JPH05135793A - Combustion control device for fuel cell power generating facilities - Google Patents

Combustion control device for fuel cell power generating facilities

Info

Publication number
JPH05135793A
JPH05135793A JP3325245A JP32524591A JPH05135793A JP H05135793 A JPH05135793 A JP H05135793A JP 3325245 A JP3325245 A JP 3325245A JP 32524591 A JP32524591 A JP 32524591A JP H05135793 A JPH05135793 A JP H05135793A
Authority
JP
Japan
Prior art keywords
signal
temperature
combustion
fuel cell
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3325245A
Other languages
Japanese (ja)
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3325245A priority Critical patent/JPH05135793A/en
Publication of JPH05135793A publication Critical patent/JPH05135793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To eliminate a control response delay to combustion apparatuses by controlling the flow adjusting valve of an auxiliary fuel feed path with the command signal converted from the deviation signal between the temperature detection signal and the temperature set signal. CONSTITUTION:The deviation between the detection signal 46 of a temperature detector 45 provided at the combustion gas outlet of combustion apparatuses 4, 9 and the set signal 48 of a setter 47 is obtained by a subtracter 49. This deviation signal 50 is converted into the command signal 51 by a proportional integration controller 52, and the opening of the flow adjusting valve 37 of an auxiliary fuel feed path is controlled via multipliers 53, 54. The change rate of the signal 46 is obtained by a differentiator 56, the change rate signal 57 is compared with a preset value by a monitor 60, the switching signal is fed to switching relays 69, 70 based on the result, and the gains from gain setters 61-64 are switched and fed to the multipliers 53, 54 to correct the signal 51. A control response delay to combustion apparatuses 4, 9 is eliminated, and the burning of a catalyst combustor or the like is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電設備用燃
焼制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for fuel cell power generation equipment.

【0002】[0002]

【従来の技術】燃料電池発電設備Aは図2に示すような
ものである。
2. Description of the Related Art A fuel cell power generation facility A is as shown in FIG.

【0003】即ち、天然ガス1を燃料ガス供給路2を介
して燃料予熱器3の低温側へ送給することにより天然ガ
ス1を昇温し、次に、天然ガス1を改質器4の改質側5
へ送給して高熱で天然ガス1を分解することにより水素
と一酸化炭素を主成分とする燃料ガスを発生させ、該燃
料ガスを前記燃料予熱器3の高温側へ送給することによ
り燃料予熱器3の低温側に供給される天然ガス1を昇温
させ、燃料ガスを燃料電池本体6のアノード7(負極)
へ送給することにより燃料電池本体6による発電に利用
させる。
That is, the temperature of the natural gas 1 is raised by feeding the natural gas 1 to the low temperature side of the fuel preheater 3 through the fuel gas supply passage 2, and then the natural gas 1 is fed to the reformer 4. Reforming side 5
To generate a fuel gas containing hydrogen and carbon monoxide as main components by decomposing the natural gas 1 with high heat and feeding the fuel gas to the high temperature side of the fuel preheater 3. The natural gas 1 supplied to the low temperature side of the preheater 3 is heated, and the fuel gas is fed to the anode 7 (negative electrode) of the fuel cell body 6.
It is used for power generation by the fuel cell main body 6 by being sent to.

【0004】燃料電池本体6のアノード7から排出され
た使用済みの燃料ガスを燃料ガス排出路8を介して触媒
燃焼器9へ送給し、触媒燃焼器9で使用済みの燃料ガス
を後述する使用済みの酸化剤ガス中の酸素によって燃焼
させることにより高温の燃焼ガスを発生させ、該高温の
燃焼ガスをカソードバイパス路11を介し前記改質器4
の燃焼側10へ送給して、改質器4の改質側5へ供給さ
れる天然ガスを分解するのに使用させる。
The used fuel gas discharged from the anode 7 of the fuel cell body 6 is fed to the catalytic combustor 9 through the fuel gas discharge passage 8, and the used fuel gas in the catalytic combustor 9 will be described later. A high temperature combustion gas is generated by burning with oxygen in the used oxidant gas, and the high temperature combustion gas is passed through the cathode bypass passage 11 to the reformer 4
Of the natural gas supplied to the reforming side 5 of the reformer 4 and used for decomposing the natural gas.

