JP2006286249A - Gas purge mechanism of fuel reformer in fuel cell power generation system - Google Patents

Gas purge mechanism of fuel reformer in fuel cell power generation system Download PDF

Info

Publication number
JP2006286249A
JP2006286249A JP2005101326A JP2005101326A JP2006286249A JP 2006286249 A JP2006286249 A JP 2006286249A JP 2005101326 A JP2005101326 A JP 2005101326A JP 2005101326 A JP2005101326 A JP 2005101326A JP 2006286249 A JP2006286249 A JP 2006286249A
Authority
JP
Japan
Prior art keywords
reformer
fuel
cylinder
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101326A
Other languages
Japanese (ja)
Inventor
Takashi Okamoto
崇 岡本
Yasushi Sato
康司 佐藤
Takeshi Samura
健 佐村
Akira Goto
後藤  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Eneos Corp
Original Assignee
Sanyo Electric Co Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Nippon Oil Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2005101326A priority Critical patent/JP2006286249A/en
Publication of JP2006286249A publication Critical patent/JP2006286249A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use a cylinder smaller than that for nitrogen by using carbon dioxide as an inert gas, and to reduce the size and the cost of a fuel cell power generation system. <P>SOLUTION: The fuel reformer is composed by connecting, by arranging pipes between them, a desulfurizer 1, the reformer 2, a CO converter 3 and a CO remover 4, in this order, and is formed to be closed, by mounting a first closing valve 6 and a second closing valve 7 on the introduction side of a hydrocarbon-based material fuel and on the extraction side of a reformed gas, respectively. A cylinder 8 for storing carbon dioxide stored is connected, by arranging a pipe, to an intermediated part of the connection piping between the desulfurizer 1 and the reformer 2; a third closing valve 9 and a fourth closing valve 10 are mounted on the upstream side of the connection part of the cylinder 8 and on the downstream side thereof, respectively; a regulator 12 is mounted to the connection pipe of the cylinder 8; and a fifth closing valve 11 is mounted on the downstream side of the regulator 12. Carbon dioxide is supplied from the cylinder 8 in emergency stop of the fuel reformer or in leak detection thereof and purges it. When the internal pressure of the reformer 2 is set at a negative value due to leakage, carbon dioxide is supplied from the cylinder 8, to prevent performance degradation of a catalyst by suppressing inflow of air. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化水素系の原燃料を水素主体の改質ガスに改質して燃料電池に供給する燃料改質装置に係り、特に運転停止時又はトラブルによる緊急停止時等に、燃料改質装置の安全を確保すると共に触媒の劣化を防止するようにした燃料電池発電システムにおける燃料改質装置のガスパージ機構に関するものである。   The present invention relates to a fuel reformer that reforms a hydrocarbon-based raw fuel into a hydrogen-based reformed gas and supplies the reformed gas to a fuel cell. The present invention relates to a gas purge mechanism of a fuel reforming apparatus in a fuel cell power generation system that ensures the safety of the apparatus and prevents catalyst deterioration.

燃料電池は、周知の如く水素と酸素(又は空気)とを電気化学的に反応させて直流電力を生成する発電装置である。燃料電池に水素を供給するには、燃料電池発電システムに燃料改質装置を組み込み、この燃料改質装置により炭化水素系の原燃料を水素主体の改質ガスに改質し、この改質ガスを燃料電池の燃料極に供給するのが一般的である。そして、燃料改質装置は通常、原燃料中に含まれている硫黄分を除去する脱硫器と、脱硫後の原燃料を水素主体の改質ガスに水蒸気改質する改質器と、改質ガス中に含まれる一酸化炭素を二酸化炭素に変成するCO変成器と、更に改質ガス中に残留する一酸化炭素を二酸化炭素に選択酸化するCO除去器とから構成されている。   As is well known, a fuel cell is a power generation device that generates direct-current power by electrochemically reacting hydrogen and oxygen (or air). In order to supply hydrogen to the fuel cell, a fuel reformer is incorporated in the fuel cell power generation system, and the fuel reformer reforms hydrocarbon-based raw fuel into a reformed gas mainly composed of hydrogen. Is generally supplied to the fuel electrode of the fuel cell. The fuel reformer usually includes a desulfurizer that removes sulfur contained in the raw fuel, a reformer that steam-reforms the desulfurized raw fuel into a hydrogen-based reformed gas, and a reformer. A CO converter that converts carbon monoxide contained in the gas into carbon dioxide, and a CO remover that selectively oxidizes the carbon monoxide remaining in the reformed gas into carbon dioxide.

燃料電池の正常運転中は、上記燃料改質装置から改質ガスを燃料電池に継続して供給することにより発電反応が続行されるが、燃料電池のトラブルによる緊急停止時等には、燃料改質装置内に改質ガスが残留する事態が発生する。燃料改質装置内における前記改質器は、触媒を介しての水蒸気改質が約700℃の高温域で行われ、且つその水蒸気改質が吸熱反応であるため、燃料電池の運転中に付設のバーナを継続して燃焼し、その燃焼熱によって改質器を加熱することで上記適正な高温度を維持するようにしている。この改質器は、燃料電池の運転停止に伴ってバーナの燃焼も停止させられるが、改質器の内部温度は短時間で急激には低下しない。このため、改質器内に改質ガスが残留して溜まるとトラブルが発生するおそれがある。又、運転停止時に限らず、開閉弁等のトラブルにより改質器内に空気が流入すると、改質器内に収納されている触媒が酸化されて劣化する。   During normal operation of the fuel cell, the power generation reaction is continued by continuously supplying the reformed gas from the fuel reformer to the fuel cell. A situation occurs in which the reformed gas remains in the quality device. The reformer in the fuel reformer is installed during the operation of the fuel cell because steam reforming through the catalyst is performed at a high temperature of about 700 ° C. and the steam reforming is an endothermic reaction. The burner is continuously burned, and the reformer is heated by the combustion heat to maintain the appropriate high temperature. Although this reformer stops combustion of the burner as the operation of the fuel cell is stopped, the internal temperature of the reformer does not drop rapidly in a short time. For this reason, trouble may occur if the reformed gas remains and accumulates in the reformer. Further, not only when the operation is stopped, but when air flows into the reformer due to troubles such as an on-off valve, the catalyst stored in the reformer is oxidized and deteriorated.

このような残留改質ガスに起因するトラブルや、流入空気に起因する触媒の劣化を回避するために、燃料電池のトラブルによる緊急停止時等に、不活性ガスを供給して残留改質ガス又は流入空気を追い出して置換(パージ)する技術が、例えば特許文献1や特許文献2等に開示されている。   In order to avoid such troubles due to residual reformed gas and catalyst deterioration due to inflowing air, an inert gas is supplied and residual reformed gas or For example, Patent Literature 1 and Patent Literature 2 disclose a technique for purging and purging inflowing air.

