JPH06251789A - Temperature control for fuel cell power generation equipment - Google Patents

Temperature control for fuel cell power generation equipment

Info

Publication number
JPH06251789A
JPH06251789A JP5037594A JP3759493A JPH06251789A JP H06251789 A JPH06251789 A JP H06251789A JP 5037594 A JP5037594 A JP 5037594A JP 3759493 A JP3759493 A JP 3759493A JP H06251789 A JPH06251789 A JP H06251789A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
cathode gas
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5037594A
Other languages
Japanese (ja)
Inventor
Koichi Onishi
孝一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5037594A priority Critical patent/JPH06251789A/en
Publication of JPH06251789A publication Critical patent/JPH06251789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent a circulating quantity of cathode gas and motive power consumption of a blower from becoming excessive when a partial load is applied to a fuel cell by arranging an air preheater, a bypass line and an air adjusting valve, and adjusting an air quantity flowing in the bypass line so that a combustion exhaust gas temperature can coincide with a control setting temperature. CONSTITUTION:An air preheater 22 is arranged in an exhaust gas line 12, and air supplied to a combustion chamber 10a of a reformer is heated indirectly by combustion exhaust gas 4 coming out from the reformer 10. A bypass line 24 supplies the air 6 to the combustion chamber 10a of the reformer by bypassing the air preheater 22, and an air adjusting valve 26 adjusts an air quantity flowing in the bypass line. A control setting value of a combustion exhaust gas temperature at an outlet of the air preheater 22 is set high in a low load according to a load of a fuel cell, and is set low in a high load, and the air quantity flowing in the bypass line is adjusted so that the combustion exhaust gas temperature can coincide with the control setting temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電設備の温
度制御方法に係わり、更に詳しくは、溶融炭酸塩型燃料
電池の運転温度をカソードガスの循環で制御する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control method for fuel cell power generation equipment, and more particularly to a method for controlling the operating temperature of a molten carbonate fuel cell by circulating a cathode gas.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図5に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガスと酸素を含むカソードガ
ス3とから発電する燃料電池20とを一般的に備えてお
り、改質器で作られたアノードガス2は燃料電池に供給
され、燃料電池内でその大部分(例えば80%)を消費
した後、アノード排ガスとして改質器の燃焼室10aに
供給される。改質器ではアノード排ガス中の可燃成分
(水素、一酸化炭素、メタン等)を燃焼室10aで燃焼
し、高温の燃焼ガスにより改質室で改質管を加熱し改質
管内を通る燃料を改質する。改質室を出た燃焼排ガス4
は空気6と合流してカソードガス3となり、燃料電池の
カソード側に必要な二酸化炭素を供給する。燃料電池内
でその一部が反応したカソードガスは、燃料電池の上流
側に一部5が循環され、残りは系外に排出される。
2. Description of the Related Art Molten carbonate fuel cells have characteristics that conventional power generators do not have, such as high efficiency and little impact on the environment, and they are attracting attention as a power generation system following hydropower, thermal power, and nuclear power. Is currently being researched and developed all over the world. Particularly, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, as shown in FIG. 5, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen, A fuel cell 20 for generating electric power from an anode gas and a cathode gas 3 containing oxygen is generally provided, and the anode gas 2 produced by the reformer is supplied to the fuel cell, and most of the fuel gas in the fuel cell ( (For example, 80%), it is supplied to the combustion chamber 10a of the reformer as anode exhaust gas. In the reformer, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned in the combustion chamber 10a, and the high-temperature combustion gas heats the reforming pipe in the reforming chamber to remove the fuel passing through the reforming pipe. Reform. Exhaust gas from the reforming chamber 4
Joins with the air 6 to become the cathode gas 3, and supplies necessary carbon dioxide to the cathode side of the fuel cell. A part of the cathode gas, a part of which has reacted in the fuel cell, is circulated on the upstream side of the fuel cell and the rest is discharged to the outside of the system.