【0005】そして、改質器4の燃焼側10から排出さ
れた燃焼ガスは、カソードバイパス路11を介して空気
予熱器12の高温側へ送給され、気水分離器14へ送給
されることにより水分15を除去された後、低温ブロワ
16によって、酸化剤ガス供給路17へ導入される。
The combustion gas discharged from the combustion side 10 of the reformer 4 is sent to the high temperature side of the air preheater 12 via the cathode bypass passage 11 and then to the steam separator 14. After the water content 15 is removed by this, it is introduced into the oxidant gas supply path 17 by the low temperature blower 16.

【0006】一方、コンプレッサ20により吸入された
空気19はコンプレッサ20で圧縮されつつ空気供給路
21を送給され、前記酸化剤ガス供給路17へ導かれ
る。
On the other hand, the air 19 taken in by the compressor 20 is sent through the air supply passage 21 while being compressed by the compressor 20, and is guided to the oxidant gas supply passage 17.

【0007】カソードバイパス路11からの燃焼ガス中
の二酸化炭素と空気供給路21からの空気19中の酸素
を主成分とする酸化剤ガスは、酸化剤ガス供給路17を
介して前記空気予熱器12の低温側へ送給されることに
よりカソードバイパス路11を流れる燃焼ガスの熱によ
って昇温され、燃料電池本体6のカソード23(正極)
へ送給されることにより燃料電池本体6による発電に利
用される。
The oxidant gas containing carbon dioxide in the combustion gas from the cathode bypass passage 11 and oxygen in the air 19 from the air supply passage 21 as a main component is passed through the oxidant gas supply passage 17 to the air preheater. By being fed to the low temperature side of 12, the temperature is raised by the heat of the combustion gas flowing through the cathode bypass passage 11, and the cathode 23 (positive electrode) of the fuel cell main body 6 is heated.
It is used for power generation by the fuel cell body 6 by being sent to the fuel cell body 6.

【0008】燃料電池本体6のカソード23から排出さ
れた使用済みの酸化剤ガスは、酸化剤ガス排出路24を
介してタービン25へ送給されることによりタービン2
5を駆動して前記コンプレッサ20を回し、その後、系
外へ排出されて図示しない排熱回収装置へと導かれる
The used oxidant gas discharged from the cathode 23 of the fuel cell main body 6 is fed to the turbine 25 through the oxidant gas discharge passage 24, whereby the turbine 2
5 is driven to rotate the compressor 20, and then discharged to the outside of the system and guided to an exhaust heat recovery device (not shown).

【0009】酸化剤ガス排出路24を流れる使用済みの
酸化剤ガスの一部は、途中、循環流路26及び高温ブロ
ワ27を介してカソード23における反応の制御に循環
使用され、且つ、酸素供給路28を介して前記したよう
に触媒燃焼器9へ送給される。
A part of the used oxidant gas flowing through the oxidant gas discharge passage 24 is circulated and used for controlling the reaction in the cathode 23 through the circulation flow passage 26 and the high temperature blower 27 on the way, and oxygen is supplied. It is delivered to the catalytic combustor 9 via line 28 as described above.

【0010】尚、図中29は酸化剤ガス排出路24のタ
ービン25入出側をバイパスするバイパス路、30,3
1,32は弁である。
Reference numeral 29 in the drawing denotes a bypass passage for bypassing the inlet / outlet side of the turbine 25 of the oxidant gas discharge passage 24, and 30, 3
Reference numerals 1 and 32 are valves.

【0011】そして、前記触媒燃焼器9には、図3に示
すような温度制御装置が設けられている。
The catalyst combustor 9 is provided with a temperature control device as shown in FIG.

