JPH06228699A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JPH06228699A
JPH06228699A JP5018634A JP1863493A JPH06228699A JP H06228699 A JPH06228699 A JP H06228699A JP 5018634 A JP5018634 A JP 5018634A JP 1863493 A JP1863493 A JP 1863493A JP H06228699 A JPH06228699 A JP H06228699A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
composition
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5018634A
Other languages
Japanese (ja)
Other versions
JP2773851B2 (en
Inventor
Makoto Tsukahara
誠 塚原
Kunio Takahashi
国男 高橋
Takahiro Mishima
貴弘 三島
Akito Isomura
秋人 磯村
Hitoshi Uehara
斎 上原
Keisuke Oguro
啓介 小黒
Tetsuo Sakai
哲男 境
Hiroshi Miyamura
弘 宮村
Nobuhiro Kuriyama
信宏 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMURA ZAIRYO KAIHATSU KENKYUSH
IMRA Material R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IMURA ZAIRYO KAIHATSU KENKYUSH
Agency of Industrial Science and Technology
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMURA ZAIRYO KAIHATSU KENKYUSH, Agency of Industrial Science and Technology, IMRA Material R&D Co Ltd filed Critical IMURA ZAIRYO KAIHATSU KENKYUSH
Priority to JP5018634A priority Critical patent/JP2773851B2/en
Publication of JPH06228699A publication Critical patent/JPH06228699A/en
Application granted granted Critical
Publication of JP2773851B2 publication Critical patent/JP2773851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To produce a hydrogen storage alloy remarkably improved in the amt. of hydrogen to be occluded, plateau properties, response characteristics to the change of hydrogen pressure or the like, in a hydrogen storage alloy constituted of Ti, V and Ni, by prescribing each content of Ti, V and Ni. CONSTITUTION:In a hydrogen storage alloy expressed by the general formula: TixVyNiz, the compsn. (x) of Ti, the compsn. (y) of V and the compsn. (z) of Ni are limited to the range surrounded by the A point in th figure: Ti5V90Ni5, the B point: Ti5V75Ni20, the C point: Ti30V50Ni30 and the D point: Ti30V65Ni5 (namely, by atom, 5%<=x<=30%, 50%<=y<=90% and 5%<=z<=20%). Moreover, the range surrounded by the E point: Ti25V65Ni10, the F point: Ti15V75Ni10, the G point: Ti15V67.5Ni17.5 and the H point: Ti25V57.5Ni17.5 (namely, 15%<=x<=25%, 57.5%<=y<=75% and 10%<=z<=17.5%) is preferably regulated. In this way, the hydrogen storage alloy used for the hydrogen occlusion electrode of an alkali secondary battery or the like can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ2次電池の水
素吸蔵電極などに用いられる水素吸蔵合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used for a hydrogen storage electrode of an alkaline secondary battery.

【0002】[0002]

【従来の技術】従来の水素吸蔵合金として、たとえば、
特開昭61−45563号公報に記載されたものが知ら
れている。この公報には、2次電池の水素吸蔵電極用の
活物質として用いられるTiVNi系水素吸蔵合金、C
r、ZrおよびAlのうち少なくとも一つをさらに含む
TiVNi系水素吸蔵合金とTiVZrNi水素吸蔵合
金、および、このような3種類の水素吸蔵合金を使用し
て水素吸蔵電極を製造する方法が記載されている。同公
報によれば、前記したような3種類の水素吸蔵合金を使
用して製造した水素吸蔵電極は、水素吸蔵量が大きい、
サイクル寿命が長い、放電性能が良好であるなどの、長
所をもつとのことである。
2. Description of the Related Art As conventional hydrogen storage alloys, for example,
The one described in JP-A-61-45563 is known. In this publication, a TiVNi-based hydrogen storage alloy used as an active material for a hydrogen storage electrode of a secondary battery, C
A TiVNi-based hydrogen storage alloy and a TiVZrNi hydrogen storage alloy further containing at least one of r, Zr, and Al, and a method for manufacturing a hydrogen storage electrode using such three types of hydrogen storage alloys are described. There is. According to the publication, the hydrogen storage electrode manufactured by using the three types of hydrogen storage alloys described above has a large hydrogen storage capacity,
It has advantages such as long cycle life and good discharge performance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、特開昭61
−45563号公報に記載の3種類の水素吸蔵合金より
も、さらに大きな水素吸蔵量をもち、より良好なプラト
ー特性を示し、水素に対する活性化が容易な水素吸蔵合
金、および、アルカリ2次電池の負極として用いた場合
に良い放電特性をもつ水素吸蔵合金を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention is disclosed in Japanese Patent Laid-Open No.
Of the three types of hydrogen storage alloys described in Japanese Patent Publication No. 45563/1994, which has a larger hydrogen storage capacity, shows better plateau characteristics, and is easily activated against hydrogen, and an alkaline secondary battery. An object is to provide a hydrogen storage alloy having good discharge characteristics when used as a negative electrode.

【0004】ここで、プラトー特性とは、一定温度で測
定した、水素吸蔵合金の単位量当たりの水素吸蔵量と、
水素圧の対数とを、それぞれ、横軸と縦軸にプロットし
て得た水素吸蔵量−水素圧−温度曲線において、水素吸
蔵合金が水素化する時、または、水素化した水素吸蔵合
金から水素が解離する時に相当する部分が、横軸に対し
てどの程度平行に近いか、および、一定の水素圧変化に
対する水素吸蔵量または水素放出量の大きさの程度をい
う。
Here, the plateau characteristic means the hydrogen storage amount per unit amount of the hydrogen storage alloy, which is measured at a constant temperature.
The logarithm of hydrogen pressure, respectively, in the hydrogen storage amount-hydrogen pressure-temperature curve obtained by plotting on the horizontal axis and the vertical axis, when the hydrogen storage alloy is hydrogenated, or hydrogen from the hydrogenated hydrogen storage alloy Is the degree to which the portion corresponding to when the is dissociated is parallel to the horizontal axis, and the degree of hydrogen storage amount or hydrogen release amount with respect to a constant change in hydrogen pressure.

【0005】[0005]

【課題を解決するための手段】本発明の発明者等は、T
iVNi系水素吸蔵合金の放電特性、プラトー特性、水
素化の容易性および水素に対する反応性と、そのTi、
VおよびNiの組成との関係を検討した。この結果、T
i、VおよびNiの組成を所定の範囲に規制すれば、放
電特性、水素吸蔵量の大きさ、プラトー特性、水素化の
容易性および水素に対する反応性の全てを同時に満足す
るTiVNi系水素吸蔵合金を得ることができることを
見出し、本発明を完成させたものである。
The inventors of the present invention have
The discharge characteristics, plateau characteristics, easiness of hydrogenation and reactivity to hydrogen of iVN i-based hydrogen storage alloy, and its Ti,
The relationship with the composition of V and Ni was examined. As a result, T
If the composition of i, V and Ni is regulated within a predetermined range, TiVNi-based hydrogen storage alloy satisfying all of discharge characteristics, hydrogen storage capacity, plateau characteristics, easiness of hydrogenation and reactivity to hydrogen at the same time. The present invention has been completed by finding that the above can be obtained.

【0006】すなわち、本発明の水素吸蔵合金は、一般
式:Tix y Niz で表される水素吸蔵合金におい
て、該Tiの組成x、該Vの組成yおよび該Niの組成
zは、原子パーセントで、第1図に示す三元組成図のA
点:Ti5 90Ni5 、B点:Ti5 75Ni20、C
点:Ti3050Ni20およびD点:Ti3065Ni5
囲まれる範囲にあることを特徴とする。
That is, the hydrogen storage alloy of the present invention is a hydrogen storage alloy represented by the general formula: Ti x V y Ni z, in which the composition x of Ti, the composition y of V, and the composition z of Ni are: In atomic percent, A in the ternary composition diagram shown in FIG.
Point: Ti 5 V 90 Ni 5 , Point B: Ti 5 V 75 Ni 20 , C
It is characterized by being in a range surrounded by points: Ti 30 V 50 Ni 20 and points D: Ti 30 V 65 Ni 5 .

【0007】以下、図1を参照しながら、本発明の水素
吸蔵合金Tix y Niz のTiの組成x、Vの組成y
およびNiの組成zを、前記したように限定した理由を
以下説明する。図1に示す三元組成図のAB線よりもT
iの組成が少ない場合、たとえば、Tiの組成xが5原
子%未満のTix y Niz 合金は、水素との反応速度
が遅い、すなわち、水素に対する反応性に劣る。同様
に、図1に示す三元組成図のAD線よりもNiの組成が
少ない場合、たとえば、Niの組成zが5原子%未満の
Tix y Niz 合金は、水素との反応速度が遅い、す
なわち、水素に対する反応性に劣り、かつ、この合金を
アルカリ2次電池の負極に使用した場合、その負極の放
電容量は小さく、充放電特性に劣る。また、図1に示す
三元組成図のBC線よりもNiの組成が多い場合、たと
えば、Niの組成zが20原子%を越えるTix y
z 合金は、水素に対する活性化が困難であり、200
℃程度の温度で活性化することができない。また、図1
に示す三元組成図のDC線よりもTiの組成が多い場
合、たとえば、Tiの組成xが30原子%を越えるTi
x y Niz 合金は、合金の単位量当たりの水素吸蔵量
が少なく、かつ、その水素吸蔵量−水素圧−温度曲線中
のプラトーの傾きが大きく、プラトー特性に劣り、実用
化できるものではない。
Hereinafter, the hydrogen of the present invention will be described with reference to FIG.
Storage alloy TixVyNizTi composition x, V composition y
And the reason why the composition z of Ni is limited as described above.
This will be described below. T than the AB line in the ternary composition diagram shown in FIG.
When the composition of i is small, for example, the composition x of Ti is 5
Child less than TixVyNizAlloy is the reaction rate with hydrogen
Is slow, that is, the reactivity to hydrogen is poor. As well
In addition, the composition of Ni is
When it is small, for example, the composition z of Ni is less than 5 atomic%.
TixVyNizAlloys have a slow reaction rate with hydrogen,
That is, this alloy has poor reactivity to hydrogen and
When used as the negative electrode of an alkaline secondary battery, the negative electrode is discharged.
The electric capacity is small and the charge / discharge characteristics are poor. Also shown in FIG.
If the Ni composition is higher than the BC line in the ternary composition diagram,
For example, Ti whose composition z of Ni exceeds 20 atomic%xVyN
izThe alloy is difficult to activate for hydrogen,
It cannot be activated at a temperature of about ℃. Also, FIG.
When the composition of Ti is larger than that of DC line in the ternary composition diagram shown in
In this case, for example, Ti with a composition x of Ti exceeding 30 atomic%
xVyNizAlloy, hydrogen storage capacity per unit amount of alloy
And its hydrogen storage capacity-hydrogen pressure-temperature curve
The plateau has a large inclination and is inferior in plateau characteristics
It cannot be converted.