上記特許文献1の発明は、燃料電池、燃料改質器、空気供給系、燃料ガス供給系、空気圧式シリンダバルブ、電磁遮断弁を有する操作ガス系と、電磁遮断弁を有する置換ガス系とを備え、操作ガス系及び置換ガス系に不活性ガスを供給する不活性ガス源(窒素ガス貯蔵タンク)を装置の外部に有するものにおいて、操作ガス系及び置換ガス系にそれぞれ遮断弁を介して連結された補助不活性ガスボンベ(窒素ボンベ)を装置内に備え、電磁遮断弁の操作電源喪失時に不活性ガスの供給を外部不活性ガス源から補助不活性ガスボンベに切り換えるように構成したものである。   The invention of Patent Document 1 includes a fuel cell, a fuel reformer, an air supply system, a fuel gas supply system, a pneumatic cylinder valve, an operation gas system having an electromagnetic cutoff valve, and a replacement gas system having an electromagnetic cutoff valve. Equipped with an inert gas source (nitrogen gas storage tank) that supplies inert gas to the operating gas system and the replacement gas system outside the device, and is connected to the operating gas system and the replacement gas system via a shut-off valve, respectively. The auxiliary inert gas cylinder (nitrogen cylinder) is provided in the apparatus, and the supply of the inert gas is switched from the external inert gas source to the auxiliary inert gas cylinder when the operation power of the electromagnetic shut-off valve is lost.

上記特許文献2の発明は、燃料電池システムを停止する際には、システム内の水素を不活性ガスで置換すると共に、置換により排気された水素を燃焼させる燃料電池システムであり、燃焼器の燃焼温度を検出する温度センサと、この温度センサからの測定値に基づいて不活性ガス供給手段による不活性ガスの供給及び停止を制御する制御手段とを有する構成のものである。そして、燃焼器の温度変化が急降下した時を不活性ガスの供給停止タイミングとしている。
特開平6―290800号公報 特開平11−111319号公報
The invention of the above-mentioned Patent Document 2 is a fuel cell system that, when stopping the fuel cell system, replaces the hydrogen in the system with an inert gas and combusts the hydrogen exhausted by the replacement. The temperature sensor for detecting the temperature and a control means for controlling the supply and stop of the inert gas by the inert gas supply means based on the measured value from the temperature sensor. And when the temperature change of a combustor falls rapidly, it is set as the supply stop timing of an inert gas.
JP-A-6-290800 JP-A-11-111319

上記従来の不活性ガス置換においては、いずれも不活性ガスとして窒素が用いられているため窒素ガス貯蔵タンク、窒素ボンベ等が必須の構成部材となり、これらはかなり大型のものであることから燃料電池発電システムの大型化、及びコストの増大を来たす問題があった。   In the above-described conventional inert gas replacement, nitrogen is used as an inert gas, so a nitrogen gas storage tank, a nitrogen cylinder, etc. are indispensable components, and these are considerably large-sized fuel cells. There has been a problem in that the power generation system becomes larger and costs increase.

本発明は、このような従来技術における問題を解決するためになされたもので、不活性ガスとして窒素ではなく、二酸化炭素を用いることにより窒素に比して小型ボンベの使用を可能とし、これにより燃料電池発電システムの小型化を図ると共に、コストの低減を図ることを目的とする。   The present invention has been made to solve such problems in the prior art, and by using carbon dioxide instead of nitrogen as an inert gas, it is possible to use a small cylinder as compared with nitrogen. The purpose of the present invention is to reduce the size of the fuel cell power generation system and to reduce the cost.

上記の目的を達成するための手段として、本発明の請求項1は、炭化水素系の原燃料を水素主体の改質ガスに改質して燃料電池に供給する燃料改質装置において、原燃料導入側或は改質ガス導出側に不活性ガスを収容したボンベが接続され、前記燃料改質装置の非常停止時又はリーク検知時に、前記ボンベから不活性ガスを前記燃料改質装置に供給することを特徴とする、燃料電池発電システムにおける燃料改質装置のガスパージ機構を要旨とする。   According to a first aspect of the present invention, there is provided a fuel reformer for reforming a hydrocarbon-based raw fuel into a hydrogen-based reformed gas and supplying the reformed fuel to a fuel cell. A cylinder containing an inert gas is connected to the introduction side or the reformed gas outlet side, and the inert gas is supplied from the cylinder to the fuel reformer when the fuel reformer is in an emergency stop or when a leak is detected. The gist of the present invention is a gas purge mechanism of a fuel reformer in a fuel cell power generation system.

本発明の請求項2は、請求項1に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記燃料改質装置は、反応に寄与する物質導入側と改質ガス導出側はそれぞれ開閉弁を介して締め切り可能に形成されることを特徴とする。   According to a second aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to the first aspect, the fuel reformer includes a material introduction side and a reformed gas outlet side that contribute to the reaction. It is characterized in that it can be cut off via an on-off valve.

本発明の請求項3は、請求項1に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記燃料改質装置に含まれる改質器の起動中に特定条件での緊急停止により、当該改質器内部が負圧に転じることを検出した時に、前記ボンベから不活性ガスを前記改質器に供給することを特徴とする。   According to a third aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to the first aspect, an emergency stop under a specific condition is performed during start-up of the reformer included in the fuel reformer. When the inside of the reformer is detected to turn to a negative pressure, an inert gas is supplied from the cylinder to the reformer.

本発明の請求項4は、請求項1ないし請求項3のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記改質器の内圧が開閉弁の故障不具合や溶接個所の故障不具合などにより規定温度以下で規定圧力以上の時、又は運転中に不慮の事由により主電源を落とさざるを得なくなった場合に、前記ボンベから不活性ガスを前記燃料改質装置に供給することを特徴とする。   According to a fourth aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to third aspects, the internal pressure of the reformer may cause a malfunction of the on-off valve or a welding location. Inert gas is supplied from the cylinder to the fuel reformer when the main power supply has to be turned off due to a malfunction or failure, etc., when the pressure is lower than the specified temperature or higher than the specified pressure, or for some reason during operation. It is characterized by that.

本発明の請求項5は、請求項4に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記改質器の内圧が規定温度以下で規定圧力以上の時とは、当該改質容器温度が300℃以下でマイナス10kPa以上であることを特徴とする。   According to a fifth aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to the fourth aspect, when the internal pressure of the reformer is not more than a specified temperature and not less than a specified pressure, the reforming is performed. The container temperature is 300 ° C. or lower and minus 10 kPa or higher.

本発明の請求項6は、請求項1ないし請求項5のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記不活性ガスとして二酸化炭素を用いることを特徴とする。   According to a sixth aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to fifth aspects, carbon dioxide is used as the inert gas.

本発明の請求項7は、請求項1ないし請求項6のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記不活性ガスを収容したボンベの接続配管に開閉弁を設けたことを特徴とする。   According to a seventh aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to sixth aspects, an open / close valve is provided in a connecting pipe of the cylinder containing the inert gas. It is provided.

本発明の請求項8は、請求項1ないし請求項7のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記燃料改質装置に含まれる脱硫器と改質器との接続配管に不活性ガスを収容したボンベが接続されたことを特徴とする。   According to an eighth aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to seventh aspects, a desulfurizer and a reformer included in the fuel reformer, A cylinder containing an inert gas is connected to the connection pipe.