【0012】即ち、触媒燃焼器9に補助燃料33を供給
する補助燃料供給路34を接続し、同様に、触媒燃焼器
9に空気35を供給する空気供給路36を接続し、補助
燃料供給路34と、空気供給路36の途中にそれぞれ流
量調整弁37,38を設け、触媒燃焼器9出側に接続さ
れたカソードバイパス路11に温度コントローラ39を
設けて、該温度コントローラ39からの制御信号40に
基づいて補助燃料供給路34に設けられた流量調整弁3
7の開度を調整すると共に、該流量調整弁37の下流側
に設けられた流量計41からの流量検出信号42に基づ
いて制御装置43が制御信号44を送って空気供給路3
6に設けられた流量調整弁38の開度を調整し、触媒燃
焼器9出側の燃焼ガスの温度を一定に保つようになって
いる。
That is, the auxiliary fuel supply passage 34 for supplying the auxiliary fuel 33 is connected to the catalytic combustor 9, and the air supply passage 36 for supplying the air 35 is connected to the catalytic combustor 9 in the same manner. 34 and flow control valves 37 and 38 respectively in the middle of the air supply passage 36, a temperature controller 39 is provided in the cathode bypass passage 11 connected to the outlet side of the catalyst combustor 9, and a control signal from the temperature controller 39 is provided. Flow control valve 3 provided in the auxiliary fuel supply passage 34 based on 40
7 is adjusted, and the control device 43 sends a control signal 44 based on a flow rate detection signal 42 from a flow meter 41 provided on the downstream side of the flow rate adjusting valve 37 to send a control signal 44.
The opening degree of the flow rate adjusting valve 38 provided in 6 is adjusted to keep the temperature of the combustion gas on the outlet side of the catalytic combustor 9 constant.

【0013】尚、空気供給路36に設けられた流量調整
弁38は、補助燃料供給路34に設けられた流量調整弁
37と同様、カソードバイパス路11に温度コントロー
ラを別に設けて制御させるようにしても良く、又、補助
燃料供給路34に設けられた流量調整弁37の開度調整
を行う温度コントローラ39からの制御信号40にゲイ
ンを掛けて開度調整を行わせるようにしても良い。
The flow rate adjusting valve 38 provided in the air supply passage 36, like the flow rate adjusting valve 37 provided in the auxiliary fuel supply passage 34, is provided with a separate temperature controller in the cathode bypass passage 11 for control. Alternatively, the opening may be adjusted by multiplying the control signal 40 from the temperature controller 39, which adjusts the opening of the flow rate adjustment valve 37 provided in the auxiliary fuel supply passage 34, with a gain.

【0014】更に、上記温度制御装置は、改質器4に適
用しても良い。
Further, the temperature control device may be applied to the reformer 4.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の燃料電池発電設備用燃焼制御装置には、以下のよう
な問題があった。
However, the above-mentioned conventional combustion control apparatus for fuel cell power generation equipment has the following problems.

【0016】即ち、温度コントローラ39を触媒燃焼器
9などの燃焼機器の燃焼ガス出側に設けることにより、
流量調整弁37などの開度をフィードバック制御するよ
うにしているので、制御に応答遅れがあり、触媒燃焼器
9などを焼損するおそれがあった。
That is, by providing the temperature controller 39 on the combustion gas outlet side of the combustion equipment such as the catalytic combustor 9,
Since the opening degree of the flow rate adjusting valve 37 and the like is feedback-controlled, there is a response delay in the control, and there is a risk of burning the catalytic combustor 9 and the like.

【0017】本発明は、上述の実情に鑑み、燃焼機器に
対する制御の応答遅れをなくし得るようにした燃料電池
発電設備用燃焼制御装置を提供することを目的とするも
のである。
In view of the above situation, it is an object of the present invention to provide a combustion control device for a fuel cell power generation facility which can eliminate a response delay in control of combustion equipment.

