オフガス燃料ライン逆止弁24を電磁弁に代え、かつこれを制御器41により動作させるようにしてもよい。   (1) In the above embodiment, the offgas fuel line check valve 24 is provided in the offgas fuel line 30 so that the starting fuel does not flow from the starting fuel line to the offgas fuel line. The stop valve 24 may be replaced with an electromagnetic valve and operated by the controller 41.

(2)また、オフガス燃料ライン30をバイパスする脱気ライン17に設けた脱気用遮断弁23として例えば電磁遮断弁を設けたが、これに限らず他の弁でもよい。脱気用遮断弁23を制御器41により動作、すなわち発電前の起動燃焼運転中に脱気用遮断弁23を開いて、燃料処理系1内部の加熱した膨張ガスを、大気に脱気させるように構成することにより、起動時の着火性及び燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成できる。この結果、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   (2) Further, for example, an electromagnetic shut-off valve is provided as the degas shut-off valve 23 provided in the degas line 17 bypassing the off-gas fuel line 30, but the present invention is not limited to this, and other valves may be used. The deaeration shut-off valve 23 is operated by the controller 41, that is, the deaeration shut-off valve 23 is opened during the start-up combustion operation before power generation so that the heated expansion gas inside the fuel processing system 1 is deaerated to the atmosphere. With this configuration, the ignitability and combustion stability at the time of startup are improved, and a flame can be uniformly formed in the combustion chamber space during startup and power generation operation. As a result, the efficiency of the fuel processor during the power generation operation is increased, so that the operation with high power generation efficiency and economy and high energy efficiency can be realized.

(3)さらに、オフガス燃料ライン30をバイパスする脱気ライン17に設けた脱気用遮断弁23を制御器41により動作、すなわち発電運転中に脱気用遮断弁23を閉じるように構成することにより、発電中の燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成できる。この結果、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   (3) Further, the deaeration cutoff valve 23 provided in the deaeration line 17 bypassing the off-gas fuel line 30 is operated by the controller 41, that is, the deaeration cutoff valve 23 is closed during the power generation operation. Thus, combustion stability during power generation is improved, and a flame can be uniformly formed in the combustion chamber space during startup and power generation operation. As a result, the efficiency of the fuel processor during the power generation operation is increased, so that the operation with high power generation efficiency and economy and high energy efficiency can be realized.

(4)前述の脱気ライン17は、オフガス燃料ライン30をバイパスして排気口に通じるように構成し、この脱気ライン17に電磁遮断弁を設けると共に、発電前の起動燃焼運転中に前記電磁遮断弁を開くように、制御器41により動作させることにより、排気口から大気に脱気させることが可能になり、起動時の着火性及び燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成できる。この結果、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。   (4) The aforementioned deaeration line 17 is configured to bypass the off-gas fuel line 30 and communicate with the exhaust port. The deaeration line 17 is provided with an electromagnetic shut-off valve, and the start-up combustion operation before power generation is performed during the start-up combustion operation. By operating the controller 41 so as to open the electromagnetic shut-off valve, it becomes possible to deaerate to the atmosphere from the exhaust port, and the ignitability and combustion stability at the time of startup are improved, and during startup and power generation operation A flame can be formed uniformly in the combustion chamber space. As a result, the efficiency of the fuel processor during the power generation operation is increased, so that the operation with high power generation efficiency and economy and high energy efficiency can be realized.

(5)また、前述の実施形態のオフガス燃料ライン30に設けたオフガス燃料ライン逆止弁24を設けず、この代りに電気信号で動作する電磁弁を設け、また起動燃料ライン29に設けた起動燃料ライン弁21を電磁弁とし、この電磁弁及び前記電磁弁を制御器41により、発電燃焼運転中は前者の電磁遮断弁を閉じ、後者の電磁遮断弁を開けるように動作させるように構成することにより、メインの燃料をオフガス燃料ライン30から起動燃料ライン29に流出させないようにすることができ、発電中の燃焼安定性が向上し、起動及び発電運転中に燃焼室空間で均一に火炎が形成できる。この結果、発電運転時の燃料処理器効率が高くなり、発電効率が高く経済的でエネルギ効率の高い運転が実現できる。 (5) Further, the off-gas fuel line check valve 24 provided in the off-gas fuel line 30 of the above-described embodiment is not provided, but an electromagnetic valve that operates by an electric signal is provided instead, and the start-up fuel line 29 is provided. The fuel line valve 21 is an electromagnetic valve, and the electromagnetic valve and the electromagnetic valve are configured to be operated by the controller 41 so that the former electromagnetic cutoff valve is closed and the latter electromagnetic cutoff valve is opened during the power generation combustion operation. Thus, the main fuel can be prevented from flowing out from the off-gas fuel line 30 to the starting fuel line 29, the combustion stability during power generation is improved, and the flame is evenly distributed in the combustion chamber space during the starting and power generating operation. Can be formed. As a result, the efficiency of the fuel processor during the power generation operation is increased, so that the operation with high power generation efficiency and economy and high energy efficiency can be realized.