【0003】[0003]

【発明が解決しようとする課題】上述した燃料電池発電
設備において、燃料電池の運転温度を制御するためにカ
ソードガスの循環量を制御する方法が従来とられてい
た。すなわち、燃料電池の運転温度は平均約650℃で
あり、カソードガスの入口温度を約550℃、出口温度
を約700℃になるようにカソードガスの循環量を制御
することにより、燃料電池で発生する熱を除去し、燃料
電池の温度が一定になるように制御していた。しかし、
かかる燃料電池設備では、部分負荷時には、改質器の
特性、及び改質器〜燃料電池間の配管の放熱損失によ
って改質器を出た燃焼排ガスのガス温度が低下し、これ
によりカソード入口温度を100%負荷時と同じ一定値
(例えば550℃)に保持しようとすると、カソードガ
スの循環量を著しく増やす必要があり、このためにブロ
ア消費動力が増大し、ブロア容量が不足する問題点があ
った。また、この問題点を解決するために、ブロア容量
を大きくしカソードガスの循環流量を増やすと、電池を
流れるガス流量が増加し、カソードガスの出口温度が低
下するため、燃料電池入口ガス温度を一定にするには、
カソードガスの循環量を更に増加せざるを得なくなり、
ブロア消費動力が益々増大する。加えて、電池特性は、
部分負荷により出力電流が小さくなると電圧が上昇する
ので、電池内の発熱量が減少し、これによりカソードガ
スの電池出口温度は更に下がり、ますますカソードガス
の循環流量を増加させざるをえなくなる問題点があっ
た。この結果、部分負荷時においてブロア消費動力が過
大になり、送電端熱効率を下げるとともに、ブロア容量
が過大になる問題点があった。
In the above-mentioned fuel cell power generation facility, a method of controlling the circulation amount of the cathode gas has been conventionally used to control the operating temperature of the fuel cell. That is, the operating temperature of the fuel cell is about 650 ° C. on average, and it is generated in the fuel cell by controlling the circulating amount of the cathode gas so that the inlet temperature of the cathode gas is about 550 ° C. and the outlet temperature is about 700 ° C. The heat generated was removed and the temperature of the fuel cell was controlled to be constant. But,
In such a fuel cell facility, at the time of partial load, the gas temperature of the combustion exhaust gas that has exited the reformer decreases due to the characteristics of the reformer and the heat radiation loss of the pipe between the reformer and the fuel cell. To maintain the same constant value (for example, 550 ° C.) as at 100% load, it is necessary to remarkably increase the circulation amount of the cathode gas, which increases the blower consumption power and causes a problem of insufficient blower capacity. there were. Further, in order to solve this problem, if the blower capacity is increased and the circulation flow rate of the cathode gas is increased, the gas flow rate flowing through the cell is increased and the outlet temperature of the cathode gas is lowered. To be constant,
There is no choice but to further increase the circulation amount of cathode gas,
Blower consumption power increases more and more. In addition, the battery characteristics are
Since the voltage rises when the output current decreases due to partial load, the amount of heat generated in the battery decreases, which further lowers the temperature of the cathode gas at the battery outlet, forcing the circulation flow rate of the cathode gas to increase. There was a point. As a result, there is a problem that the blower consumption power becomes excessive at the time of partial load, the thermal efficiency at the power transmission end is reduced, and the blower capacity becomes excessive.

【0004】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、燃料
電池の部分負荷時にカソードガスの循環量及びブロア消
費動力が過大にならない燃料電池発電設備の温度制御方
法を提供することにある。
The present invention was created to solve such problems. That is, an object of the present invention is to provide a temperature control method for a fuel cell power generation facility in which the circulation amount of cathode gas and the blower consumption power do not become excessive when the fuel cell is partially loaded.

【0005】[0005]