【0018】[0018]

【課題を解決するための手段】本発明は、燃料電池発電
設備Aに設けられた燃焼機器4,9の燃焼ガス出側に温
度検出器45を設け、該温度検出器45で検出した温度
検出信号46と、設定器47からの温度設定信号48と
の偏差を取る減算器49を設け、減算器49からの偏差
信号50を指令信号51に変換する比例積分制御器52
を設けると共に、指令信号51を掛算器53,54を介
して燃焼機器4,9へ接続された補助燃料供給路34の
流量調整弁37へ送るよう構成し、且つ前記温度検出器
45からの温度検出信号46の変化率を求める微分器5
6、該微分器56からの変化率信号57と予め設定され
た設定値との大小をそれぞれ比較して切換信号58,5
9を出力するハイ・ローモニタ60、該ハイ・ローモニ
タ60からの切換信号58,59に従いゲイン設定器6
1,62,63,64が出力するゲイン65,66,6
7,68をそれぞれ切換えて前記掛算器53,54へ送
る切換リレー69,70、を設けたことを特徴とする燃
料電池発電設備用燃焼制御装置にかかるものである。
According to the present invention, a temperature detector 45 is provided on the combustion gas outlet side of the combustion devices 4 and 9 provided in the fuel cell power generation facility A, and the temperature detector 45 detects the temperature. A subtractor 49 for taking a deviation between the signal 46 and the temperature setting signal 48 from the setter 47 is provided, and the proportional-plus-integral controller 52 for converting the deviation signal 50 from the subtractor 49 into a command signal 51.
And sending the command signal 51 to the flow rate adjusting valve 37 of the auxiliary fuel supply path 34 connected to the combustion equipment 4, 9 via the multipliers 53, 54, and the temperature from the temperature detector 45. Differentiator 5 for obtaining the change rate of the detection signal 46
6. The change rate signals 57 from the differentiator 56 and the preset values are compared and the switching signals 58 and 5 are compared.
A high / low monitor 60 that outputs 9 and a gain setting device 6 according to switching signals 58 and 59 from the high / low monitor 60.
Gains 65, 66, 6 output by 1, 62, 63, 64
The present invention relates to a combustion control device for a fuel cell power generation facility, which is provided with switching relays 69 and 70 for switching 7 and 68 and sending them to the multipliers 53 and 54, respectively.

【0019】[0019]

【作用】本発明の作用は以下の通りである。The operation of the present invention is as follows.

【0020】燃焼機器4,9の燃焼ガス出側に設けられ
た温度検出器45からの温度検出信号46と、設定器4
7からの温度設定信号48との偏差を減算器49で取
り、減算器49からの偏差信号50を比例積分制御器5
2で指令信号51に変換し、指令信号51を掛算器5
3,54を介して燃焼機器4,9へ接続された補助燃料
供給路34の流量調整弁37へ送って、流量調整弁37
の開度を制御する。
The temperature detection signal 46 from the temperature detector 45 provided on the combustion gas outlet side of the combustion equipment 4, 9 and the setting device 4
The deviation from the temperature setting signal 48 from 7 is taken by a subtractor 49, and the deviation signal 50 from the subtractor 49 is taken by the proportional-plus-integral controller
2 is converted into a command signal 51, and the command signal 51 is multiplied by the multiplier 5
The flow rate adjusting valve 37 is fed to the flow rate adjusting valve 37 of the auxiliary fuel supply passage 34 connected to the combustion equipment 4, 9 via
Control the opening.

【0021】一方、前記温度検出器45からの温度検出
信号46の変化率を微分器56で求め、該微分器56か
らの変化率信号57と予め設定された設定値との大小を
ハイ・ローモニタ60でそれぞれ比較して、比較の結果
に基づいてハイ・ローモニタ60から切換リレー69,
70へ切換信号58,59を出力し、ゲイン設定器6
1,62,63,64からのゲイン65,66,67,
68を切換リレー69,70により切換えて前記掛算器
53,54へ送り、指令信号51を補正する。
On the other hand, the rate of change of the temperature detection signal 46 from the temperature detector 45 is obtained by the differentiator 56, and the magnitude of the rate of change signal 57 from the differentiator 56 and the preset value is monitored by a high / low monitor. 60, respectively, and based on the result of the comparison, from the high / low monitor 60 to the switching relay 69,
The switching signals 58 and 59 are output to 70, and the gain setter 6
Gains 65, 66, 67 from 1, 62, 63, 64,
68 is switched by switching relays 69 and 70 and sent to the multipliers 53 and 54 to correct the command signal 51.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は、本発明の一実施例である。FIG. 1 shows an embodiment of the present invention.

【0024】又、燃料電池発電設備Aの全体については
図2と同一であり、又、図3と同一の構成部分について
は同一の符号を付してある。
The entire fuel cell power generation facility A is the same as that shown in FIG. 2, and the same components as those shown in FIG. 3 are designated by the same reference numerals.

【0025】触媒燃焼器9や改質器4などの燃焼機器の
出側に温度検出器45を設け、該温度検出器45からの
温度検出信号46と、設定器47からの温度設定信号4
8との偏差を取る減算器49を設け、減算器49からの
偏差信号50を指令信号51に変換する比例積分制御器
52を設け、指令信号51を二つの掛算器53,54及
び自動手動切換器55を介して図3の流量調整弁37或
いは流量調整弁38へ送るようにする。
A temperature detector 45 is provided on the outlet side of the combustion equipment such as the catalytic combustor 9 and the reformer 4, and the temperature detection signal 46 from the temperature detector 45 and the temperature setting signal 4 from the setting device 47 are provided.
8 is provided with a subtractor 49 for taking a deviation from the subtracter 49, a proportional-integral controller 52 for converting the deviation signal 50 from the subtractor 49 into a command signal 51, and the command signal 51 is provided with two multipliers 53, 54 and automatic manual switching. The flow rate adjustment valve 37 or the flow rate adjustment valve 38 shown in FIG.

【0026】一方、前記温度検出器45からの温度検出
信号46の変化率を求める微分器56を設け、該微分器
56からの変化率信号57と予め設定された二つの設定
値との大小をそれぞれ比較して切換信号58,59を出
力するハイ・ローモニタ60を設け、該ハイ・ローモニ
タ60からの切換信号58,59に従い各二つずつ設け
られたゲイン設定器61,62及び63,64が出力す
るゲイン65,66及び67,68をそれぞれ切換えて
前記各掛算器52及び53へ送る切換リレー69,70
を設ける。
On the other hand, a differentiator 56 for determining the rate of change of the temperature detection signal 46 from the temperature detector 45 is provided, and the magnitude of the rate of change signal 57 from the differentiator 56 and two preset values is set. A high / low monitor 60 for comparing and outputting switching signals 58, 59 is provided, and two gain setting devices 61, 62 and 63, 64 are provided according to the switching signals 58, 59 from the high / low monitor 60. Switching relays 69, 70 for switching the gains 65, 66 and 67, 68 to be output and sending them to the multipliers 52, 53, respectively.
To provide.

【0027】尚、ハイ・ローモニタ60の二つの設定値
とは、変化率がプラスのときのしきい値と、変化率がマ
イナスのときのしきい値である。又、切換リレー69,
70は、通常はa側となっており、切換信号58,59
が入力されるとb側に切換えられるようになっている。
更に、各切換リレー69,70のa側のゲイン設定器6
2,64は発生するゲイン66,68の値を1とし、b
側のゲイン設定器61,63は例えば発生するゲイン6
5,67の値がそれぞれ0.9(マイナス10パーセン
ト),1.1(プラス10パーセント)などとなるよう
に設定する。
The two set values of the high / low monitor 60 are a threshold value when the change rate is positive and a threshold value when the change rate is negative. In addition, the switching relay 69,
70 is normally on the a side, and switching signals 58 and 59 are provided.
When is input, it is switched to the b side.
Further, the gain setting device 6 on the a side of each switching relay 69, 70
2 and 64, the values of the generated gains 66 and 68 are set to 1, and b
The gain setters 61 and 63 on the side, for example, generate the gain 6
The values of 5 and 67 are set to 0.9 (minus 10 percent), 1.1 (plus 10 percent), etc., respectively.

【0028】次に、作動について説明する。Next, the operation will be described.

【0029】燃料電池発電設備A全体の作動については
図2と同様なので説明を省略する。
The operation of the fuel cell power generation facility A as a whole is the same as that shown in FIG.