(6)前述の実施形態では、燃焼器123でのオフガス燃料の着火を自然着火方式で行う場合について説明したが、燃料電池システムの設置場所等によっては、前述の自然着火方式に代えて高電圧トランスとスパークロッドを組み合わせた点火手段により着火させるようにしてもよい。この場合、スパークロッドは例えば図2の空気噴出口130と燃料噴出口131の中間位置に埋設する。   (6) In the above-described embodiment, the case where the off-gas fuel is ignited in the combustor 123 by the natural ignition method has been described. However, depending on the installation location of the fuel cell system, a high voltage may be used instead of the above-mentioned natural ignition method. You may make it ignite by the ignition means which combined the transformer and the spark rod. In this case, the spark rod is embedded in, for example, an intermediate position between the air outlet 130 and the fuel outlet 131 in FIG.

本発明の燃料電池システムに係る実施形態の概略構成を示す系統図。The system diagram which shows schematic structure of embodiment which concerns on the fuel cell system of this invention. 図1の燃料改質器の一例を示す縦断面図。FIG. 2 is a longitudinal sectional view showing an example of a fuel reformer in FIG. 1. 図2のA−A線に沿って切断し矢印方向に見た断面図。Sectional drawing cut | disconnected along the AA line of FIG. 2 and looked at the arrow direction. 従来の燃料電池システムの一例の概略構成を示す系統図。The system diagram which shows schematic structure of an example of the conventional fuel cell system.

符号の説明Explanation of symbols

1…燃料処理系、2…燃料電池本体、3…ガス燃料供給装置、4…脱硫器、5…水蒸気発生器、6…燃料改質器、7…COシフト反応器、8…CO選択酸化器、9…水蒸気分離器、10…改質用燃焼器、11…改質用水ポンプ、12…タンク、12…排熱熱交換器、13…燃料極、14…酸素極、15…酸素極用空気ブロア、16…電解質膜、17…脱気ライン、18…CO選択酸化器用空気ブロア、20…燃料遮断弁、21…起動燃料ライン弁、22…メイン燃料遮断弁、23…脱気ライン弁(脱気用遮断弁)、24…オフガス燃料ライン逆止弁、25…燃焼空気切換弁、26…燃焼用空気ブロア、27…水蒸気流量調節弁、28…熱交換器、29…起動燃料ライン、30…オフガス燃料ライン、35…貯湯槽、41…制御器、42…プロセスガスライン、105a…燃焼部、105b…水蒸気発生部、122…容器、123…燃焼器、124…改質触媒、125…燃焼室、126…断熱部材、127…区画室、128…断熱部材、129a…伝熱管、129b…伝熱管、130…空気噴出口、131…燃料噴出口、132…空気噴出口。   DESCRIPTION OF SYMBOLS 1 ... Fuel processing system, 2 ... Fuel cell main body, 3 ... Gas fuel supply device, 4 ... Desulfurizer, 5 ... Steam generator, 6 ... Fuel reformer, 7 ... CO shift reactor, 8 ... CO selective oxidizer , 9 ... Steam separator, 10 ... Reforming combustor, 11 ... Reforming water pump, 12 ... Tank, 12 ... Waste heat exchanger, 13 ... Fuel electrode, 14 ... Oxygen electrode, 15 ... Air for oxygen electrode Blower, 16 ... electrolyte membrane, 17 ... deaeration line, 18 ... air blower for CO selective oxidizer, 20 ... fuel cutoff valve, 21 ... startup fuel line valve, 22 ... main fuel cutoff valve, 23 ... deaeration line valve (degassing) Shutoff valve for gas), 24 ... off gas fuel line check valve, 25 ... combustion air switching valve, 26 ... combustion air blower, 27 ... steam flow control valve, 28 ... heat exchanger, 29 ... starting fuel line, 30 ... Off-gas fuel line, 35 ... Hot water tank, 41 ... Controller, 42 ... Process Gas line, 105a ... combustion unit, 105b ... steam generation unit, 122 ... vessel, 123 ... combustor, 124 ... reforming catalyst, 125 ... combustion chamber, 126 ... heat insulation member, 127 ... compartment chamber, 128 ... heat insulation member, 129a ... heat transfer tube, 129b ... heat transfer tube, 130 ... air jet, 131 ... fuel jet, 132 ... air jet.

