JPH06236756A - Electrode for nonaqueous electrolytic battery - Google Patents

Electrode for nonaqueous electrolytic battery

Info

Publication number
JPH06236756A
JPH06236756A JP5095593A JP9559393A JPH06236756A JP H06236756 A JPH06236756 A JP H06236756A JP 5095593 A JP5095593 A JP 5095593A JP 9559393 A JP9559393 A JP 9559393A JP H06236756 A JPH06236756 A JP H06236756A
Authority
JP
Japan
Prior art keywords
metal compound
powder
electrode
electrolyte battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095593A
Other languages
Japanese (ja)
Other versions
JP3331669B2 (en
Inventor
Satoru Suzuki
覚 鈴木
Jun Hasegawa
順 長谷川
Hirohiko Saito
博彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP09559393A priority Critical patent/JP3331669B2/en
Publication of JPH06236756A publication Critical patent/JPH06236756A/en
Priority to US08/386,363 priority patent/US5494762A/en
Application granted granted Critical
Publication of JP3331669B2 publication Critical patent/JP3331669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To suppress the pulverization at an electrode active material and collapse of crystal structure accompanying charge and discharge, and provide an electrode for nonaqueous electrolytic battery having a long charge and discharge cycle life. CONSTITUTION:An electrode for nonaqueous electrolytic battery uses a metal compound powder 9 capable of storing and releasing lithium as an electrode active material. The metal compound powder 9 consists of the aggregate of polycrystal particles 3 and contains a superfine powder 1. The superfine powder 1 is present in the particle or grain boundary of the polycrystal particle 3, or in the both. The superfine powder 1 is never reacted with the polycrystal particle 3. The particle size of the superfine powder 1 is preferably less than 3mum. The metal compound capable of storing and releasing lithium is preferably a metal compound containing lithium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,充放電に伴う電極活物
質の微粉化や結晶構造の崩壊を抑制し,充放電サイクル
寿命の長い非水電解質電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a non-aqueous electrolyte battery which has a long charge / discharge cycle life by suppressing pulverization of the electrode active material and collapse of the crystal structure due to charge / discharge.

【0002】[0002]

【従来技術】リチウム又はリチウム合金を電極とする非
水電解質二次電池においては,その電極活物質として,
従来より,MnO2 ,V25 等の金属化合物が検討さ
れている。しかし,これらの金属酸化物は,充放電によ
る結晶構造の破壊のためエネルギ容量の減少が著しい。
その対策として,予めリチウムイオンを含んだLiMn
24 等のリチウム複合酸化物を,金属化合物として用
いることが提案されている(Material Res
earch Bulletin 18(1983)46
1−472)。
2. Description of the Related Art In a non-aqueous electrolyte secondary battery using lithium or a lithium alloy as an electrode, the electrode active material is
Conventionally, metallic compounds such as MnO 2 and V 2 O 5 have been studied. However, the energy capacity of these metal oxides is significantly reduced due to the destruction of the crystal structure due to charge and discharge.
As a countermeasure, LiMn containing lithium ions in advance
It has been proposed to use a lithium composite oxide such as 2 O 4 as a metal compound (Material Res
search Bulletin 18 (1983) 46
1-472).

【0003】図3に示すごとく,LiMn24 からな
る金属化合物の粉末9は,多結晶体粒子3の集合体であ
る。該多結晶体粒子3は,スピネル構造をした立方晶の
結晶構造である。この金属化合物の粉末9の粒径は一般
に数μmから数十μmである。上記金属化合物の粉末
は,例えば,リチウム塩粉末とマンガン酸化物粉末とを
混合した後,これらを焼成することにより得られる。
As shown in FIG. 3, a powder 9 of a metal compound composed of LiMn 2 O 4 is an aggregate of polycrystalline particles 3. The polycrystalline particles 3 have a cubic crystal structure having a spinel structure. The particle size of the powder 9 of the metal compound is generally several μm to several tens μm. The metal compound powder is obtained, for example, by mixing a lithium salt powder and a manganese oxide powder, and then firing these.

