JPH1092451A - Fuel cell power generation device - Google Patents
Fuel cell power generation deviceInfo
- Publication number
- JPH1092451A JPH1092451A JP8240610A JP24061096A JPH1092451A JP H1092451 A JPH1092451 A JP H1092451A JP 8240610 A JP8240610 A JP 8240610A JP 24061096 A JP24061096 A JP 24061096A JP H1092451 A JPH1092451 A JP H1092451A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- fuel cell
- pressure
- nozzle
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池の排ガス
および改質器の燃焼排ガスで駆動する熱回収用の排ガス
タービンを装置内に設けてなる加圧型燃料電池発電装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fuel cell power generator in which an exhaust gas turbine for heat recovery driven by exhaust gas from a fuel cell and combustion exhaust gas from a reformer is provided.
【0002】[0002]
【従来の技術】燃料電池発電システムでは、天然ガス、
LPG、メタノール等の燃料を改質器で水素リッチな燃
料ガスに改質して燃料電池のアノードに供給し、カソー
ドには空気ブロア、コンプレッサを通じて大気側から取
り込んだ空気を供給して発電するとともに、アノード側
から排出する燃料系の排ガス(水素を含む)を改質器の
バーナに送り込んで燃焼させ、その燃焼熱で燃料の改質
を行うようにしている。また、特に燐酸型燃料電池で動
作圧力を4kg/cm2G 、動作温度を190℃程度で運転を
行う加圧型燃料電池発電装置では、プラント効率の向上
を狙いに、改質器から排出する燃焼排ガスおよび燃料電
池のカソードから排出する空気排ガスで排ガスタービン
を駆動し、燃焼排ガスの保有する熱エネルギーを動力と
して回収する方式が開発されている。2. Description of the Related Art In a fuel cell power generation system, natural gas,
LPG, methanol and other fuels are reformed into hydrogen-rich fuel gas by a reformer and supplied to the anode of the fuel cell, and the cathode is supplied with air taken in from the atmosphere through an air blower and compressor to generate electricity. In addition, the exhaust gas (including hydrogen) of the fuel system discharged from the anode side is sent to a burner of a reformer and burned, and the fuel is reformed by the heat of combustion. In particular, in a pressurized fuel cell power generator that operates at a operating pressure of 4 kg / cm 2 G and an operating temperature of about 190 ° C. in a phosphoric acid fuel cell, the combustion discharged from the reformer is intended to improve plant efficiency. A method has been developed in which an exhaust gas turbine is driven by exhaust gas and air exhaust gas exhausted from a cathode of a fuel cell, and thermal energy possessed by the combustion exhaust gas is recovered as power.
【0003】一方、燃料電池では内部のマトリクスを透
過してアノードとカソードとの極間でガスクロスが発生
すると、電池の出力特性が低下するほか、局所加熱が生
じて電池寿命が低下する。そのために、アノード/カソ
ードの極間差圧をある程度以内に抑える必要があり、こ
の差圧制御手段として、従来では燃料電池の出口側でア
ノード、カソードの排ガス配管系に差圧制御弁を介装し
て、極間差圧を許容限度内に維持するようにした極間差
圧制御方式が一般に採用されている。On the other hand, in a fuel cell, when a gas cross is generated between the anode and the cathode through the internal matrix through the internal matrix, the output characteristics of the battery are reduced, and local heating is caused to shorten the battery life. For this purpose, it is necessary to suppress the anode-cathode electrode-to-electrode differential pressure within a certain range. Conventionally, as this differential pressure control means, a differential pressure control valve is provided in the exhaust gas piping system of the anode and the cathode at the outlet side of the fuel cell. Then, an inter-electrode differential pressure control method for maintaining the inter-electrode differential pressure within an allowable limit is generally adopted.
【0004】このような燃料電池発電装置においては、
燃料電池の運転負荷の増減によって、燃料電池に導入さ
れる燃料ガス、空気の流量が変動し、これに伴い排ガス
タービンに流入するカソードおよび改質器からの排ガス
の流量が変化する。しかも排ガスタービン(タービン出
口が大気に開放している)の特性から、排ガスタービン
への流入ガス流量が低下すると、排ガスタービンでのガ
ス膨張比が小となって排ガスタービンの入口側圧力が減
少し、この結果として排ガスタービンからみて上流側に
ある燃料電池の排ガス配管系のガス圧が低下する。[0004] In such a fuel cell power generator,
As the operating load of the fuel cell increases or decreases, the flow rates of the fuel gas and air introduced into the fuel cell fluctuate, and accordingly, the flow rates of the exhaust gas from the cathode and the reformer flowing into the exhaust gas turbine change. Moreover, due to the characteristics of the exhaust gas turbine (the turbine outlet is open to the atmosphere), when the flow rate of the gas flowing into the exhaust gas turbine decreases, the gas expansion ratio in the exhaust gas turbine decreases, and the pressure on the inlet side of the exhaust gas turbine decreases. As a result, the gas pressure in the exhaust gas piping system of the fuel cell located upstream from the exhaust gas turbine decreases.