本発明の請求項9は、請求項1ないし請求項8のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記不活性ガスを収容したボンベの接続配管の途中に、前記ボンベに収容されている不活性ガスの圧力を100kPa以下に減圧できるレギュレータを設けたことを特徴とする。   According to a ninth aspect of the present invention, in the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to eighth aspects, in the middle of the connecting pipe of the cylinder containing the inert gas, A regulator is provided that can reduce the pressure of the inert gas contained in the cylinder to 100 kPa or less.

本発明の請求項10は、請求項1ないし請求項9のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記脱硫器と改質器との接続配管における前記不活性ガスを収容したボンベの接続個所より上流側及び/又は下流側に開閉弁を設けたことを特徴とする。   A tenth aspect of the present invention is the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of the first to ninth aspects, wherein the inertness in a connection pipe between the desulfurizer and the reformer is provided. An on-off valve is provided on the upstream side and / or the downstream side from the connection point of the cylinder containing the gas.

本発明の請求項11は、請求項1ないし請求項10のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構において、前記不活性ガスは充填比1.2以上に圧縮された充填量が50L以下及び/又は80g以下の小型ボンベであることを特徴とする。   Claim 11 of the present invention is the gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of claims 1 to 10, wherein the inert gas is compressed to a filling ratio of 1.2 or more. It is a small cylinder with a filling amount of 50 L or less and / or 80 g or less.

上記請求項1の発明によれば、燃料電池の非常停止時又はトラブルによる緊急停止時に、燃料改質装置に接続されたボンベから不活性ガスを燃料改質装置に供給することで、改質器等に残留する改質ガスを追い出して置換することができる。これにより、改質器等のトラブルを回避することができる。   According to the first aspect of the invention, at the time of an emergency stop of the fuel cell or an emergency stop due to a trouble, an inert gas is supplied to the fuel reformer from a cylinder connected to the fuel reformer, thereby the reformer It is possible to drive out and replace the reformed gas remaining in the gas. Thereby, troubles such as a reformer can be avoided.

上記請求項2の発明によれば、燃料電池の非常停止時又はトラブルによる緊急停止時に、燃料改質装置の導入側と導出側の開閉弁を閉じることで、反応に寄与する物質の導入を防ぐと共に、燃料電池側への改質ガスの導出を防ぐことができる。   According to the second aspect of the invention, at the time of an emergency stop of the fuel cell or an emergency stop due to a trouble, the introduction of the substance contributing to the reaction is prevented by closing the on-off valves on the introduction side and the exit side of the fuel reformer. At the same time, it is possible to prevent the reformed gas from being led out to the fuel cell side.

上記請求項3の発明によれば、燃料電池の運転開始時又は運転中に、燃料改質装置に含まれる改質器の特定条件での緊急停止により、改質器内部が負圧に転じることを検出した時に、当該改質器に不活性ガスをパージすることで改質器を保護することができる。   According to the third aspect of the invention, the internal pressure of the reformer is changed to a negative pressure due to an emergency stop under a specific condition of the reformer included in the fuel reformer at the start or during operation of the fuel cell. When this is detected, the reformer can be protected by purging the reformer with an inert gas.

上記請求項4の発明によれば、燃料改質装置に含まれる改質器の内圧が開閉弁の故障不具合や溶接個所の故障不具合などにより規定温度以下で規定圧力以上の時、又は運転中に不慮の事由により主電源を落とさざるを得なくなった場合に、ボンベから不活性ガスを改質器に供給することで空気の流入を抑制することができる。これにより、改質器内に収納されている触媒の酸化を極力防いで、触媒の劣化を抑制することができる。   According to the fourth aspect of the invention, when the internal pressure of the reformer included in the fuel reformer is lower than the specified temperature and higher than the specified pressure due to a failure of the on-off valve or a failure of the welded part, or during operation. When the main power source has to be turned off due to an unexpected reason, the inflow of air can be suppressed by supplying an inert gas from the cylinder to the reformer. Thereby, oxidation of the catalyst accommodated in the reformer can be prevented as much as possible, and deterioration of the catalyst can be suppressed.

上記請求項5の発明によれば、上記改質器の内圧が改質容器温度300℃以下でマイナス10kPa以上の時に、不活性ガスによるパージを確実に行って改質器内への空気の流入を抑制することができる。   According to the fifth aspect of the invention, when the internal pressure of the reformer is equal to or lower than minus 10 kPa at the reforming vessel temperature of 300 ° C. or lower, the purge with the inert gas is surely performed and the air flows into the reformer. Can be suppressed.

上記請求項6の発明によれば、不活性ガスとして二酸化炭素を用いることで、従来の窒素を用いる場合よりも小型ボンベの使用が可能となる。これにより、ボンベを燃料改質装置に組み込んでも燃料電池発電システム全体を大型化することはない。   According to the sixth aspect of the invention, by using carbon dioxide as the inert gas, it is possible to use a small cylinder as compared with the case of using conventional nitrogen. Thus, even if the cylinder is incorporated in the fuel reformer, the entire fuel cell power generation system is not enlarged.

上記請求項7の発明によれば、改質器のリークチェック時に前記ボンベの接続配管に設けた開閉弁を開けば、ガスリークにより改質器内に負圧が生じているとボンベから不活性ガスが改質器内に流入する。これにより、不活性ガスを収容したボンベを用いて改質器のリークチェックを簡便に行うことができる。   According to the seventh aspect of the present invention, if the on-off valve provided in the connecting pipe of the cylinder is opened at the time of the leak check of the reformer, if the negative pressure is generated in the reformer due to the gas leak, the inert gas from the cylinder Flows into the reformer. Thereby, the leak check of a reformer can be simply performed using the cylinder which accommodated the inert gas.

上記請求項8の発明によれば、燃料改質装置に含まれる脱硫器と改質器との接続配管に不活性ガスを収容したボンベが接続されているため、トラブルによる緊急停止時等に、燃料改質装置の原燃料導入側の開閉弁を閉じると共に、高温域にある改質器に対してボンベから不活性ガスを供給することで、改質器内に残留する改質ガスを追い出して置換することができる。これにより、改質器のトラブルを防ぐと共に燃料電池側へのトラブル波及も防ぐことができる。   According to the invention of claim 8 above, since the cylinder containing the inert gas is connected to the connecting pipe between the desulfurizer and the reformer included in the fuel reformer, at the time of emergency stop due to trouble, By closing the on-off valve on the raw fuel introduction side of the fuel reformer and supplying the inert gas from the cylinder to the reformer in the high temperature range, the reformed gas remaining in the reformer is expelled. Can be replaced. Thereby, it is possible to prevent troubles in the reformer and prevent troubles from spreading to the fuel cell side.

上記請求項9の発明によれば、不活性ガスを収容したボンベの接続配管の途中に、ボンベに収容されている不活性ガスの圧力を100kPa以下に減圧できるレギュレータを設けたので、トラブルによる緊急停止時等に、適正に圧力調整した不活性ガスを改質器に投入することができる。これにより、圧縮ガスの断熱膨張による結露のためにガスの流通を妨げることがなく、又開閉弁やポンプなどの選択の自由度が広がることによるコストの低減が図れる。更に、改質器の内部圧力が瞬時に増大するのを抑制することで、改質器を保護することができる。   According to the ninth aspect of the present invention, a regulator capable of reducing the pressure of the inert gas accommodated in the cylinder to 100 kPa or less is provided in the middle of the connecting pipe of the cylinder accommodating the inert gas. At the time of stoppage or the like, an inert gas whose pressure is appropriately adjusted can be introduced into the reformer. Thereby, the flow of gas is not hindered due to dew condensation due to adiabatic expansion of the compressed gas, and the cost can be reduced by increasing the degree of freedom of selection of on-off valves, pumps and the like. Furthermore, the reformer can be protected by suppressing the internal pressure of the reformer from increasing instantaneously.