【0004】[0004]

【解決しようとする課題】ところで,上記金属化合物を
電極活物質として用いた非水電解質電池用電極につい
て,その充放電を行う場合,上記電極活物質中にリチウ
ムイオンが出入りする。そして,これに伴い,LiMn
24 粉末中の多結晶体粒子3の膨張,収縮がおこる。
By the way, when a non-aqueous electrolyte battery electrode using the metal compound as an electrode active material is charged and discharged, lithium ions enter and leave the electrode active material. And along with this, LiMn
Polycrystalline particles 3 in the 2 O 4 powder expand and contract.

【0005】そのため,前述した金属化合物の粉末9に
結晶欠陥が生じる。また,結晶粒界に歪みが蓄積し,微
粉化や,結晶構造の崩壊が生じる。それ故,非水電解質
電池用電極の充放電寿命が短くなる。本発明はかかる従
来の問題点に鑑み,充放電に伴う電極活物質の微粉化や
結晶構造の崩壊を抑制し,充放電サイクル寿命の長い非
水電解質電池用電極を提供しようとするものである。
Therefore, crystal defects occur in the above-mentioned powder 9 of the metal compound. In addition, strain accumulates at the grain boundaries, resulting in pulverization and collapse of the crystal structure. Therefore, the charge / discharge life of the nonaqueous electrolyte battery electrode is shortened. In view of such conventional problems, the present invention is intended to provide an electrode for a non-aqueous electrolyte battery that suppresses pulverization of the electrode active material and collapse of the crystal structure due to charge / discharge, and has a long charge / discharge cycle life. .

【0006】[0006]

【課題の解決手段】本発明は,リチウムを吸蔵,放出し
うる金属化合物の粉末を電極活物質として用いた非水電
解質電池用電極であって,上記金属化合物の粉末は多結
晶体粒子の集合体からなると共に超微粉末を含有し,該
超微粉末は,上記多結晶体粒子の粒子内或いは結晶粒界
もしくはその両方に存在していることを特徴とする非水
電解質電池用電極にある。
The present invention relates to an electrode for a non-aqueous electrolyte battery using a powder of a metal compound capable of inserting and extracting lithium as an electrode active material, wherein the powder of the metal compound is an aggregate of polycrystalline particles. An electrode for a non-aqueous electrolyte battery, which is characterized in that it is composed of a body and contains ultrafine powder, and the ultrafine powder is present in the particles of the above-mentioned polycrystalline particles or at grain boundaries or both. .

【0007】本発明において最も注目すべきことは,上
記超微粉末が,上記金属化合物の多結晶体粒子の粒子内
或いは結晶粒界もしくはその両方に存在していることで
ある(図1,図2参照)。ここに,超微粉末は,粒径3
μm以下であることが好ましい。また,超微粉末の分散
を均一にするために,好ましくは0.5μm,更に好ま
しくは0.2μm以下である。粒径が3μmを越える場
合には,超微粉末を金属化合物中に取り込むことが困難
になる。超微粉末は,上記多結晶体粒子と反応しないも
のを用いる。このような超微粉末としては,例えばSi
34 ,SiC,Al23 等の粉末がある。
What is most noticeable in the present invention is that the ultrafine powder is present in the grains of the polycrystalline particles of the metal compound or at the grain boundaries or both (FIGS. 1 and 2). 2). Here, the ultrafine powder has a particle size of 3
It is preferably μm or less. Further, in order to make the dispersion of the ultrafine powder uniform, it is preferably 0.5 μm, more preferably 0.2 μm or less. If the particle size exceeds 3 μm, it becomes difficult to incorporate the ultrafine powder into the metal compound. As the ultrafine powder, one that does not react with the above polycrystalline particles is used. As such ultrafine powder, for example, Si
There are powders of 3 N 4 , SiC, Al 2 O 3, etc.