【課題を解決するための手段】本発明によれば、燃料ガ
スを水素を含むアノードガスに改質する改質器と、酸素
を含むカソードガスと前記アノードガスとから発電する
燃料電池と、改質器を出た燃焼排ガスをカソードガスに
合流させる排ガスラインと、燃料電池を通過したカソー
ドガスの一部を燃料電池の上流側に戻すカソードガス循
環ラインと、を備えた燃料電池発電設備の温度制御方法
において、前記排ガスラインに設けられ、前記排ガスラ
インに設けられ、改質器を出た燃焼排ガスにより改質器
の燃焼室に供給する空気を間接加熱する空気予熱器と、
前記空気予熱器をバイパスして空気を改質器の燃焼室に
供給するバイパスラインと、前記バイパスラインを流れ
る空気量を調節する空気調節弁とを備え、空気予熱器出
口の燃焼排ガス温度の制御設定値を燃料電池の負荷に応
じて低負荷では高く、高負荷では低く設定し、かつ該燃
焼排ガス温度が前記制御設定温度に一致するようにバイ
パスラインを流れる空気量を調節する、ことを特徴とす
る燃料電池発電設備の温度制御方法が提供される。更
に、本発明によれば、燃料ガスを水素を含むアノードガ
スに改質する改質器と、前記アノードガスと酸素を含む
カソードガスとから発電する燃料電池と、改質器を出た
燃焼排ガスをカソードガスに合流させる排ガスライン
と、燃料電池を通過したカソードガスの一部を燃料電池
の上流側に戻すカソードガス循環ラインと、を備えた燃
料電池発電設備の温度制御方法において、燃料電池の負
荷の低下に応じてカソードガスの燃料電池の入口温度設
定値を低下させ、かつカソードガスの燃料電池の入口温
度が前記入口温度設定値に一致するようにカソードガス
循環ラインを流れるカソードガスの流量を制御する、こ
とを特徴とする燃料電池発電設備の温度制御方法が提供
される。
According to the present invention, a reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating electricity from a cathode gas containing oxygen and the anode gas, Temperature of fuel cell power generation equipment equipped with an exhaust gas line that joins the combustion exhaust gas that has exited the quality chamber with the cathode gas, and a cathode gas circulation line that returns part of the cathode gas that has passed through the fuel cell to the upstream side of the fuel cell In the control method, provided in the exhaust gas line, provided in the exhaust gas line, an air preheater for indirectly heating the air supplied to the combustion chamber of the reformer by the combustion exhaust gas exiting the reformer,
A bypass line for bypassing the air preheater to supply air to the combustion chamber of the reformer; and an air control valve for adjusting the amount of air flowing through the bypass line, and controlling the temperature of the combustion exhaust gas at the outlet of the air preheater. The set value is set to be high at low load and low at high load according to the load of the fuel cell, and the amount of air flowing through the bypass line is adjusted so that the combustion exhaust gas temperature matches the control set temperature. A method for controlling the temperature of a fuel cell power generation facility is provided. Further, according to the present invention, a reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating power from the anode gas and a cathode gas containing oxygen, and a combustion exhaust gas leaving the reformer. In a temperature control method of a fuel cell power generation facility, comprising: an exhaust gas line for joining the cathode gas to the cathode gas; and a cathode gas circulation line for returning a part of the cathode gas that has passed through the fuel cell to the upstream side of the fuel cell. The flow rate of the cathode gas flowing through the cathode gas circulation line so that the inlet temperature set value of the cathode gas fuel cell is reduced according to the decrease in the load, and the inlet temperature of the fuel cell inlet of the cathode gas matches the inlet temperature set value. A temperature control method for a fuel cell power generation facility is provided.

【0006】[0006]