Claims (10)

燃料電池システムの起動時に使用するバーナと前記燃料電池システムの発電時に使用するバーナを一体化した燃焼器と、前記燃焼器に起動燃料を供給する起動燃料ラインと、前記燃焼器にオフガス燃料を供給するオフガス燃料ラインとを備え、かつ前記起動燃料ライン及び前記オフガス燃料ラインを連通した燃料電池システムにおいて、
前記燃料電池の発電前起動時に前記起動燃料ラインと前記オフガス燃料ラインを切り離すと共に、前記プロセスラインの脱気を可能にする手段を具備したことを特徴とする燃料電池システム。
A burner used at the start of the fuel cell system, a combustor integrated with a burner used at the time of power generation of the fuel cell system, a start fuel line for supplying start fuel to the combustor, and an off-gas fuel to the combustor A fuel cell system comprising: an off-gas fuel line that communicates with the start-up fuel line; and the off-gas fuel line;
A fuel cell system comprising means for separating the startup fuel line and the off-gas fuel line at the time of startup of the fuel cell before power generation, and enabling the process line to be deaerated.
電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、
前記燃料電池本体の起動時に起動燃料ラインを介して得られる起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器を備え、燃料を燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器と、
前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、
前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、
前記燃料電池本体の発電前起動時に前記プロセスガスライン内に存在する不活性ガスを脱気する脱気手段と、
を具備したことを特徴とする燃料電池システム。
A fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and the oxygen electrode;
A starter burner that burns starter fuel obtained via a starter fuel line at the time of start-up of the fuel cell main body and a power generation burner that burns power generation fuel at the time of power generation of the fuel cell main body are integrated, and the starter burner and the power generation burner burn A fuel reformer that includes a combustor capable of supplying air, performs fuel reforming of the raw fuel by burning the fuel, and obtains the reformed reformed fuel;
A process gas line for transmitting the reformed fuel from the fuel reformer to the fuel electrode of the fuel cell body;
An off-gas fuel line that communicates with the startup fuel line and transmits unreacted fuel remaining in the fuel cell body to the fuel reformer;
A degassing means for degassing an inert gas present in the process gas line when the fuel cell body is activated before power generation;
A fuel cell system comprising:
電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、
前記燃料電池本体の起動時に起動燃料ラインを介して得られる起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器を備え、燃料を燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器と、
前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、
前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、
前記燃料電池本体の発電前起動時に前記プロセスガスライン内に存在する不活性ガスを脱気する脱気手段と、
前記起動燃料ラインと前記オフガス燃料ラインを連通し、前記燃料電池本体の発電前起動時に前記起動燃料ラインの起動燃料が前記オフガス燃料ラインに流出するのを阻止する燃料流通阻止手段と、
を具備したことを特徴とする燃料電池システム。
A fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and the oxygen electrode;
A starter burner that burns starter fuel obtained via a starter fuel line at the time of start-up of the fuel cell main body and a power generation burner that burns power generation fuel at the time of power generation of the fuel cell main body are integrated, and the starter burner and the power generation burner burn A fuel reformer that includes a combustor capable of supplying air, performs fuel reforming of the raw fuel by burning the fuel, and obtains the reformed reformed fuel;
A process gas line for transmitting the reformed fuel from the fuel reformer to the fuel electrode of the fuel cell body;
An off-gas fuel line that communicates with the startup fuel line and transmits unreacted fuel remaining in the fuel cell body to the fuel reformer;
A degassing means for degassing an inert gas present in the process gas line when the fuel cell body is activated before power generation;
