JPH01298651A - Combustion controlling device for catalyst combustor for fuel cell - Google Patents

Combustion controlling device for catalyst combustor for fuel cell

Info

Publication number
JPH01298651A
JPH01298651A JP63129273A JP12927388A JPH01298651A JP H01298651 A JPH01298651 A JP H01298651A JP 63129273 A JP63129273 A JP 63129273A JP 12927388 A JP12927388 A JP 12927388A JP H01298651 A JPH01298651 A JP H01298651A
Authority
JP
Japan
Prior art keywords
gas
combustion
temperature
exhaust
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63129273A
Other languages
Japanese (ja)
Inventor
Atsushi Nishihara
淳 西原
Isamu Osawa
勇 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP63129273A priority Critical patent/JPH01298651A/en
Publication of JPH01298651A publication Critical patent/JPH01298651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the life by making incomplete combustion of waste fuel gas at a set temperature for incomplete combustion in the first combustion stage, and sending waste oxidizer gas to get to a predetermined temperature for complete combustion in the second combustion stage and on. CONSTITUTION:Waste combustion gas flows through a waste fuel gas supply system 12 to gas chambers, where it is burnt at combustion catalyst layers 3, 6, 9. The flow quantity of waste oxidizer gas supplied to the gas chamber 2 is controlled to make the temperature detected by a temperature senser 25 in the gas chamber 5 burnt at the layer 3 at a set temperature of a temperature setter 26 by a flow controller 21 controlled by a regulator 27, and waste fuel gas makes incomplete combustion at the set temperature. This gas is burned at the layers 6, 9 while the flow quantity of waste oxidizer gas supplied to the gas chamber 5 is controlled by a three-way flow control valve 23 controlled by a deviation signal from a regulator 29 to make the temperature detected by a temperature senser 15 at a set temperature by a temperature setter 28. Waste combustion gas can thus by burnt completely at a set temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池から排出される排燃料ガスを徘酸化
剤ガスにより燃焼触媒層で燃焼させて高温の燃焼ガスを
得る燃料電池用触媒燃焼器の燃焼制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a fuel cell catalyst for producing high-temperature combustion gas by burning exhaust fuel gas discharged from a fuel cell in a combustion catalyst layer using a wandering oxidant gas. The present invention relates to a combustion control device for a combustor.

〔従来の技術〕[Conventional technology]

燃料電池は、燃料電極に水素を含有する燃料ガスを、ま
た酸化剤電極に酸素を含む空気のような酸化剤ガスを供
給することにより電池反応を行なわせて発電するもので
あるが、この際燃料電極と酸化剤電極とから電池反応に
寄与しない未反応の水素と酸素とをそれぞれ含む排燃料
ガスと排酸化剤ガスとが排出される。この排燃料ガスを
排酸化剤ガスにより燃焼して高温の燃焼ガスを得、この
燃焼ガスは燃料ガスとして水素に冨む改質ガスを製造す
る燃料改質器における改質反応時に熱を与える熱媒体と
して使用される。この場合、排燃料ガスを燃焼して高温
の燃焼ガスを得る方法として燃焼触媒層の触媒の下に燃
焼させる燃焼制御′I装置を備えた触媒燃焼器が知られ
ている。
A fuel cell generates electricity by causing a cell reaction by supplying a fuel gas containing hydrogen to a fuel electrode and an oxidizing gas such as air containing oxygen to an oxidizing electrode. Exhaust fuel gas and exhaust oxidant gas containing unreacted hydrogen and oxygen, which do not contribute to the cell reaction, are discharged from the fuel electrode and the oxidizer electrode, respectively. This exhaust fuel gas is combusted with exhaust oxidant gas to obtain high-temperature combustion gas, and this combustion gas is used as fuel gas to produce heat during the reforming reaction in the fuel reformer that produces hydrogen-rich reformed gas. used as a medium. In this case, as a method of burning exhaust fuel gas to obtain high-temperature combustion gas, a catalytic combustor equipped with a combustion control device that causes combustion under the catalyst of a combustion catalyst layer is known.

第3図は従来の燃焼制御n装置を備えた触媒燃焼器の系
統図である0図において、触媒燃焼器1は燃料と酸化剤
とが導かれる第1のガス室2と、ガス室2に取付けられ
る燃料を酸化剤により触媒の下に燃焼させる燃焼触媒層
3とからなる第1の燃焼段4と、これに続いて燃料が燃
焼されるガス室5と燃焼触媒層6とからなる燃焼段7と
、さらにこれに続いて燃料が燃焼されるガス室8と燃焼
触媒層9とからなる燃焼段10 とからなっている。
FIG. 3 is a system diagram of a catalytic combustor equipped with a conventional combustion control device. In FIG. A first combustion stage 4 consisting of a combustion catalyst layer 3 in which attached fuel is combusted under the catalyst by an oxidizing agent, followed by a combustion stage consisting of a gas chamber 5 in which the fuel is combusted and a combustion catalyst layer 6. 7, and subsequently a combustion stage 10 consisting of a gas chamber 8 in which fuel is combusted and a combustion catalyst layer 9.