【作用】上記、第1の発明の構成によれば、空気予熱器
が排ガスラインに設けられ、改質器を出た燃焼排ガスに
より改質器の燃焼室に供給する空気を間接加熱すること
ができる。また、前記空気予熱器をバイパスして空気を
改質器の燃焼室に供給するバイパスラインと、前記バイ
パスラインを流れる空気量を調節する空気調節弁とを備
えており、バイパスラインを流れる空気量を調節するこ
とにより、空気予熱器における燃焼排ガスの温度の低下
量を調節することにより空気予熱器出口の燃焼排ガス温
度が制御設定温度に一致するようにすることができる。
更に、この制御設定温度を燃料電池の負荷に応じて低負
荷では高く、高負荷では低く設定するため、改質器を出
た燃焼排ガスのガス温度が低下しても、空気及び循環さ
れたカソードガスと合流したカソードガスの温度は低下
せず、従って燃料電池の部分負荷時にカソードガスの循
環量及びブロア消費動力が増加しない。また、上記第2
の発明の構成によれば、燃料電池の負荷の低下に応じて
カソードガスの燃料電池の入口温度設定値を低下させ、
かつカソードガスの燃料電池の入口温度が前記入口温度
設定値に一致するようにカソードガス循環ラインを流れ
るカソードガスの流量を制御するので、カソードガスの
燃料電池入口温度を一定値(例えば550℃)にした場
合に比較して、カソードガスの循環量は少なく、ブロア
消費動力がほとんど増加しない。
According to the configuration of the first aspect of the invention, the air preheater is provided in the exhaust gas line, and the air supplied to the combustion chamber of the reformer can be indirectly heated by the combustion exhaust gas discharged from the reformer. it can. Further, a bypass line that bypasses the air preheater and supplies air to the combustion chamber of the reformer, and an air control valve that adjusts the amount of air flowing through the bypass line are provided, and the amount of air flowing through the bypass line is provided. Is adjusted to adjust the amount of decrease in the temperature of the combustion exhaust gas in the air preheater so that the temperature of the combustion exhaust gas at the outlet of the air preheater matches the control set temperature.
Furthermore, since the control set temperature is set to be high at low load and low at high load according to the load of the fuel cell, even if the gas temperature of the combustion exhaust gas leaving the reformer drops, air and the circulated cathode The temperature of the cathode gas combined with the gas does not decrease, and therefore, the circulation amount of the cathode gas and the blower consumption power do not increase when the fuel cell is partially loaded. In addition, the second
According to the configuration of the invention of (1), the inlet temperature set value of the cathode gas of the fuel cell is reduced according to the reduction of the load of the fuel cell,
Moreover, since the flow rate of the cathode gas flowing through the cathode gas circulation line is controlled so that the inlet temperature of the cathode gas of the fuel cell matches the inlet temperature set value, the inlet temperature of the cathode gas of the fuel cell is kept at a constant value (for example, 550 ° C.). Compared with the case of, the circulation amount of the cathode gas is small and the blower consumption power hardly increases.