A fuel flow blocking means for communicating the starting fuel line and the off-gas fuel line, and for preventing the starting fuel of the starting fuel line from flowing into the off-gas fuel line when the fuel cell main body is started before power generation;
A fuel cell system comprising:
前記燃料電池システムの発電前起動運転時に、前記燃焼器の上流側で、燃料と空気の一部を予め混合する予混合燃焼方式を使用し、前記燃料電池システムの発電時に、前記燃焼器の下流側で、未反応のまま残ったオフガス燃料と空気を混合させて拡散燃焼を行う拡散燃焼方式を使用したことを特徴とする請求項1乃至請求項3のいずれか一つに記載の燃料電池システム。   At the time of start-up operation before the power generation of the fuel cell system, a premixed combustion method in which a part of fuel and air is premixed on the upstream side of the combustor is used, and at the time of power generation of the fuel cell system, The fuel cell system according to any one of claims 1 to 3, wherein a diffusion combustion system is used in which diffusion combustion is performed by mixing unreacted off-gas fuel and air on the side. . 前記予混合燃焼方式と前記拡散燃焼方式との切り換えは、前記予混合燃焼の余熱で前記オフガス燃料を自然着火させて燃焼形態を拡散燃焼に切り換える手段を、さらに備えたことを特徴とする請求項4に記載の燃料電池システム。   The switching between the premixed combustion method and the diffusion combustion method further comprises means for causing the off-gas fuel to spontaneously ignite with the residual heat of the premixed combustion and switching the combustion mode to diffusion combustion. 5. The fuel cell system according to 4. 前記予混合燃焼方式と前記拡散燃焼方式との切り換えは、前記予混合燃焼の余熱で前記オフガス燃料を点火手段により点火させて燃焼形態を拡散燃焼に切り換える手段を、さらに備えたことを特徴とする請求項4に記載の燃料電池システム。   The switching between the premixed combustion method and the diffusion combustion method is characterized by further comprising means for igniting the off-gas fuel by ignition means with residual heat of the premixed combustion and switching the combustion mode to diffusion combustion. The fuel cell system according to claim 4. 前記燃料流通阻止手段は、前記オフガス燃料ラインに設けられ、前記起動用燃料が前記起動燃料ラインから前記オフガス燃料ラインに流出しないようにする逆止弁であることを特徴とする請求項3に記載の燃料電池システム。   4. The check valve according to claim 3, wherein the fuel flow blocking means is a check valve that is provided in the off-gas fuel line and prevents the start-up fuel from flowing out of the start-up fuel line to the off-gas fuel line. Fuel cell system. 前記燃料流通阻止手段は、前記オフガス燃料ラインに設けられ、前記燃料電池本体が発電前起動時に、前記オフガス燃料ラインを閉路する弁であることを特徴とする請求項3に記載の燃料電池システム。   4. The fuel cell system according to claim 3, wherein the fuel flow blocking means is a valve that is provided in the off-gas fuel line and that closes the off-gas fuel line when the fuel cell main body is activated before power generation. 前記脱気手段は、前記燃料電池本体をバイパスし、その一端が前記プロセスガスラインに接続され、その他端が排気側に連通するように設けられ脱気ラインと、前記脱気ラインに設けられ、前記燃料電池システムが発電前起動時に、前記脱気ラインを開路する弁とを備えたことを特徴とする請求項2又は請求項3に記載の燃料電池システム。   The degassing means bypasses the fuel cell main body, one end thereof is connected to the process gas line, and the other end is provided to communicate with the exhaust side, and is provided in the degassing line and the degassing line, The fuel cell system according to claim 2 or 3, further comprising a valve that opens the deaeration line when the fuel cell system is started before power generation. 電解質膜と、燃料極及び酸素極を備え、前記燃料極及び酸素極に燃料及び空気を供給することで電気エネルギを得る燃料電池本体と、
前記燃料電池本体の起動時に起動燃料を、燃焼することで原燃料の燃料改質を行い、前記改質された改質燃料を得る燃料改質器へ供給する起動燃料ラインと、
前記起動燃料ラインに設けられ、かつ前記燃料電池本体の起動時に開路される起動燃料ライン遮断弁と、
前記燃料改質器に対して原燃料の燃料改質を行うようにするためのものであって、前記起動燃料を燃焼する起動バーナ及び前記燃料電池本体の発電時に発電燃料を燃焼する発電バーナを一体化し、前記起動バーナ、前記発電バーナに燃焼空気を供給可能な燃焼器と、
前記燃料改質器からの改質燃料を前記燃料電池本体の燃料極に伝送するプロセスガスラインと、
前記起動燃料ラインに連通され、前記燃料電池本体で未反応のまま残った燃料を前記燃料改質器に伝送するオフガス燃料ラインと、
前記オフガス燃料ラインに設けられ、前記起動用燃料が前記起動燃料ラインから前記オフガス燃料ラインに流出しないようにする逆止弁、又は前記オフガス燃料ラインに設けられ、前記オフガス燃料ラインの流路が開閉可能で、前記燃料電池本体が発電前起動時に、前記オフガス燃料ラインを閉路し、かつ前記燃料電池本体が非発電前起動時に、前記オフガス燃料ラインを開路するオフガス燃料ライン弁と、
前記燃料電池本体をバイパスし、その一端が前記プロセスガスラインに接続され、その他端が排気側に連通するように設けられ脱気ラインと、
前記脱気ラインに設けられ、前記燃料電池本体が発電前起動時に、前記脱気ラインを開路し、かつ前記燃料電池本体が非発電前起動時に、閉路する脱気ライン弁と、