燃焼段4の燃焼触媒層3は高温耐久性は劣るが低温着火
性の良い、例えば白金系からなる触媒から形成され、次
段の燃焼段7の燃焼触媒層6と最終段の燃焼段10の燃
焼触媒層9は、いずれも、低温着火性は劣るが高温耐久
性の良い触媒、例えばパラジウム系からなる触媒から形
成されている。
The combustion catalyst layer 3 of the combustion stage 4 is formed from a catalyst made of, for example, platinum, which has poor high-temperature durability but good low-temperature ignitability. The combustion catalyst layer 9 is formed of a catalyst having poor low-temperature ignitability but good high-temperature durability, for example, a palladium-based catalyst.

11 は最終の燃焼段の燃焼触媒層9で完全燃焼した高
温の燃焼ガスを導く燃焼室であり、例えば燃料改質器を
構成する炉容器内の燃焼室に相当する。
Reference numeral 11 denotes a combustion chamber that guides high-temperature combustion gas that has been completely combusted in the combustion catalyst layer 9 of the final combustion stage, and corresponds to, for example, a combustion chamber in a furnace vessel constituting a fuel reformer.

排燃料ガス供給系統12は図示しない燃料電池とガス室
2とを接続して設けられ、燃料電池の燃料電極から排出
される未反応水素を含む排燃料ガスをガス室2に導いて
いる。また排酸化剤ガス供給系統13は三方流量制御弁
14を備えて燃料電池とガス室2とを接続して設けられ
、燃料電池の酸化剤電極から排出される未反応酸素を含
む排酸化剤ガスをガス室2に導いている。
The exhaust fuel gas supply system 12 is provided to connect a fuel cell (not shown) and the gas chamber 2, and guides exhaust fuel gas containing unreacted hydrogen discharged from the fuel electrode of the fuel cell to the gas chamber 2. Further, the exhaust oxidant gas supply system 13 is provided with a three-way flow control valve 14 and is provided to connect the fuel cell and the gas chamber 2, and the exhaust oxidant gas containing unreacted oxygen is discharged from the oxidizer electrode of the fuel cell. is led to gas chamber 2.

燃焼室11には燃焼触媒層9からの完全燃焼ガスの温度
を検出する温度センサ15が設けられている。16は燃
焼室11の完全燃焼する燃焼ガスの温度を設定する温度
設定器である。調節器17は温度設定H16からの設定
温度と温度センサ15からの検出温度との偏差により三
方流量制御弁14の開度を調節して徘酸化剤ガスの流量
を制御する。
A temperature sensor 15 is provided in the combustion chamber 11 to detect the temperature of the completely combusted gas from the combustion catalyst layer 9. Reference numeral 16 denotes a temperature setting device for setting the temperature of combustion gas to be completely combusted in the combustion chamber 11. The regulator 17 controls the flow rate of the wandering oxidant gas by adjusting the opening degree of the three-way flow control valve 14 based on the deviation between the set temperature from the temperature setting H16 and the temperature detected from the temperature sensor 15.

このような構成により燃料電池からその負荷、すなわち
電池出力に対応して排出される排燃料ガスは排燃料ガス
供給系統12を経てガス室2に、また徘酸化剤ガスは排
酸化剤ガス系統13を経てガス室2に供給され、排燃料
ガスは徘酸化剤ガスにより燃料触媒層3で低温でも着火
して燃焼し、続いて燃焼段7の第2のガス室5を経て燃
焼触媒N6で燃焼が持続され、さらに続いて燃焼段10
のガス室8を経て燃焼触媒層9で燃焼さ°れ、燃焼ガス
は燃焼室11 に排出される。この際、温度センサ15
により検出された燃焼室11 の温度の出力信号と温度
設定器16で設定した設定温度の出力信号とは調節器1
7に入力されてその偏差信号により三方流量制御弁14
の開度を調節し、排燃料ガスが設定温度で完全燃焼する
ようにガス室2に供給する排酸化剤ガスの流量を制御し
ている。
With this configuration, the exhaust fuel gas discharged from the fuel cell in accordance with its load, that is, the cell output, passes through the exhaust gas supply system 12 to the gas chamber 2, and the wandering oxidant gas flows through the exhaust oxidant gas system 13. The exhaust fuel gas is ignited and combusted in the fuel catalyst layer 3 by the wandering oxidant gas even at low temperatures, and then passes through the second gas chamber 5 of the combustion stage 7 and is combusted in the combustion catalyst N6. is sustained, followed by combustion stage 10
The combustion gas passes through the gas chamber 8 and is combusted in the combustion catalyst layer 9, and the combustion gas is discharged into the combustion chamber 11. At this time, the temperature sensor 15
The output signal of the temperature of the combustion chamber 11 detected by the controller 1 and the output signal of the set temperature set by the temperature setting device 16 are
7 and the deviation signal is input to the three-way flow control valve 14.
The flow rate of the exhaust oxidant gas supplied to the gas chamber 2 is controlled so that the exhaust fuel gas is completely combusted at a set temperature.