【0008】前記したような理由から、本発明の水素吸
蔵合金Tix y Niz のTiの組成x、Vの組成yお
よびNiの組成zを、第1図に示す三元組成図のA点:
Ti 5 90Ni5 、B点:Ti5 75Ni20、C点:T
3050Ni20およびD点:Ti3065Ni5 で囲まれ
る範囲に限定した。すなわち、本発明の水素吸蔵合金T
x y Niz においては、原子パーセントで、Tiの
組成xを5%≦x≦30%に、Vの組成yを50%≦y
≦90%およびNiの組成zを5%≦z≦20%に限定
した。
For the reasons described above, the hydrogen absorption of the present invention is
Kura alloy TixVyNizTi composition x, V composition y
The composition z of Ni and Ni is indicated by point A in the ternary composition diagram shown in FIG.
Ti FiveV90NiFive, Point B: TiFiveV75Ni20, C point: T
i30V50Ni20And point D: Ti30V65NiFiveSurrounded by
Limited to the range. That is, the hydrogen storage alloy T of the present invention
ixVyNizIn atomic percent of Ti
The composition x is 5% ≦ x ≦ 30%, and the V composition y is 50% ≦ y.
≤ 90% and Ni composition z limited to 5% ≤ z ≤ 20%
did.

【0009】なお、好ましくは、Tiの組成x、Vの組
成yおよびNiの組成zを、第1図に示す三元組成図の
E点:Ti2565Ni10、F点:Ti1575Ni10、G
点:Ti1567.5Ni17.5およびH点:Ti2557.5
17.5で囲まれる範囲に限定するのがよい。すなわち、
本発明の水素吸蔵合金Tix y Niz においては、原
子パーセントで、Tiの組成xを15%≦x≦25%
に、Vの組成yを57.5%≦y≦75%およびNiの
組成zを10%≦z≦17.5%に限定するのがよい。
Tiの組成x、Vの組成yおよびNiの組成zを、この
ような範囲に限定することによって、本発明の水素吸蔵
合金Tix y Niz は、より大きい水素吸蔵量をも
ち、かつ、より優れたプラトー特性を示し、また、水素
に対する活性化が容易になる。以下、特に明記しない限
り、組成に係る%標記は、原子%を意味するものとす
る。
Preferably, the composition x of Ti, the composition y of V, and the composition z of Ni are represented by E point: Ti 25 V 65 Ni 10 , F point: Ti 15 V in the ternary composition diagram shown in FIG. 75 Ni 10 , G
Point: Ti 15 V 67.5 Ni 17.5 and H point: Ti 25 V 57.5 N
It is better to limit to the range surrounded by i 17.5 . That is,
In the hydrogen storage alloy Ti x V y Ni z of the present invention, the composition x of Ti is 15% ≦ x ≦ 25% in atomic percent.
In addition, it is preferable to limit the composition y of V to 57.5% ≦ y ≦ 75% and the composition z of Ni to 10% ≦ z ≦ 17.5%.
Ti composition x, the composition z of composition y and Ni and V, by limiting to such a range, the hydrogen storage alloy Ti x V y Ni z of the present invention has a larger hydrogen storage capacity, and, It exhibits a better plateau characteristic and facilitates activation for hydrogen. Hereinafter, unless otherwise specified, the% notation relating to the composition means atomic%.

【0010】本発明の水素吸蔵合金は、Ti、V、Ni
に加えて、さらにその他の添加元素を含むことができ
る。添加元素は、次のような目的のために添加される。
すなわち、水素の解離圧の調整やプラトー特性の改善な
どの、本発明の水素吸蔵合金の水素吸蔵放出特性を改善
するため、さらに、本発明の水素吸蔵合金をアルカリ2
次電池の負極に使用した場合に、充放電の際や高率放電
の際のその負極の耐久性の向上やその負極の導電性の改
善などのために、添加元素は添加されるものである。ま
た、添加元素は、充放電や水素の吸蔵放出が繰り返し行
われた際にその負極の形状が変化するのを防止するバイ
ンダーとしての役割も果たす。
The hydrogen storage alloy of the present invention is made of Ti, V, Ni.
In addition to the above, other additional elements may be included. The additive element is added for the following purposes.
That is, in order to improve the hydrogen storage / release characteristics of the hydrogen storage alloy of the present invention such as adjusting the dissociation pressure of hydrogen and improving the plateau characteristic, the hydrogen storage alloy of the present invention is further treated with an alkali 2
When used as a negative electrode of a secondary battery, an additive element is added to improve the durability of the negative electrode during charging / discharging or high-rate discharging and to improve the conductivity of the negative electrode. . In addition, the additive element also plays a role as a binder that prevents the shape of the negative electrode from changing when charging / discharging and hydrogen storage / release are repeatedly performed.

【0011】前記したような目的を達成するために、本
発明の水素吸蔵合金は、Ti、V、Niに加えて、M
g、Al、Si、Ge、Cr、Mn、Fe、Co、C
u、Sr、Y、Zr、Nb、Mo、Pd、Ir、Ag、
Hf、Ta、W、Pb、Biおよびランタノイドのうち
の少なくとも一つの元素を全体量に対して8原子パーセ
ント以下の含有量でさらに含むことができる。
In order to achieve the above-mentioned object, the hydrogen storage alloy of the present invention contains M in addition to Ti, V and Ni.
g, Al, Si, Ge, Cr, Mn, Fe, Co, C
u, Sr, Y, Zr, Nb, Mo, Pd, Ir, Ag,
At least one element of Hf, Ta, W, Pb, Bi and lanthanoid may be further included in a content of 8 atomic percent or less based on the total amount.

【0012】たとえば、本発明の水素吸蔵合金の水素の
解離圧を低めに調整するには、Y、Zr、Nb、Hfお
よびランタノイドなどの原子半径がTi、V、Niより
も大きな元素を添加元素とするのが好ましい。また、本
発明の水素吸蔵合金の水素の解離圧を高めに調整するに
は、Mn、Fe、CoおよびCuなどの原子半径の比較
的小さな元素を添加元素とするのが好ましい。
For example, in order to adjust the hydrogen dissociation pressure of the hydrogen storage alloy of the present invention to a low level, an additive element such as Y, Zr, Nb, Hf, or a lanthanoid having an atomic radius larger than Ti, V, or Ni is added. Is preferred. Further, in order to adjust the dissociation pressure of hydrogen of the hydrogen storage alloy of the present invention to be high, it is preferable to use an element having a relatively small atomic radius such as Mn, Fe, Co and Cu as an additional element.

【0013】また、本発明の水素吸蔵合金をアルカリ2
次電池の負極に使用した場合に、充放電の際や高率放電
の際のその負極の耐久性の向上には、安定な酸化物を作
るCr、AlおよびSiなどの元素が寄与をするので、
かかる元素を添加元素とするのが好ましい。また、Pd
やIrなどの水素分子を原子状に解離させる触媒作用の
ある元素を本発明の水素吸蔵合金の添加元素として用い
ることにより、この水素吸蔵合金の水素との反応速度を
速めることができる。さらに、本発明の水素吸蔵合金を
アルカリ2次電池の負極に使用した場合に、その負極の
導電性の改善には、展延性があり、かつ導電率の高いA
gやCuなどの元素を添加元素とするのが好ましい。A
gやCuなどを添加した場合、得られる負極の導電率が
増加し、電極反応に対する耐久性が向上し、かつ、得ら
れる負極が崩壊し難くなる。
In addition, the hydrogen storage alloy of the present invention is treated with alkali 2
When used as the negative electrode of a secondary battery, elements such as Cr, Al and Si that form stable oxides contribute to the improvement of the durability of the negative electrode during charge / discharge and high rate discharge. ,
It is preferable to use such an element as an additional element. Also, Pd
By using an element having a catalytic action for dissociating hydrogen molecules into atomic form, such as Ir or Ir, as an additive element of the hydrogen storage alloy of the present invention, the reaction rate of this hydrogen storage alloy with hydrogen can be accelerated. Furthermore, when the hydrogen storage alloy of the present invention is used in the negative electrode of an alkaline secondary battery, the conductivity of the negative electrode can be improved by using A that has spreadability and high conductivity.
It is preferable to use elements such as g and Cu as additional elements. A
When g or Cu is added, the conductivity of the obtained negative electrode is increased, the durability against electrode reaction is improved, and the obtained negative electrode is less likely to collapse.

【0014】なお、Cr、Al、Si、Pd、Ir、A
gおよびCuなどの添加元素を本発明の水素吸蔵合金の
母相に析出させたときに、前記したような効果を顕著に
得ることができる。このように添加元素を本発明の水素
吸蔵合金の母相に析出させるには、たとえば、添加元素
を除いた本発明の水素吸蔵合金を予め溶解し、溶融した
本発明の水素吸蔵合金に焼鈍による均質化処理を施した
後、本発明の水素吸蔵合金の母相に析出させたい添加元
素を溶解する。そして、この添加元素の溶解後の焼鈍の
条件を適宜制御すればよい。
Incidentally, Cr, Al, Si, Pd, Ir, A
When additional elements such as g and Cu are precipitated in the parent phase of the hydrogen storage alloy of the present invention, the above effects can be remarkably obtained. Thus, in order to precipitate the additional element in the matrix of the hydrogen storage alloy of the present invention, for example, the hydrogen storage alloy of the present invention excluding the additional element is previously melted, and the molten hydrogen storage alloy of the present invention is annealed by annealing. After the homogenization treatment, the additional element to be precipitated is dissolved in the mother phase of the hydrogen storage alloy of the present invention. Then, the annealing conditions after the melting of this additional element may be appropriately controlled.