【0007】[0007]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。図1は、本発明の第1の方法を実施する
ための燃料電池発電設備を示す構成図である。この図に
おいて、この発電設備は、燃料ガス1を水素を含むアノ
ードガス2に改質する改質器10と、酸素を含むカソー
ドガス3とアノードガス2とから発電する燃料電池20
と、改質器10を出た燃焼排ガス4をカソードガス3に
合流させる排ガスライン12と、燃料電池20を通過し
たカソードガスの一部5を燃料電池の上流側に戻すカソ
ードガス循環ライン14とを備えている。このカソード
ガス循環ライン14には、インバータモータ15で駆動
されたブロア16が設けられ、循環するカソードガスの
流量を制御できるようになっている。更に、カソードガ
ス3の燃料電池入口部には温度センサー17が設けら
れ、この温度センサー17の出力信号と負荷指令7によ
り温度制御装置18によりインバータ19を制御し、イ
ンバータモータ15に供給する電源の周波数を制御する
ようになっている。かかる構成は、図5に示した従来の
燃料電池発電設備と同様である。図1に示す燃料電池発
電設備は、更に、前記排ガスライン12に設けられ、改
質器10を出た燃焼排ガス4により改質器の燃焼室10
aに供給する空気6を間接加熱する空気予熱器22と、
前記空気予熱器22をバイパスして空気6を改質器の燃
焼室10aに供給するバイパスライン24と、このバイ
パスライン24を流れる空気量を調節する空気調節弁2
6とを備えている。なお、図1において、空気調節弁2
6は三方弁であるが、空気予熱器へのラインにつける弁
とバイパスラインにつける弁とを別々にして二方弁を用
いてもよく、或いは、配管抵抗の小さいバイパスライン
にのみ二方弁を用いてもよい。更に、この発電設備は、
排ガスライン12の空気予熱器22の出口部分に設けら
れた温度センサー27と、この温度センサー27の出力
信号と燃料電池発電設備の負荷指令7とを受け、空気調
節弁26を調節する温度調節器28が設けられている。
かかる構成の燃料電池発電設備は、燃料電池の負荷低下
時において、図2に示すように、空気予熱器22の出口
の燃焼排ガス温度の制御設定値を燃料電池の負荷に応じ
て低負荷では高く、高負荷では低く設定し、かつ燃焼排
ガス温度が前記制御設定温度に一致するようにバイパス
ラインを流れる空気量を調節する。なお、空気予熱器出
口の燃焼排ガス温度の制御設定値は、燃料電池の負荷に
よらず一定値としても良い。これにより、改質器を出た
燃焼排ガスのガス温度が低下しても、空気及び循環され
たカソードガスと合流したカソードガスの温度は低下せ
ず、従って、燃料電池の部分負荷時にカソードガスの循
環量及びブロア消費動力が増加しない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a fuel cell power generation facility for carrying out the first method of the present invention. In this figure, this power generation facility includes a reformer 10 for reforming a fuel gas 1 into an anode gas 2 containing hydrogen, and a fuel cell 20 for generating power from a cathode gas 3 containing oxygen and an anode gas 2.
An exhaust gas line 12 that joins the combustion exhaust gas 4 that has exited the reformer 10 with the cathode gas 3, and a cathode gas circulation line 14 that returns a part 5 of the cathode gas that has passed through the fuel cell 20 to the upstream side of the fuel cell. Is equipped with. The cathode gas circulation line 14 is provided with a blower 16 driven by an inverter motor 15 so that the flow rate of the circulating cathode gas can be controlled. Further, a temperature sensor 17 is provided at the fuel cell inlet of the cathode gas 3, and the temperature controller 18 controls the inverter 19 according to the output signal of the temperature sensor 17 and the load command 7 to supply power to the inverter motor 15. It is designed to control the frequency. Such a configuration is similar to the conventional fuel cell power generation facility shown in FIG. The fuel cell power generation facility shown in FIG. 1 is further provided in the exhaust gas line 12, and the combustion chamber 10 of the reformer is constituted by the combustion exhaust gas 4 discharged from the reformer 10.
an air preheater 22 for indirectly heating the air 6 supplied to a;
A bypass line 24 that bypasses the air preheater 22 and supplies the air 6 to the combustion chamber 10a of the reformer, and an air control valve 2 that adjusts the amount of air flowing through the bypass line 24.
6 and. In FIG. 1, the air control valve 2
6 is a three-way valve, but a two-way valve may be used by separating the valve attached to the line to the air preheater and the valve attached to the bypass line, or a two-way valve only on the bypass line with a small piping resistance. May be used. Furthermore, this power generation facility
A temperature sensor 27 provided at the outlet of the air preheater 22 of the exhaust gas line 12, and a temperature controller that receives the output signal of the temperature sensor 27 and the load command 7 of the fuel cell power generation facility and adjusts the air control valve 26. 28 is provided.
In the fuel cell power generation facility having such a configuration, when the load on the fuel cell is reduced, as shown in FIG. 2, the control set value of the combustion exhaust gas temperature at the outlet of the air preheater 22 is increased at a low load according to the load on the fuel cell. , It is set low at high load, and the amount of air flowing through the bypass line is adjusted so that the combustion exhaust gas temperature matches the control set temperature. The control set value of the combustion exhaust gas temperature at the outlet of the air preheater may be a constant value regardless of the load of the fuel cell. As a result, even if the gas temperature of the flue gas discharged from the reformer decreases, the temperature of the cathode gas combined with the air and the circulated cathode gas does not decrease, and therefore the cathode gas of the cathode gas during partial load of the fuel cell is reduced. Circulation amount and blower consumption power do not increase.