上記請求項10の発明によれば、前記脱硫器と改質器との接続配管における不活性ガス収容ボンベの接続個所より上流側及び/又は下流側に開閉弁を設けたので、トラブルによる緊急停止時等に、上流側の開閉弁を閉じれば脱硫器側へ不活性ガスを流入させることなく、改質器側へ不活性ガスを確実に供給することができる。又、改質器への不活性ガス供給後に下流側の開閉弁を閉じれば、不活性ガスの逆流を阻止して改質器内部でのガスパージを確実に維持することができる。   According to the tenth aspect of the present invention, the on / off valve is provided upstream and / or downstream from the connection point of the inert gas storage cylinder in the connection pipe between the desulfurizer and the reformer. When the on-off valve on the upstream side is closed, the inert gas can be reliably supplied to the reformer side without causing the inert gas to flow into the desulfurizer side. Further, if the downstream on-off valve is closed after supplying the inert gas to the reformer, the backflow of the inert gas can be prevented and the gas purge inside the reformer can be reliably maintained.

上記請求項11の発明によれば、不活性ガスは充填比1.2以上に圧縮された充填量が50L以下及び/又は80g以下の小型ボンベでよいため、従来の窒素ボンベよりも小型で済む。これにより、燃料改質装置に組み込んで使用しても燃料電池発電システム全体が大型化せず、又市販されている汎用品を使用できることからコストの低減を図ることが可能となる。   According to the eleventh aspect of the present invention, the inert gas may be a small cylinder with a filling amount compressed to a filling ratio of 1.2 or more and 50 L or less and / or 80 g or less, and therefore, the inert gas may be smaller than a conventional nitrogen cylinder. . Thereby, even if it uses by incorporating in a fuel reformer, the whole fuel cell power generation system does not enlarge, and since it is possible to use a commercially available general-purpose product, it is possible to reduce the cost.

以下、本発明に係る燃料電池発電システムにおける燃料改質装置のガスパージ機構の実施形態について添付図面を参照して説明する。
図1は本発明に係る燃料改質装置のガスパージ機構を含む燃料電池発電システムの概略構成を示すブロック図であり、燃料改質装置は脱硫器1と、改質器2と、CO変成器3と、CO除去器4とをこの順に接続配管することにより構成されている。
Hereinafter, embodiments of a gas purge mechanism of a fuel reformer in a fuel cell power generation system according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a schematic configuration of a fuel cell power generation system including a gas purge mechanism of a fuel reformer according to the present invention. The fuel reformer includes a desulfurizer 1, a reformer 2, and a CO converter 3. And a CO remover 4 in this order.

この燃料改質装置の作用を概略説明すると、炭化水素系の原燃料(例えば都市ガス、LPGガス等)が脱硫器1に供給され、この脱硫器1により原燃料中に含まれている硫黄分が脱硫される。脱硫せずに原燃料をそのまま改質器2に供給すると、この改質器2の内部に収納されている触媒が硫黄成分によって被毒を受けて触媒性能が低下するので、改質器2の前段階で脱硫処理を行う必要がある。   Briefly explaining the operation of this fuel reformer, hydrocarbon-based raw fuel (for example, city gas, LPG gas, etc.) is supplied to the desulfurizer 1, and the sulfur content contained in the raw fuel by this desulfurizer 1. Is desulfurized. If the raw fuel is supplied as it is to the reformer 2 without desulfurization, the catalyst contained in the reformer 2 is poisoned by the sulfur component and the catalytic performance is lowered. It is necessary to perform desulfurization treatment in the previous stage.

次いで、脱硫された原燃料は図示を省略した気化器で生成された水蒸気と混合された後、改質器2に導入されて水蒸気改質される。この改質器2の内部には例えば貴金属系の触媒が収納されており、約700℃の高温域で水素主体のガスに水蒸気改質する。このため、改質器2にはバーナ2aが付設され、運転開始時には原燃料をバーナ2aに供給して燃焼し、この燃焼熱により改質器2を加熱して所定の温度になるまで昇温する。又、運転中においても、触媒による水蒸気改質が吸熱反応であるため、バーナ2aの燃焼を継続して改質器2を加熱し、上記所定の温度を維持する。運転中においては、燃料電池5の燃料極から排出されるオフガスをバーナ2aに導入して燃焼させることができる。   Next, the desulfurized raw fuel is mixed with steam generated by a vaporizer (not shown), and then introduced into the reformer 2 for steam reforming. For example, a noble metal-based catalyst is accommodated in the reformer 2 and is steam reformed into a hydrogen-based gas at a high temperature range of about 700 ° C. For this reason, the reformer 2 is provided with a burner 2a. At the start of operation, the raw fuel is supplied to the burner 2a and burned, and the heat of the reformer 2 is heated by this combustion heat until the temperature reaches a predetermined temperature. To do. Even during operation, since steam reforming by the catalyst is an endothermic reaction, combustion of the burner 2a is continued to heat the reformer 2 and maintain the predetermined temperature. During operation, off-gas discharged from the fuel electrode of the fuel cell 5 can be introduced into the burner 2a and burned.

上記改質器2で生成した改質ガスは、水素主体のガスではあるが一酸化炭素等を含んでいるためCO変成器3に導入され、一酸化炭素を二酸化炭素に変成することでCO濃度を低減する。更に、CO変成器3からCO除去器4に導入され、改質ガス中に残留する一酸化炭素を選択酸化することでCO濃度を更に低減した後に、燃料電池5の燃料極に改質ガスを供給する。改質ガス中に含まれる一酸化炭素は、燃料電池5の電極触媒を被毒して発電性能を低下させるので、CO濃度を約10ppm以下まで低減する必要がある。   The reformed gas generated by the reformer 2 is a gas mainly composed of hydrogen but contains carbon monoxide and the like, so that it is introduced into the CO converter 3 to convert the carbon monoxide into carbon dioxide, thereby converting the CO concentration. Reduce. Further, after the CO concentration is further reduced by selectively oxidizing carbon monoxide introduced from the CO converter 3 to the CO remover 4 and remaining in the reformed gas, the reformed gas is supplied to the fuel electrode of the fuel cell 5. Supply. Since carbon monoxide contained in the reformed gas poisons the electrode catalyst of the fuel cell 5 and lowers the power generation performance, it is necessary to reduce the CO concentration to about 10 ppm or less.

上記構成の燃料改質装置において、原燃料導入側に第1の開閉弁6が脱硫器1より上流側に位置して設けられ、改質ガス導出側には第2の開閉弁7がCO除去器4より下流側に位置して設けられる。これにより、燃料改質装置は第1の開閉弁6と第2の開閉弁7とを介して改質に寄与する物質の入口と、反応生成物の出口の両端において締め切りが達成される。   In the fuel reformer configured as described above, the first on-off valve 6 is provided on the upstream side of the desulfurizer 1 on the raw fuel introduction side, and the second on-off valve 7 is provided for CO removal on the reformed gas outlet side. It is located downstream from the vessel 4. As a result, the fuel reformer is closed at both ends of the inlet of the substance contributing to reforming and the outlet of the reaction product via the first on-off valve 6 and the second on-off valve 7.

又、脱硫器1と改質器2との接続配管の中間部にボンベ8が接続配管され、このボンベ8の接続個所より上流側に第3の開閉弁9が設けられると共に、ボンベ8の接続個所より下流側に第4の開閉弁10が設けられる。更に、ボンベ8の接続配管にはレギュレータ12が設けられると共に、このレギュレータ12より下流側に第5の開閉弁11が設けられる。これにより、第5の開閉弁11を開けると、ボンベ8に収容されている不活性ガスがレギュレータ12で調圧されて改質器2に供給される。尚、ボンベ8は原燃料導入側のみならず導出側に接続することも可能である。又、上記第1の開閉弁6ないし第5の開閉弁11として電磁弁を採用することができる。   In addition, a cylinder 8 is connected to an intermediate portion of the connection pipe between the desulfurizer 1 and the reformer 2, and a third on-off valve 9 is provided on the upstream side of the connection portion of the cylinder 8. A fourth on-off valve 10 is provided downstream from the location. Further, a regulator 12 is provided in the connecting pipe of the cylinder 8, and a fifth on-off valve 11 is provided downstream of the regulator 12. Accordingly, when the fifth on-off valve 11 is opened, the inert gas accommodated in the cylinder 8 is regulated by the regulator 12 and supplied to the reformer 2. The cylinder 8 can be connected not only to the raw fuel introduction side but also to the outlet side. Moreover, an electromagnetic valve can be employed as the first on-off valve 6 to the fifth on-off valve 11.

上記レギュレータ12として、汎用のレギュレータを用いた比較例においては、不活性ガスの一次圧6MPaを1MPaまでしか減圧できなかったために、不活性ガス供給時に
燃料電池5に過大な圧力が掛かり電池のリークを誘発したために正規の発電が行えなくなった。本実施例では、100kPa以下好ましくは70kPa以下、より好ましくは50kPa以下まで減圧可能なレギュレータ12を用いることで、燃料電池5へ過大な圧力による悪影響を与えることなく燃料改質装置に不活性ガスを供給することができた。レギュレータを用いなかったり汎用のレギュレータでは、二酸化炭素放出時に配管内で結露してしまい充分ガスを送れなくなったり、使用している開閉弁やポンプを壊してしまったり、開閉弁やポンプ等の選定の幅が制限されてしまうことになる。
In the comparative example using a general-purpose regulator as the regulator 12, the primary pressure 6MPa of the inert gas could be reduced only to 1MPa, so that excessive pressure was applied to the fuel cell 5 when the inert gas was supplied, and the battery leaked. Because it triggered, regular power generation can no longer be performed. In this embodiment, by using the regulator 12 that can be depressurized to 100 kPa or less, preferably 70 kPa or less, more preferably 50 kPa or less, the inert gas is supplied to the fuel reformer without adversely affecting the fuel cell 5 due to excessive pressure. Could be supplied. If a regulator is not used or a general-purpose regulator is used, condensation will occur in the piping when carbon dioxide is released and gas will not be sent sufficiently, or the on-off valve or pump used may be damaged, or the on-off valve or pump may be selected. The width will be limited.

本実施形態では、不活性ガスとして二酸化炭素をボンベ8に収容したものを用いるが、二酸化炭素は窒素よりも蒸気圧が低い(図2参照)ため、従来用いられた窒素ボンベよりも小さい容器であっても、大きな容量を圧縮して収容することが可能である。例えば、二酸化炭素充填比(充填圧力MPa)1.2以上に圧縮された充填量が50L以下及び/又は80g以下の小型ボンベを使用できる。この程度の小型ボンベは一般に市販されており、汎用品であるため安価に入手することができ、且つ窒素ボンベに比して小さな容器で済むため、燃料改質装置に組み込んでも嵩張らず、燃料電池発電システムを大型化することはない。これにより、燃料電池システムの小型化及びコストの低減に寄与することができる。   In the present embodiment, the inert gas containing carbon dioxide in the cylinder 8 is used. However, since carbon dioxide has a lower vapor pressure than nitrogen (see FIG. 2), it is a container smaller than a conventionally used nitrogen cylinder. Even if it exists, it is possible to compress and accommodate a large capacity. For example, a small cylinder having a filling amount compressed to a carbon dioxide filling ratio (filling pressure MPa) of 1.2 or more and 50 L or less and / or 80 g or less can be used. This type of small cylinder is generally commercially available, and since it is a general-purpose product, it can be obtained at a low cost, and since a small container is sufficient compared to a nitrogen cylinder, it is not bulky even if incorporated in a fuel reformer. The power generation system will not be enlarged. Thereby, it can contribute to size reduction and cost reduction of a fuel cell system.

燃料電池5のトラブルによる緊急停止時等には、前記第1の開閉弁6及び第2の開閉弁7が閉じられ、燃料改質装置は両端が締め切られて冷間保圧状態となる。この冷間保圧中は水分の凝縮や温度低下により改質器2の内部圧力が減少して負圧になる。この状態で改質器2より上流側の開閉弁の故障によりリークが発生すると、改質器2内部へ空気が流入する。空気が流入すると、改質器2内部の触媒が酸化されて改質器2の温度上昇が認められた。比較例としてこの状態のまま、運転開始時に改質器2で改質を開始したところ、出口でのガスは改質が不完全であり、原燃料や中間生成物の混在が認められた。   At the time of an emergency stop or the like due to a trouble in the fuel cell 5, the first on-off valve 6 and the second on-off valve 7 are closed, and both ends of the fuel reformer are closed to be in a cold pressure holding state. During this cold holding pressure, the internal pressure of the reformer 2 is reduced to a negative pressure due to condensation of water or a decrease in temperature. In this state, if a leak occurs due to a failure of the on-off valve upstream of the reformer 2, air flows into the reformer 2. When air flowed in, the catalyst inside the reformer 2 was oxidized, and a temperature increase of the reformer 2 was observed. In this state as a comparative example, reforming was started in the reformer 2 at the start of operation. As a result, reforming of the gas at the outlet was incomplete, and mixing of raw fuel and intermediate products was observed.

本実施形態では、開閉弁の故障不具合や改質器2の溶接個所の故障不具合などにより、改質器2の内圧が改質容器温度300℃以下でマイナス10kPa以上となった時に、又は運転中に不慮の事由により主電源を落とさざるを得なくなった場合に、前記第5の開閉弁11を開いてボンベ8から不活性ガスを改質器2内に供給するように設定した。これにより、改質器2内を不活性ガスで置換して空気の流入を抑制したので、触媒の酸化が抑制され、酸化による改質器2の温度上昇も認められなかった。前記リーク故障の開閉弁を交換の上、運転開始時に改質器2で改質を開始したところ、出口でのガスはガス分析を行った結果CO濃度が10ppm以下であり、改質がほぼ完全であって正常時と同じ組成を示し、触媒の劣化は殆ど認められなかった。尚、図示は省略したが改質器2の内圧を計測する圧力計を設ける。   In the present embodiment, when the internal pressure of the reformer 2 becomes minus 10 kPa or more at the reforming vessel temperature of 300 ° C. or lower due to a malfunction of the on-off valve or a malfunction of the welded portion of the reformer 2, or during operation. When the main power source has to be turned off due to an unexpected reason, the fifth on-off valve 11 is opened to supply the inert gas from the cylinder 8 into the reformer 2. Thereby, since the inside of the reformer 2 was replaced with an inert gas to suppress the inflow of air, the oxidation of the catalyst was suppressed, and the temperature increase of the reformer 2 due to the oxidation was not recognized. When the reformer 2 started reforming at the start of operation after exchanging the on-off valve of the leak failure, the gas at the outlet was subjected to gas analysis, and as a result, the CO concentration was 10 ppm or less, and the reforming was almost complete. However, the composition was the same as normal, and almost no deterioration of the catalyst was observed. Although not shown, a pressure gauge for measuring the internal pressure of the reformer 2 is provided.

図3は、センサによる改質器のリーク検出を示すグラフであり、冷却過程において斜線で示す300℃以下でマイナス10kPa以上の範囲が改質器リークみなしの領域とされている。このような冷却過程においても、改質器リークみなしの領域では二酸化炭素によるパージを行い、エラー表示/センター通報を行うことが好ましい。   FIG. 3 is a graph showing the detection of the reformer leak by the sensor, and the range of minus 10 kPa or higher at 300 ° C. or lower indicated by hatching in the cooling process is regarded as a region that is not regarded as a reformer leak. Even in such a cooling process, it is preferable to perform purging with carbon dioxide in an area where the reformer leak is not considered, and to perform error display / center notification.

運転開始時には、前記バーナ2aに原燃料を供給して燃焼させ、その燃焼熱により改質器2を所定の温度になるまで昇温するが、比較例としてこの昇温中の改質器2において、溶接割れが発生した場合には、リークにより改質器2の内圧が300℃以下にも拘わらずマイナス10kPa以上となった。この状態のまま、改質器2で改質を開始したところ、図示しない水素センサが反応して運転が停止した。この時、改質器2で触媒の酸化やカーボン析出が認められた。   At the start of operation, raw fuel is supplied to the burner 2a and burned, and the reformer 2 is heated up to a predetermined temperature by the heat of combustion. When the weld crack occurred, the internal pressure of the reformer 2 became minus 10 kPa or more due to the leakage even though it was 300 ° C. or less. When reforming was started in the reformer 2 in this state, a hydrogen sensor (not shown) reacted to stop the operation. At this time, oxidation of the catalyst and carbon deposition were observed in the reformer 2.

本実施形態では、改質器2の昇温過程で上記圧力計でリークを検知し、前記ボンベ8から不活性ガスを供給して置換したため、改質器2の改質開始前に運転を停止することができた。又、運転開始後、改質器2が昇温される過程で水蒸気が改質器2に導入され、続いて原燃料が導入される。この間に不測の事態により緊急停止が掛かった場合、水蒸気の凝縮により改質器2が容器耐圧や開閉弁の耐圧を超えてしまうため、かかる場合には二酸化炭素パージを行う。前記のように不活性ガスとして二酸化炭素を用いた場合、例えば充填圧力6MPa、充填量は8リットルであり、ボンベ8は改質器2内を2倍以上置換するに充分な量を有している。従来不活性ガスとして窒素を用いた場合は、既製品では充填圧力18.6MPa、充填量は3リットルであり、改質器2内を1回置換する量とほぼ等量であるに過ぎない。   In this embodiment, since the leak is detected by the pressure gauge in the temperature raising process of the reformer 2 and the inert gas is supplied from the cylinder 8 for replacement, the operation is stopped before the reformer 2 starts reforming. We were able to. Further, after the operation is started, steam is introduced into the reformer 2 in the process of raising the temperature of the reformer 2, and then raw fuel is introduced. During this time, if an emergency stop occurs due to an unexpected situation, the reformer 2 exceeds the pressure resistance of the vessel or the pressure of the on-off valve due to condensation of water vapor. In such a case, carbon dioxide purge is performed. When carbon dioxide is used as the inert gas as described above, for example, the filling pressure is 6 MPa, the filling amount is 8 liters, and the cylinder 8 has a sufficient amount to replace the inside of the reformer 2 more than twice. Yes. Conventionally, when nitrogen is used as an inert gas, the ready-made product has a filling pressure of 18.6 MPa and a filling amount of 3 liters, which is only equivalent to the amount of replacement in the reformer 2 once.

本実施形態では、前記のようにボンベ8は脱硫器1と改質器2との接続配管の中間部に接続されており、この接続個所の上流側には第3の開閉弁9が設けられている。このため、ボンベ8から不活性ガスを改質器2に供給する時に、第3の開閉弁9を閉じれば改質器2で発生したリークに対し、脱硫器1側に影響を与えることなく不活性ガスを改質器2に供給することができる。比較例としてボンベ8が脱硫器1の前段位置に接続された場合は、改質器2に供給される不活性ガスが脱硫器1を経由するため、脱硫器1に収納されている触媒に、吸着された硫黄成分の脱着が起こり、これが改質器2側へ流れ込むことで改質触媒の触媒性能を劣化させてしまう。   In the present embodiment, the cylinder 8 is connected to the intermediate portion of the connection pipe between the desulfurizer 1 and the reformer 2 as described above, and the third on-off valve 9 is provided upstream of this connection point. ing. Therefore, when supplying the inert gas from the cylinder 8 to the reformer 2, if the third on-off valve 9 is closed, the leak generated in the reformer 2 is not affected without affecting the desulfurizer 1 side. Active gas can be supplied to the reformer 2. As a comparative example, when the cylinder 8 is connected to the upstream position of the desulfurizer 1, the inert gas supplied to the reformer 2 passes through the desulfurizer 1. The adsorbed sulfur component is desorbed and flows into the reformer 2 side, thereby degrading the catalytic performance of the reforming catalyst.

燃料電池発電システムにおいて、改質器2の設置時又はCO除去器4等の交換後のリークテストとして、小型不活性ガスボンベを内蔵しない比較例の場合では、別途不活性ガスボンベを持参する必要があった。このため、設置時や交換時に別途不活性ガスボンベを持ち込まねばならず、又このための配管の締結作業が発生し作業性が低下した。本実施形態では、小型不活性ガスボンベを内蔵する燃料電池発電システムであるから、その不活性ガスボンベを用いてリークテストを完了することができ、別途に不活性ガスボンベを持参する必要がなく、簡便なシステムとすることができる。   In the fuel cell power generation system, when the reformer 2 is installed or as a leak test after replacement of the CO remover 4 or the like, in the case of a comparative example that does not include a small inert gas cylinder, it is necessary to bring an inert gas cylinder separately. It was. For this reason, an inert gas cylinder has to be brought in separately at the time of installation or replacement, and piping work for this purpose has occurred, resulting in reduced workability. In the present embodiment, since the fuel cell power generation system incorporates a small inert gas cylinder, the leak test can be completed using the inert gas cylinder, and it is not necessary to bring an inert gas cylinder separately. It can be a system.