【0015】本発明の水素吸蔵合金は、たとえば、図2
に示すフローチャートに従って製造することができる。
まず、各構成元素を秤量し、適当な方法で溶解する。こ
の後、必要があれば、焼鈍による均質化処理を施す。そ
して、得られた本発明の水素吸蔵合金を所定の粒度の粉
末形状にまで粉砕する。なお、溶解または焼鈍した後、
得られた本発明の水素吸蔵合金に水素化と粗い粉砕を施
してから、所定の粒度の粉末形状にまで粉砕してもよ
い。このように水素化を施すことで、本発明の水素吸蔵
合金には非常に多くのクラックが生じるので、以下に述
べるような脱水素化を本発明の水素吸蔵合金に施す必要
がある場合であっても、本発明の水素吸蔵合金を容易に
所定の粒度の粉末形状にまで粉砕することができる。ま
た、水素化と粗い粉砕を実施した後、得られた粗い粒度
の本発明の水素吸蔵合金を脱水素化してから、所定の粒
度の粉末形状にまで粉砕してもよい。さらにまた、水素
化と粗い粉砕を実施した後、得られた粗い粒度の本発明
の水素吸蔵合金を所定の粒度の粉末形状にまで粉砕して
から、脱水素化を施してもよい。
The hydrogen storage alloy of the present invention is shown in FIG.
It can be manufactured according to the flow chart shown in FIG.
First, each constituent element is weighed and dissolved by an appropriate method. After this, if necessary, a homogenization treatment by annealing is performed. Then, the obtained hydrogen storage alloy of the present invention is pulverized into a powder having a predetermined particle size. After melting or annealing,
The obtained hydrogen storage alloy of the present invention may be subjected to hydrogenation and coarse pulverization and then pulverized to a powder having a predetermined particle size. When hydrogenation is carried out in this manner, a large number of cracks are generated in the hydrogen storage alloy of the present invention, and therefore it is necessary to subject the hydrogen storage alloy of the present invention to dehydrogenation as described below. However, the hydrogen storage alloy of the present invention can be easily pulverized into a powder having a predetermined particle size. Further, after carrying out hydrogenation and coarse pulverization, the obtained hydrogen storage alloy of the present invention having a coarse grain size may be dehydrogenated and then pulverized to a powder shape having a predetermined grain size. Furthermore, after carrying out hydrogenation and coarse pulverization, the obtained hydrogen storage alloy of the present invention having a coarse grain size may be pulverized to a powder form having a predetermined grain size and then subjected to dehydrogenation.

【0016】ここで、水素化の方法としては、真空にし
た容器に本発明の水素吸蔵合金を投入、加熱し、加熱さ
れた本発明の水素吸蔵合金の入った容器に水素を導入し
た後温度を下げる方法、または、水素雰囲気で本発明の
水素吸蔵合金を加熱した後温度を下げる方法などを挙げ
ることができる。特に、後者の方法においては、水素圧
力検出手段などによって水素化装置内の圧力を検出すれ
ば、水素化装置の内部を大気に対して開放することな
く、本発明の水素吸蔵合金が水素化されたか否かを判断
することができるので、製造工数の低減を考慮した場合
に、非常に有効である。
Here, as the hydrogenation method, the hydrogen storage alloy of the present invention is charged into a evacuated container, heated, and hydrogen is introduced into the container containing the heated hydrogen storage alloy of the present invention, and then the temperature is changed. And a method of lowering the temperature after heating the hydrogen storage alloy of the present invention in a hydrogen atmosphere. Particularly, in the latter method, if the pressure in the hydrogenation device is detected by a hydrogen pressure detection means or the like, the hydrogen storage alloy of the present invention is hydrogenated without opening the inside of the hydrogenation device to the atmosphere. Since it can be determined whether or not the manufacturing process is reduced, it is very effective.

【0017】なお、本発明の水素吸蔵合金にさらにラン
タノイドなどの酸素に対する活性が非常に高い元素を添
加する場合、水素化と粗い粉砕を実施した後、得られた
粗い粒度の本発明の水素吸蔵合金を脱水素化し、脱水素
化された本発明の水素吸蔵合金を空気中に露出すること
なく、引き続き脱水素化された本発明の水素吸蔵合金を
不活性ガス雰囲気で粉砕することが必要である。しか
し、前記したような水素化と粗い粉砕を施した後、本発
明の水素吸蔵合金は、多くの場合、空気中に露出して粉
砕し、さらに脱水素化を施すことなく使用に供すること
ができる。また、用途によっては、本発明の水素吸蔵合
金にさらに分級を施した後、使用に供することもある。
When an element such as a lanthanoid having a very high oxygen activity is added to the hydrogen storage alloy of the present invention, hydrogenation and coarse pulverization are carried out, and then the hydrogen storage alloy of the present invention having a coarse particle size is obtained. It is necessary to dehydrogenate the alloy and to subsequently pulverize the dehydrogenated hydrogen storage alloy of the present invention in an inert gas atmosphere without exposing the dehydrogenated hydrogen storage alloy of the present invention to the air. is there. However, after undergoing hydrogenation and coarse crushing as described above, the hydrogen storage alloy of the present invention is often exposed to the air and crushed, and can be used without further dehydrogenation. it can. Further, depending on the application, the hydrogen storage alloy of the present invention may be used after being further classified.

【0018】[0018]

【発明の作用】本発明の水素吸蔵合金Tix y Niz
のTiの組成x、Vの組成yおよびNiの組成zを、第
1図に示す三元組成図のA点:Ti5 90Ni5 、B
点:Ti 5 75Ni20、C点:Ti3050Ni20および
D点:Ti3065Ni5 で囲まれる範囲に限定すること
によって、本発明の水素吸蔵合金は、放電特性、プラト
ー特性、水素化の容易性および水素に対する反応性の全
てを同時に満足するようになる。具体的には、本発明の
水素吸蔵合金は、特開昭61−45563号公報に記載
された類似の構成成分からなる従来の水素吸蔵合金より
もさらに大きな水素吸蔵量をもつ。また、本発明の水素
吸蔵合金の水素吸蔵量−水素圧−温度曲線と従来の水素
吸蔵合金のそれを比較した場合、本発明の水素吸蔵合金
は、より良好なプラトー特性を示す。すなわち、本発明
の水素吸蔵合金は、水素圧の微小な変化に対して大量の
水素を吸収または放出し、水素圧の変化に対する応答特
性が従来の水素吸蔵合金のそれよりも良い。
The hydrogen storage alloy Ti of the present inventionxVyNiz
Of Ti composition x, V composition y and Ni composition z
Point A of the ternary composition diagram shown in Fig. 1: TiFiveV90NiFive, B
Point: Ti FiveV75Ni20, C point: Ti30V50Ni20and
Point D: Ti30V65NiFiveBe limited to the range enclosed by
According to the hydrogen storage alloy of the present invention,
-Total characteristics, easiness of hydrogenation and reactivity to hydrogen
Will be satisfied at the same time. Specifically,
The hydrogen storage alloy is described in JP-A-61-45563.
From a conventional hydrogen storage alloy composed of similar constituents
Also has a larger hydrogen storage capacity. Further, the hydrogen of the present invention
Hydrogen storage capacity of storage alloy-hydrogen pressure-temperature curve and conventional hydrogen
The hydrogen storage alloy of the present invention when compared with that of the storage alloy
Indicates a better plateau characteristic. That is, the present invention
The hydrogen storage alloy of is a large amount for small changes in hydrogen pressure.
It absorbs or releases hydrogen and responds to changes in hydrogen pressure.
The properties are better than those of conventional hydrogen storage alloys.

【0019】加えて、本発明の水素吸蔵合金の構成成分
を前記したような範囲に限定することによって、本発明
の水素吸蔵合金を真空中200℃以下の温度で水素に対
する活性化をすることが可能となる。また、本発明の水
素吸蔵合金は、主要な構成成分として、貴金属や希土類
金属を含まないので、安価な製造原価で製造することが
できる。つまり、LaNi5 、Mm(ミッシュメタル)
Ni5 やこれらを主成分とする組成の合金よりも、本発
明の水素吸蔵合金は安価である。さらにまた、本発明の
水素吸蔵合金には、原子量が比較的小さいTiやVが多
量に含まれているので、本発明の水素吸蔵合金の単位重
量当たりの水素吸蔵量や所定の放電電流に対する放電容
量が著しく向上している。
In addition, by limiting the constituents of the hydrogen storage alloy of the present invention to the ranges described above, the hydrogen storage alloy of the present invention can be activated for hydrogen at a temperature of 200 ° C. or lower in vacuum. It will be possible. Moreover, since the hydrogen storage alloy of the present invention does not contain a precious metal or a rare earth metal as a main constituent, it can be manufactured at a low manufacturing cost. That is, LaNi 5 , Mm (Misch metal)
The hydrogen storage alloy of the present invention is cheaper than Ni 5 and alloys having a composition containing these as the main components. Furthermore, since the hydrogen storage alloy of the present invention contains a large amount of Ti or V having a relatively small atomic weight, the hydrogen storage amount of the hydrogen storage alloy of the present invention per unit weight or discharge for a predetermined discharge current. The capacity is significantly improved.

【0020】[0020]

【実施例】本発明の水素吸蔵合金を、以下、実施例によ
り具体的に説明する。 (実施例1)原子パーセントでTi21.965.8Ni12.3
なる組成をもつ実施例1の水素吸蔵合金を以下のように
して製造した。すなわち、実施例1の水素吸蔵合金は、
図1に示す三元組成図において、#1を付した丸印が示
す組成をもつ。
EXAMPLES The hydrogen storage alloy of the present invention will be specifically described below with reference to examples. Example 1 Ti 21.9 V 65.8 Ni 12.3 in atomic percent
A hydrogen storage alloy of Example 1 having the following composition was manufactured as follows. That is, the hydrogen storage alloy of Example 1 was
In the ternary composition diagram shown in FIG. 1, it has the composition indicated by the circle marked with # 1.