【0008】図3は、本発明の第2の方法を実施するた
めの燃料電池発電設備を示す別の構成図である。この図
において、この発電設備は、図1の燃料電池発電設備と
同様に、改質器10、燃料電池20、排ガスライン1
2、及びカソードガス循環ライン14を備え、カソード
ガス循環ライン14に、インバータモータ15で駆動さ
れたブロア16が設けられ、かつ、カソードガス3の燃
料電池入口部に温度センサー17が設けられ、この温度
センサー17の出力信号と負荷指令7により温度制御装
置18によりインバータ19を制御し、インバータモー
タ15に供給する電源の周波数を制御するようになって
いる。かかる構成の燃料電池発電設備は、燃料電池の負
荷低下時において、図4に示すように、燃料電池の負荷
の低下に応じてカソードガスの燃料電池の入口温度設定
値を低下させ、カソードガスの燃料電池の入口温度が前
記入口温度設定値に一致するように、カソードガス循環
ラインを流れるカソードガスの流量を制御する。これに
より、カソードガスの燃料電池入口温度を一定値(例え
ば550℃)にした場合に比較して、カソードガスの循
環量は少なく、ブロア消費動力がほとんど増加ぜず、燃
料電池の作動温度は低下するので電池性能はわずかに低
下するが、ブロア消費動力が大幅に増加しないので送電
端熱効率を向上させることができる。
FIG. 3 is another configuration diagram showing a fuel cell power generation facility for carrying out the second method of the present invention. In this figure, this power generation facility is similar to the fuel cell power generation facility of FIG. 1 and includes a reformer 10, a fuel cell 20, and an exhaust gas line 1.
2 and a cathode gas circulation line 14, a blower 16 driven by an inverter motor 15 is provided in the cathode gas circulation line 14, and a temperature sensor 17 is provided at the fuel cell inlet of the cathode gas 3. The temperature control device 18 controls the inverter 19 according to the output signal of the temperature sensor 17 and the load command 7 to control the frequency of the power supply supplied to the inverter motor 15. In the fuel cell power generation facility having such a configuration, when the load on the fuel cell is reduced, as shown in FIG. 4, the inlet temperature set value of the fuel cell for the cathode gas is reduced in accordance with the reduction in the load on the fuel cell, and The flow rate of the cathode gas flowing through the cathode gas circulation line is controlled so that the inlet temperature of the fuel cell matches the inlet temperature set value. As a result, compared to the case where the fuel cell inlet temperature of the cathode gas is set to a constant value (for example, 550 ° C.), the circulation amount of the cathode gas is small, the blower consumption power hardly increases, and the operating temperature of the fuel cell decreases. Therefore, the battery performance is slightly reduced, but the power consumption of the blower does not increase significantly, so that the thermal efficiency at the transmission end can be improved.

【0009】[0009]

【発明の効果】上述したように、第1の発明の構成によ
れば、空気予熱器が排ガスラインに設けられ、改質器を
出た燃焼排ガスにより改質器の燃焼室に供給する空気を
間接加熱することができる。また、前記空気予熱器をバ
イパスして空気を改質器の燃焼室に供給するバイパスラ
インと、前記バイパスラインを流れる空気量を調節する
空気調節弁とを備えており、バイパスラインを流れる空
気量を調節することにより、空気予熱器における燃焼排
ガスの温度の低下量を調節することにより空気予熱器出
口の燃焼排ガス温度が制御設定温度に一致するようにす
ることができる。更に、この制御設定温度を燃料電池の
負荷に応じて低負荷では高く、高負荷では低く設定する
ため、改質器を出た燃焼排ガスのガス温度が低下して
も、空気及び循環されたカソードガスと合流したカソー
ドガスの温度は低下せず、従って燃料電池の部分負荷時
にカソードガスの循環量及びブロア消費動力が増加しな
い。また、上記第2の発明の構成によれば、燃料電池の
負荷の低下に応じてカソードガスの燃料電池の入口温度
設定値を低下させ、かつカソードガスの燃料電池の入口
温度が前記入口温度設定値に一致するようにカソードガ
ス循環ラインを流れるカソードガスの流量を制御するの
で、カソードガスの燃料電池入口温度を一定値(例えば
550℃)にした場合に比較して、カソードガスの循環
量は少なく、ブロア消費動力がほとんど増加しない。
As described above, according to the configuration of the first invention, the air preheater is provided in the exhaust gas line, and the air supplied to the combustion chamber of the reformer by the combustion exhaust gas discharged from the reformer is supplied. Indirect heating is possible. Further, a bypass line that bypasses the air preheater and supplies air to the combustion chamber of the reformer, and an air control valve that adjusts the amount of air flowing through the bypass line are provided, and the amount of air flowing through the bypass line is provided. Is adjusted to adjust the amount of decrease in the temperature of the combustion exhaust gas in the air preheater so that the temperature of the combustion exhaust gas at the outlet of the air preheater matches the control set temperature. Furthermore, since the control set temperature is set to be high at low load and low at high load according to the load of the fuel cell, even if the gas temperature of the combustion exhaust gas leaving the reformer drops, air and the circulated cathode The temperature of the cathode gas combined with the gas does not decrease, and therefore, the circulation amount of the cathode gas and the blower consumption power do not increase when the fuel cell is partially loaded. Further, according to the configuration of the second aspect of the invention, the inlet temperature set value of the cathode gas of the fuel cell is reduced according to the reduction of the load of the fuel cell, and the inlet temperature of the cathode gas of the fuel cell is set to the inlet temperature setting. Since the flow rate of the cathode gas flowing through the cathode gas circulation line is controlled so as to match the value, the circulation amount of the cathode gas is smaller than that when the temperature of the fuel cell inlet of the cathode gas is a constant value (for example, 550 ° C.). Low, blower power consumption hardly increases.

【0010】従って、燃料電池の部分負荷時にカソード
ガスの循環量及びブロア消費動力が増加せず、送電端熱
効率も低下しない、優れた効果を得ることができる。
Therefore, it is possible to obtain an excellent effect that the circulation amount of the cathode gas and the power consumption of the blower do not increase and the thermal efficiency at the power transmission end does not decrease when the fuel cell is partially loaded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1方法を実施するための燃料電池発
電設備を示す構成図である。
FIG. 1 is a configuration diagram showing a fuel cell power generation facility for carrying out a first method of the present invention.

【図2】発電出力と温度の制御設定値との関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a power generation output and a control set value of temperature.

【図3】本発明の第2方法を実施するための燃料電池発
電設備を示す構成図である。
FIG. 3 is a configuration diagram showing a fuel cell power generation facility for carrying out a second method of the present invention.

【図4】発電出力とカソードガスの入口温度設定値との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a power generation output and a cathode gas inlet temperature set value.

【図5】従来の発電設備を示す全体構成図である。FIG. 5 is an overall configuration diagram showing a conventional power generation facility.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 燃焼排ガス 5 循環カソードガス 6 空気 7 負荷指令 10 改質器 10a 燃焼室 12 排ガスライン 14 カソードガス循環ライン 15 インバータモータ 16 ブロア 17 温度センサー 18 温度制御装置 19 インバータ 20 燃料電池 22 空気予熱器 24 バイパスライン 26 空気調節弁 27 温度センサー 28 温度調節器 1 Fuel Gas 2 Anode Gas 3 Cathode Gas 4 Combustion Exhaust Gas 5 Circulation Cathode Gas 6 Air 7 Load Command 10 Reformer 10a Combustion Chamber 12 Exhaust Gas Line 14 Cathode Gas Circulation Line 15 Inverter Motor 16 Blower 17 Temperature Sensor 18 Temperature Control Device 19 Inverter 20 Fuel Cell 22 Air Preheater 24 Bypass Line 26 Air Control Valve 27 Temperature Sensor 28 Temperature Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスを水素を含むアノードガスに改
質する改質器と、 酸素を含むカソードガスと前記アノードガスとから発電
する燃料電池と、 改質器を出た燃焼排ガスをカソードガスに合流させる排
ガスラインと、 燃料電池を通過したカソードガスの一部を燃料電池の上
流側に戻すカソードガス循環ラインと、を備えた燃料電
池発電設備の温度制御方法において、 前記排ガスラインに設けられ、改質器を出た燃焼排ガス
により改質器の燃焼室に供給する空気を間接加熱する空
気予熱器と、 前記空気予熱器をバイパスして空気を改質器の燃焼室に
供給するバイパスラインと、 前記バイパスラインを流れる空気量を調節する空気調節
弁とを備え、 空気予熱器出口の燃焼排ガス温度の制御設定値を燃料電
池の負荷に応じて低負荷では高く、高負荷では低く設定
し、かつ該燃焼排ガス温度が前記制御設定温度に一致す
るようにバイパスラインを流れる空気量を調節する、こ
とを特徴とする燃料電池の温度制御方法。
1. A reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating electricity from a cathode gas containing oxygen and the anode gas, and a combustion exhaust gas discharged from the reformer as a cathode gas. In the temperature control method of the fuel cell power generation facility, comprising: an exhaust gas line that joins the fuel cell, and a cathode gas circulation line that returns a part of the cathode gas that has passed through the fuel cell to the upstream side of the fuel cell. An air preheater that indirectly heats air supplied to the combustion chamber of the reformer by the combustion exhaust gas that has exited the reformer; and a bypass line that bypasses the air preheater and supplies air to the combustion chamber of the reformer. And an air control valve for adjusting the amount of air flowing through the bypass line, and the control set value of the combustion exhaust gas temperature at the outlet of the air preheater is high at low load according to the load of the fuel cell, Set low in the load, and the flue gas temperature to adjust the amount of air flowing through the bypass line so as to coincide with the control set temperature, the temperature control method for a fuel cell, characterized in that.