【0008】上記リチウムを吸蔵又は放出しうる金属化
合物としては,リチウムを含む金属化合物であることが
好ましい。このような金属化合物としては,LiMn2
4,Lix MnO2 ,LiCoO2 ,LiNiO2
LiFeO2 ,LiV38などがある。
The metal compound capable of occluding or releasing lithium is preferably a metal compound containing lithium. As such a metal compound, LiMn 2
O 4 , Li x MnO 2 , LiCoO 2 , LiNiO 2 ,
Examples include LiFeO 2 and LiV 3 O 8 .

【0009】また,上記リチウムを吸蔵又は放出しうる
他の金属化合物としては,リチウムを含まないV2 Mo
8 ,Cu227 ,MoO3 ,V25 ,Cr2
5 ,MnO2 ,TiS2 ,MoS2 等がある。また,超
微粉末は金属化合物の粉末中に0.1〜40%(容量
比,以下同様)含有されていることが好ましい。0.1
%未満では本発明の効果を得難く,一方,40%を越え
ると副生成物を生ずるおそれがある。
Another metal compound capable of inserting or extracting lithium is V 2 Mo containing no lithium.
O 8, Cu 2 V 2 O 7, MoO 3, V 2 O 5, Cr 2 O
5 , MnO 2 , TiS 2 , MoS 2 and the like. The ultrafine powder is preferably contained in the metal compound powder in an amount of 0.1 to 40% (volume ratio, the same applies hereinafter). 0.1
If it is less than 40%, it is difficult to obtain the effect of the present invention. On the other hand, if it exceeds 40%, by-products may be produced.

【0010】上記の超微粉末を含有する金属化合物の粉
末を製造するに当たっては,例えば金属化合物の原料に
上記超微粉末を添加混合し加熱焼成する方法がある。或
いは,金属化合物の金属イオンを含有する溶液中に超微
粉末を添加混合し沈澱を生成させた後加熱焼成する方法
等がある。
In producing the powder of the metal compound containing the above ultrafine powder, there is a method of adding and mixing the above ultrafine powder to the raw material of the metal compound and heating and firing. Alternatively, there is a method in which ultrafine powder is added and mixed in a solution containing metal ions of a metal compound to form a precipitate, and then heated and baked.

【0011】上記加熱焼成をする際には,常圧で焼成し
てもよいが,圧力を印加する加圧焼結法,例えばホット
プレス法,熱間静水圧焼結法(HIP)等を用いること
もできる。また,加熱焼成温度は300〜1200℃と
することが好ましい。これにより,焼結反応を促進する
ことができる。
When the above heating and firing is carried out, it may be fired at normal pressure, but a pressure sintering method for applying pressure, for example, a hot pressing method, a hot isostatic pressing method (HIP) or the like is used. You can also The heating and firing temperature is preferably 300 to 1200 ° C. Thereby, the sintering reaction can be promoted.

【0012】上記非水電解質電池用電極は,集電体と,
該集電体を被覆している電極活物質とからなる。集電体
は,導電性の良い,炭素薄膜,炭素繊維,グラファイト
繊維,金属,導電性高分子等を用いる。上記電極活物質
は,上記金属化合物に,導電剤及び結着剤等を混練して
得られる。導電剤としては,カーボン,金属等を用い
る。また,結着剤としては,テフロン等を用いる。
The non-aqueous electrolyte battery electrode comprises a current collector,
And an electrode active material covering the current collector. As the current collector, a carbon thin film, carbon fiber, graphite fiber, metal, conductive polymer or the like having good conductivity is used. The electrode active material is obtained by kneading the metal compound with a conductive agent, a binder and the like. Carbon, metal or the like is used as the conductive agent. Further, Teflon or the like is used as the binder.