前記起動燃料ラインに設けられ、前記燃料電池本体が発電前起動時に、前記起動燃料ラインを開路し、かつ前記燃料電池本体が非発電前起動時に、閉路する起動燃料ライン弁と、
前記燃焼器の起動バーナ及び発電バーナにそれぞれ燃焼空気を供給する共通の空気供給路を備え、前記空気供給路の途中に設けられ、前記燃料電池本体の起動時に開路され、予混合燃焼用空気及び拡散混合用空気を供給可能にする燃焼空気切換弁と、
起動燃料ライン遮断弁と、前記オフガス燃料ライン弁と、前記脱気ライン弁と、前記燃焼空気切換弁とに対して、前記燃料電池本体が発電前起動状態、非発電前起動状態に応じて開閉指令を与える制御器と
を具備したことを特徴とする燃料電池システム。
A fuel cell main body comprising an electrolyte membrane, a fuel electrode and an oxygen electrode, and obtaining electric energy by supplying fuel and air to the fuel electrode and the oxygen electrode;
A startup fuel line for performing fuel reforming of the raw fuel by burning the startup fuel at the startup of the fuel cell main body and supplying the fuel reformer to obtain the reformed reformed fuel;
An activation fuel line shut-off valve provided in the activation fuel line and opened when the fuel cell body is activated;
A fuel reformer for reforming raw fuel to the fuel reformer, comprising: a starting burner for burning the starting fuel; and a power generating burner for burning the generated fuel during power generation of the fuel cell body. A combustor that is integrated and capable of supplying combustion air to the startup burner and the power generation burner;
A process gas line for transmitting the reformed fuel from the fuel reformer to the fuel electrode of the fuel cell body;
An off-gas fuel line that communicates with the startup fuel line and transmits unreacted fuel remaining in the fuel cell body to the fuel reformer;
A check valve provided in the off-gas fuel line to prevent the starting fuel from flowing out of the starting fuel line into the off-gas fuel line, or provided in the off-gas fuel line, and the flow path of the off-gas fuel line is opened and closed An off-gas fuel line valve that closes the off-gas fuel line when the fuel cell body is activated before power generation and opens the off-gas fuel line when the fuel cell body is activated before power generation;
Bypassing the fuel cell body, one end thereof is connected to the process gas line, and the other end is provided to communicate with the exhaust side, and a deaeration line;
A degassing line valve that is provided in the degassing line, opens the degassing line when the fuel cell body starts before power generation, and closes when the fuel cell body starts before power generation; and
An activation fuel line valve that is provided in the activation fuel line, opens the activation fuel line when the fuel cell main body is activated before power generation, and closes when the fuel cell main body is activated before non-power generation;
A common air supply passage for supplying combustion air to the startup burner and the power generation burner of the combustor, provided in the middle of the air supply passage, and opened when the fuel cell main body is started; A combustion air switching valve that enables supply of diffusion mixing air;
The fuel cell body opens and closes with respect to the start fuel line shut-off valve, the off-gas fuel line valve, the degassing line valve, and the combustion air switching valve according to the start state before power generation and the start state before non-power generation And a controller for giving a command.
JP2006100622A 2005-03-31 2006-03-31 Fuel cell system Pending JP2006310291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100622A JP2006310291A (en) 2005-03-31 2006-03-31 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005103866 2005-03-31
JP2006100622A JP2006310291A (en) 2005-03-31 2006-03-31 Fuel cell system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013096284A Division JP5646000B2 (en) 2005-03-31 2013-05-01 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006310291A true JP2006310291A (en) 2006-11-09

Family

ID=37476911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100622A Pending JP2006310291A (en) 2005-03-31 2006-03-31 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2006310291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109854A1 (en) * 2009-03-25 2010-09-30 パナソニック株式会社 Hydrogen production device, fuel cell system provided with same, method for operating hydrogen production device, and method for operating fuel cell system
KR102627201B1 (en) * 2023-07-20 2024-01-19 에이치앤파워(주) Modular fuel cell system with high efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151596A (en) * 2001-11-16 2003-05-23 Ebara Ballard Corp Fuel cell generator system
JP2003317767A (en) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd Fuel cell system
JP2004182489A (en) * 2002-11-29 2004-07-02 Toshiba International Fuel Cells Corp Reformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151596A (en) * 2001-11-16 2003-05-23 Ebara Ballard Corp Fuel cell generator system
JP2003317767A (en) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd Fuel cell system
JP2004182489A (en) * 2002-11-29 2004-07-02 Toshiba International Fuel Cells Corp Reformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109854A1 (en) * 2009-03-25 2010-09-30 パナソニック株式会社 Hydrogen production device, fuel cell system provided with same, method for operating hydrogen production device, and method for operating fuel cell system
CN102361817A (en) * 2009-03-25 2012-02-22 松下电器产业株式会社 Hydrogen production device, fuel cell system provided with same, method for operating hydrogen production device, and method for operating fuel cell system
JPWO2010109854A1 (en) * 2009-03-25 2012-09-27 パナソニック株式会社 Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system
US8546030B2 (en) 2009-03-25 2013-10-01 Panasonic Corporation Hydrogen generator, fuel cell system comprising hydrogen generator, and operation method of hydrogen generator, and operation method of fuel cell system
JP5628791B2 (en) * 2009-03-25 2014-11-19 パナソニック株式会社 Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system
KR102627201B1 (en) * 2023-07-20 2024-01-19 에이치앤파워(주) Modular fuel cell system with high efficiency

Similar Documents

Publication Publication Date Title
JP4724029B2 (en) Method for shutting down reformer
EP2416428B1 (en) Fuel cell system
JP2015008142A (en) Multistage combustor and method for starting fuel cell system
EP2420473B1 (en) Method of operating a hydrogen generation device
JP4492882B2 (en) Hydrogen generating apparatus with double burner and driving method
JP2008108546A (en) Fuel cell system
US7645532B2 (en) Solid-oxide fuel cell system having an upstream reformate combustor
JP2010251309A (en) Solid oxide fuel cell system and cogeneration system including the same
JP5416945B2 (en) Fuel cell power generation system
JP5002220B2 (en) Fuel cell system
JP5646000B2 (en) Fuel cell system
JP4098332B2 (en) Reformer and fuel cell system
JP2007109590A (en) Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell
JP2006310291A (en) Fuel cell system
JP5548987B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2011238527A (en) Fuel cell system and control method thereof
JP2004196584A (en) Method of stopping hydrogen production apparatus and fuel cell system operation
WO2012032744A1 (en) Fuel cell system
JP2010108770A (en) Fuel cell power generation system, and control method of fuel cell power generation system
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP2003327404A (en) Hydrogen manufacturing apparatus and its operation method
JP5369404B2 (en) Method for shutting down reformer
JP5086743B2 (en) Fuel cell system
JP5248068B2 (en) Fuel cell system
JP2002289236A (en) Exhaust heat recovery system using fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501