【請求項2】 燃料ガスを水素を含むアノードガスに改
質する改質器と、 前記アノードガスと酸素を含むカソードガスとから発電
する燃料電池と、 改質器を出た燃焼排ガスをカソードガスに合流させる排
ガスラインと、 燃料電池を通過したカソードガスの一部を燃料電池の上
流側に戻すカソードガス循環ラインと、を備えた燃料電
池発電設備の温度制御方法において、 燃料電池の負荷の低下に応じてカソードガスの燃料電池
の入口温度設定値を低下させ、かつカソードガスの燃料
電池の入口温度が前記入口温度設定値に一致するように
カソードガス循環ラインを流れるカソードガスの流量を
制御する、ことを特徴とする燃料電池発電設備の温度制
御方法。
2. A reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen, and a combustion exhaust gas discharged from the reformer as a cathode gas. In the temperature control method of the fuel cell power generation facility, which comprises an exhaust gas line that joins the fuel cell and a cathode gas circulation line that returns a part of the cathode gas that has passed through the fuel cell to the upstream side of the fuel cell, the load of the fuel cell is reduced. In accordance with the above, the fuel cell inlet temperature set value of the cathode gas is lowered, and the flow rate of the cathode gas flowing through the cathode gas circulation line is controlled so that the cathode gas fuel cell inlet temperature matches the inlet temperature set value. A method for controlling temperature of a fuel cell power generation facility, comprising:
JP5037594A 1993-02-26 1993-02-26 Temperature control for fuel cell power generation equipment Pending JPH06251789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5037594A JPH06251789A (en) 1993-02-26 1993-02-26 Temperature control for fuel cell power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037594A JPH06251789A (en) 1993-02-26 1993-02-26 Temperature control for fuel cell power generation equipment

Publications (1)

Publication Number Publication Date
JPH06251789A true JPH06251789A (en) 1994-09-09

Family

ID=12501883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037594A Pending JPH06251789A (en) 1993-02-26 1993-02-26 Temperature control for fuel cell power generation equipment

Country Status (1)

Country Link
JP (1) JPH06251789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098175A (en) * 2021-12-28 2023-07-10 本田技研工業株式会社 fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098175A (en) * 2021-12-28 2023-07-10 本田技研工業株式会社 fuel cell system

Similar Documents

Publication Publication Date Title
US4923768A (en) Fuel cell power generation system
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JP2002334710A (en) Load following type fuel cell power generation system
JPH06251789A (en) Temperature control for fuel cell power generation equipment
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP3513933B2 (en) Fuel cell power generator
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP2825285B2 (en) Fuel cell power generation system
JP3897149B2 (en) Solid oxide fuel cell and Stirling engine combined system
JP2741580B2 (en) Molten carbonate fuel cell system
JPH04284365A (en) Fuel cell power generating device
JPH0878030A (en) Fuel cell power generating device
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH08339815A (en) Fuel cell power generation device
JPH0722045A (en) Method for controlling fuel cell power generating system
JPH0810601B2 (en) Molten carbonate fuel cell power plant
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPH05326003A (en) Temperature controlling method for reformer of fuel cell power generating facilities
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JPH0697618B2 (en) Fuel cell power generator
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JPH1021945A (en) Fuel cell device