【0013】[0013]

【作用及び効果】本発明の非水電解質電池用電極におい
ては,電極活物質に用いる上記金属化合物の粉末中にお
いて,該金属化合物の多結晶体粒子の粒子内或いは結晶
粒界もしくはその両方に,上記超微粉末が存在してい
る。また,超微粉末は,多結晶体粒子よりも小さい。
In the electrode for a non-aqueous electrolyte battery of the present invention, in the powder of the metal compound used as the electrode active material, in the particles of the polycrystalline particles of the metal compound or at the grain boundaries or both, The ultrafine powder is present. Also, the ultrafine powder is smaller than the polycrystalline particles.

【0014】そのため,この電極活物質を電池に組み込
んで,充放電をおこなったとき,リチウムイオンの出入
りに伴う多結晶体粒子の膨張,収縮は,上記超微粉末に
よって抑制される。即ち,上記超微粉末が,上記多結晶
体粒子の膨張,収縮を和らげるクッションとしての役割
を果たす。
Therefore, when this electrode active material is incorporated into a battery and charging / discharging is performed, the expansion and contraction of the polycrystalline particles due to the ingress / egress of lithium ions are suppressed by the ultrafine powder. That is, the ultrafine powder plays a role as a cushion that moderates the expansion and contraction of the polycrystalline particles.

【0015】それ故,上記多結晶体粒子の結晶構造の崩
壊がなく,該多結晶体粒子の集合体である金属化合物の
粉末が,微粉化することがない。したがって,上記非水
電解質電池用電極のサイクル寿命が長くなる。以上のご
とく本発明によれば,充放電に伴う電極活物質の微粉化
や結晶構造の崩壊を抑制し,充放電サイクル寿命の長い
非水電解質電池用電極を提供することができる。
Therefore, the crystal structure of the polycrystalline particles is not collapsed, and the powder of the metal compound, which is an aggregate of the polycrystalline particles, is not pulverized. Therefore, the cycle life of the electrode for non-aqueous electrolyte battery is extended. As described above, according to the present invention, it is possible to provide an electrode for a non-aqueous electrolyte battery, which suppresses pulverization of the electrode active material and collapse of the crystal structure due to charge / discharge, and has a long charge / discharge cycle life.

【0016】[0016]

【実施例】【Example】

実施例1 本例の非水電解質電池用電極について,図1を用いて説
明する。本例の非水電解質電池用電極は,リチウムを吸
蔵,放出しうる金属化合物の粉末9を,電極活物質とし
て用いた。上記金属化合物の粉末9は,多結晶体粒子3
の集合体からなると共に超微粉末1を含有している。該
超微粉末1は,上記多結晶体粒子3の粒子内に存在して
いる。
Example 1 The electrode for a non-aqueous electrolyte battery of this example will be described with reference to FIG. In the non-aqueous electrolyte battery electrode of this example, powder 9 of a metal compound capable of inserting and extracting lithium was used as an electrode active material. The powder 9 of the metal compound is the polycrystalline particle 3
And an ultrafine powder 1 is contained. The ultrafine powder 1 exists in the particles of the polycrystalline particles 3.

【0017】上記金属化合物の粉末9を製造するに当た
っては,LiI(ヨウ化リチウム)とMnO2 (二酸化
マンガン)とをLi/Mn=1/2のモル比で秤量し,
混合した。この混合物にSi34 超微粉末を,金属化
合物中のSi34 量が3vol%になるように添加
し,混合した。上記添加した超微粉末は,上記LiIと
MnO2 との混合物と反応しないものである。次いで,
これをホットプレス法により,900℃,30MPa,
2 雰囲気中で,60分間,加熱焼成した。これによ
り,金属化合物の粉末9を得た。
In producing the powder 9 of the metal compound, LiI (lithium iodide) and MnO 2 (manganese dioxide) were weighed at a molar ratio of Li / Mn = 1/2,
Mixed. Si 3 N 4 ultrafine powder was added to this mixture so that the amount of Si 3 N 4 in the metal compound was 3 vol%, and mixed. The added ultrafine powder does not react with the mixture of LiI and MnO 2 . Then,
This was hot-pressed at 900 ° C, 30 MPa,
It was fired for 60 minutes in an N 2 atmosphere. Thereby, powder 9 of the metal compound was obtained.