【0005】すなわち、燃料電池の排ガス配管系の圧力
が排ガスタービンへの流入量によって直接に影響をう
け、ガス流量の少ない軽負荷時には排ガス圧力が大きく
低下し、逆にガス流量の多い高負荷時には排ガス圧力が
上昇する。このため、実際の負荷範囲での最大負荷と最
小負荷との運転状況を比較すると、改質器の燃焼排ガス
および燃料電池の空気系排ガスをそのまま排ガスタービ
ンに導入する方式では、燃料電池の排ガス配管系におけ
る圧力変動幅が極めて大となり、燃料電池の運転効率が
低下する。That is, the pressure of the exhaust gas piping system of the fuel cell is directly affected by the amount of gas flowing into the exhaust gas turbine, and the exhaust gas pressure is greatly reduced at a light load with a small gas flow, and conversely at a high load with a large gas flow. The exhaust gas pressure rises. For this reason, when comparing the operating conditions between the maximum load and the minimum load in the actual load range, the method in which the combustion exhaust gas from the reformer and the air-based exhaust gas from the fuel cell are directly introduced into the exhaust gas turbine is not used. The pressure fluctuation width in the system becomes extremely large, and the operating efficiency of the fuel cell decreases.
【0006】特開平2ー297866には、この課題を
解決するため、排ガスタービンの上流入口付近に圧力制
御弁を設け、排ガス配管系内の圧力を所定の圧力に制御
する方法が記載されている。図5は、そのような構成の
従来の燃料電池発電装置のシステムフロー図である。図
5において、1は加圧型の燃料電池、2は天然ガスなど
の燃料を水素リッチな燃料ガスに改質する燃料改質器、
3は大気から取り込んだ空気を昇圧する空気ブロア、4
は排ガスの熱回収を行う排ガスタービン、5は発電機、
6、7は燃料電池1のアノード1a、カソード1b出口
より引き出した燃料系、空気系の排ガス管路に接続した
差圧制御弁である。Japanese Patent Application Laid-Open No. 2-297866 describes a method for solving this problem by providing a pressure control valve near the upstream inlet of an exhaust gas turbine and controlling the pressure in an exhaust gas piping system to a predetermined pressure. . FIG. 5 is a system flow diagram of a conventional fuel cell power generator having such a configuration. In FIG. 5, 1 is a pressurized fuel cell, 2 is a fuel reformer for reforming a fuel such as natural gas into a hydrogen-rich fuel gas,
3 is an air blower that pressurizes air taken in from the atmosphere, 4
Is an exhaust gas turbine that performs heat recovery of exhaust gas, 5 is a generator,
Reference numerals 6 and 7 denote differential pressure control valves connected to an exhaust gas line of a fuel system and an air system drawn from outlets of an anode 1a and a cathode 1b of the fuel cell 1, respectively.
【0007】かかる構成の発電装置の運転時には、改質
器2のバーナ2aに燃料電池1のアノード1a排ガスと
空気ブロア3から送気した空気を供給して燃焼させ、そ
の燃焼熱により燃料と改質触媒とを触媒反応させて、燃
料を水素リッチな燃料ガスに改質する。また、改質器2
より引き出した燃焼排ガス配管8に、燃料電池1のカソ
ード1bより引き出した空気排ガス配管9を結合し、改
質器2の燃焼排ガスと空気系の排ガスとを合流させた上
で排ガスタービン4に導いて排ガスタービン4を駆動
し、これに接続された発電機5より得られた電力を例え
ば空気ブロア3の駆動モータ3aに供給する。During operation of the power generator having such a configuration, exhaust gas from the anode 1a of the fuel cell 1 and air sent from the air blower 3 are supplied to the burner 2a of the reformer 2 and burned, and the fuel is converted into fuel by the heat of combustion. The fuel is reformed to a hydrogen-rich fuel gas by causing a catalytic reaction with the high quality catalyst. In addition, reformer 2
An air exhaust pipe 9 drawn from the cathode 1b of the fuel cell 1 is connected to a flue gas pipe 8 drawn out of the fuel cell 1, and the flue gas of the reformer 2 and the exhaust gas of the air system are merged and then led to the exhaust gas turbine 4. To drive the exhaust gas turbine 4 and supply electric power obtained from a generator 5 connected thereto to, for example, a drive motor 3 a of the air blower 3.
【0008】一方、燃料電池1の通常運転時には、燃料
電池1の圧力容器(図示せず)に封入した窒素のガス圧
を基準に差圧制御弁6、7を制御し、燃料電池1におけ
るアノード1aとカソード1bとの極間差圧が許容限度
以内に収まるように差圧制御を行っている。さらに、排
ガスタービン4の入口付近には圧力制御弁10が設けら
れている。そして差圧制御弁6、7の下流側には、圧力
検出器11、12が設置してあり、その検出信号は信号
切替器13を介して圧力制御弁制御部14に与えられ
る。一方、圧力制御弁制御部14は、加圧型燃料電池1
の運転圧力に相応して定めた所定の一定圧、もしくは負
荷に対して求められた圧力曲線に対応した圧力を設定値
として与え、前記圧力検出器11、12の検出値を基
に、燃焼排ガス配管8系内のガス圧が設定圧力を維持す
るように圧力制御弁10をフィードバック制御してい
る。On the other hand, during normal operation of the fuel cell 1, the differential pressure control valves 6 and 7 are controlled based on the gas pressure of nitrogen sealed in a pressure vessel (not shown) of the fuel cell 1, and the anode in the fuel cell 1 is controlled. The differential pressure control is performed so that the differential pressure between the electrode 1a and the cathode 1b falls within an allowable limit. Further, a pressure control valve 10 is provided near the inlet of the exhaust gas turbine 4. Downstream of the differential pressure control valves 6, 7, pressure detectors 11, 12 are provided, and their detection signals are given to a pressure control valve control unit 14 via a signal switch 13. On the other hand, the pressure control valve controller 14 controls the pressurized fuel cell 1
A predetermined constant pressure determined in accordance with the operating pressure or a pressure corresponding to a pressure curve obtained for the load is given as a set value, and the combustion exhaust gas is detected based on the detection values of the pressure detectors 11 and 12. The pressure control valve 10 is feedback-controlled so that the gas pressure in the piping 8 system maintains the set pressure.
【0009】このようにして、圧力制御弁10により燃
焼排ガス配管8系内のガス圧を設定圧力に維持すること
で、負荷変動に伴う排ガス配管系の圧力変動幅を差圧制
御弁6、7の制御可能な範囲内に収めることを可能にし
ている。In this way, by maintaining the gas pressure in the flue gas piping 8 system at the set pressure by the pressure control valve 10, the pressure fluctuation width of the flue gas piping system due to the load fluctuation can be reduced. Within the controllable range.
【0010】[0010]
【発明が解決しようとする課題】しかしながら従来の方
式では、圧力制御弁10の下流の圧力は、排ガスタービ
ン4に流入するガス流量に依存して大きく変動し、燃料
電池1の運転負荷が小さく排ガスタービン4への流入ガ
ス流量も少ない場合は、排ガスタービン4入口圧力が低
下し、排ガスタービン4の動力回収量も低下する。ま
た、圧力制御弁10の前後のガス圧差が大きいので、圧
力制御弁10の開度は非常に小さな開度、あるいは最悪
の場合ONーOFF制御のようになることもある。そし
て、この制御性の悪さが、燃焼排ガス配管8系内および
改質器2内の圧力変動を引き起こす不都合を生じる。こ
のように、圧力制御弁10の開度調節により燃焼排ガス
配管8系内のガス圧を微調整する際の圧力制御弁10の
制御性については、依然問題が残されていた。However, in the conventional system, the pressure downstream of the pressure control valve 10 fluctuates greatly depending on the gas flow rate flowing into the exhaust gas turbine 4, and the operating load of the fuel cell 1 is small and the exhaust gas When the flow rate of the gas flowing into the turbine 4 is also small, the pressure at the exhaust gas turbine 4 inlet decreases, and the power recovery amount of the exhaust gas turbine 4 also decreases. Further, since the gas pressure difference before and after the pressure control valve 10 is large, the opening of the pressure control valve 10 may be very small, or in the worst case, ON-OFF control. Then, the poor controllability causes a disadvantage that the pressure in the flue gas pipe 8 and the reformer 2 fluctuates. As described above, the controllability of the pressure control valve 10 when the gas pressure in the flue gas pipe 8 is finely adjusted by adjusting the opening of the pressure control valve 10 still has a problem.