【0021】まず、TiとVとNiとを、それぞれ、
2.0470g、6.5437g、1.4093gを秤
量した。これらの構成成分をアーク溶解によって溶解
し、10.000gの合金を得た。さらに、真空中、こ
の合金を900℃で48時間焼鈍し、均質化処理を施し
た。次いで、5MPaの圧力の水素雰囲気中に、均質化
処理を施した合金を500℃で30分間保持し、水素化
物を得た。最後に、この水素化物を120メッシュ以下
の粒度の粉末に粉砕して、実施例1の水素吸蔵合金を得
た。
First, Ti, V and Ni are respectively
2.0470 g, 6.5437 g, and 1.4093 g were weighed. These constituents were melted by arc melting to obtain 10.000 g of alloy. Further, this alloy was annealed in vacuum at 900 ° C. for 48 hours to carry out a homogenization treatment. Then, the homogenized alloy was held at 500 ° C. for 30 minutes in a hydrogen atmosphere having a pressure of 5 MPa to obtain a hydride. Finally, this hydride was pulverized into powder having a particle size of 120 mesh or less to obtain the hydrogen storage alloy of Example 1.

【0022】なお、得られた実施例1の水素吸蔵合金
を、真空中500℃で240分間加熱し、脱水素化した
実施例1の水素吸蔵合金を製造した。そして、脱水素化
した実施例1の水素吸蔵合金を粉末X線回折分析方法に
よって分析したところ、そのX線回折チャート中に、面
間隔にして0.214nmの位置に最強線が、面間隔に
して0.151nmの位置に第2最強線が、それぞれ、
現れた。したがって、実施例1の水素吸蔵合金は、主と
して体心立方格子からなる相をもつ合金であることが判
った。
The obtained hydrogen storage alloy of Example 1 was heated in vacuum at 500 ° C. for 240 minutes to be dehydrogenated to produce the hydrogen storage alloy of Example 1. Then, the dehydrogenated hydrogen storage alloy of Example 1 was analyzed by a powder X-ray diffraction analysis method. As a result, in the X-ray diffraction chart, the strongest line at the position of 0.214 nm was determined to be the surface spacing. The second strongest line at the position of 0.151 nm,
Appeared. Therefore, it was found that the hydrogen storage alloy of Example 1 was an alloy having a phase mainly composed of a body-centered cubic lattice.

【0023】さらに、ジーベルツ装置を用いて、水素化
された実施例1の水素吸蔵合金の水素吸蔵放出特性を評
価した。このジーベルツ装置を用いた評価の結果、水素
化された実施例1の水素吸蔵合金は、図3に示すような
水素吸蔵量−水素圧−温度曲線で表される水素吸蔵放出
特性をもつことが判った。すなわち、40℃ほぼ常圧に
おいて、水素化された実施例1の水素吸蔵合金は、水素
を吸収し放出することができ、良好なプラトー特性を示
す。さらに、水素化された実施例1の水素吸蔵合金の単
位重量当たり約1%程度の水素吸蔵量が、有効に使用で
きることも判る。
Further, the hydrogen storage / release characteristics of the hydrogenated hydrogen storage alloy of Example 1 were evaluated using a Sibelts apparatus. As a result of evaluation using this Sibelts apparatus, the hydrogenated hydrogen storage alloy of Example 1 has a hydrogen storage / release characteristic represented by a hydrogen storage amount-hydrogen pressure-temperature curve as shown in FIG. understood. That is, the hydrogen storage alloy of Example 1, which was hydrogenated at about 40 ° C. and about normal pressure, can absorb and release hydrogen, and exhibits good plateau characteristics. Further, it is also found that the hydrogen storage amount of about 1% per unit weight of the hydrogenated hydrogen storage alloy of Example 1 can be effectively used.

【0024】前記のように120メッシュ以下の粒度の
粉末に粉砕された実施例1の水素吸蔵合金を使用して、
第4図に示すフローチャートに従ってアルカリ2次電池
用の負極を製造した。まず、実施例1の水素吸蔵合金の
表面を酸で洗浄した。次に、酸で洗浄した実施例1の水
素吸蔵合金粉末の表面に無電解銅メッキを施し、洗浄
後、乾燥させた。そして、銅メッキを施した実施例1の
水素吸蔵合金を所定量の有機バインダーと混合した。さ
らに、得られた混合物を冷間プレスで電極の形状に圧粉
した。最後に、圧粉された電極をニッケルメッシュと重
ね合わせた後、熱間プレスした。以上の様にして、アル
カリ2次電池用のニッケルメッシュ付き負極を製造し
た。
Using the hydrogen storage alloy of Example 1 crushed into powder having a particle size of 120 mesh or less as described above,
A negative electrode for an alkaline secondary battery was manufactured according to the flowchart shown in FIG. First, the surface of the hydrogen storage alloy of Example 1 was washed with acid. Next, the surface of the hydrogen storage alloy powder of Example 1 that had been washed with acid was subjected to electroless copper plating, washed, and then dried. Then, the copper-plated hydrogen storage alloy of Example 1 was mixed with a predetermined amount of an organic binder. Further, the obtained mixture was pressed into a shape of an electrode by cold pressing. Finally, the pressed electrode was overlaid with a nickel mesh and hot pressed. As described above, a negative electrode with a nickel mesh for an alkaline secondary battery was manufactured.

【0025】そして、図5に示すように、得られたニッ
ケルメッシュ付き負極1を、ケーシング4中に、正極2
ガラスフィルタ3を隔てて対向させた。この正極2は、
発泡ニッケル板と発泡ニッケル板の小孔中に充填した水
酸化ニッケル粉末とからなり、これらを焼結したもので
あった。さらに、ニッケルメッシュ付き負極1の近傍に
水銀/酸化水銀照合電極7と塩橋6に連結されたルギン
毛管5を配設し、ケーシング4中に電解質として水酸化
カリウムなどの電解質8を注入した。以上の様にして、
評価用アルカリ2次電池を製造した。
Then, as shown in FIG. 5, the obtained nickel mesh-attached negative electrode 1 was placed in a casing 4 to form a positive electrode 2.
The glass filters 3 were opposed to each other. This positive electrode 2 is
It was composed of a foamed nickel plate and a nickel hydroxide powder filled in the small holes of the foamed nickel plate, which were sintered. Further, a mercury / mercuric oxide reference electrode 7 and a Luggin capillary 5 connected to a salt bridge 6 were arranged in the vicinity of the negative electrode 1 with a nickel mesh, and an electrolyte 8 such as potassium hydroxide was injected into the casing 4 as an electrolyte. As described above,
An alkaline secondary battery for evaluation was manufactured.

【0026】得られた評価用アルカリ2次電池の単位重
量当たりの放電容量を、100mA/gの放電電流、カ
ットオフ電圧を−0.7Vとして測定した結果、実施例
1の水素吸蔵合金からなるニッケルメッシュ付き負極1
をもつ評価用アルカリ2次電池は、図6のような放電容
量−電位曲線を示し、408mAh/gという高い単位
重量当たりの放電容量をもつものであった。 (実施例1の変形例)原子パーセントで、Ti21.9
65.8Ni12.3なる組成をもつ実施例1の水素吸蔵合金
に、Y、Zr、Nb、La、Hf、Mn、Fe、Coお
よびCuの各元素を、全体量に対して5%添加して、実
施例1の変形例たる9種類の水素吸蔵合金を製造した。
そして、これら9種類の水素吸蔵合金の40℃における
水素の解離圧を測定した。
The discharge capacity per unit weight of the obtained alkaline secondary battery for evaluation was measured with a discharge current of 100 mA / g and a cut-off voltage of -0.7 V. As a result, the hydrogen storage alloy of Example 1 was used. Negative electrode with nickel mesh 1
The alkaline secondary battery for evaluation having No. 1 showed a discharge capacity-potential curve as shown in FIG. 6, and had a high discharge capacity per unit weight of 408 mAh / g. (Modification of Example 1) Ti 21.9 V in atomic percent
65.8 To the hydrogen storage alloy of Example 1 having a composition of Ni 12.3 , each element of Y, Zr, Nb, La, Hf, Mn, Fe, Co and Cu was added by 5% with respect to the total amount. Nine kinds of hydrogen storage alloys, which are modified examples of Example 1, were manufactured.
Then, the dissociation pressure of hydrogen at 40 ° C. of these nine types of hydrogen storage alloys was measured.