このようにして最終燃焼段の燃焼触媒層9から高温の完
全燃焼ガスが燃焼室11に排出される。なお三方流量制
御弁14により制御されて第1のガス室2に流れる流量
以外の余分の排酸化剤ガスは三方流量制御弁14の他の
弁口より管路18を経て外部に排出される。
In this way, high-temperature complete combustion gas is discharged from the combustion catalyst layer 9 of the final combustion stage into the combustion chamber 11. Note that the excess exhaust oxidant gas other than the flow rate controlled by the three-way flow control valve 14 and flowing into the first gas chamber 2 is discharged to the outside through the pipe line 18 from another valve port of the three-way flow control valve 14.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

排燃料ガス中の水素量および排酸化剤ガス中の酸素量は
燃料電池に接続されている負荷、すなわち電池出力に左
右されるため、負荷が変動した場合、例えば負荷が増加
した場合、燃料電池で消費される水素量と酸素量が増加
するので、排燃料ガス中の水素量と排酸化剤ガス中の酸
素量が低下し、また負荷が減小した時には前述と逆の理
由で排燃料ガス中の水素量と排酸化剤ガス中の酸素量と
は増加する。したがって負荷変動時、燃焼ガスの温度を
温度センサ15により検出して三方流量制御弁14によ
り排酸化剤ガスのfitを制御して触媒燃焼器1に送り
、完全燃焼する設定温度に制御しても、負荷減小時には
各燃焼段の燃焼触媒層の温度が、定常負荷時の正常な温
度よりずれ、過熱される燃焼触媒層が生じるという問題
がある。
The amount of hydrogen in the exhaust fuel gas and the amount of oxygen in the exhaust oxidant gas depend on the load connected to the fuel cell, that is, the cell output, so if the load changes, for example if the load increases, the fuel cell As the amount of hydrogen and oxygen consumed in The amount of hydrogen in the gas and the amount of oxygen in the exhaust oxidant gas increase. Therefore, when the load fluctuates, the temperature of the combustion gas is detected by the temperature sensor 15, the fit of the exhaust oxidizing gas is controlled by the three-way flow control valve 14, and the fit is sent to the catalytic combustor 1, and the temperature is controlled to a set temperature for complete combustion. There is a problem that when the load is reduced, the temperature of the combustion catalyst layer of each combustion stage deviates from the normal temperature under steady load, causing the combustion catalyst layer to become overheated.

第4図は燃料電池からの排燃料ガスと排酸化剤ガスを触
媒燃焼器1に送って各燃焼段の燃焼触媒層3,6.8で
徘燃焼ガスを燃焼した時の各燃焼段のガス室と燃焼触媒
層との温度分布を示すグラフであり、縦軸にガス室と燃
焼触媒層の位置を示し、横軸にガス室、燃焼触媒層の温
度をとって示している0図において破線30は燃料電池
の負荷が安定している時、また負荷が急増した場合の温
度分布、一方実線31 は負荷が急減した時の温度分布
であり、t +、 t z、 t ff+ t 4はそ
れぞれガス室2、ガス室51.ガス室8.燃焼室11の
温度を示している0図から負荷急減時ガス室5の温度t
2が実線のように上昇している、すなわち燃焼触媒、層
3の温度が上昇していることが理解される。
Figure 4 shows the gas in each combustion stage when the exhaust fuel gas and exhaust oxidant gas from the fuel cell are sent to the catalytic combustor 1 and the wandering combustion gas is combusted in the combustion catalyst layers 3 and 6.8 of each combustion stage. This is a graph showing the temperature distribution between the chamber and the combustion catalyst layer, where the vertical axis shows the position of the gas chamber and the combustion catalyst layer, and the horizontal axis shows the temperature of the gas chamber and the combustion catalyst layer. 30 is the temperature distribution when the load on the fuel cell is stable or when the load increases rapidly, while the solid line 31 is the temperature distribution when the load suddenly decreases, and t +, tz, t ff + t 4 are respectively Gas chamber 2, gas chamber 51. Gas chamber8. From figure 0 showing the temperature of the combustion chamber 11, the temperature t of the gas chamber 5 when the load suddenly decreases.
2 is increasing as shown by the solid line, that is, it is understood that the temperature of the combustion catalyst, layer 3, is increasing.

ところで燃焼触媒N3は着火性は良いが高温耐久性が劣
るので、上記のように負荷の急減時における温度上昇は
燃焼触媒層3を劣化させるという問題がある。
By the way, the combustion catalyst N3 has good ignitability but poor high-temperature durability, so there is a problem that the temperature rise when the load suddenly decreases as described above deteriorates the combustion catalyst layer 3.