【0011】本発明は、上記の点に鑑みてなされたもの
であり、燃料電池1の運転負荷変動に伴って排ガスター
ビン4に流入する排ガスの流量が変化しても、排ガスタ
ービン4の動力を低下させることなく流入ガスの持つエ
ネルギーを有効に回収するとともに、圧力制御弁10の
制御性に優れ、精密な排ガス配管系内の圧力制御が可能
な燃料電池発電装置を提供することを目的とする。The present invention has been made in view of the above points, and the power of the exhaust gas turbine 4 is maintained even if the flow rate of the exhaust gas flowing into the exhaust gas turbine 4 changes due to a change in the operating load of the fuel cell 1. It is an object of the present invention to provide a fuel cell power generation device capable of effectively recovering the energy of an inflow gas without lowering it, having excellent controllability of a pressure control valve 10, and capable of precisely controlling the pressure in an exhaust gas piping system. .
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
に、本願発明においては、燃料電池の排ガスと燃料改質
器の燃焼排ガスにより駆動する排ガスタービンと、前記
排ガスタービンへ排ガスを導入するための排ガス配管系
とを有し、前記排ガス配管系内のガス圧を所定の値に維
持するための圧力制御弁を前記排ガスタービンの上流に
設けてなる燃料電池発電装置において、前記排ガスター
ビンの排ガス入口部に可変型ノズルを設けた。この可変
型ノズルと前記圧力制御弁は直列に位置するものであ
る。そして、この可変型ノズルは燃料電池の運転負荷に
対して決められたノズル開度を示すノズル開度曲線にし
たがって、適正なノズル開度をとるように制御されるも
のとする。In order to achieve the above object, the present invention provides an exhaust gas turbine driven by exhaust gas from a fuel cell and combustion exhaust gas from a fuel reformer, and a method for introducing exhaust gas into the exhaust gas turbine. An exhaust gas piping system, wherein a pressure control valve for maintaining a gas pressure in the exhaust gas piping system at a predetermined value is provided upstream of the exhaust gas turbine. A variable nozzle was provided at the entrance. The variable nozzle and the pressure control valve are located in series. The variable nozzle is controlled so as to take an appropriate nozzle opening in accordance with a nozzle opening curve indicating the nozzle opening determined with respect to the operating load of the fuel cell.
【0013】これにより、ノズルの上流に設けられた圧
力制御弁の前後のガス圧差が小さくなるため、従来のよ
うに圧力制御弁を全開または全閉のいずれかの状態に小
刻みに変化させてラフな制御を行うのではなく、燃料電
池の運転負荷変動に応じた適正な圧力制御弁の開度を保
持し、排ガス配管系内および改質器内の圧力変動が許容
範囲を超えることなくスムーズな調整を行うことが可能
となった。As a result, the gas pressure difference before and after the pressure control valve provided upstream of the nozzle is reduced, so that the pressure control valve is gradually changed to one of a fully opened state and a fully closed state as in the prior art. Rather than performing appropriate control, maintain the appropriate opening of the pressure control valve according to the fluctuation of the operating load of the fuel cell, and smooth the fluctuation of pressure in the exhaust gas piping system and the reformer without exceeding the allowable range. It is now possible to make adjustments.
【0014】また、排ガスタービンのノズルは、排ガス
の持つ熱エネルギーを速度エネルギーに変換する作用を
有するものであり、この可変型ノズルの開度を運転負荷
によって調整することにより、低負荷時の排ガスタービ
ン流入ガス流量が少ない場合においても、排ガスタービ
ン流入ガスの圧力低下を抑え、排ガスの持つエネルギー
を有効に回収することを可能にする。Further, the nozzle of the exhaust gas turbine has a function of converting thermal energy of the exhaust gas into velocity energy. By adjusting the opening degree of the variable type nozzle according to the operating load, the exhaust gas turbine at the time of low load is used. Even when the flow rate of the gas flowing into the turbine is small, it is possible to suppress the pressure drop of the gas flowing into the exhaust gas turbine and effectively recover the energy of the exhaust gas.
【0015】しかし、運転負荷に応じて開度を制御され
る可変型ノズルを有する上述のような構成としても、経
時的な燃料電池特性の変化によるガス流量の変化等、運
転負荷以外の要因によっても圧力制御弁前後の圧力差は
変動する。本願発明の第二の発明は、この差圧変動に対
応するため、上記の排ガスタービンにノズルを設けた構
成の燃料電池発電装置において、圧力制御弁前後の圧力
差を検出する差圧検出器を設けた構成とするものであ
る。そして、検出した圧力差が、標準圧力差より大きい
設定値以上の値を一定時間以上継続するならば、排ガス
タービンのノズルの開度を一定量減じ、検出した圧力差
が標準圧力差より小さい方の設定値以下の値を一定時間
以上継続するならば、排ガスタービンのノズルの開度を
一定量増すこととする。However, even with the above-described configuration having the variable nozzle whose opening degree is controlled in accordance with the operating load, the variable nozzle can be controlled by factors other than the operating load, such as a change in gas flow rate due to a change in fuel cell characteristics over time. The pressure difference before and after the pressure control valve also fluctuates. According to a second aspect of the present invention, a fuel cell power generator having a nozzle provided in the exhaust gas turbine described above includes a differential pressure detector for detecting a pressure difference before and after a pressure control valve in order to cope with the fluctuation of the differential pressure. This is a configuration provided. If the detected pressure difference continues to be equal to or greater than the set value larger than the standard pressure difference for a certain period of time, the opening degree of the exhaust gas turbine nozzle is reduced by a certain amount, and the detected pressure difference is smaller than the standard pressure difference. If the value equal to or less than the set value is continued for a predetermined time or more, the opening of the nozzle of the exhaust gas turbine is increased by a certain amount.
【0016】このような微調整を加えることにより、圧
力制御弁の前後差圧が常に所定の範囲内に抑えられるの
で、圧力制御弁による排ガス配管系内の圧力制御性がよ
り向上するとともに、排ガスタービンにおいても排ガス
の持つエネルギーをより無駄なく有効に回収できるよう
になり、燃料電池発電装置全体の効率を上げることがで
きる。By performing such fine adjustment, the differential pressure across the pressure control valve is always kept within a predetermined range. Therefore, the pressure controllability of the pressure control valve in the exhaust gas piping system is further improved, and Also in the turbine, the energy of the exhaust gas can be effectively recovered without waste, and the efficiency of the entire fuel cell power generator can be increased.
【0017】[0017]
【発明の実施の形態】図1は本発明の実施例を示すシス
テムフロー図である。簡略のため、図5と共通する部位
には同じ記号を付して説明を省略する。本発明の燃料電
池発電装置は図1に示すように、圧力制御弁10の下流
側かつ直列に設けられた排ガスタービン4の入口に、可
変型のノズル15を設けるものである。圧力制御弁10
を通過したガスは、可変型ノズル15を介して排ガスタ
ービン4に導入され、排ガスの持つ熱エネルギーは回転
エネルギーに変換されて発電機5を駆動し、電力として
回収される。FIG. 1 is a system flow chart showing an embodiment of the present invention. For the sake of simplicity, the same parts as those in FIG. As shown in FIG. 1, the fuel cell power generation device of the present invention is provided with a variable nozzle 15 at the inlet of the exhaust gas turbine 4 provided downstream of the pressure control valve 10 and in series. Pressure control valve 10
Is introduced into the exhaust gas turbine 4 through the variable nozzle 15, and the thermal energy of the exhaust gas is converted into rotational energy, drives the generator 5, and is collected as electric power.
【0018】圧力制御弁10は燃焼排ガス配管8系内の
圧力を所定の値を維持するような適度な開度となるよう
に制御されており、可変型ノズル15は、圧力制御弁1
0が適度な開度を維持して燃焼排ガス配管8系内の圧力
を制御することが出来るように、圧力制御弁10と可変
型ノズル15の圧力を制御する。このノズル開度は、運
転負荷に応じて図2に示すノズル開度曲線に従って設定
される。The pressure control valve 10 is controlled so that the pressure in the flue gas pipe 8 is maintained at a predetermined value so as to maintain a predetermined value.
0 controls the pressure of the pressure control valve 10 and the variable nozzle 15 so that the pressure in the flue gas piping 8 system can be controlled while maintaining an appropriate opening degree. This nozzle opening is set according to the nozzle opening curve shown in FIG. 2 according to the operating load.
【0019】このノズル開度曲線は、圧力制御弁10の
燃焼排ガス配管8系内の圧力制御性を考慮して、各運転
負荷において圧力制御弁10が適正な圧力制御が行える
ようなノズル開度を選定して求めたものである。運転負
荷の値がノズル開度制御部18に与えられると、ノズル
開度制御部18は図2に示すノズル開度曲線に従って、
運転負荷に応じた適正なノズル開度を維持するように制
御を行う。In consideration of the pressure controllability of the pressure control valve 10 in the flue gas pipe 8 system, the nozzle opening degree curve is such that the pressure control valve 10 can perform appropriate pressure control at each operation load. It was obtained by selecting. When the value of the operating load is given to the nozzle opening degree controller 18, the nozzle opening degree controller 18 follows the nozzle opening degree curve shown in FIG.
Control is performed so as to maintain an appropriate nozzle opening degree according to the operation load.
【0020】図3は、第二の発明の実施例を示すシステ
ムフロー図である。図3は、上述した図1に示す燃料電
池発電装置において、圧力制御弁10の前後差圧を検出
する差圧検出器16を設けた構成としたものであり、差
圧検出器16の検出信号がノズル開度補正用制御部17
に入力され、制御信号が可変型ノズル15に出力されて
ノズル開度の補正を行うものである。このような構成と
することにより、燃料電池1の運転負荷変動以外の理由
により生じた排ガス流量の変化による圧力制御弁10前
後の圧力差の変動が、常に所定の範囲内にあるように補
正を行うことが可能となる。このような制御を行った場
合の圧力制御弁10前後の差圧とノズル開度の関係につ
いて図4に示す。FIG. 3 is a system flow chart showing an embodiment of the second invention. FIG. 3 shows a configuration in which a differential pressure detector 16 for detecting a differential pressure across the pressure control valve 10 is provided in the fuel cell power generator shown in FIG. 1 described above, and a detection signal of the differential pressure detector 16 is provided. Is the nozzle opening correction controller 17
And a control signal is output to the variable nozzle 15 to correct the nozzle opening. With such a configuration, the correction is performed so that the change in the pressure difference between the front and rear of the pressure control valve 10 due to the change in the exhaust gas flow rate caused by a reason other than the change in the operation load of the fuel cell 1 is always within a predetermined range. It is possible to do. FIG. 4 shows the relationship between the differential pressure across the pressure control valve 10 and the nozzle opening when such control is performed.
【0021】図4は、圧力制御弁10の前後差圧と可変
型ノズル15の開度補正の関係を模式的に示したもので
ある。図4の(b)は運転負荷が一定状態の場合、
(c)は負荷上昇中の場合におけるノズル開度の補正を
表している。ここでは一例として、圧力制御弁10の前
後差圧の計画値を0.2kg/cm2とし、差圧がt0から一定
時間(例えば10秒)経過後のt1まで継続して0.3kg
/cm2を上回ると、可変型ノズル15の開度を一定量(例
えば1%)減じ、また圧力制御弁10の前後差圧が0.
1kg/cm2を一定時間(例えば10秒)以上継続して下回
れば、可変型ノズル15の開度を一定量(例えば1%)
増大させるようにした場合を示している。FIG. 4 schematically shows the relationship between the differential pressure across the pressure control valve 10 and the opening correction of the variable nozzle 15. FIG. 4B shows a case where the operating load is constant.
(C) shows the correction of the nozzle opening when the load is rising. Here, as an example, the planned value of the differential pressure before and after the pressure control valve 10 is 0.2 kg / cm 2 , and the differential pressure is 0.3 kg continuously from t 0 to t 1 after a lapse of a certain time (for example, 10 seconds).
If the pressure exceeds 10 cm / cm 2 , the opening of the variable nozzle 15 is reduced by a fixed amount (for example, 1%), and the differential pressure across the pressure control valve 10 is reduced to 0.
If the pressure falls below 1 kg / cm 2 continuously for a certain period of time (for example, 10 seconds), the opening degree of the variable nozzle 15 becomes a certain amount (for example, 1%).
The case where it is made to increase is shown.
【0022】[0022]
【発明の効果】上述のように、本願発明は、燃料電池発
電装置に連結された排ガスタービンに可変型ノズルを設
け、この可変型ノズルを運転負荷に応じたノズル開度と
なるように制御することとした。これにより、可変型ノ
ズルの上流に設けられた圧力制御弁の前後のガス圧差が
小さくなったため、燃料電池の運転負荷変動に応じた適
度な圧力制御弁の開度を保持し、排ガス配管系内の圧力
を過度に変化させることなくスムーズな調整を行うこと
が可能となった。As described above, according to the present invention, a variable nozzle is provided in an exhaust gas turbine connected to a fuel cell power generator, and the variable nozzle is controlled so as to have a nozzle opening corresponding to an operation load. I decided that. As a result, since the gas pressure difference before and after the pressure control valve provided upstream of the variable nozzle became small, an appropriate opening degree of the pressure control valve corresponding to the fluctuation of the operating load of the fuel cell was maintained, and the exhaust gas piping system It has become possible to perform a smooth adjustment without excessively changing the pressure.
【0023】またさらに、低負荷時の排ガスタービン流
入ガス流量が少ない場合においても、排ガスタービン流
入ガスの圧力低下を抑え、排ガスの持つエネルギーを最
大限有効に回収することが可能となった。さらに第二の
発明として、上記の排ガスタービンに可変型ノズルを設
けた構成の燃料電池発電装置において、圧力制御弁の前
後の圧力差を検出する差圧検出器を設けた構成とし、検
出した圧力差が、標準圧力差より大きい設定値以上の値
を一定時間以上継続するならば、排ガスタービンのノズ
ル開度を一定量減じ、検出した圧力差が標準圧力差より
小さいほうの設定値以下の値を一定時間以上継続するな
らばノズル開度を一定量増すこととした。これにより、
経時的な燃料電池の特性変化等の運転負荷変動以外の理
由によるガス流量の変化等にも対応して、圧力制御弁の
前後差圧が常に所定の範囲内に収まるように微調整する
ことが可能となった。従って、圧力制御弁による排ガス
配管系内の圧力制御性がより向上するとともに、排ガス
タービンにおいても排ガスの持つエネルギーをより無駄
なく有効に回収できるようになり、燃料電池発電装置全
体の効率を上げることが出来るものである。Further, even when the flow rate of the gas flowing into the exhaust gas turbine at a low load is small, it is possible to suppress the pressure drop of the gas flowing into the exhaust gas turbine and to recover the energy of the exhaust gas as effectively as possible. Further, as a second invention, in the fuel cell power generator having a configuration in which a variable nozzle is provided in the exhaust gas turbine, a configuration is provided in which a differential pressure detector for detecting a pressure difference before and after the pressure control valve is provided, and the detected pressure is If the difference is greater than the set value greater than the standard pressure difference and continues for a certain period of time, the exhaust gas turbine nozzle opening is reduced by a fixed amount, and the detected pressure difference is less than the set value smaller than the standard pressure difference. Is continued for a certain time or longer, the nozzle opening is increased by a certain amount. This allows
It is possible to fine-tune the differential pressure across the pressure control valve to always fall within a predetermined range in response to changes in gas flow rate due to reasons other than operating load fluctuations such as changes in fuel cell characteristics over time. It has become possible. Therefore, the pressure control in the exhaust gas piping system by the pressure control valve is further improved, and the energy of the exhaust gas can also be effectively collected in the exhaust gas turbine without waste, thereby increasing the efficiency of the entire fuel cell power generator. Can be done.
【図1】本発明の実施例を示すシステムフロー図。FIG. 1 is a system flow chart showing an embodiment of the present invention.
【図2】運転負荷とノズル開度の関係を示すノズル曲線
図。FIG. 2 is a nozzle curve diagram showing a relationship between an operation load and a nozzle opening degree.
【図3】本発明の第二の実施例を示すシステムフロー
図。FIG. 3 is a system flow chart showing a second embodiment of the present invention.
【図4】圧力制御弁の前後差圧とノズルの開度補正の関
係を模式的に示した図。FIG. 4 is a diagram schematically showing a relationship between a differential pressure across the pressure control valve and correction of a nozzle opening.
【図5】従来の燃料電池発電装置のシステムフロー図。FIG. 5 is a system flow diagram of a conventional fuel cell power generator.
1…燃料電池、1a…アノード、1b…カソード、2…
改質器、3…空気ブロア、4…排ガスタービン、5…発
電機、6,7…差圧制御弁、8…燃焼排ガス配管、9…
空気排ガス配管、10…圧力制御弁、11,12…圧力
検出器、13…信号切換器、14…圧力制御弁制御部、
15…可変型ノズル、16…差圧検出器、17…ノズル
開度補正用制御部、18…ノズル開度制御部。DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 1a ... Anode, 1b ... Cathode, 2 ...
Reformer, 3 ... Air blower, 4 ... Exhaust gas turbine, 5 ... Generator, 6, 7 ... Differential pressure control valve, 8 ... Combustion exhaust gas piping, 9 ...
Air exhaust gas piping, 10 pressure control valves, 11 and 12 pressure detectors, 13 signal switchers, 14 pressure control valve control units,
15 ... variable nozzle, 16 ... differential pressure detector, 17 ... nozzle opening correction control unit, 18 ... nozzle opening control unit.
Claims (3)
スにより駆動する排ガスタービンと、前記排ガスタービ
ンへ排ガスを導入するための排ガス配管系とを有し、前
記排ガス配管系内のガス圧を所定の値に維持するための
圧力制御弁を前記排ガスタービンの上流に設けてなる燃
料電池発電装置において、前記圧力制御弁と前記排ガス
タービンの間に直列に設けられた可変型ノズルと、当該
可変型ノズルの開度を前記燃料電池の運転負荷に応じて
制御するノズル開度制御部とを有することを特徴とする
燃料電池発電装置。An exhaust gas turbine driven by exhaust gas of a fuel cell and combustion exhaust gas of a fuel reformer, and an exhaust gas piping system for introducing exhaust gas to the exhaust gas turbine, wherein a gas pressure in the exhaust gas piping system is provided. In a fuel cell power generator provided with a pressure control valve for maintaining a predetermined value upstream of the exhaust gas turbine, a variable nozzle provided in series between the pressure control valve and the exhaust gas turbine; A fuel cell power generator, comprising: a nozzle opening controller that controls the opening of the variable nozzle in accordance with the operating load of the fuel cell.
運転負荷に応じて決められたノズル開度曲線に従った設
定値を前記可変型ノズルに与えて制御するものであるこ
とを特徴とする請求項1に記載の燃料電池発電装置。2. The control device according to claim 1, wherein the nozzle opening control unit controls the variable nozzle by giving a set value according to a nozzle opening curve determined according to an operation load of the fuel cell. The fuel cell power generator according to claim 1, wherein
置において、前記圧力制御弁の前後の圧力差を検出する
差圧検出器と、当該差圧検出器の圧力検出信号に基づい
て、その圧力差が第一の設定値以上の値を所定時間以上
継続するときに前記可変型ノズルの開度を所定量減じ、
その圧力差が前記第一の設定値より低く設定された第二
の設定値以下の値を所定時間以上継続するときに前記可
変型ノズルの開度を所定量増加させるように前記ノズル
開度制御部に指令するノズル開度補正用制御部とを備え
たことを特徴とする燃料電池発電装置。3. The fuel cell power generator according to claim 1, wherein a differential pressure detector for detecting a pressure difference between before and after the pressure control valve and a pressure detection signal from the differential pressure detector are provided. When the pressure difference continues a value equal to or greater than the first set value for a predetermined time or more, the opening degree of the variable nozzle is reduced by a predetermined amount,
The nozzle opening control is performed so as to increase the opening of the variable nozzle by a predetermined amount when the pressure difference continues to be a value equal to or less than a second set value lower than the first set value for a predetermined time or more. And a control unit for correcting a nozzle opening degree instructing the unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8240610A JPH1092451A (en) | 1996-09-11 | 1996-09-11 | Fuel cell power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8240610A JPH1092451A (en) | 1996-09-11 | 1996-09-11 | Fuel cell power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1092451A true JPH1092451A (en) | 1998-04-10 |
Family
ID=17062063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8240610A Pending JPH1092451A (en) | 1996-09-11 | 1996-09-11 | Fuel cell power generation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1092451A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002037587A3 (en) * | 2000-10-30 | 2003-07-17 | Ztek Corp | A hybrid electrical power system employing fluid regulating elements for controlling various operational parameters of the system |
KR101050847B1 (en) | 2004-11-02 | 2011-07-21 | 삼성테크윈 주식회사 | Fuel Cell Turbine Generator |
-
1996
- 1996-09-11 JP JP8240610A patent/JPH1092451A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002037587A3 (en) * | 2000-10-30 | 2003-07-17 | Ztek Corp | A hybrid electrical power system employing fluid regulating elements for controlling various operational parameters of the system |
KR101050847B1 (en) | 2004-11-02 | 2011-07-21 | 삼성테크윈 주식회사 | Fuel Cell Turbine Generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3344439B2 (en) | Combustion device and combustion method for turbine compressor | |
KR20020031686A (en) | Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem | |
JPH1092451A (en) | Fuel cell power generation device | |
JP4097193B2 (en) | Combined power generation facilities for fuel cells and gas turbines and their start / stop methods | |
JPH07192742A (en) | Catalyst layer temperature control system of fuel reformer for fuel cell | |
JP2000348749A (en) | Starting method of fuel cell power generation plant | |
JPH07123050B2 (en) | Molten carbonate fuel cell power plant | |
JP3137147B2 (en) | Control method for turbine compressor device for fuel cell facility | |
JPH053043A (en) | Fuel cell device | |
JP3928675B2 (en) | Combined generator of fuel cell and gas turbine | |
JPH0547401A (en) | Fuel changeover method of fuel cell and its apparatus | |
JPH0878030A (en) | Fuel cell power generating device | |
JP3509141B2 (en) | Fuel cell power generator | |
JPH0824054B2 (en) | Fuel cell power plant and control method thereof | |
JPS5975571A (en) | Method for operating power generating system with fuel cell | |
JPS60157163A (en) | Fuel cell system | |
JPS6180767A (en) | Fuel supply system for fuel cell electric power generating plant | |
JPH02213056A (en) | Fuel cell power generating plant | |
JPH0547399A (en) | Temperature control method and device for reforming device of fuel cell power generating system | |
JPH02297866A (en) | Fuel cell power generating system | |
JPH0636790A (en) | Fuel cell power plant | |
JPH053042A (en) | Controlling device for fuel cell device | |
JPH06251789A (en) | Temperature control for fuel cell power generation equipment | |
JPS61227371A (en) | Fuel cell power generation system | |
JPS61140071A (en) | Fuel cell plant |