【0027】この水素の解離圧測定の結果、実施例1の
水素吸蔵合金は、0.033MPaなる水素解離圧を示
した。これに対して、Y、Zr、Nb、HfおよびLa
を添加した実施例1の変形例たる5種類の水素吸蔵合金
は、それぞれ、0.005MPa、0.015MPa、
0.02MPa、0.005MPa、0.01MPaと
いう減少した水素解離圧を示した。また、Mn、Fe、
CoおよびCuを添加した実施例1の変形例たる4種類
の水素吸蔵合金は、それぞれ、0.11MPa、0.6
MPa、0.40MPa、0.50MPaという増加し
た水素解離圧を示した。すなわち、実施例1の水素吸蔵
合金の水素の解離圧を低めに調整するには、Y、Zr、
Nb、HfおよびLaなどの原子半径の比較的大きな元
素を添加し、実施例1の水素吸蔵合金の水素の解離圧を
高めに調整するには、Mn、Fe、CoおよびCuなど
の原子半径の比較的小さな元素を添加すればよいことを
実証できた。 (実施例2)TiとVとNiとを、それぞれ、2.22
02g、7.0965g、0.6833gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi23.570.6Ni5.9
なる組成をもつ実施例2の水素吸蔵合金を製造した。す
なわち、実施例2の水素吸蔵合金は、図1に示す三元組
成図において、#2を付した丸印が示す組成をもつ。
As a result of this hydrogen dissociation pressure measurement, the hydrogen storage alloy of Example 1 showed a hydrogen dissociation pressure of 0.033 MPa. On the other hand, Y, Zr, Nb, Hf and La
5 types of hydrogen storage alloys, which are modified examples of Example 1 added with 0.005 MPa, 0.015 MPa, and
It showed reduced hydrogen dissociation pressures of 0.02 MPa, 0.005 MPa and 0.01 MPa. In addition, Mn, Fe,
The four types of hydrogen storage alloys, which are modified examples of Example 1 with Co and Cu added, are 0.11 MPa and 0.6, respectively.
It showed increased hydrogen dissociation pressures of MPa, 0.40 MPa, 0.50 MPa. That is, in order to adjust the hydrogen dissociation pressure of the hydrogen storage alloy of Example 1 to a lower level, Y, Zr,
In order to adjust the dissociation pressure of hydrogen in the hydrogen storage alloy of Example 1 to be high by adding an element having a relatively large atomic radius such as Nb, Hf and La, the atomic radius of Mn, Fe, Co and Cu should be adjusted. It has been proved that it is sufficient to add a relatively small element. (Example 2) Ti, V and Ni were respectively set to 2.22.
02 g, 7.0965 g, 0.6833 g, except that the same procedure as in the hydrogen storage alloy of Example 1 was followed except that Ti 23.5 V 70.6 Ni 5.9 in atomic percent was used.
A hydrogen storage alloy of Example 2 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 2 has the composition indicated by the circle marked with # 2 in the ternary composition diagram shown in FIG.

【0028】そして、実施例2の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例2の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、180mAh/gという高い単位重量当たりの
放電容量をもつものであった。 (実施例3)TiとVとNiとを、それぞれ、2.07
92g、6.6465g、1.2743gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi22.266.7Ni11.1
なる組成をもつ実施例3の水素吸蔵合金を製造した。す
なわち、実施例3の水素吸蔵合金は、図1に示す三元組
成図において、#3を付した丸印が示す組成をもつ。
Then, using the hydrogen storage alloy of Example 2, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that produced by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Example 2 was discharged at a high unit weight of 180 mAh / g. It had a capacity. (Example 3) Ti, V and Ni were 2.07 respectively.
92 g, 6.6465 g, and 1.2743 g are only weighed, except that the hydrogen storage alloy of Example 1 is otherwise subjected to the same method as described above, but Ti 22.2 V 66.7 Ni 11.1 in atomic percent is used.
A hydrogen storage alloy of Example 3 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 3 has the composition indicated by the circle marked with # 3 in the ternary composition diagram shown in FIG.

【0029】そして、実施例3の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例3の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、360mAh/gという高い単位重量当たりの
放電容量をもつものであった。さらに、実施例3の水素
吸蔵合金は、実施例1の水素吸蔵合金と同様の大きい水
素吸蔵量をもち、良好な水素に対する反応性を示し、か
つ、良好なプラトー特性を示した。 (実施例4)TiとVとNiとを、それぞれ、1.95
15g、6.2487g、1.7998gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi21.063.2Ni15.8
なる組成をもつ実施例4の水素吸蔵合金を製造した。す
なわち、実施例4の水素吸蔵合金は、図1に示す三元組
成図において、#4を付した丸印が示す組成をもつ。
Then, using the hydrogen storage alloy of Example 3, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Example 3 was discharged at a high unit weight of 360 mAh / g. It had a capacity. Furthermore, the hydrogen storage alloy of Example 3 had a large hydrogen storage capacity similar to that of the hydrogen storage alloy of Example 1, exhibited good reactivity with hydrogen, and exhibited good plateau characteristics. (Example 4) Ti, V, and Ni were respectively set to 1.95.
15 g, 6.2487 g, 1.7998 g are different, except that the hydrogen storage alloy of Example 1 is otherwise treated in the same manner as atomic percentage Ti 21.0 V 63.2 Ni 15.8.
A hydrogen storage alloy of Example 4 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 4 has a composition indicated by a circle with # 4 in the ternary composition diagram shown in FIG.

【0030】そして、実施例4の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例4の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、320mAh/gという高い単位重量当たりの
放電容量をもつものであった。さらに、実施例4の水素
吸蔵合金は、実施例1の水素吸蔵合金と同様の大きい水
素吸蔵量をもち、良好な水素に対する反応性を示し、か
つ、良好なプラトー特性を示した。 (実施例5)TiとVとNiとを、それぞれ、1.84
58g、5.8916g、2.2626gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi20.060.0Ni20.0
なる組成をもつ実施例5の水素吸蔵合金を製造した。す
なわち、実施例5の水素吸蔵合金は、図1に示す三元組
成図において、#5を付した丸印が示す組成をもつ。
Then, the hydrogen storage alloy of Example 4 was used, and the same nickel mesh negative electrode 1 for an alkaline secondary battery as that produced using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the nickel mesh negative electrode 1 made of the hydrogen storage alloy of Example 4 showed a discharge per unit weight as high as 320 mAh / g. It had a capacity. Further, the hydrogen storage alloy of Example 4 had a large hydrogen storage capacity similar to that of the hydrogen storage alloy of Example 1, exhibited good reactivity with hydrogen, and exhibited good plateau characteristics. (Embodiment 5) Ti, V and Ni are respectively set to 1.84.
58 g, 5.8916 g, 2.2626 g are only weighed, except that the hydrogen storage alloy of Example 1 is otherwise subjected to the same method as Ti 20.0 V 60.0 Ni 20.0 in atomic percent.
A hydrogen storage alloy of Example 5 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 5 has the composition indicated by the circle marked with # 5 in the ternary composition diagram shown in FIG.

【0031】そして、実施例5の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例5の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、220mAh/gという高い単位重量当たりの
放電容量をもつものであった。 (実施例6)TiとVとNiとを、それぞれ、0.93
13g、7.9271g、1.1416gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi10.080.0Ni10.0
なる組成をもつ実施例6の水素吸蔵合金を製造した。す
なわち、実施例6の水素吸蔵合金は、図1に示す三元組
成図において、#6を付した丸印が示す組成をもつ。
Then, using the hydrogen storage alloy of Example 5, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with a nickel mesh made of the hydrogen storage alloy of Example 5 showed a discharge per unit weight as high as 220 mAh / g. It had a capacity. (Example 6) Ti, V, and Ni were each set to 0.93.
13 g, 7.9271 g, 1.1416 g are different, except that the hydrogen storage alloy of Example 1 is otherwise treated in the same manner as Ti 10.0 V 80.0 Ni 10.0 in atomic percent.
A hydrogen storage alloy of Example 6 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 6 has the composition indicated by the circle with # 6 in the ternary composition diagram shown in FIG.

【0032】そして、実施例6の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例6の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、280mAh/gという高い単位重量当たりの
放電容量をもつものであった。 (実施例7)TiとVとNiとを、それぞれ、1.88
81g、7.5333g、0.5786gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi20.075.0Ni5.0
なる組成をもつ実施例7の水素吸蔵合金を製造した。す
なわち、実施例7の水素吸蔵合金は、図1に示す三元組
成図において、#7を付した丸印が示す組成をもつ。
Then, the hydrogen storage alloy of Example 6 was used, and the same nickel mesh negative electrode 1 for an alkaline secondary battery as that produced by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement with a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Example 6 was discharged at a high unit weight of 280 mAh / g. It had a capacity. (Embodiment 7) Ti, V and Ni are respectively 1.88.
81 g, 7.5333 g, and 0.5786 g are different, except that the hydrogen storage alloy of Example 1 is otherwise treated in the same manner as Ti 20.0 V 75.0 Ni 5.0.
A hydrogen storage alloy of Example 7 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 7 has a composition indicated by a circle with # 7 in the ternary composition diagram shown in FIG.

【0033】そして、実施例7の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例7の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、160mAh/gという高い単位重量当たりの
放電容量をもつものであった。 (実施例8)TiとVとNiとを、それぞれ、2.84
94g、6.5685g、0.5821gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi30.065.0Ni5.0
なる組成をもつ実施例8の水素吸蔵合金を製造した。す
なわち、実施例8の水素吸蔵合金は、図1に示す三元組
成図において、#8を付した丸印が示す組成をもつ。
Then, using the hydrogen storage alloy of Example 7, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similar to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the nickel mesh negative electrode 1 made of the hydrogen storage alloy of Example 7 showed a discharge per unit weight as high as 160 mAh / g. It had a capacity. (Embodiment 8) Ti, V and Ni are respectively 2.84.
94 g, 6.5685 g, and 0.5821 g are different, except that the hydrogen storage alloy of Example 1 is otherwise treated in the same manner as Ti 30.0 V 65.0 Ni 5.0 in atomic percent.
A hydrogen storage alloy of Example 8 having the following composition was manufactured. That is, the hydrogen storage alloy of Example 8 has the composition indicated by the circle with # 8 in the ternary composition diagram shown in FIG.

【0034】そして、実施例8の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、実施例8の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、160mAh/gという高い単位重量当たりの
放電容量をもつものであった。 (比較例1)実施例の水素吸蔵合金との比較のために、
本発明の請求範囲外のTiとVとNiの組成をもつ8種
類の比較例の水素吸蔵合金を、以下のようにして製造し
た。まず、TiとVとNiとを、それぞれ、1.744
3g、5.5774g、2.6783gを秤量すること
だけが異なり、その他は実施例1の水素吸蔵合金と同一
の方法で、原子パーセントでTi19.057.1Ni23.8
る組成をもつ比較例1の水素吸蔵合金を製造した。すな
わち、比較例1の水素吸蔵合金は、図1に示す三元組成
図において、#C100を付した×印が示す組成をも
つ。
Then, using the hydrogen storage alloy of Example 8, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the evaluation alkaline secondary battery having the negative electrode 1 with a nickel mesh made of the hydrogen storage alloy of Example 8 showed a discharge per unit weight as high as 160 mAh / g. It had a capacity. Comparative Example 1 For comparison with the hydrogen storage alloy of the example,
Eight types of comparative hydrogen storage alloys having compositions of Ti, V, and Ni outside the scope of the claims of the present invention were manufactured as follows. First, Ti, V, and Ni are set to 1.744, respectively.
Hydrogen of Comparative Example 1 having the composition Ti 19.0 V 57.1 Ni 23.8 in atomic percent is the same as the hydrogen storage alloy of Example 1 except that 3 g, 5.5774 g and 2.6783 g are weighed. An occlusion alloy was produced. That is, the hydrogen storage alloy of Comparative Example 1 has a composition indicated by a cross with # C100 in the ternary composition diagram shown in FIG.