【0030】温度検出器45により触媒燃焼器9出側の
燃焼ガスの温度を検出し、減算器49により温度検出器
45で検出した温度検出信号46と、設定器47に設定
した温度設定信号48との偏差を取り、減算器49から
の偏差信号50を比例積分制御器52で指令信号51に
変換し、該指令信号51を二つの掛算器53,54及び
自動手動切換器55に通し、二つの掛算器53,54及
び自動手動切換器55を通された指令信号51に基づい
て図2の流量調整弁37及び流量調整弁38の開度を調
整し、補助燃料33及び空気35の供給量を制御する。
The temperature detector 45 detects the temperature of the combustion gas on the outlet side of the catalytic combustor 9, and the subtracter 49 detects the temperature detection signal 46 detected by the temperature detector 45 and the temperature setting signal 48 set by the setter 47. And the deviation signal 50 from the subtractor 49 is converted into a command signal 51 by the proportional-plus-integral controller 52, and the command signal 51 is passed through the two multipliers 53 and 54 and the automatic manual switching device 55, The opening amounts of the flow rate adjusting valve 37 and the flow rate adjusting valve 38 shown in FIG. 2 are adjusted based on the command signal 51 passed through the three multipliers 53 and 54 and the automatic manual switching unit 55, and the supply amounts of the auxiliary fuel 33 and the air 35 are adjusted. To control.

【0031】この際、切換リレー69,70は通常はa
側となっているため、二つの掛算器53,54へはゲイ
ン設定器62,64からの値が1のゲイン66,68が
送られることになり、よって、指令信号51は値を変え
られずそのまま流量調整弁37及び流量調整弁38へ送
られる。尚、自動手動切換器55は自動側になってい
る。
At this time, the switching relays 69 and 70 are normally a.
Since it is on the side, the gains setters 62, 64 send the gains 66, 68 whose value is 1 to the two multipliers 53, 54, and therefore the command signal 51 cannot change its value. It is directly sent to the flow rate adjusting valve 37 and the flow rate adjusting valve 38. The automatic manual switch 55 is on the automatic side.

【0032】そして、上記に加えて、微分器56で前記
温度検出器45からの温度検出信号46の変化率を求
め、ハイ・ローモニタ60で微分器56からの変化率信
号57と予め設定されている二つの設定値(しきい値)
との大小をそれぞれ比較する。
In addition to the above, the change rate of the temperature detection signal 46 from the temperature detector 45 is obtained by the differentiator 56, and the change rate signal 57 from the differentiator 56 is preset by the high / low monitor 60. Two set values (threshold value)
Compare the size of each with.

【0033】微分器56からの変化率信号57の値がプ
ラスのしきい値を越えた場合には、ハイ・ローモニタ6
0が切換信号58を出力して切換リレー69をb側に切
換える。
When the value of the rate of change signal 57 from the differentiator 56 exceeds the positive threshold value, the high / low monitor 6
0 outputs the switching signal 58 to switch the switching relay 69 to the b side.

【0034】切換リレー69がb側に切換えられると、
ゲイン設定器61からの値を0.9としたゲイン65が
掛算器53で指令信号51に掛けられることになり、指
令信号51の値がその分だけ減少される。
When the switching relay 69 is switched to the b side,
The multiplier 53 multiplies the command signal 51 by the gain 65 with the value from the gain setter 61 being 0.9, and the value of the command signal 51 is reduced by that amount.

【0035】又、微分器56からの変化率信号57の値
がマイナスのしきい値を下回った場合には、ハイ・ロー
モニタ60が切換信号59を出力して切換リレー70を
b側に切換える。
When the value of the change rate signal 57 from the differentiator 56 falls below the negative threshold value, the high / low monitor 60 outputs the switching signal 59 to switch the switching relay 70 to the b side.

【0036】切換リレー70がb側に切換えられると、
ゲイン設定器63からの値を1.1としたゲイン67が
掛算器54で指令信号51に掛けられることになり、指
令信号51の値がその分だけ増加される。
When the switching relay 70 is switched to the b side,
The gain 67 with the value from the gain setter 63 set to 1.1 is multiplied by the command signal 51 by the multiplier 54, and the value of the command signal 51 is increased by that amount.

【0037】これによって、燃焼ガスの温度の変化率が
プラス側に大きくなったら、流量調整弁37及び流量調
整弁38が通常のフィードバック制御の場合よりも絞り
ぎみになって、補助燃料33及び空気35の供給量を抑
えるように先行的に補正され、燃焼ガスの温度の変化率
がマイナス側に大きくなったら、流量調整弁37及び流
量調整弁38が通常のフィードバック制御の場合よりも
開きぎみになって、補助燃料33及び空気35の供給量
を多めとするように先行的に補正され、これによって、
制御の応答遅れが解消される。
As a result, when the rate of change of the temperature of the combustion gas increases to the positive side, the flow rate adjusting valve 37 and the flow rate adjusting valve 38 become narrower than in the case of the normal feedback control, and the auxiliary fuel 33 and the air. If the rate of change of the temperature of the combustion gas is increased to the negative side by being corrected in advance so as to suppress the supply amount of 35, the flow rate adjusting valve 37 and the flow rate adjusting valve 38 are opened more than in the case of normal feedback control. Therefore, the amount of the auxiliary fuel 33 and the amount of the air 35 supplied are corrected in advance so that they are increased.
Control response delay is eliminated.

【0038】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、切換リレーやゲイン設定器や掛算器
などは1セット以上あれば機能するものであり、又2セ
ットに限ることなく2セット以上設けても良いこと、そ
の他、本発明の要旨を逸脱しない範囲内において種々変
更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but the switching relay, the gain setting device, the multiplier, and the like can function if they are one set or more, and are limited to two sets. Of course, two or more sets may be provided, and other various modifications may be made without departing from the scope of the invention.

【0039】[0039]

【発明の効果】以上説明したように、本発明の燃料電池
発電設備用燃焼制御装置によれば、燃焼機器に対する制
御の応答遅れをなくし得るという優れた効果を奏し得
る。
As described above, according to the combustion control device for a fuel cell power generation facility of the present invention, the excellent effect of eliminating the response delay of the control for the combustion equipment can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】燃料電池発電設備の一般的な概略全体図であ
る。
FIG. 2 is a general schematic overall view of a fuel cell power generation facility.

【図3】従来例の系統図である。FIG. 3 is a system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

4,9 燃焼機器(改質器4,触媒燃焼器9) 34 補助燃料供給路 37 流量調整弁 45 温度検出器 46 温度検出信号 47 設定器 48 温度設定信号 49 減算器 50 偏差信号 51 指令信号 52 比例積分制御器 53,54 掛算器 56 微分器 57 変化率信号 58,59 切換信号 60 ハイ・ローモニタ 61,62,63,64 ゲイン設定器 65,66,67,68 ゲイン 69,70 切換リレー A 燃料電池発電設備 4,9 Combustion equipment (reformer 4, catalytic combustor 9) 34 Auxiliary fuel supply path 37 Flow rate regulating valve 45 Temperature detector 46 Temperature detection signal 47 Setting device 48 Temperature setting signal 49 Subtractor 50 Deviation signal 51 Command signal 52 Proportional-integral controller 53, 54 Multiplier 56 Differentiator 57 Change rate signal 58, 59 Switching signal 60 High / Low monitor 61, 62, 63, 64 Gain setter 65, 66, 67, 68 Gain 69, 70 Switching relay A Fuel Battery power generation equipment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池発電設備Aに設けられた燃焼機
器4,9の燃焼ガス出側に温度検出器45を設け、該温
度検出器45で検出した温度検出信号46と、設定器4
7からの温度設定信号48との偏差を取る減算器49を
設け、減算器49からの偏差信号50を指令信号51に
変換する比例積分制御器52を設けると共に、指令信号
51を掛算器53,54を介して燃焼機器4,9へ接続
された補助燃料供給路34の流量調整弁37へ送るよう
構成し、且つ前記温度検出器45からの温度検出信号4
6の変化率を求める微分器56、該微分器56からの変
化率信号57と予め設定された設定値との大小をそれぞ
れ比較して切換信号58,59を出力するハイ・ローモ
ニタ60、該ハイ・ローモニタ60からの切換信号5
8,59に従いゲイン設定器61,62,63,64が
出力するゲイン65,66,67,68をそれぞれ切換
えて前記掛算器53,54へ送る切換リレー69,7
0、を設けたことを特徴とする燃料電池発電設備用燃焼
制御装置。
1. A temperature detector 45 is provided on a combustion gas outlet side of combustion devices 4, 9 provided in a fuel cell power generation facility A, and a temperature detection signal 46 detected by the temperature detector 45 and a setting device 4 are provided.
7 is provided with a subtracter 49 for taking a deviation from the temperature setting signal 48 from the No. 7, a proportional-integral controller 52 for converting the deviation signal 50 from the subtractor 49 into a command signal 51, and the command signal 51 is multiplied by a multiplier 53, The temperature detection signal 4 from the temperature detector 45 is configured to be sent to the flow rate adjusting valve 37 of the auxiliary fuel supply path 34 connected to the combustion equipment 4, 9 via 54.
6, a differentiator 56 for obtaining the change rate, a high / low monitor 60 for comparing the change rate signal 57 from the differentiator 56 with a preset value and outputting switching signals 58, 59, the high / low monitor 60,・ Switch signal 5 from low monitor 60
Switching relays 69, 7 for switching the gains 65, 66, 67, 68 output from the gain setters 61, 62, 63, 64 to the multipliers 53, 54 according to 8, 59, respectively.
A combustion control device for a fuel cell power generation facility, wherein 0 is provided.
JP3325245A 1991-11-13 1991-11-13 Combustion control device for fuel cell power generating facilities Pending JPH05135793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325245A JPH05135793A (en) 1991-11-13 1991-11-13 Combustion control device for fuel cell power generating facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3325245A JPH05135793A (en) 1991-11-13 1991-11-13 Combustion control device for fuel cell power generating facilities