本発明の目的は、燃料電池からの排燃料ガスと排酸化剤
ガスを複数段の燃焼触媒層で燃焼させる際、燃料電池の
負荷変動時、特に負荷の急減時燃焼触媒層を過熱しない
燃料電池用燃焼触媒器の燃焼制御装置を従供することで
ある。
An object of the present invention is to provide a fuel cell that does not overheat the combustion catalyst layer when the load of the fuel cell fluctuates, especially when the load suddenly decreases, when exhaust fuel gas and exhaust oxidant gas from a fuel cell are combusted in multiple stages of combustion catalyst layers. The purpose of the present invention is to provide a combustion control device for a combustion catalytic converter.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば画成された
ガス室と、このガス室に導かれる燃料と酸化剤とにより
燃焼が行なわれる燃焼触媒層とからなる燃焼段を複数段
直列に取付けてなる触媒燃焼器であって、燃料電池から
排出される排燃料ガスを排燃料ガスの供給系統を経て触
媒燃焼器の端部にある第1の燃焼段の第1のガス室を経
て各燃焼段に導き、一方排酸化剤ガスを排酸化剤ガスの
供給系統を経てガス室に導いて排燃料ガスを燃焼触媒層
で燃焼させ、最終の燃焼段の燃焼触媒層がらの燃焼ガス
を燃焼室に導く燃料電池用触媒燃焼器において、前記排
酸化剤ガスの供給系統を燃料電池から第1のガス室に接
続する主供給系統と第1の燃焼段に続く第2の燃焼段の
第2のガス室に接続する副供給系統とで構成し、主供給
系統に設けられる排酸化剤ガスの流量を制御する第1の
流量制御弁と、第2のガス室の温度を検出する第1の温
度センサと、このセンサの検出温度が第1の燃焼段の燃
焼触媒層で排燃料ガスが不完全燃焼するあらかじめ設定
された温度になるように第1の流量制御弁の開度を制御
する第1の制in手段並びに副供給系統に設けられる排
酸化剤ガスの流量を制御する第2の21L量制御弁と、
燃焼室の燃焼ガスの温度を検出する第2の温度センサと
、このセンサの検出温度が第2の燃焼段以降の燃焼触媒
層で排燃料ガスが完全燃焼するあらかじめ設定された温
度になるように第2の流量制御弁の開度を制御する第2
の制御手段を設けるものとする。
In order to solve the above problems, according to the present invention, a plurality of combustion stages each consisting of a defined gas chamber and a combustion catalyst layer in which combustion is performed by fuel and oxidizer introduced into the gas chamber are connected in series. The catalytic combustor is equipped with a catalytic combustor, in which the exhaust gas discharged from the fuel cell is passed through an exhaust gas supply system to a first gas chamber of a first combustion stage at an end of the catalytic combustor. The exhaust oxidizer gas is led to the combustion stage, and the exhaust oxidizer gas is led to the gas chamber via the exhaust oxidizer gas supply system, and the exhaust fuel gas is combusted in the combustion catalyst layer, and the combustion gas from the combustion catalyst layer of the final combustion stage is combusted. In the catalytic combustor for a fuel cell, the main supply system connects the supply system of the exhaust oxidant gas from the fuel cell to the first gas chamber, and the second combustion stage of the second combustion stage following the first combustion stage. a first flow control valve that controls the flow rate of the exhaust oxidant gas provided in the main supply system, and a first flow control valve that detects the temperature of the second gas chamber. a temperature sensor; and a first flow control valve that controls the opening degree of the first flow control valve so that the temperature detected by the sensor reaches a preset temperature at which exhaust fuel gas is incompletely combusted in the combustion catalyst layer of the first combustion stage. a second 21L amount control valve that controls the flow rate of the exhaust oxidant gas provided in the first inlet control means and the sub-supply system;
A second temperature sensor detects the temperature of combustion gas in the combustion chamber, and the temperature detected by this sensor is set to a preset temperature at which the exhaust fuel gas is completely combusted in the combustion catalyst layer after the second combustion stage. A second flow control valve that controls the opening degree of the second flow control valve.
control means shall be provided.

〔作用〕[Effect]