【0035】そして、比較例1の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例1の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、105mAh/gという低い単位重量当たりの
放電容量をもつものであった。さらに、比較例1の水素
吸蔵合金は、200℃以下の温度で水素化することが困
難であった。 (比較例2)TiとVとNiとを、それぞれ、3.14
50g、5.6974g、1.5770gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi33.356.7Ni10.0
なる組成をもつ比較例2の水素吸蔵合金を製造した。す
なわち、比較例2の水素吸蔵合金は、図1に示す三元組
成図において、#C200を付した×印が示す組成をも
つ。
Then, using the hydrogen storage alloy of Comparative Example 1, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Comparative Example 1 was discharged at a low unit weight of 105 mAh / g. It had a capacity. Furthermore, it was difficult to hydrogenate the hydrogen storage alloy of Comparative Example 1 at a temperature of 200 ° C. or lower. (Comparative Example 2) Ti, V, and Ni were respectively 3.14.
50 g, 5.6974 g, and 1.5770 g are different, except that the hydrogen storage alloy of Example 1 is otherwise subjected to the same method as described above, but Ti 33.3 V 56.7 Ni 10.0 in atomic percent is used.
A hydrogen storage alloy of Comparative Example 2 having the following composition was manufactured. That is, the hydrogen storage alloy of Comparative Example 2 has the composition indicated by the cross mark with # C200 in the ternary composition diagram shown in FIG.

【0036】そして、比較例2の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例2の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、130mAh/gという低い単位重量当たりの
放電容量をもつものであった。さらに、比較例2の水素
吸蔵合金が示した水素吸蔵量−水素圧−温度曲線におい
て、そのプラトーの傾きは大きく、比較例2の水素吸蔵
合金のプラトー特性は、実用に適するものではなかっ
た。 (比較例3)TiとVとNiとを、それぞれ、0.89
75g、5.2520g、3.8505gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi10.055.0Ni35.0
なる組成をもつ比較例3の水素吸蔵合金を製造した。す
なわち、比較例3の水素吸蔵合金は、図1に示す三元組
成図において、#C300を付した×印が示す組成をも
つ。
Then, the hydrogen storage alloy of Comparative Example 2 was used, and the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Comparative Example 2 was discharged at a low unit weight of 130 mAh / g. It had a capacity. Further, in the hydrogen storage amount-hydrogen pressure-temperature curve shown by the hydrogen storage alloy of Comparative Example 2, the slope of the plateau was large, and the plateau characteristics of the hydrogen storage alloy of Comparative Example 2 were not suitable for practical use. (Comparative Example 3) Ti, V, and Ni were each set to 0.89.
75 g, 5.2520 g, 3.8505 g are different only in the same manner as in the hydrogen storage alloy of Example 1, except that the weight is adjusted to Ti 10.0 V 55.0 Ni 35.0.
A hydrogen storage alloy of Comparative Example 3 having the following composition was manufactured. That is, the hydrogen storage alloy of Comparative Example 3 has a composition indicated by a cross mark with # C300 in the ternary composition diagram shown in FIG.

【0037】そして、比較例3の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例3の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、110mAh/gという低い単位重量当たりの
放電容量をもつものであった。さらに、比較例3の水素
吸蔵合金は、200℃以下の温度で水素化することが困
難であった。 (比較例4)TiとVとNiとを、それぞれ、3.02
92g、3.0681g、3.9027gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi33.331.7Ni35.0
なる組成をもつ比較例4の水素吸蔵合金を製造した。す
なわち、比較例4の水素吸蔵合金は、図1に示す三元組
成図において、#C400を付した×印が示す組成をも
つ。
Then, using the hydrogen storage alloy of Comparative Example 3, the same nickel mesh negative electrode 1 for alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similar to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Comparative Example 3 was discharged at a low unit weight of 110 mAh / g. It had a capacity. Further, it was difficult to hydrogenate the hydrogen storage alloy of Comparative Example 3 at a temperature of 200 ° C. or lower. (Comparative Example 4) Ti, V and Ni were 3.02, respectively.
92 g, 3.0681 g, and 3.9027 g are only weighed, except that the hydrogen storage alloy of Example 1 is otherwise subjected to the same method as Ti 33.3 V 31.7 Ni 35.0 atomic percent.
A hydrogen storage alloy of Comparative Example 4 having the following composition was manufactured. That is, the hydrogen storage alloy of Comparative Example 4 has a composition indicated by a cross with # C400 in the ternary composition diagram shown in FIG.

【0038】そして、比較例4の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例4の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、48mAh/gという低い単位重量当たりの放
電容量をもつものであった。さらに、比較例4の水素吸
蔵合金は、200℃以下の温度で水素化することが困難
であっただけでなく、比較例4の水素吸蔵合金が示した
水素吸蔵量−水素圧−温度曲線において、そのプラトー
の傾きは大きく、比較例4の水素吸蔵合金のプラトー特
性は、実用に適するものではなかった。 (比較例5)TiとVとNiとを、それぞれ、0.91
41g、6.5648g、2.5211gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi10.067.5Ni22.5
なる組成をもつ比較例5の水素吸蔵合金を製造した。す
なわち、比較例5の水素吸蔵合金は、図1に示す三元組
成図において、#C500を付した×印が示す組成をも
つ。
Then, using the hydrogen storage alloy of Comparative Example 4, the same nickel mesh negative electrode 1 for alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement with a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Comparative Example 4 showed a discharge per unit weight as low as 48 mAh / g. It had a capacity. Furthermore, the hydrogen storage alloy of Comparative Example 4 was not only difficult to hydrogenate at a temperature of 200 ° C. or lower, but also in the hydrogen storage amount-hydrogen pressure-temperature curve shown by the hydrogen storage alloy of Comparative Example 4. The inclination of the plateau was large, and the plateau characteristics of the hydrogen storage alloy of Comparative Example 4 were not suitable for practical use. (Comparative Example 5) Ti, V, and Ni were each 0.91
41 g, 6.5648 g, 2.5211 g are only weighed, otherwise the same method as in the hydrogen storage alloy of Example 1 is used, with Ti 10.0 V 67.5 Ni 22.5 in atomic percent.
A hydrogen storage alloy of Comparative Example 5 having the following composition was manufactured. That is, the hydrogen storage alloy of Comparative Example 5 has a composition indicated by a cross with # C500 in the ternary composition diagram shown in FIG.

【0039】そして、比較例5の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例5の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、80mAh/gという低い単位重量当たりの放
電容量をもつものであった。さらに、比較例5の水素吸
蔵合金は、200℃以下の温度で水素化することが困難
であった。 (比較例6)TiとVとNiとを、それぞれ、3.08
60g、4.3581g、2.5559gを秤量するこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi33.344.2Ni22.5
なる組成をもつ比較例6の水素吸蔵合金を製造した。す
なわち、比較例6の水素吸蔵合金は、図1に示す三元組
成図において、#C600を付した×印が示す組成をも
つ。
Then, using the hydrogen storage alloy of Comparative Example 5, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement at a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with the nickel mesh made of the hydrogen storage alloy of Comparative Example 5 showed a discharge per unit weight as low as 80 mAh / g. It had a capacity. Furthermore, it was difficult to hydrogenate the hydrogen storage alloy of Comparative Example 5 at a temperature of 200 ° C. or lower. (Comparative Example 6) Ti, V and Ni were 3.08, respectively.
60 g, 4.3581 g, and 2.5559 g are different, except that the hydrogen storage alloy of Example 1 is otherwise subjected to the same method as described above, but Ti 33.3 V 44.2 Ni 22.5 in atomic percent is used.
A hydrogen storage alloy of Comparative Example 6 having the following composition was manufactured. That is, the hydrogen storage alloy of Comparative Example 6 has a composition indicated by a cross with # C600 in the ternary composition diagram shown in FIG.

【0040】そして、比較例6の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例6の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、140mAh/gという低い単位重量当たりの
放電容量をもつものであった。さらに、比較例6の水素
吸蔵合金は、200℃以下の温度で水素化することが困
難であっただけでなく、比較例6の水素吸蔵合金が示し
た水素吸蔵量−水素圧−温度曲線において、そのプラト
ーの傾きは大きく、比較例6の水素吸蔵合金のプラトー
特性は、実用に適するものではなかった。 (比較例7)Niを全く含有させず、TiとVとを、そ
れぞれ、2.3856g、7.6144gを秤量したこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi25.075.0なる組成
をもつ比較例7の水素吸蔵合金を製造した。すなわち、
比較例7の水素吸蔵合金は、図1に示す三元組成図にお
いて、#C700を付した×印が示す組成をもつ。
Then, using the hydrogen storage alloy of Comparative Example 6, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement with a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the negative electrode 1 with a nickel mesh made of the hydrogen storage alloy of Comparative Example 6 was discharged at a low unit weight of 140 mAh / g. It had a capacity. Furthermore, the hydrogen storage alloy of Comparative Example 6 was not only difficult to hydrogenate at a temperature of 200 ° C. or lower, but also in the hydrogen storage amount-hydrogen pressure-temperature curve shown by the hydrogen storage alloy of Comparative Example 6. The inclination of the plateau was large, and the plateau characteristics of the hydrogen storage alloy of Comparative Example 6 were not suitable for practical use. (Comparative Example 7) The same method as in the hydrogen storage alloy of Example 1 was adopted except that 2.3865 g and 7.6144 g of Ti and V, respectively, were weighed without containing Ni at all. A hydrogen storage alloy of Comparative Example 7 having a composition of Ti 25.0 V 75.0 in atomic percent was produced. That is,
The hydrogen storage alloy of Comparative Example 7 has a composition indicated by a cross mark with # C700 in the ternary composition diagram shown in FIG.