燃料電池5の運転停止後、両端締め切り型の燃料改質装置では、前記のように改質器2等の内圧が負圧になるが、停止後冷却状態での改質器2等の内圧が0kPa以下に低下しなかった。これを放置し冷却後再起動したところ燃料電池5の電圧低下で停止した。これは開閉弁のリークによって空気が流入し、CO変成触媒の劣化により一酸化炭素の除去が十分行えなかったことが原因であると考えられ、燃料改質装置の交換を余儀なくされた。本実施形態では、上記冷却過程でボンベ8を利用して不活性ガスを供給してリークエラー検知を行った。調査の結果、改質器2の前段に設置される開閉弁の外漏れが原因であった。当該開閉弁を交換した後に再起動を行ったところ、問題なく燃料電池5を作動させることができた。   After the operation of the fuel cell 5 is stopped, the internal pressure of the reformer 2 and the like becomes negative as described above in the both-end closed type fuel reformer, but the internal pressure of the reformer 2 and the like in the cooled state after the stop is reduced. It did not drop below 0 kPa. When this was left and restarted after cooling, it stopped due to a voltage drop of the fuel cell 5. This is considered to be caused by the inflow of air due to the leakage of the on-off valve and the inability to sufficiently remove carbon monoxide due to the deterioration of the CO shift catalyst, and the fuel reformer was forced to be replaced. In the present embodiment, the leak error is detected by supplying the inert gas using the cylinder 8 in the cooling process. As a result of the investigation, it was caused by the external leakage of the on-off valve installed in the previous stage of the reformer 2. When the engine was restarted after replacing the on-off valve, the fuel cell 5 could be operated without any problem.

本発明に係る燃料改質装置のガスパージ機構は、燃料電池発電システムにおける燃料改質装置に適用して有効に利用することができる。   The gas purge mechanism of the fuel reformer according to the present invention can be effectively used by being applied to the fuel reformer in the fuel cell power generation system.

本発明に係る燃料改質装置のガスパージ機構を含む燃料電池発電システムの構成を概略示すブロック図である。1 is a block diagram schematically showing the configuration of a fuel cell power generation system including a gas purge mechanism of a fuel reformer according to the present invention. 不活性ガスとして従来用いられている窒素と、本発明で不活性ガスとして用いる二酸化炭素の蒸気圧曲線を概略示すグラフである。It is a graph which shows roughly the vapor pressure curve of the nitrogen conventionally used as an inert gas, and the carbon dioxide used as an inert gas by this invention. センサによる改質器のリーク検出を示すグラフである。It is a graph which shows the leak detection of the reformer by a sensor.

符号の説明Explanation of symbols

1 脱硫器
2 改質器
2a バーナ
3 CO変成器
4 CO除去器
5 燃料電池
6 第1の開閉弁
7 第2の開閉弁
8 ボンベ
9 第3の開閉弁
10 第4の開閉弁
11 第5の開閉弁
12 レギュレータ
DESCRIPTION OF SYMBOLS 1 Desulfurizer 2 Reformer 2a Burner 3 CO converter 4 CO remover 5 Fuel cell 6 1st on-off valve 7 2nd on-off valve 8 Cylinder 9 3rd on-off valve 10 4th on-off valve 11 5th On-off valve 12 Regulator

Claims (11)

炭化水素系の原燃料を水素主体の改質ガスに改質して燃料電池に供給する燃料改質装置において、原燃料導入側或は改質ガス導出側に不活性ガスを収容したボンベが接続され、前記燃料改質装置の非常停止時又はリーク検知時に、前記ボンベから不活性ガスを前記燃料改質装置に供給することを特徴とする燃料電池発電システムにおける燃料改質装置のガスパージ機構。   In a fuel reformer that reforms hydrocarbon-based raw fuel into hydrogen-based reformed gas and supplies it to the fuel cell, a cylinder containing an inert gas is connected to the raw fuel introduction side or reformed gas outlet side A gas purge mechanism for a fuel reformer in a fuel cell power generation system, wherein an inert gas is supplied from the cylinder to the fuel reformer when an emergency stop of the fuel reformer or a leak is detected. 前記燃料改質装置は、反応に寄与する物質導入側と改質ガス導出側はそれぞれ開閉弁を介して締め切り可能に形成されることを特徴とする請求項1に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   2. The fuel in a fuel cell power generation system according to claim 1, wherein the fuel reformer is configured such that a substance introduction side and a reformed gas outlet side contributing to a reaction can be cut off via an on-off valve, respectively. Gas purge mechanism for reformer. 前記燃料改質装置に含まれる改質器の起動中に特定条件での緊急停止により、当該改質器内部が負圧に転じることを検出した時に、前記ボンベから不活性ガスを前記改質器に供給することを特徴とする請求項1に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   When the reformer included in the fuel reformer detects that the inside of the reformer has turned to a negative pressure due to an emergency stop under a specific condition during the start-up of the reformer, the reformer removes the inert gas from the cylinder. The gas purge mechanism of the fuel reformer in the fuel cell power generation system according to claim 1, wherein the gas purge mechanism is supplied to the fuel reformer. 前記改質器の内圧が開閉弁の故障不具合や溶接個所の故障不具合などにより規定温度以下で規定圧力以上の時、又は運転中に不慮の事由により主電源を落とさざるを得なくなった場合に、前記ボンベから不活性ガスを前記燃料改質装置に供給することを特徴とする請求項1ないし請求項3のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   When the internal pressure of the reformer is below the specified temperature and above the specified pressure due to failure of the on-off valve or failure of the welding location, or when the main power source has to be turned off due to an unexpected reason during operation, The gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of claims 1 to 3, wherein an inert gas is supplied from the cylinder to the fuel reformer. 前記改質器の内圧が規定温度以下で規定圧力以上の時とは、当該改質容器温度が300℃以下でマイナス10kPa以上であることを特徴とする請求項4に記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   5. The fuel cell power generation system according to claim 4, wherein when the internal pressure of the reformer is equal to or lower than a specified temperature and equal to or higher than a specified pressure, the temperature of the reformer is 300 ° C. or lower and minus 10 kPa or higher. Gas purge mechanism for fuel reformer. 前記不活性ガスとして二酸化炭素を用いることを特徴とする請求項1ないし請求項5のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   6. The gas purge mechanism of the fuel reformer in the fuel cell power generation system according to claim 1, wherein carbon dioxide is used as the inert gas. 前記不活性ガスを収容したボンベの接続配管に開閉弁を設けたことを特徴とする請求項1ないし請求項6のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   The gas purge mechanism of the fuel reformer in the fuel cell power generation system according to any one of claims 1 to 6, wherein an opening / closing valve is provided in a connecting pipe of a cylinder containing the inert gas. 燃料改質装置に含まれる脱硫器と改質器との接続配管に、不活性ガスを収容したボンベが接続されたことを特徴とする請求項1ないし請求項7のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   8. The fuel cell according to claim 1, wherein a cylinder containing an inert gas is connected to a connecting pipe between the desulfurizer and the reformer included in the fuel reformer. A gas purge mechanism of a fuel reformer in a power generation system. 前記不活性ガスを収容したボンベの接続配管の途中に、前記ボンベに収容されている不活性ガスの圧力を100kPa以下に減圧できるレギュレータを設けたことを特徴とする請求項1ないし請求項8のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   9. The regulator according to claim 1, wherein a regulator capable of reducing the pressure of the inert gas accommodated in the cylinder to 100 kPa or less is provided in the middle of a connecting pipe of the cylinder accommodating the inert gas. A gas purge mechanism of a fuel reformer in any one of the fuel cell power generation systems. 前記脱硫器と改質器との接続配管における前記不活性ガスを収容したボンベの接続個所より上流側及び/又は下流側に開閉弁を設けたことを特徴とする請求項1ないし請求項9のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   10. The on-off valve is provided upstream and / or downstream from a connecting portion of the cylinder containing the inert gas in the connecting pipe between the desulfurizer and the reformer. A gas purge mechanism of a fuel reformer in any one of the fuel cell power generation systems. 前記不活性ガスは充填比1.2以上に圧縮された充填量が50L以下及び/又は80g以下の小型ボンベであることを特徴とする請求項1ないし請求項10のいずれかに記載の燃料電池発電システムにおける燃料改質装置のガスパージ機構。   The fuel cell according to any one of claims 1 to 10, wherein the inert gas is a small cylinder having a filling amount compressed to a filling ratio of 1.2 or more and having a filling amount of 50 L or less and / or 80 g or less. A gas purge mechanism of a fuel reformer in a power generation system.
JP2005101326A 2005-03-31 2005-03-31 Gas purge mechanism of fuel reformer in fuel cell power generation system Pending JP2006286249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101326A JP2006286249A (en) 2005-03-31 2005-03-31 Gas purge mechanism of fuel reformer in fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101326A JP2006286249A (en) 2005-03-31 2005-03-31 Gas purge mechanism of fuel reformer in fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2006286249A true JP2006286249A (en) 2006-10-19

Family

ID=37407964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101326A Pending JP2006286249A (en) 2005-03-31 2005-03-31 Gas purge mechanism of fuel reformer in fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2006286249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211837A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Fuel cell and its operation method
JP2010287449A (en) * 2009-06-12 2010-12-24 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and storage method thereof
WO2013145761A1 (en) * 2012-03-29 2013-10-03 パナソニック株式会社 Electricity generation system and operating method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159966A (en) * 1987-12-15 1989-06-22 Fuji Electric Co Ltd Method for shutdown of phosphoric acid type fuel cell power-generating device
JPH02155172A (en) * 1988-12-08 1990-06-14 Fuji Electric Co Ltd Gas purging equipment of fuel cell
JPH03257762A (en) * 1990-03-07 1991-11-18 Osaka Gas Co Ltd Fuel cell power generating system, and its nitrogen purge method and temperature raising method
JPH06290800A (en) * 1993-04-01 1994-10-18 Osaka Gas Co Ltd Fuel cell power generating device
JPH11154528A (en) * 1997-11-19 1999-06-08 Sanyo Electric Co Ltd Fuel cell
JP2000072402A (en) * 1998-08-25 2000-03-07 Matsushita Electric Works Ltd Reforming device
JP2001189161A (en) * 2000-01-06 2001-07-10 Fuji Electric Co Ltd Safety apparatus for fuel cell vehicle
JP2003243006A (en) * 2001-12-13 2003-08-29 Mitsubishi Electric Corp Fuel cell power generating system, operation method for fuel cell power generating system, and gas storage device for fuel cell power generating system
JP2004137108A (en) * 2002-10-17 2004-05-13 Toyo Radiator Co Ltd Method of stopping operation of vapor reforming system
JP2004165037A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Fuel cell system and method of stopping the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159966A (en) * 1987-12-15 1989-06-22 Fuji Electric Co Ltd Method for shutdown of phosphoric acid type fuel cell power-generating device
JPH02155172A (en) * 1988-12-08 1990-06-14 Fuji Electric Co Ltd Gas purging equipment of fuel cell
JPH03257762A (en) * 1990-03-07 1991-11-18 Osaka Gas Co Ltd Fuel cell power generating system, and its nitrogen purge method and temperature raising method
JPH06290800A (en) * 1993-04-01 1994-10-18 Osaka Gas Co Ltd Fuel cell power generating device
JPH11154528A (en) * 1997-11-19 1999-06-08 Sanyo Electric Co Ltd Fuel cell
JP2000072402A (en) * 1998-08-25 2000-03-07 Matsushita Electric Works Ltd Reforming device
JP2001189161A (en) * 2000-01-06 2001-07-10 Fuji Electric Co Ltd Safety apparatus for fuel cell vehicle
JP2003243006A (en) * 2001-12-13 2003-08-29 Mitsubishi Electric Corp Fuel cell power generating system, operation method for fuel cell power generating system, and gas storage device for fuel cell power generating system
JP2004137108A (en) * 2002-10-17 2004-05-13 Toyo Radiator Co Ltd Method of stopping operation of vapor reforming system
JP2004165037A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Fuel cell system and method of stopping the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211837A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Fuel cell and its operation method
JP2010287449A (en) * 2009-06-12 2010-12-24 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and storage method thereof
WO2013145761A1 (en) * 2012-03-29 2013-10-03 パナソニック株式会社 Electricity generation system and operating method therefor

Similar Documents

Publication Publication Date Title
US9252443B2 (en) Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
US8728675B2 (en) Fuel cell system
US10597293B2 (en) Operation method for hydrogen production apparatus, and hydrogen production apparatus
KR100481425B1 (en) Fuel cell power generation system, and fuel cell power generation interrupting method
EP1296397A2 (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2003306309A (en) Method for operating hydrogen-containing gas-producing apparatus
JPWO2005015673A1 (en) Fuel cell power generation system
WO2009061072A1 (en) Fuel process apparatus of multiple desulfurizers and fuel cell system with the same
JP2005272598A (en) Fuel gas production system and method for starting-up the same
JP2006286249A (en) Gas purge mechanism of fuel reformer in fuel cell power generation system
JP3947742B2 (en) Abnormal stopping method for fuel gas production equipment
JP2011100610A (en) Hydrogen processing system
US20050244765A1 (en) Method of controlling operation of fuel gas production apparatus
JP2010015808A (en) Gas leak detection method of fuel cell power generating system and fuel cell power generating system
JP2005206414A (en) Hydrogen producing apparatus
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP6319555B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP2007250454A (en) Fuel cell power generating device and its operation stop method
JP5305845B2 (en) Fuel cell power generation system and operation method thereof
JP5626154B2 (en) Fuel cell reforming system and sulfur detector
JP4909339B2 (en) Operation method of hydrogen-containing gas generator
JP3867082B2 (en) Method for stopping household fuel gas production equipment
WO2005005313A1 (en) Fuel treatment device and fuel treatment method
JP2002034102A (en) Fuel cell vehicle and method of stopping reformer therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705