燃料電池から排出される排燃料ガスの全量は第1のガス
室から複数段の燃焼段からなる触媒燃焼器に導かれ、排
酸化剤ガスは排酸化剤ガスの主供給系統と副供給系統の
2系統に分れて触媒燃焼器に導かれる。そして主供給系
統では第1の燃焼段における排燃料ガスの燃焼を、第2
のガス室の第1の温度センサにより検出した温度が不完
全燃焼するあらかじめ設定された温度になるように第1
の制御手段により第1の流量制御弁を制御して第1のガ
ス室に流量が制御されて流入する排酸化剤ガスにより行
なう、そして副供給系統では第2の燃焼段以降の燃焼段
における排燃料ガスの燃焼を、燃焼室の第2の温度セン
サにより検出した温度が完全燃焼するあらかじめ設定さ
れた温度になるように第2の制御手段により第2の流量
制御弁を制御して第2のガス室に流量が制御されて流入
する徘酸化剤ガスにより行なう、したがって主供給系統
における排酸化剤ガスの流量制御により負荷が急減して
も第2のガス室の温度は設定温度に制御されるので第1
の燃焼段の燃焼触媒層は過熱されない、一方燃焼室には
排燃料ガスが完全燃焼する設定温度の高温の燃焼ガスが
導かれる。
The entire amount of exhaust fuel gas discharged from the fuel cell is guided from the first gas chamber to a catalytic combustor consisting of multiple combustion stages, and the exhaust oxidant gas is supplied to the main supply system and sub-supply system of the exhaust oxidant gas. It is divided into two systems and guided to the catalytic combustor. Then, in the main supply system, the combustion of exhaust gas in the first combustion stage is
The first temperature sensor is set so that the temperature detected by the first temperature sensor in the gas chamber reaches a preset temperature at which incomplete combustion occurs.
The control means controls the first flow rate control valve to control the flow rate of the exhaust oxidant gas flowing into the first gas chamber, and the sub-supply system controls the exhaust oxidant gas in the second and subsequent combustion stages. The combustion of the fuel gas is controlled by the second control means to control the second flow rate control valve so that the temperature detected by the second temperature sensor in the combustion chamber reaches a preset temperature for complete combustion. This is done by the wandering oxidant gas that flows into the gas chamber with a controlled flow rate. Therefore, even if the load suddenly decreases, the temperature in the second gas chamber is controlled to the set temperature by controlling the flow rate of the exhaust oxidant gas in the main supply system. So the first
The combustion catalyst layer of the combustion stage is not overheated, while high-temperature combustion gas is introduced into the combustion chamber at a set temperature for complete combustion of the exhaust gas.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による燃焼制御装置を備えた燃
料電池用触媒燃焼器の系統図である。なお、第1図にお
いて第2図の従来例と同一部品には同じ符号を付し、そ
の説明を省略する。
FIG. 1 is a system diagram of a catalytic combustor for a fuel cell equipped with a combustion control device according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted.

第1図において従来例と異なるのは図示しない燃料電池
からの非酸化剤ガスを触媒燃焼器1に供給する非酸化剤
ガスの供給系統20を燃料電池と第1のガス室2とを接
続して非酸化剤ガスをガス室2に供給する第1の流量制
御弁21を備えた主供給系統22と、主供給系統22か
ら分岐して第2のガス室5麦接続して非酸化剤ガスをガ
ス室5に供給する第2の三方流量制御弁23を備えた副
供給系統24 とから構成し、さらにガス室2に燃焼触
媒層3で排燃料ガスが不完全燃焼する燃焼ガスの温度を
検出する第1の温度センサ25 と、不完全燃焼する時
の温度をあらかじめ設定する温度設定器26と、温度セ
ンサ25および温度設定器26からの出力信号が入力さ
れ、流量制御弁21の開度を制御する調節器27 とを
設け、また燃焼触媒N6,9で排燃料ガスが完全燃焼す
る時の温度を設定する温度設定器28 と、第2の温度
センす2および温度設定器28の出力信号が入力され、
三方流量制御弁23の開度を制御する調節器29を設け
たことである。
What is different from the conventional example in FIG. 1 is that a non-oxidizing gas supply system 20 that supplies non-oxidizing gas from a fuel cell (not shown) to the catalytic combustor 1 is connected between the fuel cell and the first gas chamber 2. A main supply system 22 equipped with a first flow control valve 21 that supplies non-oxidant gas to the gas chamber 2, and a second gas chamber branched from the main supply system 22 and connected to the second gas chamber 2, which supplies non-oxidant gas to the gas chamber 2. and a sub-supply system 24 equipped with a second three-way flow rate control valve 23 that supplies the gas to the gas chamber 5, and further controls the temperature of the combustion gas at which the exhaust fuel gas is incompletely combusted in the combustion catalyst layer 3 in the gas chamber 2. The output signals from the temperature sensor 25 and the temperature setting device 26 are input to the first temperature sensor 25 for detection, the temperature setting device 26 for presetting the temperature at which incomplete combustion occurs, and the opening degree of the flow rate control valve 21 is inputted. and a temperature setting device 28 for setting the temperature at which the exhaust fuel gas is completely combusted in the combustion catalysts N6 and N9, and the outputs of the second temperature sensor 2 and the temperature setting device 28. signal is input,
A regulator 29 for controlling the opening degree of the three-way flow control valve 23 is provided.

このような制御系統により、燃料電池からその負荷に対
応する排燃料ガスの全量が排燃料ガス供給系統12を経
てガス室2に流入する。一方、非酸化剤ガスは非酸化剤
ガスの主供給系統22 と副供給系統24 とからそれ
ぞれガス室2.5に供給されて排燃料ガスは燃焼触媒層
3,6.9で燃焼される。しかし、この際ガス室2に供
給される非酸化剤ガスの流量は、排燃料ガスが燃焼触媒
層3で燃焼したガス室5内の燃焼ガスの温度センサ25
により検出された検出温度が温度設定器26の設定温度
になるように調節器27からの検出温度と設定温度との
偏差信号により制御される流量制御n弁21の開度によ
り制御され、排燃料ガスは燃焼触媒層3で設定温度で不
完全燃焼するように制御される。この不完全燃焼した排
燃料ガスは燃焼触媒層6,9にて副供給系統24を経て
ガス室5に供給される非酸化剤ガスにより燃焼されるが
、この際ガス室5に供給される非酸化剤ガスの流量は、
燃焼触媒層6.9で燃焼した燃焼室10の燃焼ガスの温
度センサ15により検出された検出温度が温度設定器2
8の設定温度になるように調節器29からの検出温度と
設定温度との偏差信号により制御される三方流量制御弁
29の開度により制御され、排燃料ガスは設定温度で完
全燃焼するように制御される。
With such a control system, the entire amount of exhaust gas corresponding to the load from the fuel cell flows into the gas chamber 2 via the exhaust fuel gas supply system 12. On the other hand, the non-oxidizing gas is supplied to the gas chamber 2.5 from the non-oxidizing gas main supply system 22 and the sub-supply system 24, respectively, and the exhaust fuel gas is combusted in the combustion catalyst layers 3, 6.9. However, at this time, the flow rate of the non-oxidant gas supplied to the gas chamber 2 is determined by the temperature sensor 25 of the combustion gas in the gas chamber 5 where the exhaust fuel gas is combusted in the combustion catalyst layer 3.
The flow control valve 21 is controlled by the opening degree of the flow control valve 21, which is controlled by the deviation signal between the detected temperature and the set temperature from the regulator 27, so that the detected temperature becomes the set temperature of the temperature setting device 26. The gas is controlled to undergo incomplete combustion in the combustion catalyst layer 3 at a set temperature. This incompletely combusted exhaust fuel gas is combusted in the combustion catalyst layers 6 and 9 by the non-oxidant gas supplied to the gas chamber 5 via the sub-supply system 24; The flow rate of oxidant gas is
The temperature setter 2 detects the temperature detected by the temperature sensor 15 of the combustion gas in the combustion chamber 10 that has burned in the combustion catalyst layer 6.9.
The opening of the three-way flow control valve 29 is controlled by the deviation signal between the detected temperature and the set temperature from the regulator 29 so that the set temperature of 8 is reached, and the exhaust fuel gas is completely combusted at the set temperature. controlled.

このような制御方法により燃料電池の負荷の急減があっ
た場合の触媒燃焼器1のガス室2,5゜8、燃焼触媒層
3,6.9および燃焼室11の温度は、第4図と同じ要
領で示した第2図の実線32で示す温度分布となり、燃
料電池の負荷が急減してもガス室5の温度は設定温度に
制御されるので、燃焼触媒層3は従来のように過熱され
ない。
When there is a sudden decrease in the load on the fuel cell using this control method, the temperatures of the gas chamber 2,5°8, combustion catalyst layer 3,6,9 and combustion chamber 11 of the catalytic combustor 1 are as shown in Figure 4. The temperature distribution becomes as shown by the solid line 32 in Fig. 2 shown in the same way, and even if the load on the fuel cell suddenly decreases, the temperature of the gas chamber 5 is controlled to the set temperature, so the combustion catalyst layer 3 is not overheated as in the conventional case. Not done.

したがって低温着火性がよいが、高温耐久性の劣る燃焼
触媒層3の劣化が少なくなり寿命が長くなる。なお、燃
焼室11では燃焼触媒層6.9による排燃料ガスの完全
燃焼により高温の燃焼ガスが得られる。
Therefore, the combustion catalyst layer 3, which has good low-temperature ignitability but poor high-temperature durability, is less likely to deteriorate and has a longer life. Note that in the combustion chamber 11, high-temperature combustion gas is obtained by complete combustion of the exhaust fuel gas by the combustion catalyst layer 6.9.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば複数段
の燃焼段からなる触媒燃焼器において、燃料電池からの
排燃料ガスを第1の燃焼段の燃焼触媒層で不完全燃焼す
る設定温度になるように流量が制御されて流入する非酸
化剤ガスにより不完全燃焼させ、続いて配設された第2
の燃焼段以降の燃焼触媒層で排燃料ガスの燃焼を完全燃
焼する所定の温度になるように流量が制御されて第2の
ガス室に流入する非酸化剤ガスにより完全燃焼させたこ
とにより、燃焼室では完全燃焼する設定温度の高温の燃
焼ガスが得られるとともに第1の燃焼段の燃焼触媒層は
過熱されない。したがって複数段の燃焼触媒層において
、特定の燃焼触媒層の異常な温度上昇がないので、燃焼
触媒層の劣化が少なくなり、寿命が長くなるという効果
がある。
As is clear from the above description, according to the present invention, in a catalytic combustor consisting of multiple combustion stages, the temperature is set at which the exhaust fuel gas from the fuel cell is incompletely combusted in the combustion catalyst layer of the first combustion stage. The flow rate is controlled so that the inflowing non-oxidant gas causes incomplete combustion, and then the second
The flow rate is controlled so that the combustion catalyst layer after the combustion stage reaches a predetermined temperature for complete combustion of the exhaust fuel gas, and the non-oxidizing gas flowing into the second gas chamber causes complete combustion. In the combustion chamber, high-temperature combustion gas is obtained at a set temperature for complete combustion, and the combustion catalyst layer of the first combustion stage is not overheated. Therefore, in a plurality of stages of combustion catalyst layers, since there is no abnormal temperature rise in a particular combustion catalyst layer, the deterioration of the combustion catalyst layer is reduced and the life of the combustion catalyst layer is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による燃焼制御装置を備えた燃
料電池用触媒燃焼器の系統図、第2図は第1図の触媒燃
焼器の燃焼時の温度分布を示すグラフ、第3図は従来の
燃焼制御装置を備えた燃料電池用触媒燃焼器の系統図、
第4図は第3図の触媒燃焼器の燃焼時の温度分布を示す
グラフである。 1・・・触媒燃焼器、2・・・第1のガス室、3,6゜
9・・・燃焼触媒層、4・・・第1の燃焼段、5・・・
第2のガス室、7・・・第2の燃焼段、8・・・ガス室
、10・・・燃焼段、11・・・燃焼室、12・・・排
燃料ガス供給系統、16゜26、28・・・温度設定器
、15・・・第2の温度センサ、17゜27、29・・
・調節器、20・・・排酸化剤ガス供給系統、21・・
・流量制御弁、22・・・主供給系統、23・・・三方
流量制御弁、24・・・副供給系統、25・・・第1の
温度センサ。 33 図 一一◆も51度 34 図
Fig. 1 is a system diagram of a catalytic combustor for fuel cells equipped with a combustion control device according to an embodiment of the present invention, Fig. 2 is a graph showing the temperature distribution during combustion of the catalytic combustor of Fig. 1, and Fig. 3 is a system diagram of a catalytic combustor for fuel cells equipped with a conventional combustion control device,
FIG. 4 is a graph showing the temperature distribution during combustion in the catalytic combustor of FIG. DESCRIPTION OF SYMBOLS 1... Catalytic combustor, 2... First gas chamber, 3,6°9... Combustion catalyst layer, 4... First combustion stage, 5...
Second gas chamber, 7... Second combustion stage, 8... Gas chamber, 10... Combustion stage, 11... Combustion chamber, 12... Exhaust fuel gas supply system, 16°26 , 28...Temperature setting device, 15...Second temperature sensor, 17°27, 29...
- Regulator, 20... Exhaust oxidant gas supply system, 21...
- Flow rate control valve, 22... Main supply system, 23... Three-way flow control valve, 24... Sub supply system, 25... First temperature sensor. 33 Figure 11 ◆ is also 51 degrees 34 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)画成されたガス室と、このガス室に導かれる燃料と
酸化剤とにより燃焼が行なわれる燃料触媒層とからなる
燃焼段を複数段直列に取付けてなる触媒燃焼器であって
、燃料電池から排出される排燃料ガスを排燃料ガスの供
給系統を経て触媒燃焼器の端部にある第1の燃焼段の第
1のガス室に導いて各燃焼段に導き、一方排酸化剤ガス
を排酸化剤ガスの供給系統を経てガス室に導いて排燃料
ガスを燃焼触媒層で燃焼させ、最終の燃焼段の燃焼触媒
層からの燃焼ガスを燃焼室に導く燃料電池用触媒燃焼器
において、前記排酸化剤ガスの供給系統を燃料電池から
第1のガス室に接続する主供給系統と第1の燃焼段に続
く第2の燃焼段の第2のガス室に接続する副供給系統と
で構成し、主供給系統に設けられる排酸化剤ガスの流量
を制御する第1の流量制御弁と、第2のガス室のガス温
度を検出する第1の温度センサと、このセンサの検出温
度が第1の燃焼段の燃焼触媒層で排燃料ガスが不完全燃
焼するあらかじめ設定された温度になるように第1の流
量制御弁の開度を制御する第1の制御手段並びに副供給
系統に設けられる排酸化剤ガスの流量を制御する第2の
流量制御弁と、燃焼室の燃焼ガスの温度を検出する第2
の温度センサと、このセンサの検出温度が第2段以降の
燃焼触媒層で排燃料ガスが完全燃焼するあらかじめ設定
された温度になるように第2の流量制御弁の開度を制御
する第2の制御手段とからなることを特徴とする燃料電
池用触媒燃焼器の燃焼制御装置。
1) A catalytic combustor comprising a plurality of combustion stages installed in series, each consisting of a defined gas chamber and a fuel catalyst layer in which combustion is carried out by fuel and oxidizer introduced into the gas chamber; Exhaust fuel gas discharged from the battery is guided through an exhaust gas supply system to the first gas chamber of the first combustion stage at the end of the catalytic combustor and to each combustion stage, while the exhaust oxidant gas is In a catalytic combustor for a fuel cell, the exhaust gas is guided to the gas chamber via the exhaust oxidant gas supply system, the exhaust fuel gas is combusted in the combustion catalyst layer, and the combustion gas from the combustion catalyst layer of the final combustion stage is guided to the combustion chamber. , a main supply system that connects the exhaust oxidant gas supply system from the fuel cell to the first gas chamber, and a sub supply system that connects the exhaust oxidant gas supply system to the second gas chamber of the second combustion stage following the first combustion stage. A first flow control valve that controls the flow rate of the exhaust oxidant gas provided in the main supply system, a first temperature sensor that detects the gas temperature in the second gas chamber, and a temperature detected by this sensor. a first control means for controlling the opening degree of the first flow rate control valve so that the temperature reaches a preset temperature at which exhaust fuel gas is incompletely combusted in the combustion catalyst layer of the first combustion stage; and a sub-supply system. A second flow control valve is provided to control the flow rate of the exhaust oxidant gas, and a second flow control valve is provided to detect the temperature of the combustion gas in the combustion chamber.
a second temperature sensor, and a second flow control valve that controls the opening degree of the second flow control valve so that the temperature detected by this sensor becomes a preset temperature at which exhaust fuel gas is completely combusted in the combustion catalyst layer of the second stage and subsequent stages. 1. A combustion control device for a catalytic combustor for a fuel cell, comprising a control means.
JP63129273A 1988-05-26 1988-05-26 Combustion controlling device for catalyst combustor for fuel cell Pending JPH01298651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129273A JPH01298651A (en) 1988-05-26 1988-05-26 Combustion controlling device for catalyst combustor for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129273A JPH01298651A (en) 1988-05-26 1988-05-26 Combustion controlling device for catalyst combustor for fuel cell

Publications (1)

Publication Number Publication Date
JPH01298651A true JPH01298651A (en) 1989-12-01

Family

ID=15005511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129273A Pending JPH01298651A (en) 1988-05-26 1988-05-26 Combustion controlling device for catalyst combustor for fuel cell

Country Status (1)

Country Link
JP (1) JPH01298651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355965A (en) * 2003-05-29 2004-12-16 Nippon Soken Inc Exhaust gas treatment technology of fuel cell
JP2005259640A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167275A (en) * 1984-02-09 1985-08-30 Toshiba Corp Temperature controller of fuel cell plant reformer
JPS6329460A (en) * 1986-07-23 1988-02-08 Toshiba Corp Reformer temperature control device for fuel cell power generation system
JPS6348774A (en) * 1986-08-14 1988-03-01 Fuji Electric Co Ltd Combustion gas controller of fuel reformer
JPS63298976A (en) * 1987-05-29 1988-12-06 Asahi Eng Kk Heat source supply method of fuel cell reformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167275A (en) * 1984-02-09 1985-08-30 Toshiba Corp Temperature controller of fuel cell plant reformer
JPS6329460A (en) * 1986-07-23 1988-02-08 Toshiba Corp Reformer temperature control device for fuel cell power generation system
JPS6348774A (en) * 1986-08-14 1988-03-01 Fuji Electric Co Ltd Combustion gas controller of fuel reformer
JPS63298976A (en) * 1987-05-29 1988-12-06 Asahi Eng Kk Heat source supply method of fuel cell reformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355965A (en) * 2003-05-29 2004-12-16 Nippon Soken Inc Exhaust gas treatment technology of fuel cell
JP2005259640A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
KR100647850B1 (en) Fuel cell system and its control method
KR100623572B1 (en) Fuel reforming system and warmup method thereof
KR20120068012A (en) Method for generating a gas which may be used for startup and shutdown of a fuel cell
US6908301B2 (en) Control for catalytic combustor
US20020081470A1 (en) Control method for heating processing system
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JP2533616B2 (en) Combustion control device for catalytic combustor for fuel cell
JPH01298651A (en) Combustion controlling device for catalyst combustor for fuel cell
JP3722868B2 (en) Fuel cell system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
US20060057444A1 (en) Fuel processing apparatus and method and fuel cell power generation system
JP4278366B2 (en) Fuel processing apparatus, fuel processing method, and fuel cell power generation system
JPS6318307B2 (en)
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JP2021038121A (en) Hydrogen utilization system
JP2006164786A (en) Abnormality detection device of catalytic combustor
JPH04284365A (en) Fuel cell power generating device
JPH0556628B2 (en)
JPH11339829A (en) Phosphoric acid fuel cell power generating device
JP3557904B2 (en) Operating method of fuel reformer and fuel cell power generation system
JPH07282829A (en) Fuel reforming device of fuel cell
EP1683221A2 (en) Fuel reforming system
JPH07101613B2 (en) Fuel cell power generation system
JP2567122B2 (en) Fuel cell power generation system
JP2020123509A (en) Fuel cell system and operation method thereof