【0041】そして、比較例7の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例7の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、全く充放電をすることがなかった。 (比較例8)Niを全く含有させず、TiとVとを、そ
れぞれ、3.1938g、6.8062gを秤量したこ
とだけが異なり、その他は実施例1の水素吸蔵合金と同
一の方法で、原子パーセントでTi33.366.7なる組成
をもつ比較例8の水素吸蔵合金を製造した。すなわち、
比較例8の水素吸蔵合金は、図1に示す三元組成図にお
いて、#C800を付した×印が示す組成をもつ。
Then, using the hydrogen storage alloy of Comparative Example 7, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. As a result of measurement at a discharge current of 100 mA / g in the same manner as described above, the alkaline secondary battery for evaluation having the nickel mesh negative electrode 1 made of the hydrogen storage alloy of Comparative Example 7 did not charge or discharge at all. (Comparative Example 8) The same method as in the hydrogen storage alloy of Example 1, except that Ni was not contained at all, and that Ti and V were weighed in 3.1938 g and 6.8062 g, respectively. A hydrogen storage alloy of Comparative Example 8 having a composition of Ti 33.3 V 66.7 in atomic percent was produced. That is,
The hydrogen storage alloy of Comparative Example 8 has a composition indicated by a cross with # C800 in the ternary composition diagram shown in FIG.

【0042】そして、比較例8の水素吸蔵合金を使用し
て、実施例1の水素吸蔵合金を使用して製造したのと同
様のアルカリ2次電池用のニッケルメッシュ付き負極1
を製造した。さらに、得られたニッケルメッシュ付き負
極1を使用して、図5に示すような評価用アルカリ2次
電池を製造した。前記と同様に、100mA/gの放電
電流で測定した結果、比較例8の水素吸蔵合金からなる
ニッケルメッシュ付き負極1をもつ評価用アルカリ2次
電池は、全く充放電をすることがなかった。 (評価)本発明の請求範囲内のNiの組成、すなわち、
Niを5〜20%含有する実施例1〜8の水素吸蔵合金
は、真空中、200℃以下の温度で水素化することがで
きた。これに対して、20%を越えるNiを含有する比
較例1および3〜6の水素吸蔵合金は、真空中、少なく
とも300℃に加熱し、さらに、3MPaの圧力の水素
を導入しなければ、水素化することができなかった。
Then, using the hydrogen storage alloy of Comparative Example 8, the same nickel mesh negative electrode 1 for an alkaline secondary battery as that manufactured by using the hydrogen storage alloy of Example 1 was used.
Was manufactured. Further, using the obtained nickel mesh-attached negative electrode 1, an alkaline secondary battery for evaluation as shown in FIG. 5 was manufactured. Similarly to the above, as a result of measurement with a discharge current of 100 mA / g, the alkaline secondary battery for evaluation having the nickel mesh negative electrode 1 made of the hydrogen storage alloy of Comparative Example 8 did not charge or discharge at all. (Evaluation) The composition of Ni within the scope of the present invention, that is,
The hydrogen storage alloys of Examples 1 to 8 containing 5 to 20% of Ni could be hydrogenated at a temperature of 200 ° C. or lower in vacuum. On the other hand, the hydrogen storage alloys of Comparative Examples 1 and 3 to 6 containing more than 20% Ni were heated to at least 300 ° C. in a vacuum, and hydrogen was introduced unless hydrogen at a pressure of 3 MPa was introduced. I couldn't make it.

【0043】一方、5%未満のNiを含有する水素吸蔵
合金、たとえば、比較例7および8の水素吸蔵合金は、
200℃以下で水素化することができた。しかし、比較
例7および8の水素吸蔵合金は、水素に対する反応速度
が著しく遅かった。本発明の請求範囲内のNiの組成を
もつ実施例1〜8の水素吸蔵合金においては、Niの原
子パーセントが大きいものほど、高い水素の解離圧を示
す傾向があった。水素吸蔵量については、Tiの原子パ
ーセントに対するVの原子パーセントの比が同じであれ
ば、Niの原子パーセントが大きいものほど、水素吸蔵
量が減少する傾向があった。
On the other hand, hydrogen storage alloys containing less than 5% Ni, such as the hydrogen storage alloys of Comparative Examples 7 and 8,
It was possible to hydrogenate below 200 ° C. However, the hydrogen storage alloys of Comparative Examples 7 and 8 had a significantly slow reaction rate with respect to hydrogen. In the hydrogen storage alloys of Examples 1 to 8 having the composition of Ni within the claims of the present invention, the larger the atomic percentage of Ni, the higher the dissociation pressure of hydrogen tended to be. Regarding the hydrogen storage amount, if the atomic ratio of V to the atomic percentage of Ti is the same, the hydrogen storage amount tends to decrease as the atomic percentage of Ni increases.

【0044】なお、参考までに、5%未満のNiを含有
する水素吸蔵合金においては、Niの原子パーセントが
小さいものほど、却って水素吸蔵量が小さくなる傾向が
あった。また、Niを全く含有していない比較例7およ
び8の水素吸蔵合金を、アルカリ2次電池用の負極の活
物質として使用した場合、このようなアルカリ2次電池
は、全く充放電させることができなかった。
For reference, in the hydrogen storage alloy containing less than 5% Ni, the smaller the atomic percentage of Ni, the smaller the hydrogen storage amount tended to be. Further, when the hydrogen storage alloys of Comparative Examples 7 and 8 containing no Ni were used as an active material of a negative electrode for an alkaline secondary battery, such an alkaline secondary battery could be completely charged and discharged. could not.

【0045】これに対して、Niを5〜20%含有する
実施例1〜8の水素吸蔵合金においては、Niの原子パ
ーセントがほぼ10〜15%にある実施例1、3、4お
よび6の水素吸蔵合金が、最大の単位重量当たりの放電
容量をもっていた。Tiの組成を変化させたときの水素
吸蔵合金の物性への影響は次のとおりであった。Vの原
子パーセントに対するNiの原子パーセントの比が同じ
であれば、Tiの原子パーセントが大きいものほど、水
素吸蔵量が減少する傾向があった。また、この減少傾向
は、Tiの原子パーセントが25%以上で顕著であっ
た。さらに、Tiの原子パーセントが大きいものほど、
水素の解離圧は低くなる傾向があった。さらにまた、T
iの原子パーセントが大きいものほど、水素吸蔵合金が
示した水素吸蔵量−水素圧−温度曲線において、そのプ
ラトーの傾きは大きくなる傾向があり、実用的に用いる
ことができる水素吸蔵量が小さくなり、実用に適さなく
なる恐れがあった。一方、Tiの原子パーセントが小さ
いものほど、水素に対する反応速度が遅くなる傾向があ
った。
On the other hand, in the hydrogen storage alloys of Examples 1 to 8 containing Ni of 5 to 20%, the atomic percentage of Ni was about 10 to 15%. The hydrogen storage alloy had the highest discharge capacity per unit weight. The effects on the physical properties of the hydrogen storage alloy when the composition of Ti was changed were as follows. If the ratio of the atomic percentage of Ni to the atomic percentage of V is the same, the larger the atomic percentage of Ti, the more the hydrogen storage amount tended to decrease. This decreasing tendency was remarkable when the atomic percentage of Ti was 25% or more. Furthermore, the larger the atomic percentage of Ti,
The dissociation pressure of hydrogen tended to be low. Furthermore, T
As the atomic percentage of i is larger, the plateau slope tends to be larger in the hydrogen storage amount-hydrogen pressure-temperature curve shown by the hydrogen storage alloy, and the hydrogen storage amount that can be practically used becomes smaller. , There was a risk that it would not be suitable for practical use. On the other hand, the smaller the atomic percentage of Ti, the slower the reaction rate for hydrogen.

【0046】また、本発明の請求範囲外のTiの組成、
すなわち、Tiを5%未満または30%を越えるTiを
含有する水素吸蔵合金、たとえば、比較例2、6および
4の水素吸蔵合金の単位重量当たりの放電容量は大きい
ものではなかった。Vの組成を変化させたときの水素吸
蔵合金の物性への影響は次のとおりであった。Vの原子
パーセントが小さいものほど、水素吸蔵量が減少する傾
向があった。Vの原子パーセントが小さい組成をもつ水
素吸蔵合金をアルカリ2次電池用の負極の活物質として
使用した場合、結果として、このようなアルカリ2次電
池の所定の放電電流に対する放電容量は小さくなってし
まい、実用に適さなかった。
Further, a Ti composition outside the scope of the present invention,
That is, the discharge capacity per unit weight of the hydrogen storage alloy containing Ti less than 5% or more than 30%, for example, the hydrogen storage alloys of Comparative Examples 2, 6 and 4 was not large. The effects on the physical properties of the hydrogen storage alloy when the composition of V was changed were as follows. The smaller the atomic percentage of V, the more the hydrogen storage amount tended to decrease. When a hydrogen storage alloy having a composition with a small atomic percentage of V is used as an active material of a negative electrode for an alkaline secondary battery, as a result, the discharge capacity of such an alkaline secondary battery for a given discharge current becomes small. It was not suitable for practical use.

【0047】全体として、本発明の請求範囲内の組成を
もつ実施例1〜8の水素吸蔵合金は、単位重量あたりの
水素吸蔵量が1.4重量%以上であり、200℃以下の
温度で水素化することができ、0.1MPaなる水素の
解離圧を示す温度範囲が20〜100℃の間にあった。
このように、実施例1〜8の水素吸蔵合金は、実用上好
適な物性をもつものであった。
As a whole, the hydrogen storage alloys of Examples 1 to 8 having the compositions within the claims of the present invention have a hydrogen storage amount of 1.4% by weight or more per unit weight and a temperature of 200 ° C. or less. The temperature range was 20 to 100 ° C., at which hydrogenation was possible and the hydrogen dissociation pressure was 0.1 MPa.
Thus, the hydrogen storage alloys of Examples 1 to 8 had practically suitable physical properties.

【0048】[0048]

【発明の効果】以上詳述したように、Tiの組成x、V
の組成yおよびNiの組成zを、第1図に示す三元組成
図のA点:Ti5 90Ni5 、B点:Ti5 75
20、C点:Ti3050Ni20およびD点:Ti3065
Ni5 で囲まれる範囲に限定することによって、本発明
の水素吸蔵合金Tix y Niz の物性、たとえば、水
素吸蔵量、プラトー特性および水素圧の変化に対する応
答特性などを、従来の水素吸蔵合金の物性よりも、大幅
に向上させることができる。
As described above in detail, Ti composition x, V
The composition y of Ni and the composition z of Ni are shown in FIG. 1 at point A: Ti 5 V 90 Ni 5 , point B: Ti 5 V 75 N
i 20 , point C: Ti 30 V 50 Ni 20 and point D: Ti 30 V 65
By limiting the range surrounded by Ni 5, the physical properties of the hydrogen storage alloy Ti x V y Ni z of the present invention, for example, the hydrogen storage capacity, and response to changes in the plateau characteristics and the hydrogen pressure, the conventional hydrogen storage The physical properties of the alloy can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素吸蔵合金Tix y Niz の三元組成図で
ある。
FIG. 1 is a ternary composition diagram of a hydrogen storage alloy Ti x V y Ni z .

【図2】本発明の水素吸蔵合金の製造方法の一例を示す
フローチャートである。
FIG. 2 is a flowchart showing an example of a method for producing a hydrogen storage alloy of the present invention.

【図3】本発明の水素吸蔵合金の実施例1が示した水素
吸蔵量−水素圧−温度曲線である。
FIG. 3 is a hydrogen storage amount-hydrogen pressure-temperature curve shown in Example 1 of the hydrogen storage alloy of the present invention.

【図4】本発明の水素吸蔵合金を使用してアルカリ2次
電池用の負極を製造する方法の一例を示すフローチャー
トである。
FIG. 4 is a flowchart showing an example of a method for producing a negative electrode for an alkaline secondary battery using the hydrogen storage alloy of the present invention.

【図5】本発明の水素吸蔵合金を使用して製造した評価
用アルカリ2次電池の模式図である。
FIG. 5 is a schematic view of an alkaline secondary battery for evaluation manufactured using the hydrogen storage alloy of the present invention.

【図6】本発明の実施例1の水素吸蔵合金を使用したア
ルカリ2次電池の水素吸蔵合金電極の電流容量と電位の
関係を示す線図である。
FIG. 6 is a diagram showing the relationship between the current capacity and the potential of the hydrogen storage alloy electrode of the alkaline secondary battery using the hydrogen storage alloy of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1:水素吸蔵合金電極(負極)、2:水酸化ニッケル電
極(正極)、3:ガラスフィルタ、4:ケーシング、
5:ルギン毛管、6:塩橋、7:照合電極、8:電解液
1: Hydrogen storage alloy electrode (negative electrode), 2: Nickel hydroxide electrode (positive electrode), 3: Glass filter, 4: Casing,
5: Luggin capillary, 6: Salt bridge, 7: Reference electrode, 8: Electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 国男 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 三島 貴弘 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 磯村 秋人 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 上原 斎 大阪府池田市伏尾台2丁目3−12 (72)発明者 小黒 啓介 大阪府池田市五月丘3丁目4−3 (72)発明者 境 哲男 兵庫県尼崎市田能4丁目13−1 園田ダイ ヤハイツ404 (72)発明者 宮村 弘 大阪府豊中市新千里西町3丁目20−10 (72)発明者 栗山 信宏 大阪府池田市五月丘3丁目4−13−121 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Takahashi 5-50, Hachiken-cho, Kariya city, Aichi Prefectural Institute for Imla Materials Development (72) Inventor Takahiro Mishima 5-chome, Hachiken-cho, Kariya city, Aichi prefecture Address Incorporated Imla Material Development Laboratory (72) Inventor Akito Isomura 5-50 Hachiken-cho, Kariya City, Aichi Incorporated Immura Material Development Laboratory (72) Inventor Sai Uehara 2 Fushiodai, Ikeda City, Osaka Prefecture Chome 3-12 (72) Inventor Keisuke Oguro 3-4-3 Satsukioka, Ikeda-shi, Osaka (72) Inventor Tetsuo Sakai 4-13-1, Tano, Amagasaki-shi, Hyogo Sonoda Daiya Heights 404 (72) Inventor Miyamura Hiro, 3-20-10, Shinsenri Nishimachi, Toyonaka City, Osaka Prefecture (72) Inventor Nobuhiro Kuriyama 3-13-12, Satsukioka, Ikeda City, Osaka Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式:Tix y Niz で表される水素
吸蔵合金において、該Tiの組成x、該Vの組成yおよ
び該Niの組成zは、原子パーセントで、第1図に示す
三元組成図のA点:Ti5 90Ni5 、B点:Ti5
75Ni20、C点:Ti3050Ni20およびD点:Ti30
65Ni5 で囲まれる範囲にあることを特徴とする水素
吸蔵合金。
1. In a hydrogen storage alloy represented by the general formula: Ti x V y Ni z , the composition x of Ti, the composition y of V, and the composition z of Ni are expressed in atomic percent as shown in FIG. Point A: Ti 5 V 90 Ni 5 , point B: Ti 5 V in the ternary composition diagram shown
75 Ni 20 , C point: Ti 30 V 50 Ni 20 and D point: Ti 30
A hydrogen storage alloy characterized by being in a range surrounded by V 65 Ni 5 .
【請求項2】前記Tiの組成x、前記Vの組成yおよび
前記Niの組成zは、原子パーセントで、第1図に示す
三元組成図のE点:Ti2565Ni10、F点:Ti15
75Ni10、G点:Ti1567.5Ni17.5およびH点:T
2557.5Ni 17.5で囲まれる範囲にある請求項1記載
の水素吸蔵合金。
2. A composition x of Ti, a composition y of V, and
The composition z of Ni is shown in FIG. 1 in atomic percent.
Point E of the ternary composition diagram: Titwenty fiveV65NiTen, F point: Ti15V
75NiTen, G point: Ti15V67.5Ni17.5And H point: T
itwenty fiveV57.5Ni 17.5It is in the range surrounded by.
Hydrogen storage alloy.
【請求項3】Mg、Al、Si、Ge、Cr、Mn、F
e、Co、Cu、Sr、Y、Zr、Nb、Mo、Pd、
Ir、Ag、Hf、Ta、W、Pb、Biおよびランタ
ノイドのうちの少なくとも一つの元素を全体量に対して
8原子パーセント以下の含有量でさらに含む請求項1ま
たは請求項2記載の水素吸蔵合金。
3. Mg, Al, Si, Ge, Cr, Mn, F
e, Co, Cu, Sr, Y, Zr, Nb, Mo, Pd,
The hydrogen storage alloy according to claim 1 or 2, further comprising at least one element selected from the group consisting of Ir, Ag, Hf, Ta, W, Pb, Bi and lanthanoid in a content of 8 atomic percent or less based on the total amount. .
JP5018634A 1993-02-05 1993-02-05 Hydrogen storage alloy Expired - Lifetime JP2773851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018634A JP2773851B2 (en) 1993-02-05 1993-02-05 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018634A JP2773851B2 (en) 1993-02-05 1993-02-05 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH06228699A true JPH06228699A (en) 1994-08-16
JP2773851B2 JP2773851B2 (en) 1998-07-09

Family

ID=11977049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018634A Expired - Lifetime JP2773851B2 (en) 1993-02-05 1993-02-05 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2773851B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869796A (en) * 1994-08-22 1996-03-12 Hon Kuochii Hydrogen preservation material,hydride electrode,hydrogen preservation device and nickel hydride battery
EP0755898A2 (en) * 1995-07-18 1997-01-29 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
JPH11307090A (en) * 1998-04-17 1999-11-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy for battery and its manufacture
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
US6632567B2 (en) 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145563A (en) * 1984-04-16 1986-03-05 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Active substance for hydrogen storage electrode, method of forming same and electrochemical application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145563A (en) * 1984-04-16 1986-03-05 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Active substance for hydrogen storage electrode, method of forming same and electrochemical application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869796A (en) * 1994-08-22 1996-03-12 Hon Kuochii Hydrogen preservation material,hydride electrode,hydrogen preservation device and nickel hydride battery
EP0755898A2 (en) * 1995-07-18 1997-01-29 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
EP0755898A3 (en) * 1995-07-18 1998-02-11 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5738736A (en) * 1995-07-18 1998-04-14 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
JPH11307090A (en) * 1998-04-17 1999-11-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy for battery and its manufacture
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
DE19918329B4 (en) * 1998-04-30 2008-02-14 Toyota Jidosha Kabushiki Kaisha, Toyota A hydrogen absorbing alloy and electrode comprising the hydrogen absorbing alloy
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6632567B2 (en) 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Also Published As

Publication number Publication date
JP2773851B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JP2773851B2 (en) Hydrogen storage alloy
EP0755898A2 (en) Hydrogen storage alloy and electrode therefrom
EP1075032B1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JPH0821379B2 (en) Hydrogen storage electrode
WO1990007585A1 (en) Method of producing hydrogen-occlusion alloy and electrode using the alloy
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP3491872B2 (en) Hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH07268513A (en) Hydrogen occluding alloy and hydrogen occluding alloy electrode
JPH08157998A (en) Hydrogen storage alloy and its production
JPH0265060A (en) Hydrogen storage electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JPH01290742A (en) Closed alkali storage battery
KR0158034B1 (en) Method for manufacturing electrode for the secondary battery by using the v-ti alloy
EP0612856B1 (en) Hydrogen storage alloy and electrode therefrom
JPH0393158A (en) Hydrogen storage alloy electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
JPH11181536A (en) Composition for hydrogen storage material
JPH08295970A (en) Hydrogen storage alloy and hidrogen storage alloy electrode
JPH05151967A (en) Electrode of hydrogen occluding alloy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term