Publications (1)

Publication Number Publication Date
JPH05135793A true JPH05135793A (en) 1993-06-01

Family

ID=18174655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325245A Pending JPH05135793A (en) 1991-11-13 1991-11-13 Combustion control device for fuel cell power generating facilities

Country Status (1)

Country Link
JP (1) JPH05135793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396198B1 (en) * 2001-08-08 2003-08-27 한국에너지기술연구원 The real time fuel-cell simulator
EP1122805A3 (en) * 2000-02-07 2003-10-29 General Motors Corporation Method for operating a combustor in a fuel cell system
JP2004134361A (en) * 2002-06-11 2004-04-30 General Electric Co <Ge> Method and device for detecting fault in fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122805A3 (en) * 2000-02-07 2003-10-29 General Motors Corporation Method for operating a combustor in a fuel cell system
KR100396198B1 (en) * 2001-08-08 2003-08-27 한국에너지기술연구원 The real time fuel-cell simulator
JP2004134361A (en) * 2002-06-11 2004-04-30 General Electric Co <Ge> Method and device for detecting fault in fuel cell system
US6835478B2 (en) * 2002-06-11 2004-12-28 General Electric Company Method and apparatus for fuel cell system fault detection

Similar Documents

Publication Publication Date Title
JPH0129029B2 (en)
JPS6030062A (en) Output controller of fuel cell
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JPH05135793A (en) Combustion control device for fuel cell power generating facilities
JPS6229869B2 (en)
JPS6356673B2 (en)
JPS63276878A (en) Controller for air cooling type fuel cell
JP3312499B2 (en) Fuel cell generator
JPS6224910B2 (en)
JPS6229868B2 (en)
JPS6229867B2 (en)
JPS58133771A (en) Control system of fuel cell power generating plant
JPS58133776A (en) Control system of fuel cell power generating system
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JP3358227B2 (en) Fuel cell power generation system
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPS58133784A (en) Control system of fuel cell power generating plant
JPS5951478A (en) Power generation system of fuel battery
JPS61263063A (en) Fuel cell power generation system
JPS58133781A (en) Control system of fuel cell power generating plant
JPH01143153A (en) Temperature control method for fused carbonate type fuel cell power generator
JPS61227371A (en) Fuel cell power generation system
JPH1092451A (en) Fuel cell power generation device
JPH0896823A (en) Fuel cell power generating system
JPH0461466B2 (en)