JP2916289B2 - Control unit for fuel cell power generation system - Google Patents

Control unit for fuel cell power generation system

Info

Publication number
JP2916289B2
JP2916289B2 JP3080466A JP8046691A JP2916289B2 JP 2916289 B2 JP2916289 B2 JP 2916289B2 JP 3080466 A JP3080466 A JP 3080466A JP 8046691 A JP8046691 A JP 8046691A JP 2916289 B2 JP2916289 B2 JP 2916289B2
Authority
JP
Japan
Prior art keywords
reformer
fuel cell
pressure
burner
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3080466A
Other languages
Japanese (ja)
Other versions
JPH04292864A (en
Inventor
聖之 鈴木
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3080466A priority Critical patent/JP2916289B2/en
Publication of JPH04292864A publication Critical patent/JPH04292864A/en
Application granted granted Critical
Publication of JP2916289B2 publication Critical patent/JP2916289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の目的][Object of the Invention]

【産業上の利用分野】本発明は、改質装置と燃料電池と
を備えた燃料電池発電システムの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a fuel cell power generation system including a reformer and a fuel cell.

【0002】[0002]

【従来の技術】一般に、燃料電池発電システムの改質装
置は、プロセス側とバーナ側に大別される。プロセス側
では、内部に改質触媒層を設けた改質管の内側に改質用
水蒸気を混合した原燃料を導入するようにしている。一
方、バーナ側では、プロセス側の燃料ガスを改質するた
めの熱エネルギーを供給するために、燃焼用燃料と燃焼
用空気を燃焼室のバーナで燃焼させ、ここで得られる高
温燃焼ガスを改質管の外側に流通させるようにしてい
る。
2. Description of the Related Art Generally, a reformer of a fuel cell power generation system is roughly classified into a process side and a burner side. On the process side, raw fuel mixed with reforming steam is introduced into the inside of a reforming tube provided with a reforming catalyst layer inside. On the other hand, on the burner side, in order to supply thermal energy for reforming the fuel gas on the process side, combustion fuel and combustion air are burned by the burner in the combustion chamber, and the high-temperature combustion gas obtained here is reformed. It is circulated outside the quality tube.

【0003】図10は、従来のプラント昇圧過程におけ
る改質装置のプロセス側およびバーナ側へのチッ素供給
制御の一例を示すブロック構成図である。燃料電池1
は、酸化剤極2と燃料極3からなり、これらには、入口
側に設けられたオンオフ弁4およびオンオフ弁5を介し
てチッ素供給源からチッ素が供給される。昇圧過程にお
いて、燃料極3への改質ガスを供給する供給調節弁6は
閉じている。即ち、改質装置7のバ−ナ8側と改質装置
7のプロセス9側とは、完全に分離している。
FIG. 10 is a block diagram showing an example of a conventional nitrogen supply control to a process side and a burner side of a reformer in a pressure increasing process of a plant. Fuel cell 1
Comprises an oxidizer electrode 2 and a fuel electrode 3, to which nitrogen is supplied from a nitrogen supply source via an on-off valve 4 and an on-off valve 5 provided on the inlet side. In the pressure increasing process, the supply control valve 6 for supplying the reformed gas to the fuel electrode 3 is closed. That is, the burner 8 side of the reformer 7 and the process 9 side of the reformer 7 are completely separated.

【0004】このような構成で、バ−ナ8側の昇圧は、
オンオフ弁4およびオンオフ弁5を各々開動作とさせて
行われる。ここで、酸化剤極2へチッ素を供給するオン
オフ弁4への開度指令値bは、例えば、圧力検出器10
により検出された改質装置バーナ側の代表圧力検出値a
に基づき開度指令関数設定器11により設定される。ま
た、燃料極3へチッ素を供給するオンオフ弁5への開度
指令値cは、同様に改質装置バーナ側の代表圧力検出値
aに基づき開度指令関数設定器12により設定される。
With such a configuration, the boosting of the burner 8 is
The operation is performed by opening the on / off valve 4 and the on / off valve 5 respectively. Here, the opening command value b to the on / off valve 4 for supplying nitrogen to the oxidant electrode 2 is, for example, a pressure detector 10
Pressure detection value a on the reformer burner side detected by
Is set by the opening command function setting device 11 based on The opening command value c for the on / off valve 5 for supplying nitrogen to the fuel electrode 3 is similarly set by the opening command function setting unit 12 based on the representative pressure detection value a on the reformer burner side.

【0005】一方、改質装置7のプロセス9側の昇圧
は、圧力検出器13により検出された改質装置プロセス
側の代表圧力検出値dに基づき開度指令関数設定器14
により開度指令値eをオンオフ弁15に与えることによ
り行われる。上記した開度指令関数設定器11および開
度指令関数設定器12は、例えば、改質装置バーナ側の
代表圧力検出値aが圧力設定値p1以上の場合閉信号を
出力し、それ未満の場合開信号を出力する。また、開度
指令関数設定器14は、例えば、改質装置プロセス側の
代表圧力検出値dが圧力設定値p2以上の場合に閉信号
を出力し、それ未満の場合に開信号を出力する。
On the other hand, the pressure increase on the process 9 side of the reformer 7 is based on the representative pressure detection value d on the reformer process side detected by the pressure detector 13 and the opening command function setting unit 14
To give the opening command value e to the on / off valve 15. The opening command function setting device 11 and the opening command function setting device 12 output the close signal when the representative pressure detection value a on the reformer burner side is equal to or higher than the pressure setting value p1, and output the closing signal when the representative pressure detection value a is equal to or higher than the pressure setting value p1. Outputs open signal. The opening command function setting unit 14 outputs a close signal when the representative pressure detection value d on the reformer process side is equal to or higher than the pressure set value p2, and outputs an open signal when the representative pressure detection value d is lower than the pressure set value p2.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来の制御装置では、次の問題がある。即ち、例え
ば、改質装置7のプロセス9側で、機器や配管からのリ
ークあるいは点検時の弁の閉め忘れなどによる予期せぬ
リークが発生する場合がある。例えば、図11(a)に
示す圧力応答の如く、t0時点でリークのないときのプ
ロセス側圧力PP1は上昇するが、リークのあるときの
プロセス側圧力PP2は、昇圧が非常に遅くなったり、
あるいは昇圧されないことがある。この状態で、一方の
改質装置7のバーナ側圧力PB1が図示の如く、通常通
り上昇すると、これら改質装置7のプロセス9側とバ−
ナ8側との昇圧速度の相違により改質装置7の内外に図
11(b)に示す如く、過大な差圧f(以下プロセス側
とバーナ側との圧力差を「内外差圧」と記す)が発生
し、特に改質装置7のプロセス9側よりバ−ナ8側の圧
力が高い逆圧の状態になるおそれがある。図11(b)
の例では、t1時点で最大の逆圧となり、t2時点で差
圧が零となっている。このため燃料極3へチッ素を供給
するオンオフ弁5への開度指令cは図11(c)に示す
如く、開信号を保っている。
However, the conventional control device described above has the following problems. That is, for example, an unexpected leak may occur on the process 9 side of the reformer 7 due to a leak from equipment or piping or forgetting to close a valve at the time of inspection. For example, as in the pressure response shown in FIG. 11A, the process-side pressure PP1 when there is no leak at time t0 increases, but the process-side pressure PP2 when there is a leak increases very slowly,
Alternatively, the pressure may not be increased. In this state, when the burner side pressure PB1 of one of the reformers 7 rises as usual as shown in FIG.
As shown in FIG. 11B, an excessive pressure difference f (hereinafter, a pressure difference between the process side and the burner side is referred to as “internal / external pressure difference”) as shown in FIG. ) May occur, and the pressure on the burner 8 side may be higher than that on the process 9 side of the reformer 7 and may be in a reverse pressure state. FIG. 11B
In the example, the maximum back pressure is at time t1, and the differential pressure is zero at time t2. Therefore, the opening degree command c to the on / off valve 5 for supplying nitrogen to the fuel electrode 3 keeps the opening signal as shown in FIG.

【0007】一般に、燃料電池発電プラントでは、燃料
電池を据付ける前に総合試験調整(以下「パックテス
ト」と記す)を行うが、このパックテスト時には、燃料
電池が据付けられていない。このために改質装置7のバ
−ナ8側の容積が通常時に対して減少しておりプロセス
9側に比べバ−ナ8側の昇圧速度が速くなることが顕著
となり、上記した改質装置7の内外差圧に逆圧を生じる
ことがある。このような改質装置7の過大な内外差圧の
発生、特に改質装置7のプロセス9側の圧力に比べ改質
装置7のバ−ナ8側の圧力が高い逆圧の状態では、わず
かな差圧でも改質装置7に対し致命的な損傷を与えるお
それがある。
Generally, in a fuel cell power plant, comprehensive test adjustment (hereinafter referred to as “pack test”) is performed before installing a fuel cell. At the time of the pack test, the fuel cell is not installed. For this reason, the volume of the reformer 7 on the burner 8 side is reduced as compared with the normal time, and it becomes remarkable that the pressure rising speed on the burner 8 side becomes faster than that on the process 9 side. In some cases, a back pressure may be generated between the inside and outside pressure difference of the pressure sensor 7. When such an excessive pressure difference between the inside and outside of the reformer 7 is generated, particularly when the pressure on the burner 8 side of the reformer 7 is higher than the pressure on the process 9 side of the reformer 7, the pressure is slightly reduced. Even a slight differential pressure may cause fatal damage to the reformer 7.

【0008】以上の問題は、改質装置7のプロセス9側
とバ−ナ8側の昇圧が各々独立に行われているために起
因する。従って、従来の制御装置では、予期せぬプラン
ト条件の変化に伴う昇圧速度の相違に起因する改質装置
7の内外過大差圧の発生を防止する必要があった。
The above problem is caused by the fact that the pressure on the process 9 side and the burner 8 side of the reformer 7 are independently performed. Therefore, in the conventional control device, it was necessary to prevent the occurrence of an excessively large differential pressure between the inside and outside of the reforming device 7 due to the difference in the boosting speed due to an unexpected change in plant conditions.

【0009】そこで、本発明は、上記の点に鑑みプラン
ト昇圧過程における改質装置のプロセス側とバーナ側の
過大な圧力差の発生を未然に防止する燃料電池発電シス
テムの制御装置を提供することを目的とする。
In view of the above, the present invention provides a control device for a fuel cell power generation system which prevents an excessive pressure difference between a process side and a burner side of a reformer in a pressure increasing process of a plant. With the goal.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、天然
ガス等の原燃料ガスから改質ガスを生成するためのプロ
セスとバーナからなる改質装置と、この改質装置で得ら
れた改質ガスを燃料極に導入すると共に、空気等の酸化
剤ガスを酸化剤極に導入して電気化学反応により電気エ
ネルギーを発生する燃料電池と、これら改質装置と燃料
電池とを昇圧するために窒素等の不活性ガス供給源から
改質装置のプロセス側およびバーナ側に第1および第2
の制御弁を介して不活性ガスを供給する不活性ガス供給
ラインを備えた燃料電池発電システムの制御装置におい
て、改質装置のプロセス側とバーナ側との圧力差に相当
する値を検出する検出手段と、改質装置および燃料電池
の昇圧時、検出手段からの検出値に基づいて、先行昇圧
するように所定値を越えるまでプロセス側に設けた第1
の制御弁を開制御する第1の不活性ガス供給制御手段
と、改質装置および燃料電池の昇圧時、検出手段からの
検出値に基づいて、プロセス側の昇圧に追従昇圧するよ
うにバーナ側に設けた第2の制御弁の開度を制御する第
2の不活性ガス供給制御手段とを設けるようにしたもの
である。また、請求項2の発明は、天然ガス等の原燃料
ガスから改質ガスを生成するためのプロセスとバーナか
らなる改質装置と、この改質装置で得られた改質ガスを
燃料極に導入すると共に、空気等の酸化剤ガスを酸化剤
極に導入して電気化学反応により電気エネルギーを発生
する燃料電池と、これら改質装置と燃料電池とを昇圧す
るために窒素等の不活性ガス供給源から改質装置のプロ
セス側およびバーナ側に第1および第2の制御弁を介し
て不活性ガスを供給する不活性ガス供給ラインを備えた
燃料電池発電システムの制御装置において、プロセス側
の不活性ガス供給ライン、あるいはバーナ側の不活性ガ
ス供給ラインの少なくともいずれか一方のラインを複数
とし、そのラインに設けられる第3の制御弁と、改質装
置のプロセス側とバーナ側との圧力差を検出する検出手
段と、この検出手段の検出値に基づいて各制御弁の開度
を制御することにより改質装置のプロセス側とバーナ側
とを所定の圧力差以内に維持しつつ、昇圧するととも
に、改質装置および燃料電池の昇圧時の各制御弁の動作
タイミングをそれぞれ異ならせる不活性ガス供給制御手
段とを設けるようにしたものである。また、請求項3の
発明は、天然ガス等の原燃料ガスから改質ガスを生成す
るためのプロセスとバーナからなる改質装置と、この改
質装置で得られた改質ガスを燃料極に導入すると共に、
空気等の酸化剤ガスを酸化剤極に導入して電気化学反応
により電気エネルギーを発生する燃料電池と、これら改
質装置と燃料電池とを昇圧するために窒素等の不活性ガ
ス供給源から改質装置のプロセス側およびバーナ側に第
1および第2の制御弁を介して不活性ガスを供給する不
活性ガス供給ラインを備えた燃料電池発電システムの制
御装置において、改質装置のプロセス側とバーナ側との
圧力差に相当する値を、前記改質装置および燃料電池の
昇圧時の改質装置のプロセス側から燃料電池の燃料極へ
改質ガスを供給する制御弁の前後差圧から検出する検出
手段と、この検出手段の検出値に基づいて各制御弁の開
度を制御することにより改質装置のプロセス側とバーナ
側とを所定の圧力差以内に維持しつつ、昇圧する不活性
ガス供給制御手段とを設けるようにしたものである。
According to the first aspect of the present invention, a reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner, and a reformer obtained by the reformer are provided. In order to introduce a reformed gas into the fuel electrode and introduce an oxidizing gas such as air into the oxidizing electrode to generate electric energy by an electrochemical reaction, and to boost the pressure of the reforming device and the fuel cell First and second gas from an inert gas supply source such as nitrogen to the process side and the burner side of the reformer.
In a control device of a fuel cell power generation system provided with an inert gas supply line for supplying an inert gas through a control valve, a value corresponding to a pressure difference between a process side and a burner side of a reformer is detected. A first means provided on the process side until the pressure exceeds a predetermined value so as to precedely increase the pressure based on the detection value from the detection means when the pressure of the reformer and the fuel cell is increased.
First inert gas supply control means for controlling the opening of the control valve, and the burner side so as to follow the pressure increase on the process side based on the detection value from the detection means when the reformer and the fuel cell are boosted. And second inert gas supply control means for controlling the degree of opening of the second control valve provided in the apparatus. Further, the invention of claim 2 provides a reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner, and a reformed gas obtained by the reformer being supplied to a fuel electrode. A fuel cell that introduces an oxidizing gas such as air into the oxidizing electrode and generates electric energy by an electrochemical reaction, and an inert gas such as nitrogen for increasing the pressure of the reformer and the fuel cell. In a control device of a fuel cell power generation system provided with an inert gas supply line for supplying an inert gas from a supply source to a process side and a burner side of the reformer via first and second control valves, A plurality of inert gas supply lines or at least one of the inert gas supply lines on the burner side, a third control valve provided on the line, a process side and a burner side of the reformer; Detecting means for detecting the pressure difference between the control means and the opening degree of each control valve based on the detected value of the detecting means to maintain the process side and the burner side of the reformer within a predetermined pressure difference. And an inert gas supply control means for increasing the pressure and changing the operation timing of each control valve when the reformer and the fuel cell are pressurized. Further, the invention of claim 3 provides a reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner, and a reformed gas obtained by the reformer being supplied to a fuel electrode. Introducing,
A fuel cell, which introduces oxidizing gas such as air into the oxidizing electrode to generate electric energy by an electrochemical reaction, and an inert gas supply source, such as nitrogen, for boosting the pressure of the reformer and the fuel cell. A fuel cell power generation system having an inert gas supply line for supplying an inert gas to the process side and the burner side of the reforming device via the first and second control valves. A value corresponding to the pressure difference from the burner side is detected from the differential pressure across the control valve that supplies reformed gas to the fuel electrode of the fuel cell from the process side of the reformer and the reformer when the pressure of the fuel cell is increased. And an inactive pressure increasing step while maintaining the process side and the burner side of the reformer within a predetermined pressure difference by controlling the opening of each control valve based on the detection value of the detecting means. Gas supply control means It is obtained as provided.

【0011】[0011]

【作用】上記構成により、改質装置のプロセス側とバー
ナ側の過大な圧力差の発生が抑制される。また、昇圧時
の改質装置のプロセス側とバーナ側の昇圧速度が協調し
て昇圧することができる。
According to the above configuration, the generation of an excessive pressure difference between the process side and the burner side of the reformer is suppressed. In addition, the pressure rise rate on the process side and the burner side of the reformer at the time of pressure rise can be increased in cooperation.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の第1実施例を示す燃料電
池発電システムの制御装置のブロック構成図である。図
10と同一符号は、同一部分または相当部分を示す。図
10と異なる主な点は、酸化剤極2へチッ素を供給する
オンオフ弁4および開度指令関数設定器11を削除した
点である。また、圧力検出器10に替えて差圧検出器1
6を備える一方、オンオフ弁5への開度指令関数設定器
12に替えて開度指令関数設定器17とオンオフ弁15
への開度指令関数設定器14に替えて開度指令関数設定
器18とを備えた点である。
FIG. 1 is a block diagram of a control device of a fuel cell power generation system according to a first embodiment of the present invention. The same reference numerals as those in FIG. 10 indicate the same or corresponding parts. The main difference from FIG. 10 is that the on / off valve 4 for supplying nitrogen to the oxidant electrode 2 and the opening command function setting device 11 are eliminated. Further, instead of the pressure detector 10, the differential pressure detector 1
6, the opening command function setting device 17 and the on / off valve 15 are replaced with the opening command function setting device 12 for the on / off valve 5.
An opening command function setting device 18 is provided in place of the opening command function setting device 14.

【0014】本実施例では、燃料極3の入口に設けたチ
ッ素供給手段により改質装置7のバ−ナ8側の昇圧をす
る一方、プロセス9側の入口に設けたチッ素供給手段に
より改質装置7のプロセス9側の昇圧をするようにして
いる。
In this embodiment, the pressure of the burner 8 of the reformer 7 is increased by the nitrogen supply means provided at the inlet of the fuel electrode 3, while the nitrogen supply means provided at the inlet of the process 9 is used. The pressure on the process 9 side of the reformer 7 is increased.

【0015】また、本実施例では、改質装置7のバ−ナ
8側の昇圧制御手段として改質装置7の内外差圧を差圧
検出器16により検出し、この改質装置内外差圧検出値
f(プロセス側の圧力とバーナ側の圧力との差の検出
値)に基づき開度指令関数設定器17によりオンオフ弁
5に開度指令値cを与えるようにしている。
In this embodiment, the pressure difference between the inside and outside of the reformer 7 is detected by a differential pressure detector 16 as a step-up control means on the burner 8 side of the reformer 7, and the difference between the inside and outside of the reformer 7 is detected. The opening command function setting device 17 gives the opening command value c to the on / off valve 5 based on the detection value f (the detection value of the difference between the pressure on the process side and the pressure on the burner side).

【0016】一方、改質装置7のプロセス9側の昇圧制
御手段として、改質装置内外差圧検出値fに基づき開度
指令関数設定器18によりオンオフ弁15の開度指令値
eを与えるようにしている。
On the other hand, as the step-up control means on the process 9 side of the reformer 7, the opening command function setting unit 18 gives the opening command value e of the on / off valve 15 based on the detected pressure difference f between the inside and outside of the reforming device. I have to.

【0017】ここで、差圧検出器16は上記の如く、改
質装置7のプロセス9側とバ−ナ8側の差圧を検出し、
この改質装置内外差圧検出値fを開度指令関数設定器1
7および開度指令関数設定器18に出力する。開度指令
関数設定器17および開度指令関数設定器18は、例え
ば、図1に示す如く、ヒステリシスを持った関数値を出
力をする。即ち、開度指令関数設定器17は、改質装置
内外差圧検出値fが差圧設定値ΔP1以下で閉信号を出
力し、改質装置内外差圧検出値fが差圧設定値ΔP2以
上で開信号を出力する。開度指令関数設定器18は、改
質装置内外差圧検出値fが差圧設定値ΔP3以下で開信
号を出力し、改質装置内外差圧検出値fが差圧設定値Δ
P4以上で閉信号を出力する。
Here, the differential pressure detector 16 detects the differential pressure between the process 9 side and the burner 8 side of the reformer 7 as described above.
The detected value f of the pressure difference between the inside and outside of the reformer is used as an opening command function setting device 1
7 and the opening command function setting device 18. The opening degree command function setting device 17 and the opening degree command function setting device 18 output a function value having hysteresis, for example, as shown in FIG. That is, the opening degree command function setting unit 17 outputs a close signal when the differential pressure detection value f between the inside and outside of the reformer is equal to or less than the differential pressure set value ΔP1, and the detected value f inside and outside the reformer is equal to or more than the differential pressure set value ΔP2. Outputs an open signal. The opening degree command function setting unit 18 outputs an open signal when the reformer internal / external differential pressure detection value f is equal to or less than the differential pressure set value ΔP3, and outputs the reformer internal / external differential pressure detected value f to the differential pressure set value Δ
A close signal is output at P4 or higher.

【0018】上記構成で、図2を参照して作用を説明す
ると、まず、初めプラント昇圧過程においては燃料極3
の改質ガスを供給する調節弁6は閉じ、オンオフ弁15
は開いている。また、燃料極3へチッ素を供給するオン
オフ弁5は、改質装置内外差圧検出値fが差圧設定値Δ
P2以下のため閉じている。このような状態で、例え
ば、t0時点でリークのないときのプロセス側圧力PP
1は図2(a)に示す圧力応答の如くに上昇する。
The operation of the above arrangement will be described with reference to FIG.
The control valve 6 for supplying the reformed gas is closed and the on / off valve 15
Is open. Further, the on / off valve 5 for supplying nitrogen to the fuel electrode 3 has a difference pressure detection value f between the inside and outside of the reformer that is equal to the differential pressure set value Δ.
Closed because it is below P2. In such a state, for example, the process side pressure PP when there is no leak at time t0
1 rises as indicated by the pressure response shown in FIG.

【0019】ところで、例えば、このときに改質装置7
のプロセス9側でリークが生じた場合等プロセス9側の
昇圧速度が遅くなり、図2(a)に示すプロセス側圧力
PP2の如くに変化する場合がある。このような場合に
は、改質装置7のプロセス9側へのみチッ素の供給が行
われて、図2(b)に示す改質装置内外差圧検出値fの
応答の如く、改質装置内外差圧検出値fがt1時点で差
圧設定値ΔP2以上になると、図2(c)に示すオンオ
フ弁5の開度指令値cの応答の如く、オンオフ弁5は開
動作をする。これにより、チッ素供給源からチッ素が供
給され、改質装置バーナ側圧力PB1は上昇を開始し、
改質装置内外差圧検出値fは徐々に低下する。
By the way, for example, at this time, the reformer 7
For example, when a leak occurs on the process 9 side, the pressure increasing speed on the process 9 side becomes slow and may change like the process side pressure PP2 shown in FIG. In such a case, nitrogen is supplied only to the process 9 side of the reformer 7, and as shown in the response of the differential pressure detection value f between the inside and outside of the reformer shown in FIG. When the inside / outside differential pressure detection value f becomes equal to or larger than the differential pressure set value ΔP2 at the time point t1, the on / off valve 5 opens as shown in the response of the opening command value c of the on / off valve 5 shown in FIG. As a result, nitrogen is supplied from the nitrogen supply source, and the reformer-burner-side pressure PB1 starts increasing,
The differential pressure detection value f inside and outside the reformer gradually decreases.

【0020】次に、改質装置内外差圧検出値fが差圧設
定値ΔP1以下になると、t2時点でオンオフ弁5は閉
動作をする。このオンオフ弁5の閉動作により、t3時
点まで改質装置バーナ側圧力PB1が変化しない。とこ
ろが、改質装置プロセス側圧力PP1に上昇するため再
び改質装置内外差圧検出値fは上昇し、t3時点で改質
装置内外差圧検出値fは差圧設定値ΔP2以上となり、
オンオフ弁5は開動作となる。このため改質装置バーナ
側圧力PB1は上昇し、これに伴って、改質装置内外差
圧検出値fは再び低下する。このように図2(c)に示
す如く、開度指令値cに基づいてオンオフ弁5の開閉動
作がt3時点以後も昇圧過程で繰り返される。なお、図
2に示す例では、t2,t4,t6,t8の各時点での
改質装置内外差圧検出値fはΔP1で、その値は零とな
っているが、この値を正圧の所定値で制御することがで
きる。
Next, when the differential pressure detected value f between the inside and outside of the reformer becomes equal to or less than the differential pressure set value ΔP1, the on / off valve 5 closes at time t2. Due to the closing operation of the on / off valve 5, the reformer burner side pressure PB1 does not change until time t3. However, since the reformer process side pressure PP1 rises, the reformer inside / outside differential pressure detection value f rises again, and at time t3, the reformer inside / outside differential pressure detection value f becomes equal to or greater than the differential pressure set value ΔP2,
The on / off valve 5 is opened. Therefore, the reformer burner side pressure PB1 increases, and accordingly, the detected value f of the pressure difference between the inside and outside of the reformer decreases again. In this way, as shown in FIG. 2C, the opening / closing operation of the on / off valve 5 based on the opening command value c is repeated in the step-up process even after time t3. In the example shown in FIG. 2, the detected differential pressure f between the inside and outside of the reformer at each time point of t2, t4, t6, and t8 is ΔP1, and the value is zero. It can be controlled with a predetermined value.

【0021】以上のように、昇圧時に改質装置のプロセ
ス側でリークが生じ、改質装置のバーナ側に比べ改質装
置のプロセス側の昇圧速度が遅くなっても改質装置のバ
ーナ側とプロセス側の昇圧速度の変化を改質装置内外差
圧の変化として捉えて、改質装置内外差圧検出値に基づ
き改質装置のバ−ナ側およびプロセス側のチッ素供給を
入切して制御する。従って、たとえ予期せぬプラント条
件の変化が生じても改質装置内外差圧を良好に保ちつつ
昇圧をすることができる。
As described above, a leak occurs on the process side of the reformer at the time of pressurization, and even if the rate of pressure increase on the process side of the reformer is lower than that on the burner side of the reformer, the pressure on the burner side of the reformer becomes lower. The change in the pressure increase rate on the process side is regarded as the change in the differential pressure between the inside and outside of the reformer, and the supply of nitrogen to the burner side and the process side of the reformer is turned on and off based on the detected value of the differential pressure inside and outside the reformer. Control. Therefore, even if an unexpected change in plant conditions occurs, the pressure can be increased while maintaining the differential pressure inside and outside the reformer satisfactorily.

【0022】図3は、本発明の第2実施例を示す燃料電
池発電システムの制御装置のブロック構成図である。
FIG. 3 is a block diagram of a control device of a fuel cell power generation system according to a second embodiment of the present invention.

【0023】第2実施例では、改質装置7のバ−ナ8側
の昇圧を第1実施例の燃料極3の入口に設けたチッ素供
給手段に加えて、さらに酸化剤極2の入口に設けたチッ
素供給手段により行う点が異なる。このために第1実施
例の構成に加えて酸化剤極2へチッ素を供給するオンオ
フ弁4と開度指令関数設定器19とを備えている。
In the second embodiment, the pressure on the burner 8 side of the reformer 7 is increased in addition to the nitrogen supply means provided at the inlet of the fuel electrode 3 in the first embodiment, and the inlet of the oxidizer electrode 2 is further added. In that it is performed by a nitrogen supply means provided in the above. For this purpose, in addition to the configuration of the first embodiment, an on / off valve 4 for supplying nitrogen to the oxidant electrode 2 and an opening command function setting device 19 are provided.

【0024】第2実施例の制御としては、第1実施例の
制御に加え、改質装置7のバ−ナ8側の昇圧が改質装置
内外差圧検出値fに基づき開度指令関数設定器19によ
りオンオフ弁4に開度指令値bを与えるようにしてい
る。
In the control of the second embodiment, in addition to the control of the first embodiment, the pressure increase on the burner 8 side of the reformer 7 sets the opening command function based on the detected differential pressure f between the inside and outside of the reformer. The opening command value b is given to the on / off valve 4 by the heater 19.

【0025】開度指令関数設定器19は、例えば、図3
に示す如く、ヒステリシスを持った関数出力で、改質装
置内外差圧検出値fが差圧設定値ΔP5以下で閉信号を
出力する一方、改質装置内外差圧検出値fが差圧設定値
ΔP6以上で開信号を出力する。開度指令関数設定器1
7は、図3に示す如く、ヒステリシスを持った関数出力
で、改質装置内外差圧検出値fが差圧設定値ΔP7以下
で閉信号を出力する一方、改質装置内外差圧検出値fが
差圧設定値ΔP8以上で開信号を出力する。ところで、
上記開度指令関数設定器19と開度指令関数設定器17
との差圧設定値ΔP5,ΔP6,ΔP7,ΔP8は、例
えば、第4図に示すように、各々の設定値を違ったもの
として、オンオフ弁4とオンオフ弁5の開閉動作タイミ
ングをシフトしている。なお、開度指令関数設定器18
は、図3に示す如く、ヒステリシスを持った関数出力
で、改質装置内外差圧検出値fが差圧設定値ΔP9以下
で開信号を出力する一方、改質装置内外差圧検出値fが
燃料極チッ素供給オンオフ弁開差圧設定値ΔP10以上
で閉信号を出力する。
The opening degree command function setting unit 19 is, for example, as shown in FIG.
As shown in the figure, a closed signal is output when the differential pressure detection value f inside and outside the reformer is equal to or less than the differential pressure set value ΔP5 with a function output having hysteresis, and the differential pressure detected value f inside and outside the reformer is set to the differential pressure set value. An open signal is output when ΔP6 or more. Opening command function setting device 1
Reference numeral 7 denotes a function output having hysteresis, as shown in FIG. 3, which outputs a closing signal when the differential pressure detection value f between the inside and outside of the reformer is equal to or less than the differential pressure set value ΔP7. Output an open signal when the differential pressure set value ΔP8 or more. by the way,
Opening command function setting device 19 and opening command function setting device 17
The differential pressure setting values ΔP5, ΔP6, ΔP7, and ΔP8 are different from each other, for example, as shown in FIG. 4, and the opening / closing operation timing of the on / off valve 4 and the on / off valve 5 is shifted. I have. The opening command function setting device 18
As shown in FIG. 3, is a function output having hysteresis, and outputs an open signal when the differential pressure detection value f inside and outside the reformer is equal to or less than the differential pressure set value ΔP9, while the differential pressure detection value f inside and outside the reformer is A close signal is output when the fuel electrode nitrogen supply on / off valve opening differential pressure set value ΔP10 or more.

【0026】上記構成で、昇圧過程では燃料極3への改
質ガス供給調節弁6は、閉動作し、オンオフ弁15は開
動作している。また、オンオフ弁5は、改質装置内外差
圧検出値fが差圧設定値ΔP8以上になるまで閉動作し
ており、オンオフ弁4は、差圧設定値ΔP6まで閉動作
している。まず、図5(a)の如く、t0時点から昇圧
するとして、t0時点でリークのないときの改質装置7
のプロセス側圧力PP1は上昇する。ところが、例え
ば、プロセス側でリークが生じた場合にはプロセス側の
昇圧速度が遅くなり、プロセス側圧力PP2の如くに変
化する場合がある。このような場合について説明する
と、t1時点まではバーナ側圧力PB1は、図5(a)
に示す如く、大気圧の状態にある。
With the above configuration, in the pressure increasing process, the control valve 6 for supplying the reformed gas to the fuel electrode 3 is closed, and the on / off valve 15 is opened. Further, the on / off valve 5 is closed until the detected differential pressure f between the inside and outside of the reformer reaches the differential pressure set value ΔP8 or more, and the on / off valve 4 is closed until the differential pressure set value ΔP6. First, as shown in FIG. 5 (a), assuming that the pressure is increased from the time t0, the reforming apparatus 7 when there is no leak at the time t0.
Process side pressure PP1 rises. However, for example, when a leak occurs on the process side, the pressure increase speed on the process side is slowed down, and may change like the process side pressure PP2. Explaining such a case, the burner side pressure PB1 until the time point t1 is as shown in FIG.
As shown in FIG.

【0027】このような状態で、改質装置7のプロセス
9側のみにチッ素の供給がされ、改質装置内外差圧検出
値fが図5(b)の改質装置内外差圧検出値fの応答に
示す如く、差圧設定値ΔP8以上になると、t1時点で
図5(c)に示すオンオフ弁5の開度指令値応答cの如
く、オンオフ弁5は開動作をする。これにより、t1時
点から改質装置バーナ側圧力PB1は上昇し、改質装置
内外差圧検出値fの上昇速度は図5(c)の如くやや遅
くなる。
In this state, nitrogen is supplied only to the process 9 side of the reformer 7, and the detected pressure difference f between the inside and outside of the reformer is changed to the difference between the inside and outside of the reformer shown in FIG. As shown in the response of f, when the pressure difference becomes equal to or greater than the differential pressure set value ΔP8, the on / off valve 5 opens at time t1, as indicated by the opening command value response c of the on / off valve 5 shown in FIG. As a result, the reformer burner side pressure PB1 increases from the time point t1, and the rate of increase of the detected value f of the pressure difference between the inside and outside of the reformer slightly decreases as shown in FIG.

【0028】その後改質装置内外差圧検出値fが差圧設
定値ΔP6以上になると、図5(d)に示すオンオフ弁
4への開度指令値応答bの如く、t2時点でオンオフ弁
4が開動作をする。この結果、上記オンオフ弁5とオン
オフ弁4との2系統からバ−ナ8側へのチッ素の供給に
より改質装置バーナ側圧力PB1はさらに上昇速度を増
加させる一方、改質装置内外差圧検出値fを低下させ
る。
Thereafter, when the detected value f of the differential pressure between the inside and outside of the reformer becomes equal to or greater than the differential pressure set value ΔP6, as shown in FIG. Performs the opening operation. As a result, the reformer burner side pressure PB1 is further increased by the supply of nitrogen from the two systems of the on-off valve 5 and the on-off valve 4 to the burner 8, while the pressure difference between the inside and outside of the reformer is increased. The detection value f is reduced.

【0029】次に、改質装置内外差圧検出値fがt3時
点で差圧設定値ΔP5以下になると、オンオフ弁4は閉
動作し、改質装置内外差圧検出値fの低下を抑えようと
する。オンオフ弁4を閉動作しても改質装置内外差圧検
出値fの低下を抑えられず、改質装置内外差圧検出値f
がt4時点で差圧設定値ΔP7以下になると、オンオフ
弁5を閉動作させる。さらに、図5に示すようにt4〜
t8時点で上記のようなオンオフ弁4とオンオフ弁5の
開閉動作が昇圧過程中で繰り返される。
Next, when the detected value f of the differential pressure between the inside and outside of the reformer becomes equal to or less than the set value of the differential pressure ΔP5 at time t3, the on / off valve 4 closes to suppress the decrease in the detected value f of the inside / outside of the reformer. And Even if the on / off valve 4 is closed, the decrease in the differential pressure detection value f between the inside and outside of the reformer cannot be suppressed, and the differential pressure inside and outside the reformer f
Is smaller than the differential pressure set value ΔP7 at time t4, the on / off valve 5 is closed. Further, as shown in FIG.
At time t8, the opening / closing operation of the on / off valve 4 and the on / off valve 5 is repeated during the pressure increasing process.

【0030】このようにして改質装置内外差圧検出値f
は、差圧設定値ΔP7から差圧設定値ΔP6の範囲内に
抑制される。
Thus, the detected differential pressure f
Is suppressed within the range from the differential pressure set value ΔP7 to the differential pressure set value ΔP6.

【0031】本実施例では、例えば、リークなどが生
じ、図5(a)に示すプロセス側圧力PP2の如くとな
った場合でも、改質装置バーナ側とプロセス側の昇圧速
度の変化を改質装置内外差圧の変化として捉え、この改
質装置内外差圧検出値fに基づき改質装置バーナ側およ
びプロセス側のチッ素供給を入切して制御する。
In this embodiment, for example, even when a leak or the like occurs and the process side pressure PP2 shown in FIG. 5A is reached, the change in the pressure increase rate between the reformer burner side and the process side is detected. The change in the pressure difference between the inside and outside of the apparatus is considered, and the supply of nitrogen to and from the reformer burner side and the process side is controlled based on the detected value f of the inside and outside differential pressure of the reforming apparatus.

【0032】従って、たとえ予期せぬプラント条件の変
化が生じても改質装置内外差圧を良好に保ちつつ昇圧を
することができる。第2実施例は、改質装置バーナ側の
チッ素供給手段を複数設けて、第4図に示すようにオン
オフ弁4,5への開度指令値設定関数を各々違うものと
し、複数のチッ素供給手段の動作タイミングをシフトし
ている。このためチッ素供給系への急激な流量変化が回
避できることからチッ素供給系の圧力変動を抑える効果
がある。
Therefore, even if an unexpected change in plant conditions occurs, the pressure can be increased while maintaining the differential pressure inside and outside the reformer satisfactorily. In the second embodiment, a plurality of nitrogen supply means are provided on the reformer burner side, and the opening command value setting functions for the on / off valves 4 and 5 are different from each other as shown in FIG. The operation timing of the element supply means is shifted. For this reason, it is possible to avoid a rapid change in the flow rate to the nitrogen supply system, so that there is an effect of suppressing pressure fluctuation in the nitrogen supply system.

【0033】図6乃至図9は、本発明の第3実施例〜第
6実施例を示す燃料電池発電システムの制御装置ブロッ
ク構成図である。
FIGS. 6 to 9 are block diagrams showing the control device of the fuel cell power generation system according to the third to sixth embodiments of the present invention.

【0034】図6に示す第3実施例は、第1実施例のオ
ンオフ弁5およびオンオフ弁15の替わりに調節弁20
と供給調節弁21を備えている。そして、これらの調節
弁20,21への開度指令値を開度指令関数設定器22
および開度指令関数設定器23により与えるようにして
いる。
In the third embodiment shown in FIG. 6, a control valve 20 is used instead of the on / off valve 5 and the on / off valve 15 of the first embodiment.
And a supply control valve 21. The opening command values for the control valves 20 and 21 are stored in the opening command function setting device 22.
And the opening command function setting device 23.

【0035】ここで、開度指令関数設定器22の開度指
令値gは、例えば、図6に示す如く、改質装置内外差圧
検出値fが差圧設定値ΔP11以下のとき全閉信号と
し、改質装置内外差圧検出値fが差圧設定値ΔP11以
上で差圧設定値ΔP12以下の範囲のときは、一定の比
例の開信号とさせ、差圧設定値ΔP12以上で全開とな
るようにしている。一方、開度指令関数設定器23の開
度指令値hは、例えば、図6に示す如く、改質装置内外
差圧検出値fが差圧設定値ΔP13以下のとき全開信号
とし、差圧設定値ΔP13以上差圧設定値ΔP14以下
の範囲では、一定の比例の閉信号とし、そして差圧設定
値ΔP14以上で全閉信号にしている。
Here, the opening command value g of the opening command function setting unit 22 is, for example, as shown in FIG. 6, the fully closed signal when the differential pressure detection value f inside and outside the reformer is equal to or less than the differential pressure setting value ΔP11. When the differential pressure detection value f between the inside and outside of the reformer is in the range of not less than the differential pressure set value ΔP11 and not more than the differential pressure set value ΔP12, a constant proportional open signal is provided, and fully opened at the differential pressure set value ΔP12 or more. Like that. On the other hand, as shown in FIG. 6, for example, as shown in FIG. 6, the opening command value h of the opening command function setting unit 23 is a fully open signal when the detected differential pressure f inside and outside the reformer is equal to or less than the differential pressure set value ΔP13. In the range from the value ΔP13 to the differential pressure set value ΔP14, the closed signal is a constant proportional signal, and the fully closed signal is set in the range from the differential pressure set value ΔP14.

【0036】図7に示す第4実施例は、図3に示した第
2実施例のオンオフ弁4、オンオフ弁5およびオンオフ
弁15の替わりに調節弁24、調節弁20および調節弁
21を備えている。そして、開度指令関数設定器25の
開度指令値iは、改質装置内外差圧検出値fが差圧設定
値ΔP15以下のとき全閉信号とし、差圧設定値ΔP1
5以上で差圧設定値ΔP16以下の範囲では一定の比例
の開信号とし、そして、差圧設定値ΔP16以上で全閉
信号とするようにしている。なお、開度指令関数設定器
22と開度指令関数設定器23は図6に示した第3実施
例で説明した如くであるが、開度指令関数設定器22、
開度指令関数設定器23および開度指令関数設定器25
の各々は図7に示す如く、動作タイミングをシフトさせ
ている。
The fourth embodiment shown in FIG. 7 includes a control valve 24, a control valve 20, and a control valve 21 in place of the on-off valve 4, on-off valve 5, and on-off valve 15 of the second embodiment shown in FIG. ing. The opening command value i of the opening command function setting unit 25 is a fully closed signal when the detected differential pressure f inside and outside the reformer is equal to or less than the differential pressure set value ΔP15, and the differential pressure set value ΔP1
An open signal of a constant proportionality is set in a range of 5 or more and equal to or less than a differential pressure set value ΔP16, and a fully closed signal is set in a range of not less than the differential pressure set value ΔP16. The opening command function setting device 22 and the opening command function setting device 23 are as described in the third embodiment shown in FIG.
Opening command function setting device 23 and opening command function setting device 25
Are shifted in operation timing as shown in FIG.

【0037】図8に示す第5実施例は、第1実施例の改
質装置内外差圧検出値fに相当する状態量として、圧力
検出器26の圧力検出値jと圧力検出器27の圧力検出
値kとを加算器28で図示符号により加算して、両圧力
検出値の偏差lに基づいて制御するようにしている。
In the fifth embodiment shown in FIG. 8, the pressure detection value j of the pressure detector 26 and the pressure detection value of the pressure The detected value k is added by the adder 28 using the illustrated code, and control is performed based on the deviation 1 between the two detected pressure values.

【0038】図9に示す第6実施例は、図1に示した第
1実施例の改質装置内外差圧検出値fに相当する状態量
として、燃料極3への供給調節弁6の前後差圧検出値m
を差圧検出器29により検出して制御するようにしてい
る。
In the sixth embodiment shown in FIG. 9, the state variable corresponding to the differential pressure detection value f between the inside and outside of the reformer of the first embodiment shown in FIG. Differential pressure detection value m
Is detected by the differential pressure detector 29 and controlled.

【0039】以上の第3〜第6の実施例は、改質装置プ
ロセス側およびバーナ側へのチッ素供給手段、弁開度の
設定や入力信号などの点で第1実施例および第2実施例
と構成が異なるが、いずれの実施例についてもプラント
条件や運転条件の変化に伴う改質装置のプロセス側とバ
ーナ側の昇圧速度の変化、相違を是正するよう作用する
ことができるから改質装置内外差圧を良好に保ちつつプ
ラントの昇圧を行うことができる。
The above-described third to sixth embodiments are the first and second embodiments in terms of means for supplying nitrogen to the reformer process side and the burner side, setting of valve opening, input signals, and the like. Although the configuration is different from the example, in any of the embodiments, reforming can be performed to correct the change and difference in the pressure increase speed between the process side and the burner side of the reformer due to the change of the plant condition and the operating condition. The plant can be pressurized while maintaining a good differential pressure between the inside and the outside of the apparatus.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、改
質装置の圧力を所定の速度で上昇しつつ改質装置のプロ
セス側とバーナ側との圧力差を所定の範囲以内に制御す
ることができる。従って、予期せぬプラント条件や運転
条件の変化による改質装置のプロセス側とバーナ側の昇
圧速度の過大な変化を速やかに抑制すると共に、改質装
置のプロセス側とバーナ側を協調して昇圧することがで
きる。
As described above, according to the present invention, the pressure difference between the process side and the burner side of the reformer is controlled within a predetermined range while increasing the pressure of the reformer at a predetermined speed. be able to. Therefore, it is possible to quickly suppress an excessive change in the pressure increase rate on the process side and the burner side of the reformer due to unexpected changes in plant conditions and operating conditions, and to cooperate the pressure increase on the process side and the burner side of the reformer. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 1 is a block diagram of a control device of a fuel cell power generation system according to a first embodiment of the present invention.

【図2】同装置の第1実施例における主要状態量の応答
を示す説明図である。
FIG. 2 is an explanatory diagram showing a response of a main state quantity in the first embodiment of the device.

【図3】本発明の第2実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 3 is a block diagram of a control device of a fuel cell power generation system according to a second embodiment of the present invention.

【図4】同装置の開度指令関数設定器の内容の一例を示
す説明図である。
FIG. 4 is an explanatory diagram showing an example of the content of an opening command function setting device of the apparatus.

【図5】同装置の第2実施例における主要状態量の応答
を示す説明図である。
FIG. 5 is an explanatory diagram showing responses of main state quantities in a second embodiment of the device.

【図6】本発明の第3実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 6 is a block diagram of a control device of a fuel cell power generation system according to a third embodiment of the present invention.

【図7】本発明の第4実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 7 is a block diagram of a control device of a fuel cell power generation system according to a fourth embodiment of the present invention.

【図8】本発明の第5実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 8 is a block diagram of a control device of a fuel cell power generation system according to a fifth embodiment of the present invention.

【図9】本発明の第6実施例を示す燃料電池発電システ
ムの制御装置のブロック構成図である。
FIG. 9 is a block diagram of a control device of a fuel cell power generation system according to a sixth embodiment of the present invention.

【図10】従来例を示す燃料電池発電システムの制御装
置のブロック構成図である。
FIG. 10 is a block diagram of a control device of a fuel cell power generation system showing a conventional example.

【図11】同装置の主要状態量の応答を示す説明図であ
る。
FIG. 11 is an explanatory diagram showing a response of a main state quantity of the apparatus.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 酸化剤極 3 燃料極 4 オンオフ弁 5 オンオフ弁 6 供給調節弁 7 改質装置 8 バーナ側 9 プロセス側 15 オンオフ弁 16 差圧検出器 17 開度指令関数設定器 18 開度指令関数設定器 Reference Signs List 1 fuel cell 2 oxidizer electrode 3 fuel electrode 4 on / off valve 5 on / off valve 6 supply control valve 7 reformer 8 burner side 9 process side 15 on / off valve 16 differential pressure detector 17 opening command function setting device 18 opening command function Setting device

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 天然ガス等の原燃料ガスから改質ガスを
生成するためのプロセスとバーナからなる改質装置と、
この改質装置で得られた改質ガスを燃料極に導入すると
共に、空気等の酸化剤ガスを酸化剤極に導入して電気化
学反応により電気エネルギーを発生する燃料電池と、こ
れら改質装置と燃料電池とを昇圧するために窒素等の不
活性ガス供給源から前記改質装置のプロセス側およびバ
ーナ側に第1および第2の制御弁を介して不活性ガスを
供給する不活性ガス供給ラインを備えた燃料電池発電シ
ステムの制御装置において、 前記改質装置のプロセス側とバーナ側との圧力差に相当
する値を検出する検出手段と、 前記改質装置および燃料電池の昇圧時、前記検出手段か
らの検出値に基づいて、先行昇圧するように所定値を越
えるまで前記プロセス側に設けた第1の制御弁を開制御
する第1の不活性ガス供給制御手段と、 前記改質装置および燃料電池の昇圧時、前記検出手段か
らの検出値に基づいて、前記プロセス側の昇圧に追従昇
圧するように前記バーナ側に設けた第2の制御弁の開度
を制御する第2の不活性ガス供給制御手段とを設けたこ
とを特徴とする燃料電池発電システムの制御装置。
1. A reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner;
A fuel cell that introduces reformed gas obtained by this reformer into a fuel electrode and introduces an oxidant gas such as air into the oxidant electrode to generate electric energy by an electrochemical reaction; Gas supply for supplying an inert gas from an inert gas supply source such as nitrogen to a process side and a burner side of the reformer through first and second control valves in order to boost the pressure of the fuel cell and the fuel cell. A control unit for a fuel cell power generation system including a line, wherein a detecting unit that detects a value corresponding to a pressure difference between a process side and a burner side of the reformer; First inert gas supply control means for controlling to open a first control valve provided on the process side until a predetermined value is exceeded so as to precedently increase the pressure based on a detection value from the detection means; And fuel electricity A second inert gas supply for controlling an opening degree of a second control valve provided on the burner side so as to follow the pressure increase on the process side based on a detection value from the detection means at the time of pressure increase. A control device for a fuel cell power generation system, comprising: control means.
【請求項2】 天然ガス等の原燃料ガスから改質ガスを
生成するためのプロセスとバーナからなる改質装置と、
この改質装置で得られた改質ガスを燃料極に導入すると
共に、空気等の酸化剤ガスを酸化剤極に導入して電気化
学反応により電気エネルギーを発生する燃料電池と、こ
れら改質装置と燃料電池とを昇圧するために窒素等の不
活性ガス供給源から前記改質装置のプロセス側およびバ
ーナ側に第1および第2の制御弁を介して不活性ガスを
供給する不活性ガス供給ラインを備えた燃料電池発電シ
ステムの制御装置において、 前記プロセス側の不活性ガス供給ライン、あるいは前記
バーナ側の不活性ガス供給ラインの少なくともいずれか
一方のラインを複数とし、そのラインに設けられる第3
の制御弁と、 前記改質装置のプロセス側とバーナ側との圧力差を検出
する検出手段と、 この検出手段の検出値に基づいて前記各制御弁の開度を
制御することにより前記改質装置のプロセス側とバーナ
側とを所定の圧力差以内に維持しつつ、昇圧するととも
に、前記改質装置および燃料電池の昇圧時の前記各制御
弁の動作タイミングをそれぞれ異ならせる不活性ガス供
給制御手段とを設けたことを特徴とする燃料電池発電シ
ステムの制御装置。
2. A reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner;
A fuel cell that introduces reformed gas obtained by this reformer into a fuel electrode and introduces an oxidant gas such as air into the oxidant electrode to generate electric energy by an electrochemical reaction; Gas supply for supplying an inert gas from an inert gas supply source such as nitrogen to a process side and a burner side of the reformer through first and second control valves in order to boost the pressure of the fuel cell and the fuel cell. In the control device for a fuel cell power generation system including a line, at least one of the inert gas supply line on the process side or the inert gas supply line on the burner side includes a plurality of lines, and 3
A control valve for detecting a pressure difference between a process side and a burner side of the reformer; and controlling the opening degree of each control valve based on a detection value of the detection means to perform the reforming. Inert gas supply control for increasing the pressure while maintaining the process side and the burner side of the apparatus within a predetermined pressure difference, and making the operation timings of the respective control valves different when the reformer and the fuel cell are boosted. And a control device for a fuel cell power generation system.
【請求項3】 天然ガス等の原燃料ガスから改質ガスを
生成するためのプロセスとバーナからなる改質装置と、
この改質装置で得られた改質ガスを燃料極に導入すると
共に、空気等の酸化剤ガスを酸化剤極に導入して電気化
学反応により電気エネルギーを発生する燃料電池と、こ
れら改質装置と燃料電池とを昇圧するために窒素等の不
活性ガス供給源から前記改質装置のプロセス側およびバ
ーナ側に第1および第2の制御弁を介して不活性ガスを
供給する不活性ガス供給ラインを備えた燃料電池発電シ
ステムの制御装置において、 前記改質装置のプロセス側とバーナ側との圧力差に相当
する値を、前記改質装置および燃料電池の昇圧時の前記
改質装置のプロセス側から前記燃料電池の燃料極へ改質
ガスを供給する制御弁の前後差圧から検出する検出手段
と、 この検出手段の検出値に基づいて前記各制御弁の開度を
制御することにより前記改質装置のプロセス側とバーナ
側とを所定の圧力差以内に維持しつつ、昇圧する不活性
ガス供給制御手段とを設けたことを特徴とする燃料電池
発電システムの制御装置。
3. A reformer comprising a process for producing a reformed gas from a raw fuel gas such as natural gas and a burner;
A fuel cell that introduces reformed gas obtained by this reformer into a fuel electrode and introduces an oxidant gas such as air into the oxidant electrode to generate electric energy by an electrochemical reaction; Gas supply for supplying an inert gas from an inert gas supply source such as nitrogen to a process side and a burner side of the reformer through first and second control valves in order to boost the pressure of the fuel cell and the fuel cell. In a control device for a fuel cell power generation system including a line, a value corresponding to a pressure difference between a process side and a burner side of the reformer is processed by the reformer and a process of the reformer when the pressure of the fuel cell is increased. Detecting means for detecting the pressure difference between the front and rear of a control valve for supplying reformed gas to the fuel electrode of the fuel cell from the side, and controlling the degree of opening of each control valve based on a detection value of the detecting means. Reformer unit While maintaining the Seth side and the burner-side within a predetermined pressure difference, the control device of a fuel cell power generation system characterized in that a inert gas supply control means for boosting.
JP3080466A 1991-03-20 1991-03-20 Control unit for fuel cell power generation system Expired - Fee Related JP2916289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080466A JP2916289B2 (en) 1991-03-20 1991-03-20 Control unit for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080466A JP2916289B2 (en) 1991-03-20 1991-03-20 Control unit for fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH04292864A JPH04292864A (en) 1992-10-16
JP2916289B2 true JP2916289B2 (en) 1999-07-05

Family

ID=13719039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080466A Expired - Fee Related JP2916289B2 (en) 1991-03-20 1991-03-20 Control unit for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2916289B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624129B2 (en) * 1983-04-05 1994-03-30 株式会社東芝 Fuel cell power plant
JPH02213056A (en) * 1989-02-14 1990-08-24 Toshiba Corp Fuel cell power generating plant

Also Published As

Publication number Publication date
JPH04292864A (en) 1992-10-16

Similar Documents

Publication Publication Date Title
US5397656A (en) Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system
EP3333952B1 (en) Fuel cell system and method of operating fuel cell system
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JP2916289B2 (en) Control unit for fuel cell power generation system
JPS58128673A (en) Control of fuel cell power generating plant
JPS6356672B2 (en)
JP3271771B2 (en) Power supply for internal reforming fuel cell
JP2533616B2 (en) Combustion control device for catalytic combustor for fuel cell
JPS6318307B2 (en)
JPH08222249A (en) Differential pressure control device
CA2549151A1 (en) Controlled process gas pressure decay at shut down
JPH09237634A (en) Fuel cell generating device
JPH053042A (en) Controlling device for fuel cell device
JPH0556628B2 (en)
JPH04324255A (en) Fuel cell generating unit
JP3557904B2 (en) Operating method of fuel reformer and fuel cell power generation system
JPH05343090A (en) Fuel cell power generation system
JPH0316750B2 (en)
JPH02213056A (en) Fuel cell power generating plant
JP2695860B2 (en) Control unit for fuel cell power generation system
JPH10106599A (en) Fuel cell module
JPH0282462A (en) Fuel cell power generation system
JPH01298651A (en) Combustion controlling device for catalyst combustor for fuel cell
JPH03269957A (en) Fuel cell power generating system
JPH0317354B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees