JPH03269957A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH03269957A
JPH03269957A JP2069392A JP6939290A JPH03269957A JP H03269957 A JPH03269957 A JP H03269957A JP 2069392 A JP2069392 A JP 2069392A JP 6939290 A JP6939290 A JP 6939290A JP H03269957 A JPH03269957 A JP H03269957A
Authority
JP
Japan
Prior art keywords
pressure
combustion chamber
gas
value
reformer combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2069392A
Other languages
Japanese (ja)
Inventor
Seishi Suzuki
鈴木 聖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2069392A priority Critical patent/JPH03269957A/en
Publication of JPH03269957A publication Critical patent/JPH03269957A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent previously the reverse flow of combustion gas from a reforming unit combustion chamber toward a fuel cell when the operation of a plant is stopped, by providing a correction device of a pressure set value to correct a pressure set value in the outlet side of the reforming unit combustion chamber. CONSTITUTION:A differential pressure (b) between a fuel electrode 3 and a reforming unit combustion chamber 4 detected with a differential pressure detector 5 is compared with a inner preset reference value, and when the differential pressure (b) is lower than the reference value, a pressure correction value (c) is generated to reduce a pressure set value (a) basing on the deviation, and the value is converted and outputted as a last set value of pressure (d). Thereby the opening of a depressurizing regulation valve 9 becomes larger than that where the value (c) is zero. Then the gas flow ejected to the atmosphere from the combustion chamber 4 is increased to lower the pressure in the chamber 4, and the pressure loss between the fuel electrode 3 and the combustion chamber 4 can be increased to prevent the reverse flow of gas from the combustion chamber 4 to the fuel electrode 3.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、燃料電池と改質装置燃焼室とを備えた燃料
電池発電システムに係り、特に、プラントの停止時に発
生しやすい改質装置燃焼室から燃料電池側への燃焼ガス
の逆流防止に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation system equipped with a fuel cell and a reformer combustion chamber, and particularly relates to a fuel cell power generation system that is equipped with a fuel cell and a reformer combustion chamber. This relates to preventing backflow of combustion gas from the reformer combustion chamber to the fuel cell side, which is easy to do.

(従来の技術) 第3図はこの種の従来の燃料電池発電システムの概略構
成図である。同図において、燃料電池1は酸化剤極2お
よび燃料極3を含んでなり、ここから改質装置燃焼室4
に対して燃焼ガスが供給される。この改質装置燃焼室4
のガス放出側に降圧用調節弁9が設けられると共に、ガ
ス放出側圧力を検出する圧力検出器7が設けられる。そ
して、調節器8が圧力設定値aと圧力検出器7による圧
力検出値eとの偏差分、すなわち、圧力偏差fが零にな
るように降圧用調節弁9を制御する構成になっている。
(Prior Art) FIG. 3 is a schematic diagram of a conventional fuel cell power generation system of this type. In the same figure, a fuel cell 1 includes an oxidizer electrode 2 and a fuel electrode 3, which lead to a reformer combustion chamber 4.
Combustion gas is supplied to the This reformer combustion chamber 4
A pressure-reducing control valve 9 is provided on the gas release side, and a pressure detector 7 is provided to detect the pressure on the gas release side. The regulator 8 is configured to control the pressure-reducing control valve 9 so that the deviation between the pressure setting value a and the pressure value e detected by the pressure detector 7, that is, the pressure deviation f, becomes zero.

ここで、圧力設定値aよりも圧力検出値eが高ければ、
調節器8は降圧用調節弁9の開度を大きくして改質装置
燃焼室4から大気に放出されるガス流量を増大させる。
Here, if the detected pressure value e is higher than the pressure setting value a,
The regulator 8 increases the opening degree of the pressure-reducing control valve 9 to increase the flow rate of gas discharged from the reformer combustion chamber 4 to the atmosphere.

これにより、改質装置燃焼室4の圧力が低下するため、
燃料極3および改質装置燃焼室4間の圧損か増加(圧力
差が大きくなる)シ、プラントの降圧が行われる。
As a result, the pressure in the reformer combustion chamber 4 decreases, so
When the pressure drop between the fuel electrode 3 and the reformer combustion chamber 4 increases (the pressure difference becomes larger), the pressure in the plant is lowered.

(発明が解決しようとする課題) 上述した燃料電池発電システムの通常運転中、ガスは酸
化剤極2から改質装置燃焼室4へ流れ、また、燃料極3
から改質装置燃焼室4へと流れる。
(Problems to be Solved by the Invention) During normal operation of the above-mentioned fuel cell power generation system, gas flows from the oxidizer electrode 2 to the reformer combustion chamber 4, and the gas flows from the fuel electrode 3 to the reformer combustion chamber 4.
to the reformer combustion chamber 4.

しかし、プラント停止時には、通常、酸化剤極2への空
気の供給、および、燃料極3への燃料ガス供給は停止さ
れるため、酸化剤極2から改質装置燃焼室4へ、燃料極
3から改質装置燃焼室4へのそれぞれのガスの流れが微
少になると共に、圧損が小さくなる。この結果、改質装
置燃焼室4から酸化剤極2および燃料極3ヘガスが逆流
しやすくなる。
However, when the plant is shut down, the supply of air to the oxidizer electrode 2 and the supply of fuel gas to the fuel electrode 3 are usually stopped, so the flow of air from the oxidizer electrode 2 to the combustion chamber 4 of the reformer, The flow of each gas from the reformer combustion chamber 4 to the reformer combustion chamber 4 becomes small, and the pressure drop becomes small. As a result, gas tends to flow back from the reformer combustion chamber 4 to the oxidizer electrode 2 and fuel electrode 3.

なお、改質装置燃焼室4から燃料電池1側へガスが逆流
するということは、高温のガスが酸化剤極2および燃料
極3に流入したり、あるいは、可燃ガスが酸化剤極2へ
、酸素ガスが燃料極3へ流入することを意味し、このよ
うな状態になれば極めて危険であるばかりか、燃料型;
41を損傷する可能性が極めて大きい。
Note that gas flowing backward from the reformer combustion chamber 4 to the fuel cell 1 side means that high-temperature gas flows into the oxidizer electrode 2 and fuel electrode 3, or combustible gas flows into the oxidizer electrode 2, This means that oxygen gas flows into the fuel electrode 3, and if this situation occurs, it is not only extremely dangerous, but also the fuel type;
There is an extremely high possibility of damaging the 41.

一方、上述した燃料電池発電システムでは、降圧用調節
弁9によって降圧するか、その際に改質装置燃焼室4の
上流側の状態量に着目しておらず、例えば、改質装置燃
焼室4から酸化剤極2または燃料極3ヘガスが逆流した
場合でも、これが改質装置燃焼室4の出口圧力(圧力検
出値e)を低下させる方向に働くため、恰も降圧が良好
に行われているが如き錯覚を起こさせる恐れがある。
On the other hand, in the above-mentioned fuel cell power generation system, the focus is not on the state quantity on the upstream side of the reformer combustion chamber 4 when the pressure is lowered by the pressure lowering control valve 9; Even if gas flows backward from the oxidizer electrode 2 or fuel electrode 3 to the oxidizer electrode 2 or the fuel electrode 3, this works to lower the outlet pressure (pressure detection value e) of the reformer combustion chamber 4, so the pressure is lowered successfully. There is a risk of creating an illusion.

因みに、上記のようなガスの逆流か生じて、圧力検出値
eが圧力設定値aよりも低い場合を考えると、降圧用調
節弁9は閉方向に調節され、ガスの逆流は益々激しくな
る。
Incidentally, if we consider a case where the gas backflow as described above occurs and the detected pressure value e is lower than the pressure setting value a, the pressure reducing control valve 9 is adjusted in the closing direction, and the gas backflow becomes more intense.

従って、第3図に示した従来の燃料電池発電システムで
は、降圧時の圧力設定値aを余程うまく設定しないと、
改質装置燃焼室4から酸化剤極2あるいは燃料極3への
ガスの逆流を抑制できず、燃料電池1を損傷させる危険
性が極めて高かった。
Therefore, in the conventional fuel cell power generation system shown in Fig. 3, if the pressure setting value a during pressure reduction is not set very well,
The backflow of gas from the reformer combustion chamber 4 to the oxidizer electrode 2 or the fuel electrode 3 could not be suppressed, and the risk of damaging the fuel cell 1 was extremely high.

この発明は上記の問題点を解決するためになされたもの
で、プラント停止時に起こりやすい改質装置燃焼室から
燃料電池側へのガスの逆流を防止し得、これによって燃
料電池1を保護すると共に、プラントを安定に停止させ
ることのできる燃料電池発電システムを提供することを
目的とする。
This invention was made to solve the above problems, and can prevent the backflow of gas from the reformer combustion chamber to the fuel cell side, which is likely to occur when the plant is stopped, thereby protecting the fuel cell 1 and The purpose of the present invention is to provide a fuel cell power generation system that can stably stop a plant.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、酸化剤極および燃料極を含んでなる燃料電
池から供給されるガスを改質装置燃焼室で燃焼させると
共に、この改質装置燃焼室のガス放出側に降圧用調節弁
を設け、前記改質装置燃焼室の出側圧力が設定値と一致
するように前記降圧用調節弁を調節する燃料電池発電シ
ステムにおいて、前記酸化剤極および改質装置燃焼室間
と前記燃料極および改質装置燃焼室間の少なくとも一方
のガス流の傾向を検出するガス流傾向検出手段と、検出
されたガス流傾向に基いて、プラント停止時に前記改質
装置燃焼室から燃料電池側に燃焼ガスが逆流しないよう
に、前記改質装置燃焼室の出側圧力設定値を補正する圧
力設定値補正手段とを備えたことを特徴とするものであ
る。
(Means for Solving the Problems) This invention burns gas supplied from a fuel cell including an oxidizer electrode and a fuel electrode in a reformer combustion chamber, and releases gas from the reformer combustion chamber. In a fuel cell power generation system, a pressure-reducing control valve is provided on the side of the oxidizer electrode and the reformer combustion chamber, and the pressure-reducing control valve is adjusted so that the outlet pressure of the reformer combustion chamber matches a set value. gas flow trend detection means for detecting a gas flow trend between the chambers and at least one of the fuel electrode and the reformer combustion chamber; and based on the detected gas flow trend, the reformer combustion chamber The present invention is characterized by comprising a pressure setting value correcting means for correcting a pressure setting value on the outlet side of the reformer combustion chamber so that combustion gas does not flow backward from the combustion chamber to the fuel cell side.

(作 用) この発明においては、改質装置燃焼室に対する酸化剤極
間、および、燃料極間の少なくとも一方のガス流の傾向
、例えば、圧力差や流量等を検出し、この検出値に基い
てプラント停止時に燃焼ガスが逆流しないように改質装
置燃焼室の出側圧力設定値を補正するので、改質装置燃
焼室から燃料電池側へのガスの逆流を防止することがで
きる。
(Function) In the present invention, trends in the gas flow between the oxidizer electrodes and between the fuel electrodes with respect to the combustion chamber of the reformer, such as pressure difference and flow rate, are detected and based on the detected values. Since the output side pressure setting value of the reformer combustion chamber is corrected so that the combustion gas does not flow back when the plant is stopped, it is possible to prevent the gas from flowing back from the reformer combustion chamber to the fuel cell side.

(実施例) 第1図はこの発明の一実施例の概略構成図である。図中
、従来装置を示す第3図と同一の符号を付したものはそ
れぞれ同一の要素を示す。これは、燃料極3および改質
装置燃焼室4間の圧力を検出する差圧検出器5と、この
差圧検出器5の差圧検出値すに基いて、圧力設定値aを
補正するための圧力補正値Cを生成すると共に、圧力設
定値aから圧力補正値Cを減算して最終圧力設定値dを
出力する圧力補正値演算器6とを付加した点が第3図と
異なっている。
(Embodiment) FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 3 showing the conventional device indicate the same elements. This is because the pressure setting value a is corrected based on the differential pressure detector 5 that detects the pressure between the fuel electrode 3 and the reformer combustion chamber 4, and the differential pressure detection value of this differential pressure detector 5. The difference from FIG. 3 is that a pressure correction value calculator 6 is added which generates the pressure correction value C of , and also subtracts the pressure correction value C from the pressure setting value a to output the final pressure setting value d. .

上記の如く構成された本実施例の動作を、燃料極3およ
び改質装置燃焼室4間の圧力差が低下した場合について
説明する。
The operation of the present embodiment configured as described above will be described in the case where the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4 decreases.

圧力補正値演算器6では、差圧検出器5によって検出さ
れる燃料極3および改質装置燃焼室4間の差圧検出値す
と、予め内部設定した基準値とを比較し、この基準値よ
りも差圧検出値すが低いときに、その偏差に基づいて圧
力設定値aを低下させるような圧力補正値Cを生威し、
さらに、圧力設定値aから圧力補正値Cを減算して最終
圧力設定値dを出力する。これにより、圧力設定値が本
来の圧力設定値aよりも低い値、すなわち、降圧を促進
する圧力設定値dとなるため、圧力補正値Cか零の場合
に比べて降圧用調節弁9の開度は大きくなる。降圧用調
節弁9の開度が太き(なると、改質装置燃焼室4から大
気へ放出されるガス流量が増加して改質装置燃焼室4の
圧力が低下するため、燃料極3および改質装置燃焼室4
間の圧損か増加しく圧力差か大きくなる)、改質装置燃
焼室4から燃料極3へのガスの逆流を防止するように作
用する。
The pressure correction value calculator 6 compares the detected differential pressure value between the fuel electrode 3 and the reformer combustion chamber 4 detected by the differential pressure detector 5 with a reference value set internally in advance, and determines this reference value. When the detected differential pressure value is lower than
Furthermore, the pressure correction value C is subtracted from the pressure setting value a to output the final pressure setting value d. As a result, the pressure setting value becomes a value lower than the original pressure setting value a, that is, a pressure setting value d that promotes pressure reduction, so the opening of the pressure reduction control valve 9 is lower than when the pressure correction value C is zero. The degree increases. When the opening degree of the pressure-reducing control valve 9 becomes wide (when the opening degree of the pressure-reducing control valve 9 becomes large, the flow rate of gas released from the reformer combustion chamber 4 to the atmosphere increases and the pressure in the reformer combustion chamber 4 decreases, so that the fuel electrode 3 and the reformer quality equipment combustion chamber 4
(as the pressure drop between the two ends increases, the pressure difference also increases), which acts to prevent the backflow of gas from the reformer combustion chamber 4 to the fuel electrode 3.

かくして、この実施例では、燃料極3と改質装置燃焼室
4間の圧力差に基づいて降圧時の圧力設定値を補正する
ため、プラント停止時に生じやすい改質装置燃焼室4か
ら燃料極3へのガスの逆流を未然に防止でき、プラント
を安定に停止(降圧)させることかできる。
Thus, in this embodiment, since the pressure setting value during pressure reduction is corrected based on the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4, the pressure setting value during pressure reduction is corrected based on the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4. It is possible to prevent the backflow of gas to the plant, and it is possible to stably stop the plant (lower pressure).

第2図はこの発明の他の実施例の概略構成図であり、図
中、第1図と同一の要素には同一の符号を付してその説
明を省略する。ここでは、燃料極3および改質装置燃焼
室4間の圧力差を差圧検出器5により、酸化剤極2およ
び改質装置燃焼室4間の圧力差を差圧検出器lOにより
それぞれ検出し、燃料極3および改質装置燃焼室4間の
差圧検出値すと、酸化剤極2および改質装置燃焼室4間
差圧検出値りとを低値優先回路11に人力し、ここで選
択された低値iを前述の圧力補正値演算器6に人力する
構成になっている。
FIG. 2 is a schematic configuration diagram of another embodiment of the present invention, and in the figure, the same elements as in FIG. Here, the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4 is detected by a differential pressure detector 5, and the pressure difference between the oxidizer electrode 2 and the reformer combustion chamber 4 is detected by a differential pressure detector IO. , the detected value of the differential pressure between the fuel electrode 3 and the combustion chamber 4 of the reformer, and the detected value of the differential pressure between the oxidizer electrode 2 and the combustion chamber 4 of the reformer are manually inputted to the low value priority circuit 11. The selected low value i is manually input to the pressure correction value calculator 6 described above.

次に、この実施例の動作を説明する。ここでは、燃料極
3および改質装置燃焼室4間の圧力差が差圧検出器5に
よって検出され、酸化剤極2および改質装置燃焼室4間
の圧力差が差圧検出器IOで検出される。そして、燃料
極3および改質装置燃焼室4間の差圧検出値すと、酸化
剤極2および改質装置燃焼室4間の差圧検出値りか低値
優先回路11に入力されると、この低値優先回路11は
これらの値を比較して小さい側、すなわち、改質装置燃
焼室4からガスが逆流しやすいラインの差圧検出値iを
選択して圧力補正値演算器6に加える。圧力補正値演算
器6では、低値優先回路11によって選択された差圧検
出値iと予め内部設定した基準値とを比較し、この基準
値よりも差圧検出値lが低いときに、その偏差に基づい
て圧力設定値aを低下させるような圧力補正値Cを生威
し、さらに、圧力設定値aから圧力補正値Cを減算して
最終圧力設定値dを出力する。これにより、圧力設定値
が本来の圧力設定値aよりも低い値、すなわち、降圧を
促進する圧力設定値dとなるため、圧力補正値Cが零の
場合に比べて降圧用調節弁9の開度は大きくなる。降圧
用調節弁9の開度が大きくなると、改質装置燃焼室4か
ら大気へ放出されるガス流量が増加して改質装置燃焼室
4の圧力が低下するため、燃料極3および改質装置燃焼
室4間の圧損が増加しく圧力差が大きくなる)、改質装
置燃焼室4から燃料極3へのガスの逆流を防止するよう
に作用する。
Next, the operation of this embodiment will be explained. Here, the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4 is detected by the differential pressure detector 5, and the pressure difference between the oxidizer electrode 2 and the reformer combustion chamber 4 is detected by the differential pressure detector IO. be done. Then, when the detected differential pressure between the fuel electrode 3 and the reformer combustion chamber 4 is inputted to the low value priority circuit 11, the detected differential pressure between the oxidizer electrode 2 and the reformer combustion chamber 4 is This low value priority circuit 11 compares these values, selects the smaller side, that is, the differential pressure detection value i of the line where gas is likely to flow back from the reformer combustion chamber 4, and applies it to the pressure correction value calculator 6. . The pressure correction value calculator 6 compares the detected differential pressure value i selected by the low value priority circuit 11 with a reference value set internally in advance, and when the detected differential pressure value l is lower than this reference value, A pressure correction value C is generated to lower the pressure setting value a based on the deviation, and the pressure correction value C is further subtracted from the pressure setting value a to output a final pressure setting value d. As a result, the pressure setting value becomes a value lower than the original pressure setting value a, that is, a pressure setting value d that promotes pressure reduction, so the opening of the pressure reduction control valve 9 is lower than when the pressure correction value C is zero. The degree increases. When the opening degree of the pressure-reducing control valve 9 increases, the flow rate of gas released from the reformer combustion chamber 4 to the atmosphere increases and the pressure in the reformer combustion chamber 4 decreases, so that the fuel electrode 3 and the reformer (The pressure drop between the combustion chambers 4 increases and the pressure difference becomes large), and acts to prevent gas from flowing back from the reformer combustion chamber 4 to the fuel electrode 3.

かくして、この実施例では、燃料極3および改質装置燃
焼室4間の圧力差と、酸化剤極2および改質装置燃焼室
4間の圧力差とを比較し、改質装置燃焼室4からガスが
逆流しやすい低値に基いて降圧時の圧力設定値を補正す
るため、プラント停止時に生じやすい改質装置燃焼室4
から酸化剤極2および燃料極3へのガスの逆流を未然に
防止することができる。
Thus, in this example, the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4 is compared with the pressure difference between the oxidizer electrode 2 and the reformer combustion chamber 4, and the pressure difference between the fuel electrode 3 and the reformer combustion chamber 4 is compared. Since the pressure setting value during pressure reduction is corrected based on the low value where gas is likely to backflow, the reformer combustion chamber 4, which is likely to occur when the plant is stopped,
Backflow of gas from the oxidizer electrode 2 to the fuel electrode 3 can be prevented.

なお、上記実施例では、酸化剤極2および改質装置燃焼
室4間の差圧、あるいは、燃料極3および改質装置燃焼
室4間の差圧に基いて圧力設定値を補正したか、この代
わりに、酸化剤極2から改質装置燃焼室4へ流れるガス
流量、あるいは、燃料極3から改質装置燃焼室4へ流れ
るガス流量を測定し、これらのガス流量を差圧検出値す
、  hの代わりに用いても上述したと同様の補正がで
きることは明らかである。従って、酸化剤極2および改
質装置燃焼室4間と燃料極3および改質装置燃焼室4間
の少なくとも一方のガス流の傾向を検出するガス流傾向
検出手段を設け、検出されたガス流傾向に基いて、プラ
ント停止時に改質装置燃焼室4から燃料電池1側に燃焼
ガスが逆流しないように、改質装置燃焼室4の出側圧力
設定値を補正すればよいことになる。
In addition, in the above embodiment, the pressure setting value was corrected based on the differential pressure between the oxidizer electrode 2 and the reformer combustion chamber 4, or the differential pressure between the fuel electrode 3 and the reformer combustion chamber 4. Instead, the gas flow rate flowing from the oxidizer electrode 2 to the reformer combustion chamber 4 or the gas flow rate flowing from the fuel electrode 3 to the reformer combustion chamber 4 is measured, and these gas flow rates are used as differential pressure detection values. It is clear that the same correction as described above can be made even if used in place of , h. Therefore, a gas flow trend detection means for detecting the trend of gas flow at least one of between the oxidizer electrode 2 and the reformer combustion chamber 4 and between the fuel electrode 3 and the reformer combustion chamber 4 is provided, and the detected gas flow is Based on this trend, the output side pressure setting value of the reformer combustion chamber 4 may be corrected so that combustion gas does not flow back from the reformer combustion chamber 4 to the fuel cell 1 side when the plant is stopped.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、この発明によれば
、酸化剤極および改質装置燃焼室間と燃料極および改質
装置燃焼室間の少なくとも一方のガス流の傾向を検出す
るガス流傾向検出手段と、検出されたガス流傾向に基い
て、プラント停止時に改質装置燃焼室から燃料電池側に
燃焼ガスが逆流しないように、改質装置燃焼室の出側圧
力設定値を補正する圧力設定値補正手段とを備えている
ので、プラント停止時に改質装置燃焼室から酸化剤極ま
たは燃料極へのガスの逆流を未然に防止することができ
、これによってプラントを安定的に停止(降圧)させる
ことができるという効果がある。
As is clear from the above description, according to the present invention, gas flow trend detection detects at least one of the gas flow trends between the oxidizer electrode and the reformer combustion chamber and between the fuel electrode and the reformer combustion chamber. and a pressure setting that corrects the outlet pressure set value of the reformer combustion chamber based on the detected gas flow trend to prevent combustion gas from flowing back from the reformer combustion chamber to the fuel cell side when the plant is stopped. Since it is equipped with a value correction means, it is possible to prevent the backflow of gas from the reformer combustion chamber to the oxidizer electrode or fuel electrode when the plant is stopped, thereby stably stopping the plant (pressure reduction). It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の概略構成図、第2図は他
の実施例の概略構成図、第3図は従来の燃料電池発電シ
ステムの概略構成図である。 1・・・燃料電池、2・・・酸化剤極、3・・・燃料極
、4・・・改質装置燃焼室、5.IO・・・差圧検出器
、6・・圧力補正値演算器、7・・・圧力検出器、8・
・調節器、9・・・降圧用調節弁、U・・・低値優先回
路。
FIG. 1 is a schematic diagram of one embodiment of the present invention, FIG. 2 is a schematic diagram of another embodiment, and FIG. 3 is a schematic diagram of a conventional fuel cell power generation system. 1... Fuel cell, 2... Oxidizer electrode, 3... Fuel electrode, 4... Reformer combustion chamber, 5. IO... Differential pressure detector, 6... Pressure correction value calculator, 7... Pressure detector, 8...
- Regulator, 9: Step-down control valve, U: Low value priority circuit.

Claims (1)

【特許請求の範囲】[Claims]  酸化剤極および燃料極を含んでなる燃料電池から供給
されるガスを改質装置燃焼室で燃焼させると共に、この
改質装置燃焼室のガス放出側に降圧用調節弁を設け、前
記改質装置燃焼室の出側圧力が設定値と一致するように
前記降圧用調節弁を調節する燃料電池発電システムにお
いて、前記酸化剤極および改質装置燃焼室間と前記燃料
極および改質装置燃焼室間の少なくとも一方のガス流の
傾向を検出するガス流傾向検出手段と、検出されたガス
流傾向に基いて、プラント停止時に前記改質装置燃焼室
から燃料電池側に燃焼ガスが逆流しないように、前記改
質装置燃焼室の出側圧力設定値を補正する圧力設定値補
正手段とを備えたことを特徴とする燃料電池発電システ
ム。
A gas supplied from a fuel cell including an oxidizer electrode and a fuel electrode is combusted in a reformer combustion chamber, and a pressure-reducing control valve is provided on the gas discharge side of the reformer combustion chamber. In a fuel cell power generation system in which the pressure-reducing control valve is adjusted so that the pressure on the outlet side of the combustion chamber matches a set value, there is a gap between the oxidizer electrode and the reformer combustion chamber, and between the fuel electrode and the reformer combustion chamber. a gas flow trend detection means for detecting a trend of at least one of the gas flows; and based on the detected gas flow trend, prevent combustion gas from flowing back from the reformer combustion chamber to the fuel cell side when the plant is stopped; A fuel cell power generation system comprising: pressure set value correction means for correcting the outlet side pressure set value of the reformer combustion chamber.
JP2069392A 1990-03-19 1990-03-19 Fuel cell power generating system Pending JPH03269957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069392A JPH03269957A (en) 1990-03-19 1990-03-19 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069392A JPH03269957A (en) 1990-03-19 1990-03-19 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH03269957A true JPH03269957A (en) 1991-12-02

Family

ID=13401285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069392A Pending JPH03269957A (en) 1990-03-19 1990-03-19 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH03269957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171601A (en) * 1990-10-08 1992-12-15 Ioki Eiyo Kabushiki Kaisha Ice cream and method of manufacturing
JP2007109529A (en) * 2005-10-14 2007-04-26 Mitsubishi Electric Corp Method of controlling fuel cell power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171601A (en) * 1990-10-08 1992-12-15 Ioki Eiyo Kabushiki Kaisha Ice cream and method of manufacturing
JP2007109529A (en) * 2005-10-14 2007-04-26 Mitsubishi Electric Corp Method of controlling fuel cell power generation system

Similar Documents

Publication Publication Date Title
JP2660097B2 (en) Fuel cell generator
JP2011099608A (en) Boiler combustion control device
JPWO2008108069A1 (en) Hydrogen generator, operating method thereof, and fuel cell system,
JP2008251247A (en) Fuel cell gas turbine compound power generation system and its control method
JPH03269957A (en) Fuel cell power generating system
JP3517260B2 (en) Fuel cell power generator and control method for fuel cell power generator
JPS58128673A (en) Control of fuel cell power generating plant
JPS5918577A (en) Control system of fuel cell power generating plant
JPS63116373A (en) Fuel cell operating method
JP2734390B2 (en) Hot water outlet temperature control method
JP2931372B2 (en) Operating method of fuel cell power generation system
JP7110805B2 (en) By-product gas utilization system
JP7110807B2 (en) By-product gas utilization system
JPS5951478A (en) Power generation system of fuel battery
JP7110803B2 (en) By-product gas utilization system
JPH05135793A (en) Combustion control device for fuel cell power generating facilities
JPH0349161A (en) Fuel cell power generating system
JP7110806B2 (en) By-product gas utilization system
JPS6046782B2 (en) Fuel cell voltage regulator
JP2916289B2 (en) Control unit for fuel cell power generation system
JP2714236B2 (en) Fuel cell power plant
JPS62113362A (en) Overvoltage restraining system for fuel cell
JPH088113B2 (en) Fuel cell generator
JPH053042A (en) Controlling device for fuel cell device
JP2554491Y2 (en) Control device for pressurized fluidized bed boiler