【0018】次に,上記金属化合物の微細構造について
観察したところ,図1に示すごとく,粒径が約0.5μ
mの超微粉末1が,粒径約5μmの多結晶体粒子3の粒
内に存在していることが認められた。また,上記金属化
合物についてX線回折をしたところ,LiMn24
多結晶体粒子3とSi34 の超微粉末1とが同定され
た。そして,この金属化合物の粉末9に,導電剤及び結
着剤を混練して,電極活物質を作製した。導電剤として
はカーボンを用い,結着剤としてはテフロンを用いた。
これを集電体の周囲に付着させて非水電解質電池用電極
を作製した。
Next, when the fine structure of the above metal compound was observed, as shown in FIG. 1, the grain size was about 0.5 μm.
It was confirmed that the ultrafine powder 1 of m was present in the grains of the polycrystalline particles 3 having a grain size of about 5 μm. Further, when X-ray diffraction was performed on the above metal compound, polycrystalline particles 3 of LiMn 2 O 4 and ultrafine powder 1 of Si 3 N 4 were identified. Then, the powder 9 of the metal compound was kneaded with a conductive agent and a binder to prepare an electrode active material. Carbon was used as the conductive agent and Teflon was used as the binder.
This was attached to the periphery of the current collector to prepare a nonaqueous electrolyte battery electrode.

【0019】実施例2 本例においては,図2に示すごとく,金属化合物の粉末
9において,多結晶体粒子3の粒子内及び結晶粒界に超
微粉末1,2が存在している。上記金属化合物の粉末を
製造するに当たっては,LiIとMnO2 とをLi/M
n=1/2のモル比で秤量し,混合した。この混合物に
Si34 超微粉末を,金属化合物中のSi34 量が
20vol%になるように添加し,混合した。次いで,
これを実施例1と同様に加熱焼成し,金属化合物の粉末
9を得た。
Example 2 In this example, as shown in FIG. 2, in the powder 9 of the metal compound, the ultrafine powders 1 and 2 exist within the grains of the polycrystalline grains 3 and at the grain boundaries. In producing the powder of the above metal compound, LiI and MnO 2 are mixed with Li / M.
Weighed and mixed at a molar ratio of n = 1/2. Si 3 N 4 ultrafine powder was added to this mixture so that the amount of Si 3 N 4 in the metal compound was 20 vol%, and mixed. Then,
This was heated and calcined in the same manner as in Example 1 to obtain a metal compound powder 9.

【0020】次に,上記金属化合物の粉末9の微細構造
について観察した。その結果,図2に示すごとく,多結
晶体粒子3の粒子内には粒径0.5μmの超微粉末1が
存在していた。また上記多結晶体粒子3の結晶粒界に
は,粒径1μm以上の超微粉末2が存在していることが
認められた。そして,実施例1と同様にして,本例にか
かる金属化合物の粉末9を用いて,非水電解質電池用電
極を作製した。その他は,実施例1と同様である。
Next, the fine structure of the powder 9 of the metal compound was observed. As a result, as shown in FIG. 2, the ultrafine powder 1 having a particle diameter of 0.5 μm was present in the particles of the polycrystalline particles 3. It was also confirmed that the ultrafine powder 2 having a particle size of 1 μm or more was present at the crystal grain boundaries of the polycrystalline particles 3. Then, in the same manner as in Example 1, a nonaqueous electrolyte battery electrode was produced using the powder 9 of the metal compound according to this example. Others are the same as in the first embodiment.

【0021】実施例3 本例においては,まずMnSO4 水溶液中で超微粉末の
周囲に二酸化マンガンを析出させた後,Li2 SO4
溶液中でLiMn2 4 を生長させて,金属化合物を得
た。即ち,まず,75gのMnSO4 を水500mlに
溶解し,粒径0.5μmのSi3 4 超微粉末を1.5
g加えた。次いで,この溶液に1N−アンニモア水を徐
々に攪拌しながら加え,沈澱を生成させた。
Example 3 In this example, manganese dioxide was first deposited around ultrafine powder in an MnSO 4 aqueous solution, and then LiMn 2 O 4 was grown in the Li 2 SO 4 aqueous solution to form a metal compound. Obtained. That is, first, 75 g of MnSO 4 was dissolved in 500 ml of water, and 1.5 μm of Si 3 N 4 ultrafine powder having a particle size of 0.5 μm was dissolved.
g was added. Then, 1N-Annimore water was gradually added to this solution with stirring to form a precipitate.

【0022】次に,溶液中に酸素を100ml/分の流
量で5時間吹き込み,酸化処理を行った。次に,沈澱を
濾過,乾燥し,空気中,300℃で10時間熱処理を行
ない二酸化マンガンを得た。次に,このようにして得ら
れた二酸化マンガン40gを4N−LiOH溶液500
ml中に投入し,攪拌しながら70℃で5時間反応さ
せ,その後濾過,乾燥を行ない,この粉末を900℃で
24時間熱処理を行った。
Next, oxygen was blown into the solution at a flow rate of 100 ml / min for 5 hours for oxidation treatment. Next, the precipitate was filtered and dried, and heat treated in air at 300 ° C. for 10 hours to obtain manganese dioxide. Next, 40 g of the manganese dioxide thus obtained was added to a 4N-LiOH solution 500
The mixture was added to ml, reacted with stirring at 70 ° C. for 5 hours, then filtered and dried, and this powder was heat treated at 900 ° C. for 24 hours.

【0023】得られた粉末をX線回折した結果,LiM
2 4 の多結晶粒子とSi3 4の超微粉末が同定さ
れた。また,粉末の微細構造は,実施例1の金属化合物
と同様であった(図1参照)。そして,実施例1と同様
にして,本例にかかる金属化合物の粉末9を用いて,非
水電解質電池用電極を作製した。その他は,実施例1と
同様である。
As a result of X-ray diffraction of the obtained powder, LiM
Polycrystalline particles of n 2 O 4 and ultrafine powder of Si 3 N 4 were identified. The fine structure of the powder was similar to that of the metal compound of Example 1 (see FIG. 1). Then, in the same manner as in Example 1, a nonaqueous electrolyte battery electrode was produced using the powder 9 of the metal compound according to this example. Others are the same as in the first embodiment.

【0024】実施例4 本例において,MnSO4 及びLi2 SO4 を溶解した
水溶液中で超微粉末の周囲にLiMn2 4 を析出,生
長させて,金属化合物を得た。即ち,まず75gのMn
SO4 と30gのLi2 SO4 とを水500mlに溶解
し,粒径0.5μmのSi3 4 超微粉末を1.5g加
えた。次いで,この溶液に1N−アンモニア水を徐々に
攪拌しながら加え,沈澱を生成させた。次に,この溶液
中に酸素を100ml/分の流量で5時間吹き込み,酸
化処理を行った。次に沈澱を濾過,乾燥し,空気中90
0℃で24時間熱処理を行った。
Example 4 In this example, LiMn 2 O 4 was deposited and grown around the ultrafine powder in an aqueous solution in which MnSO 4 and Li 2 SO 4 were dissolved to obtain a metal compound. That is, first, 75 g of Mn
SO 4 and 30 g of Li 2 SO 4 were dissolved in 500 ml of water, and 1.5 g of Si 3 N 4 ultrafine powder having a particle size of 0.5 μm was added. Then, 1N-ammonia water was gradually added to this solution with stirring to form a precipitate. Next, oxygen was blown into this solution at a flow rate of 100 ml / min for 5 hours for oxidation treatment. The precipitate is then filtered, dried and dried in air 90
Heat treatment was performed at 0 ° C. for 24 hours.

【0025】得られた粉末をX線回折した結果,LiM
2 4 の多結晶粒子とSi3 4の超微粉末とが同定
された。また粉末の微細構造は,実施例1の金属化合物
と同様であった(図1参照)。そして,実施例1と同様
にして,本例にかかる金属化合物の粉末9を用いて,非
水電解質電池用電極を作製した。その他は,実施例1と
同様である。
X-ray diffraction of the obtained powder revealed that LiM
Polycrystalline particles of n 2 O 4 and ultrafine powder of Si 3 N 4 were identified. The fine structure of the powder was similar to that of the metal compound of Example 1 (see FIG. 1). Then, in the same manner as in Example 1, a nonaqueous electrolyte battery electrode was produced using the powder 9 of the metal compound according to this example. Others are the same as in the first embodiment.

【0026】比較例 本例においては,上記実施例1〜4と異なり,超微粉末
が存在しない上記金属化合物の粉末を作製した。該金属
化合物は,多結晶体粒子の集合体からなる。該多結晶体
粒子の粒径は約5μmであった。そして,上記実施例1
〜4と同様にして,非水電解質電池用電極を作製した。
その他は,実施例1〜4と同様である。
Comparative Example In this example, unlike the above-mentioned Examples 1 to 4, powders of the above metal compounds in which no ultrafine powder was present were prepared. The metal compound is composed of an aggregate of polycrystalline particles. The particle size of the polycrystalline particles was about 5 μm. Then, the above-mentioned Example 1
The electrode for non-aqueous electrolyte battery was produced in the same manner as in Steps 4 to 4.
Others are the same as that of Examples 1-4.

【0027】実験例 本例においては,上記実施例1〜4及び比較例にかかる
非水電解質電池用電極を用いて非水電解質二次電池を組
み立て,各非水電解質電池用電極の充放電サイクル数に
対するエネルギ容量維持率の変化を測定した。上記非水
電解質二次電池は,直径20mm,厚み3.2mmのボ
タン型電池である。負極には,金属リチウムを用いた。
電解液としては,プロピレンカーボネートに過塩素酸リ
チウムを溶解したものを用いた。
Experimental Example In this example, a non-aqueous electrolyte secondary battery was assembled using the electrodes for non-aqueous electrolyte batteries according to Examples 1 to 4 and the comparative example, and the charge / discharge cycle of each electrode for non-aqueous electrolyte batteries was assembled. The change in the energy capacity retention rate with respect to the number was measured. The non-aqueous electrolyte secondary battery is a button type battery having a diameter of 20 mm and a thickness of 3.2 mm. Metal lithium was used for the negative electrode.
The electrolyte used was a solution of lithium perchlorate dissolved in propylene carbonate.

【0028】上記測定に際して,上記ボタン型電池につ
いて,2mA/cm2 の定電流,上限電圧4.1Vの条
件で,5時間充電を行ない,その後2Vまで放電する充
放電サイクル試験を行った。その結果を図4に示す。図
4より知られるごとく,実施例1〜4にかかる非水電解
質電池用電極は,充放電サイクル数100回までは,エ
ネルギ容量維持率が低下しなかった。一方,比較例にか
かる非水電解質電池用電極は,充放電サイクル数が10
0回目で60%まで低下した。以上のことは,本発明の
非水電解質電池用電極は,充放電に伴う電極活物質の微
粉化や結晶構造の崩壊が抑制され,充放電サイクル寿命
が長いものであることが示すものである。
In the above measurement, the button type battery was subjected to a charge / discharge cycle test in which it was charged for 5 hours under the conditions of a constant current of 2 mA / cm 2 and an upper limit voltage of 4.1 V, and then discharged to 2 V. The result is shown in FIG. As is known from FIG. 4, the energy capacity retention ratios of the nonaqueous electrolyte battery electrodes according to Examples 1 to 4 did not decrease up to 100 charge / discharge cycles. On the other hand, the non-aqueous electrolyte battery electrode according to the comparative example has a charge / discharge cycle number of 10
It decreased to 60% at the 0th time. The above shows that the electrode for a non-aqueous electrolyte battery of the present invention has a long charge / discharge cycle life because pulverization of the electrode active material and collapse of the crystal structure due to charge / discharge are suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる,金属化合物の微細構造を示
す説明図。
FIG. 1 is an explanatory view showing a fine structure of a metal compound according to Example 1.

【図2】実施例2にかかる,金属化合物の微細構造を示
す説明図。
FIG. 2 is an explanatory view showing a fine structure of a metal compound according to Example 2.

【図3】従来例にかかる,金属化合物の微細構造を示す
説明図。
FIG. 3 is an explanatory view showing a fine structure of a metal compound according to a conventional example.

【図4】実験例における,非水電解質電池用電極の充放
電サイクル数とエネルギ容量維持率との関係を示す線
図。
FIG. 4 is a graph showing the relationship between the number of charge / discharge cycles and the energy capacity retention rate of the nonaqueous electrolyte battery electrode in the experimental example.

【符号の説明】[Explanation of symbols]

1,2...超微粉末, 3...多結晶体粒子, 9...金属化合物の粉末, 1,2. . . Ultrafine powder, 3. . . Polycrystalline particles, 9. . . Metal compound powder,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵,放出しうる金属化合物
の粉末を電極活物質として用いた非水電解質電池用電極
であって,上記金属化合物の粉末は多結晶体粒子の集合
体からなると共に超微粉末を含有し,該超微粉末は,上
記多結晶体粒子の粒子内或いは結晶粒界もしくはその両
方に存在していることを特徴とする非水電解質電池用電
極。
1. An electrode for a non-aqueous electrolyte battery using a powder of a metal compound capable of occluding and releasing lithium as an electrode active material, wherein the powder of the metal compound is composed of an aggregate of polycrystalline particles and is An electrode for a non-aqueous electrolyte battery, which contains fine powder, and the ultrafine powder is present in the grains of the above-mentioned polycrystalline particles, or at grain boundaries or both.
【請求項2】 請求項1において,上記リチウムを吸
蔵,放出しうる金属化合物は,リチウムを含む金属化合
物であることを特徴とする非水電解質電池用電極。
2. The electrode for a non-aqueous electrolyte battery according to claim 1, wherein the metal compound capable of inserting and extracting lithium is a metal compound containing lithium.
JP09559393A 1992-01-16 1993-03-29 Electrodes for non-aqueous electrolyte batteries Expired - Fee Related JP3331669B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09559393A JP3331669B2 (en) 1992-12-14 1993-03-29 Electrodes for non-aqueous electrolyte batteries
US08/386,363 US5494762A (en) 1992-01-16 1995-02-09 Non-aqueous electrolyte lithium secondary cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-353675 1992-12-14
JP35367592 1992-12-14
JP09559393A JP3331669B2 (en) 1992-12-14 1993-03-29 Electrodes for non-aqueous electrolyte batteries

Publications (2)

Publication Number Publication Date
JPH06236756A true JPH06236756A (en) 1994-08-23
JP3331669B2 JP3331669B2 (en) 2002-10-07

Family

ID=26436814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09559393A Expired - Fee Related JP3331669B2 (en) 1992-01-16 1993-03-29 Electrodes for non-aqueous electrolyte batteries

Country Status (1)

Country Link
JP (1) JP3331669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP2009076383A (en) * 2007-09-21 2009-04-09 Panasonic Corp Non-aqueous secondary battery and its manufacturing method
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP2009076383A (en) * 2007-09-21 2009-04-09 Panasonic Corp Non-aqueous secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP3331669B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP2004047437A (en) Positive electrode activator for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP3274016B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP3625679B2 (en) Lithium secondary battery
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP3331669B2 (en) Electrodes for non-aqueous electrolyte batteries
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JP6966308B2 (en) Positive active material for lithium-ion batteries and their manufacturing methods, lithium-ion batteries, and lithium-ion battery systems
JP3590496B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JPH1186862A (en) Battery positive electrode active material and its manufacture
JPH10116614A (en) Positive electrode material for lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees