JPH08295970A - Hydrogen storage alloy and hidrogen storage alloy electrode - Google Patents

Hydrogen storage alloy and hidrogen storage alloy electrode

Info

Publication number
JPH08295970A
JPH08295970A JP7103987A JP10398795A JPH08295970A JP H08295970 A JPH08295970 A JP H08295970A JP 7103987 A JP7103987 A JP 7103987A JP 10398795 A JP10398795 A JP 10398795A JP H08295970 A JPH08295970 A JP H08295970A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
phase
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7103987A
Other languages
Japanese (ja)
Other versions
JP3470987B2 (en
Inventor
Yoichiro Tsuji
庸一郎 辻
Toru Yamamoto
徹 山本
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10398795A priority Critical patent/JP3470987B2/en
Priority to US08/634,008 priority patent/US5753054A/en
Priority to DE69601321T priority patent/DE69601321T2/en
Priority to EP96302956A priority patent/EP0739990B1/en
Publication of JPH08295970A publication Critical patent/JPH08295970A/en
Application granted granted Critical
Publication of JP3470987B2 publication Critical patent/JP3470987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To produce a hydrogen storage alloy maintaining high amt. of occlud ed hydrogen and furthermore excellent in initial activity and low temp. high rate discharging characteristics. CONSTITUTION: This hydrogen storage alloy is the one shown by the general formula of ZrMna Vb Moc Crd Coe Nif (0.4<=a<=0.8, 0<=b<0.3, 0<c<=0.3, 0<d<=0.3, 0<e<=0.1, 1.0<=f<=1.5, 0.1<=b+c<=0.3 and 2.0<=a+b+c+d+e+f<=2.4 are satisfied) or Zr1-x Tix Mna Vb Moc Crd Coe Nif (0<x<=0.5, 0.4<=a<=0.8, 0<=b<0.3, 0<c<=0.3, 0<d<=0.3, 0<e<=0.1, 1.0<=f<=1.5, 0.1<=b+c<=0.3, x<=b+c+d+e and 7<=a+b+c+d+e+f<=2.2 are satisfied) and in which the main compoent of the alloy phase is constituted of a C15(MgCu2 ) type Laves phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金および同合金を
用いた水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy capable of reversibly electrochemically storing and releasing hydrogen, and a hydrogen storage alloy electrode using the same.

【0002】[0002]

【従来の技術】水素を可逆的に吸収・放出しうる水素吸
蔵合金を用いた水素吸蔵合金電極は、理論容量密度がカ
ドミウム電極より大きく、亜鉛電極のような変形やデン
ドライトの形成などもないことから、長寿命・無公害で
あり、しかも高エネルギー密度を有するアルカリ蓄電池
用負極として期待されている。このような水素吸蔵合金
電極に用いられる合金は、通常アーク溶解法や高周波誘
導加熱溶解法などで作製され、一般的にはTi−Ni系
及びLa(又はMm)−Ni系の多元系合金がよく知ら
れている。Ti−Ni系の多元系合金は、ABタイプ
(A:La,Zr,Tiなどの水素との親和性の大きい
元素、B:Ni,Mn,Crなどの遷移元素)として分
類される。このタイプの合金は、充放電サイクルの初期
には比較的大きな放電容量を示すが、充放電を繰り返す
と、その容量を長く維持することが困難であるという問
題がある。また、AB5タイプのLa(又はMm)−N
i系の多元系合金は、近年電極材料として多くの開発が
進められ、特にMm−Ni系の多元系合金は既に実用化
されている。このタイプの合金も容量的には頭打ちにな
っており、さらに放電容量が大きい新規水素吸蔵合金材
料が望まれている。
2. Description of the Related Art A hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen has a theoretical capacity density higher than that of a cadmium electrode, and does not cause deformation such as a zinc electrode or formation of dendrites. Therefore, it is expected as a negative electrode for an alkaline storage battery that has a long life, is pollution-free, and has a high energy density. The alloy used for such a hydrogen storage alloy electrode is usually produced by an arc melting method, a high frequency induction heating melting method, or the like. Generally, a Ti-Ni-based and La (or Mm) -Ni-based multi-component alloy is used. well known. The Ti-Ni-based multi-component alloy is classified as an AB type (A: an element having a high affinity for hydrogen such as La, Zr, and Ti, and B: a transition element such as Ni, Mn, and Cr). This type of alloy exhibits a relatively large discharge capacity at the beginning of the charge / discharge cycle, but there is a problem that it is difficult to maintain the capacity for a long time when the charge / discharge is repeated. Also, AB 5 type La (or Mm) -N
Many developments of i-type multi-component alloys have been advanced in recent years as electrode materials, and in particular, Mm-Ni-based multi-component alloys have already been put to practical use. This type of alloy has also reached its capacity limit, and a new hydrogen storage alloy material having a large discharge capacity is desired.

【0003】これに対して、AB2タイプのラーバス
(Laves)相合金は、水素吸蔵能が比較的高く、高
容量かつ長寿命の電極として有望である。既にこの合金
系については、例えばZrαVβNiγMδ系合金(特
開昭64−60961号公報)やAxByNiz系合金
(特開平1−102855号公報)、ZrαMnβVγ
CrδNiε系合金(特開平3−289041号公
報)、ZrMnxyNiz系合金(特開平4−3010
45号公報)などが提案されている。
On the other hand, the AB 2 type Laves phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode having a high capacity and a long life. Regarding this alloy system, for example, ZrαVβNiγMδ system alloy (JP-A-64-60961), AxByNiz system alloy (JP-A-1-102855), ZrαMnβVγ.
CrδNiε alloy (JP-A-3-289041), ZrMn x V y Ni z alloy (JP-A-4-3010
No. 45) has been proposed.

【0004】しかしながら、AB2タイプのラーバス相
合金を電極に用いた場合、Ti−Ni系やLa(又はM
m)−Ni系の多元系合金に比べて放電容量が高く、長
寿命化が可能なものの、さらに一層の性能の向上が望ま
れている。そして、合金系をZr−Mn−V−Cr−N
i系に限定し、組成を調整することにより0.34Ah
/g以上の放電容量を持つ水素吸蔵合金電極が得られて
いる(特開平3−289041号公報など)。また、Z
r−Mn−V−M−Ni系(MはFe又はCoの中から
選ばれた1種以上の元素)あるいはZr−Mn−V−N
i系で組成を調整することにより、高容量を維持したま
ま初期放電特性が改善されている(特開平4−3010
45号公報,特願平4−70704)。
However, when an AB 2 type Larvus phase alloy is used for the electrode, Ti--Ni system or La (or M
m) -Ni-based multi-component alloy has a higher discharge capacity and a longer life, but further improvement in performance is desired. Then, the alloy system is Zr-Mn-V-Cr-N.
0.34 Ah by limiting the composition to i type and adjusting the composition
A hydrogen storage alloy electrode having a discharge capacity of / g or more has been obtained (JP-A-3-290441, etc.). Also, Z
r-Mn-VM-Ni system (M is one or more elements selected from Fe or Co) or Zr-Mn-VN
By adjusting the composition in the i-system, the initial discharge characteristics are improved while maintaining a high capacity (Japanese Patent Laid-Open No. 4-3010).
45, Japanese Patent Application No. 4-70704).

【0005】[0005]

【発明が解決しようとする課題】しかし、このような水
素吸蔵合金電極を用いたニッケル−水素蓄電池を作製し
て、試験した結果、高率放電特性が特に低温において劣
っていることがわかった。本発明は、以上に鑑み、低温
における高率放電特性を改善するとともに、高い水素吸
蔵量及び初期放電特性を有する電極を与える水素吸蔵合
金を提供することを目的とする。
However, as a result of making and testing a nickel-hydrogen storage battery using such a hydrogen storage alloy electrode, it was found that the high rate discharge characteristics were inferior especially at low temperatures. In view of the above, it is an object of the present invention to provide a hydrogen storage alloy that improves high rate discharge characteristics at low temperatures and provides an electrode having a high hydrogen storage capacity and initial discharge characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵合金
は、一般式ZrMnabMocCrdCoeNif(0.4
≦a≦0.8,0≦b<0.3,0<c≦0.3,0<
d≦0.3,0<e≦0.1,1.0≦f≦1.5,
0.1≦b+c≦0.3,かつ2.0≦a+b+c+d
+e+f≦2.4)で示され、合金相の主成分がC15
(MgCu2)型ラーバス相である。また、本発明の水
素吸蔵合金は、一般式Zr1-xTixMnabMocCrd
CoeNif(0<x≦0.5,0.4≦a≦0.8,0
≦b<0.3,0<c≦0.3,0<d≦0.3,0<
e≦0.1,1.0≦f≦1.5,0.1≦b+c≦
0.3,x≦b+c+d+e,かつ1.7≦a+b+c
+d+e+f≦2.2)で示され、合金相の主成分がC
15(MgCu2)型ラーバス相である。さらに、本発
明は、合金中に仕込み組成よりもMo量が多い相と少な
い相の少なくとも2相が存在する水素吸蔵合金を提供す
る。ここにおいて、合金は、作製後1000〜1300
℃の真空中もしくは不活性ガス雰囲気中において均質化
熱処理を施されていることが好ましい。本発明の水素吸
蔵合金電極は、上記の水素吸蔵合金またはその水素化物
からなるものである。
The hydrogen storage alloy of the present invention According to an aspect of the general formula ZrMn a V b Mo c Cr d Co e Ni f (0.4
≦ a ≦ 0.8, 0 ≦ b <0.3, 0 <c ≦ 0.3, 0 <
d ≦ 0.3, 0 <e ≦ 0.1, 1.0 ≦ f ≦ 1.5,
0.1 ≦ b + c ≦ 0.3 and 2.0 ≦ a + b + c + d
+ E + f ≦ 2.4) and the main component of the alloy phase is C15.
It is a (MgCu 2 ) type Larvus phase. The hydrogen storage alloy of the present invention have the general formula Zr 1-x Ti x Mn a V b Mo c Cr d
Co e Ni f (0 <x ≦ 0.5,0.4 ≦ a ≦ 0.8,0
≦ b <0.3, 0 <c ≦ 0.3, 0 <d ≦ 0.3, 0 <
e ≦ 0.1, 1.0 ≦ f ≦ 1.5, 0.1 ≦ b + c ≦
0.3, x ≦ b + c + d + e, and 1.7 ≦ a + b + c
+ D + e + f ≦ 2.2) and the main component of the alloy phase is C
It is a 15 (MgCu 2 ) type Larvus phase. Furthermore, the present invention provides a hydrogen storage alloy in which there are at least two phases, a phase having a larger amount of Mo and a phase having a smaller amount of Mo than the charged composition. Here, the alloy is 1000 to 1300 after fabrication.
It is preferable that the homogenization heat treatment is performed in a vacuum at 0 ° C. or in an inert gas atmosphere. The hydrogen storage alloy electrode of the present invention comprises the above hydrogen storage alloy or a hydride thereof.

【0007】[0007]

【作用】これまで高率放電特性を向上する方法として
は、表面にNiなどの触媒層を設けたり、メッキした
り、粒径を制御したりする方法などがあったが、本発明
者らは合金組成の面からこれを改善することを目指し、
検討を重ねた結果、本発明を完成するに至った。すなわ
ち、水素吸蔵合金の組成を改善することにより、低温に
おける高率放電特性を改善するとともに、高い水素吸蔵
量及び初期放電特性を維持させる水素吸蔵合金を得るこ
とに成功した。本発明の水素吸蔵合金は、従来のZr−
Mn−V−Cr−Co−Ni系合金、Zr−Mn−Cr
−Co−Ni系合金、あるいはこれらの合金中のZrを
Tiに置換した水素吸蔵合金を改善したもので、従来合
金組成にMoを添加することにより、低温における高率
放電特性を改善したものである。Moは原子半径が大き
いので、Moの添加により合金の結晶格子定数が大きく
なり、水素吸蔵量が増加する。これはVと同様の効果で
あるが、Vの場合は水素との親和性が強いため、格子内
の水素が安定化し、特に高率放電において放電しにくく
なるといった欠点を有する。ところが、Moの場合は、
水素との親和力がVに比べて弱いため、水素吸蔵能力を
落とすことなく高率放電能を改善することができる。し
たがって、Vを含まない合金にMoを加えるか、あるい
はVをMoに置換することにより、高容量と高率放電能
を両立させることができる。
In the past, as a method for improving the high rate discharge characteristics, there have been methods such as providing a catalyst layer of Ni or the like on the surface, plating, controlling the particle size, and the like. Aiming to improve this in terms of alloy composition,
As a result of repeated studies, the present invention has been completed. That is, by improving the composition of the hydrogen storage alloy, we succeeded in obtaining a hydrogen storage alloy that improves the high rate discharge characteristics at low temperatures and maintains a high hydrogen storage amount and initial discharge characteristics. The hydrogen storage alloy of the present invention is a conventional Zr-
Mn-V-Cr-Co-Ni alloy, Zr-Mn-Cr
-Co-Ni-based alloys, or improved hydrogen storage alloys in which Zr in these alloys is replaced by Ti, and improved high-rate discharge characteristics at low temperatures by adding Mo to the conventional alloy composition. is there. Since Mo has a large atomic radius, the addition of Mo increases the crystal lattice constant of the alloy and increases the hydrogen storage amount. This is the same effect as V, but in the case of V, since hydrogen has a strong affinity with hydrogen, hydrogen in the lattice is stabilized, and there is a drawback that it becomes difficult to discharge particularly in high-rate discharge. However, in the case of Mo,
Since the affinity with hydrogen is weaker than V, the high rate discharge ability can be improved without lowering the hydrogen storage ability. Therefore, by adding Mo to the alloy not containing V or substituting V for Mo, it is possible to achieve both high capacity and high rate discharge capability.

【0008】次に、各元素の組成範囲は、水素吸蔵量及
び電極特性を確保する観点から定められる。まず、一般
式ZrMnabMocCrdCoeNifで表される合金に
ついて説明する。Moは、先に述べたように、水素吸蔵
量と低温高率放電特性を改善する。その量は、Zrに対
するMoの原子数比cで0.3を越えると格子定数が大
きくなりすぎるために結晶構造が崩れ、合金の均質性が
著しく低下する。このため水素吸蔵量は小さくなる。し
たがって、添加するMo量はc≦0.3が適当である。
Vは水素吸蔵−放出量増加に寄与するが、Zrに対する
Vの原子数比bが0.3を越えると、Moの場合と同様
に合金の均質性が非常に悪くなり、逆に水素吸蔵−放出
量は減少する。b≦0.3が適当である。さらに、Vと
Moは結晶構造に対して同様の影響を与えるので、V量
とMo量の合計、すなわち(b+c)もまた0.3以下
でなければならない。
Next, the composition range of each element is determined from the viewpoint of ensuring hydrogen storage capacity and electrode characteristics. First, the general formula ZrMn a V b Mo c Cr d Co e alloy represented by Ni f will be described. As described above, Mo improves the hydrogen storage amount and the low temperature high rate discharge characteristics. When the amount exceeds 0.3 in the atomic ratio c of Mo to Zr, the lattice constant becomes too large and the crystal structure collapses, so that the homogeneity of the alloy deteriorates significantly. Therefore, the hydrogen storage amount becomes small. Therefore, the appropriate amount of Mo to be added is c ≦ 0.3.
V contributes to an increase in the amount of hydrogen storage-release, but when the atomic ratio b of V to Zr exceeds 0.3, the homogeneity of the alloy becomes very poor as in the case of Mo, and conversely hydrogen storage- The amount released is reduced. b ≦ 0.3 is suitable. Further, since V and Mo have similar effects on the crystal structure, the total amount of V and Mo, that is, (b + c) must also be 0.3 or less.

【0009】Niは、合金が電気化学的に水素を吸蔵放
出するために必須の元素であり、Zrに対するNiの原
子数比fの最低量は1.0である。これよりNi量が少
ないと、電気化学的な放電容量は減少する。一方、Ni
は水素吸蔵合金の水素平衡圧力を上昇させるため、添加
割合が多すぎると水素吸蔵量が減少する。Ni量fが
1.5より大きくなると実質的に放電容量は減少を始め
る。したがって、Ni量は1.0≦f≦1.5が適当で
ある。Coも電気化学的な水素の吸蔵・放出に対する活
性のさらなる向上に寄与する。さらに、Coを少量添加
すると合金の結晶が均一になりやすく、吸蔵量も増大す
る。しかし、CoもNiと同様に水素平衡圧力を上昇さ
せるため、過剰に添加すると水素吸蔵量が減少する。Z
rに対するCoの原子数比eは0.1以下で十分特性の
改善が図れるため、Co量は0<e≦0.1が適当であ
る。
Ni is an essential element for the alloy to occlude and release hydrogen electrochemically, and the minimum atomic number ratio f of Ni to Zr is 1.0. If the amount of Ni is less than this, the electrochemical discharge capacity decreases. On the other hand, Ni
Causes the hydrogen equilibrium pressure of the hydrogen storage alloy to rise, so that if the addition ratio is too large, the hydrogen storage amount decreases. When the Ni content f exceeds 1.5, the discharge capacity starts to decrease substantially. Therefore, it is suitable that the amount of Ni is 1.0 ≦ f ≦ 1.5. Co also contributes to the further improvement of the activity for electrochemical storage and release of hydrogen. Furthermore, when a small amount of Co is added, the alloy crystals tend to be uniform and the amount of occlusion increases. However, Co also raises the hydrogen equilibrium pressure similarly to Ni, and therefore, if added excessively, the hydrogen storage amount decreases. Z
When the atomic ratio e of Co to r is 0.1 or less, the characteristics can be sufficiently improved. Therefore, the Co content is preferably 0 <e ≦ 0.1.

【0010】MnはPCT曲線における水素平衡圧力の
平坦性に影響を及ぼし、Zrに対するMnの原子数比a
が0.4以上でその平坦性が向上し、放電容量が増加す
る。しかし、Mn量aが0.8を越えると、Mnの電解
液への溶出が激しくなりサイクル寿命特性が悪くなる。
したがって、Mn量は0.4≦a≦0.8が適当であ
る。Crは合金表面に不働態皮膜を形成し、合金に耐食
性を与える。したがって、電池の寿命特性や高温保存特
性を改善するためにはCrを添加することが有効であ
る。しかし、過剰に添加すると皮膜が強固になりすぎて
水素の透過をも阻害し、活性化が困難になる。Zrに対
するCrの原子数比dが0.3を越えると、活性化を行
うために10サイクル以上の充放電を繰り返さなければ
ならず実用的ではない。したがって、Cr量dは0<d
≦0.3が適当である。Aサイト原子数に対するBサイ
ト原子数の比率(a+b+c+d+e+f)は、2.0
以上になると、合金の均質性が向上し、水素吸蔵量が大
きくなる。しかし、2.4より大きくなると、結晶格子
定数が非常に小さくなるために水素平衡圧力が上昇し、
水素吸蔵量が低下する。したがって、2.0≦a+b+
c+d+e+f≦2.4であることが適当である。
Mn affects the flatness of the hydrogen equilibrium pressure in the PCT curve, and the atomic ratio of Mn to Zr a
Is 0.4 or more, the flatness is improved and the discharge capacity is increased. However, when the Mn amount a exceeds 0.8, Mn is liable to be eluted into the electrolytic solution and the cycle life characteristics deteriorate.
Therefore, it is appropriate that the amount of Mn be 0.4 ≦ a ≦ 0.8. Cr forms a passive film on the alloy surface and imparts corrosion resistance to the alloy. Therefore, it is effective to add Cr in order to improve the life characteristics and the high temperature storage characteristics of the battery. However, if added excessively, the coating becomes too strong and also impedes hydrogen permeation, making activation difficult. If the atomic ratio d of Cr to Zr exceeds 0.3, charging and discharging must be repeated for 10 cycles or more for activation, which is not practical. Therefore, the Cr amount d is 0 <d
≦ 0.3 is suitable. The ratio of the number of B-site atoms to the number of A-site atoms (a + b + c + d + e + f) is 2.0.
When it becomes above, the homogeneity of the alloy is improved and the hydrogen storage amount is increased. However, when it is larger than 2.4, the hydrogen equilibrium pressure rises because the crystal lattice constant becomes very small,
Hydrogen storage capacity decreases. Therefore, 2.0 ≦ a + b +
It is appropriate that c + d + e + f ≦ 2.4.

【0011】次に、一般式Zr1-xTixMnabMoc
CrdCoeNifで表される合金について説明する。こ
の合金において、TiはZrと同様にAサイトを占める
元素である。そして、Tiは原子半径が小さいために、
置換量が増えると格子定数が小さくなり、水素吸蔵量が
減少する。Ti量がZr量よりも少なければ大きな容量
低下はない。また、Tiの量を増加させると合金相をC
15型ラーベス相に保つことが困難になる傾向がある
が、BサイトのV,Mo,Cr,Co量の和よりもTi
量が少なければ結晶構造の大きな乱れはみられない。し
たがって、x≦b+c+d+eであることが望ましい。
他の元素については、上記のZrベースの合金の場合と
同様である。(a+b+c+d+e+f)の値に関して
は、Tiを含むために2.2より大きくなると、結晶格
子定数の減少が進むので、2.2以下がよい。下限は
1.7まで下げても合金の均質性の低下がみられない。
したがって、1.7≦a+b+c+d+e+f≦2.2
が適当である。以上のことから、初期放電特性に優れ、
かつ低温高率放電が可能で、高容量を有する水素吸蔵合
金電極を得るためには、本発明の合金組成の条件を満た
すことが重要であることがわかる。
[0011] Next, the general formula Zr 1-x Ti x Mn a V b Mo c
Explained cr d Co e alloy represented by Ni f. In this alloy, Ti is an element that occupies the A site like Zr. And since Ti has a small atomic radius,
When the substitution amount increases, the lattice constant decreases and the hydrogen storage amount decreases. If the amount of Ti is smaller than the amount of Zr, there is no large capacity decrease. Further, when the amount of Ti is increased, the alloy phase is changed to C
It tends to be difficult to maintain the 15-type Laves phase, but Ti is more than the sum of the amounts of V, Mo, Cr, and Co at the B site.
If the amount is small, no major disorder in the crystal structure is observed. Therefore, it is desirable that x ≦ b + c + d + e.
Other elements are the same as in the case of the Zr-based alloy described above. The value of (a + b + c + d + e + f) is preferably 2.2 or less because the crystal lattice constant decreases when the value exceeds 2.2 because it contains Ti. Even if the lower limit is lowered to 1.7, the homogeneity of the alloy is not deteriorated.
Therefore, 1.7 ≦ a + b + c + d + e + f ≦ 2.2
Is appropriate. From the above, excellent initial discharge characteristics,
It can be seen that it is important to satisfy the conditions of the alloy composition of the present invention in order to obtain a hydrogen storage alloy electrode having a high capacity and capable of low temperature and high rate discharge.

【0012】[0012]

【実施例】以下に、本発明をその実施例によりさらに詳
しく説明する。 [実施例1]市販のZr,Mn,V,Mo,Cr,C
o,およびNi金属を原料として、高周波誘導加熱炉で
加熱溶解することにより、表1および表2に示したよう
な組成の合金を作製した。次いで、真空中、1100℃
で12時間熱処理し、合金試料とした。
EXAMPLES The present invention will be described in more detail below by way of its examples. [Example 1] Commercially available Zr, Mn, V, Mo, Cr, C
Alloys having compositions shown in Tables 1 and 2 were prepared by melting and melting O and Ni metal as raw materials in a high-frequency induction heating furnace. Then, in vacuum, 1100 ° C
Was heat-treated for 12 hours to prepare an alloy sample.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】この合金試料の一部はX線回折などの合金
分析及び水素ガス雰囲気における水素吸収−放出量測定
(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。試料N
o.1〜10は、本発明と構成元素または組成比が異な
る比較例であり、試料No.10〜18は本発明の水素
吸蔵合金のいくつかの実施例である。まず、各合金試料
について、X線回折測定を行った。その結果、いずれの
合金試料についても、合金相の主成分はC15型ラーバ
ス(Laves)相(MgCu2型面心立方構造(fc
c))であることが確認された。そして、試料No.8
および9は、C14型ラーバス相(MgZn2型ヘキサ
ゴナル構造)が多量に混入しており、合金の均質性が低
いことがわかった。また、真空熱処理後のものは、熱処
理前と比べるとfccのピークがより大きく鋭くなった
ので、熱処理することによりC15型ラーバス相の割合
が増大し、合金の均質性及び結晶性が向上したことがわ
かった。また、PCT測定の結果から、CoやNi量の
多いNo.4および7においては、水素平衡圧が高く、
吸蔵量が少ないこと、MoやVの添加に伴って格子定数
が大きくなり平衡圧が低下することが確認された。
A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation. Sample N
o. Sample Nos. 1 to 10 are comparative examples having different constituent elements or composition ratios from the present invention. 10 to 18 are some examples of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, in any of the alloy samples, the main component of the alloy phase was the C15 type Lavas phase (MgCu 2 type face centered cubic structure (fc
c)) was confirmed. Then, the sample No. 8
In Nos. 9 and 9, a large amount of C14 type Lavas phase (MgZn 2 type hexagonal structure) was mixed, and it was found that the homogeneity of the alloy was low. Also, after the vacuum heat treatment, the peak of fcc was larger and sharper than that before the heat treatment, so the heat treatment increased the proportion of the C15 type Larvus phase and improved the homogeneity and crystallinity of the alloy. I understood. In addition, from the result of PCT measurement, No. with a large amount of Co and Ni. In 4 and 7, the hydrogen equilibrium pressure is high,
It was confirmed that the occlusion amount was small, and that the lattice constant increased and the equilibrium pressure decreased with the addition of Mo or V.

【0016】以上のような試料No.1〜18の合金に
ついて、電気化学的な充放電反応によるアルカリ蓄電池
用負極としての電極特性、特に、初期放電特性と最大放
電容量を評価するために単電池試験を行った。試料N
o.1〜18の合金を機械的に38μm以下に粉砕し、
ポリビニルアルコールの3重量%水溶液を加えてペース
ト状にした。ついで、このペ−ストを多孔度95%、厚
さ0.8mmの発泡状ニッケル板に充填し加圧した。こ
うして得た水素吸蔵合金負極と、過剰の電気容量を有す
る酸化ニッケル電極からなる対極とを比重1.30の水
酸化カリウム水溶液からなる電解液中に浸漬して、電解
液が豊富な条件下において水素吸蔵合金負極により容量
が規制された開放系で充放電を行った。充電は水素吸蔵
合金1g当たり100mAで5.5時間、放電は合金1
g当たり50mAで端子電圧が0.8Vまでとした。
Sample No. The alloys 1 to 18 were subjected to a single cell test in order to evaluate electrode characteristics as a negative electrode for an alkaline storage battery by electrochemical charge / discharge reaction, particularly initial discharge characteristics and maximum discharge capacity. Sample N
o. 1-18 alloys are mechanically crushed to 38 μm or less,
A 3 wt% aqueous solution of polyvinyl alcohol was added to form a paste. Then, this paste was filled in a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm and pressed. The thus obtained hydrogen storage alloy negative electrode and a counter electrode composed of a nickel oxide electrode having an excessive electric capacity were immersed in an electrolytic solution composed of an aqueous solution of potassium hydroxide having a specific gravity of 1.30, and under a condition rich in the electrolytic solution. Charging and discharging were performed in an open system whose capacity was regulated by the hydrogen storage alloy negative electrode. Charging is 100 mA / g of hydrogen storage alloy for 5.5 hours, discharging is alloy 1
The terminal voltage was set to 0.8 V at 50 mA per gram.

【0017】各電極の1サイクル目の放電容量と最大放
電容量を図1に示す。1サイクル目の放電容量は、Cr
量の多いNo.6、Co、Moを含まないNo.2、1
0、Mn量の少ないNo.5などで低い値となった。ま
た、No.1、3は高い初期活性を示したが、Mn等の
溶出が激しいため、容量劣化が大きく、最大容量は小さ
くなった。本発明による電極は、すべて1サイクル目か
ら200mAh/g以上の放電容量を示し、高い初期活
性が得られるとともに、最大放電容量も350〜400
mAh/gを示し、高容量であることがわかった。
The first cycle discharge capacity and the maximum discharge capacity of each electrode are shown in FIG. The discharge capacity of the first cycle is Cr
No. with a large amount No. 6, which does not include Co and Mo. Two, one
No. 0 and No. 2 with a small Mn amount. It became a low value such as 5. In addition, No. The samples Nos. 1 and 3 showed high initial activity, but the elution of Mn and the like was severe, so that the capacity deterioration was large and the maximum capacity was small. The electrodes according to the present invention all show a discharge capacity of 200 mAh / g or more from the first cycle, high initial activity is obtained, and the maximum discharge capacity is 350 to 400.
It showed mAh / g and was found to have a high capacity.

【0018】次に、これらの電極を使用して密閉電池を
構成し、特性を比較した結果について説明する。先の電
極をそれぞれ幅3.5cm、長さ14.5cm、厚さ
0.50mmに調整した。そして、正極、セパレータと
組み合わせて渦巻き状の電極群を構成して4/5Aサイ
ズの電槽に収納した。なお、正極は、公知の発泡式ニッ
ケル電極で、幅3.5cm、長さ11cmとして用い
た。正極にはリード板を取り付け、これを正極端子に溶
接した。また、セパレータは、親水性を付与したポリプ
ロピレン不織布を用いた。電解液としては、比重1.3
0の水酸化カリウム水溶液に水酸化リチウムを30g/
l溶解したものを用いた。電解液を注入後、電槽を封口
して密閉形電池とした。この電池は、正極容量規制で公
称容量は1.6Ahである。No.1〜18の各合金に
対して電池をそれぞれ10コずつ作成し、充放電サイク
ル試験によって評価した。
Next, the results of comparing the characteristics of a sealed battery constructed by using these electrodes will be described. The above electrodes were adjusted to have a width of 3.5 cm, a length of 14.5 cm and a thickness of 0.50 mm. Then, the positive electrode and the separator were combined to form a spiral electrode group, which was then housed in a 4/5 A size battery case. The positive electrode was a well-known foamed nickel electrode having a width of 3.5 cm and a length of 11 cm. A lead plate was attached to the positive electrode, and this was welded to the positive electrode terminal. As the separator, a polypropylene non-woven fabric having hydrophilicity was used. Specific gravity of the electrolyte is 1.3
0 g of potassium hydroxide aqueous solution containing 30 g of lithium hydroxide /
1 The dissolved product was used. After injecting the electrolytic solution, the battery case was sealed to obtain a sealed battery. This battery has a nominal capacity of 1.6 Ah according to the positive electrode capacity regulation. No. Ten batteries were prepared for each of the alloys 1 to 18 and evaluated by a charge / discharge cycle test.

【0019】これらの電池を25℃において0.1Cで
15時間充電し、0.2Cで放電する初充放電をした
後、50℃で2日間放置し、その後、初充放電と同じ条
件で10サイクル充放電を行った。この間にすべての電
池は理論容量の95%以上の放電容量を示した。次に、
これらの電池を、20℃において0.2Cで150%充
電し、0℃において1Cで終止電圧1.0Vまで放電し
て、電池の低温高率放電特性を調べた。0℃における1
C放電時の中間電圧および正極理論容量に対する放電容
量比率を図2に示す。本発明による電極を用いた電池
は、0℃での1C放電において、中間電圧が1.145
V以上、放電容量比率80%以上の2つの条件を満たし
ており、優れた低温高率放電特性を示した。
These batteries were charged at 25 ° C. at 0.1 C for 15 hours, discharged at 0.2 C for the first charge / discharge, then left at 50 ° C. for 2 days, and then subjected to the same conditions as the initial charge / discharge for 10 hours. Cycle charge / discharge was performed. During this time, all the batteries showed a discharge capacity of 95% or more of the theoretical capacity. next,
These batteries were charged at 0.2 C and 150% at 20 ° C. and discharged at 0 ° C. and 1 C to a final voltage of 1.0 V, and the low temperature high rate discharge characteristics of the batteries were examined. 1 at 0 ° C
The discharge voltage ratio to the intermediate voltage and the positive electrode theoretical capacity during C discharge is shown in FIG. The battery using the electrode according to the present invention has an intermediate voltage of 1.145 at 1C discharge at 0 ° C.
Two conditions of V or more and discharge capacity ratio of 80% or more were satisfied, and excellent low temperature and high rate discharge characteristics were exhibited.

【0020】[実施例2]市販のZr,Ti,Mn,
V,Mo,Cr,Co,およびNi金属を原料として、
高周波誘導加熱炉で加熱溶解することにより、表3およ
び表4に示したような組成の合金を作製した。次いで、
真空中、1100℃で12時間熱処理し、合金試料とし
た。
Example 2 Commercially available Zr, Ti, Mn,
Using V, Mo, Cr, Co, and Ni metals as raw materials,
By heating and melting in a high-frequency induction heating furnace, alloys having compositions shown in Tables 3 and 4 were produced. Then
It heat-processed at 1100 degreeC in vacuum for 12 hours, and it was set as the alloy sample.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】これらの合金試料の一部はX線回折などの
合金分析及び水素ガス雰囲気における水素吸収−放出量
測定(通常のP−C−T測定)に使用し、残りは電極特
性評価に用いた。試料No.19〜29は、本発明と構
成元素又は組成が異なる比較例であり、試料No.30
〜39は本発明の水素吸蔵合金のいくつかの実施例であ
る。まず、各合金試料について、X線回折測定を行っ
た。その結果、No.29はC14相が主成分であっ
た。その他は、いずれの合金試料についても合金相の主
成分はC15型ラーバス相(MgCu2型fcc構造)
であることが確認されたが、試料No.26、27では
C14型ラーバス相(MgZn2型ヘキサゴナル構造)
が多量に混入しており、合金の均質性が低いことがわか
った。また、真空熱処理後のものは、熱処理前と比べる
とfccのピークがより大きく鋭くなったので、熱処理
することによりC15型ラーバス相の割合が増大し、合
金の均質性及び結晶性が向上したことがわかった。ま
た、PCT測定の結果から、CoやNi、Ti量の多い
No.22、25、29においては、水素平衡圧が高
く、吸蔵量が少ないこと、MoやVの添加に伴って格子
定数が大きくなり平衡圧が低下することが確認された。
Some of these alloy samples were used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P-C-T measurement) in a hydrogen gas atmosphere, and the rest were used for electrode characteristic evaluation. I was there. Sample No. Sample Nos. 19 to 29 are comparative examples having different constituent elements or compositions from the present invention. 30
-39 are some examples of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, No. In No. 29, the C14 phase was the main component. In all other alloy samples, the main component of the alloy phase is C15 type Larvus phase (MgCu 2 type fcc structure)
It was confirmed that the sample No. In 26 and 27, C14 type Larvus phase (MgZn 2 type hexagonal structure)
It was found that the alloy was mixed in a large amount and the homogeneity of the alloy was low. Also, after the vacuum heat treatment, the peak of fcc was larger and sharper than that before the heat treatment, so the heat treatment increased the proportion of the C15 type Larvus phase and improved the homogeneity and crystallinity of the alloy. I understood. In addition, from the results of PCT measurement, No. with a large amount of Co, Ni, and Ti was obtained. In Nos. 22, 25 and 29, it was confirmed that the hydrogen equilibrium pressure was high and the occlusion amount was small, and that the lattice constant increased and the equilibrium pressure decreased with the addition of Mo or V.

【0024】以上のような試料No.19〜39の合金
について、電気化学的な充放電反応によるアルカリ蓄電
池用負極としての電極特性、特に、初期放電特性と最大
放電容量を評価するために単電池試験を行った。合金負
極の製造法、単電池の構成、および充放電の条件は、実
施例1と同じである。各電極の1サイクル目の放電容量
と最大放電容量を図3に示す。1サイクル目の放電容量
は、Cr量の多いNo.24、Co、Moを含まないN
o.20、28、Mn量の少ないNo.23などで低い
値となった。また、No.19、21は高い初期活性を
示したが、Mn等の溶出が激しいため、容量劣化が大き
く、最大容量は小さくなった。本発明による電極は、す
べて1サイクル目から250mAh/g以上の放電容量
を示し、高い初期活性が得られるとともに、最大放電容
量も350〜400mAh/g程度であり、高容量であ
ることがわかった。
Sample No. For the alloys Nos. 19 to 39, a single cell test was conducted to evaluate the electrode characteristics as an anode for an alkaline storage battery by an electrochemical charge / discharge reaction, particularly the initial discharge characteristics and the maximum discharge capacity. The manufacturing method of the alloy negative electrode, the configuration of the unit cell, and the charging / discharging conditions are the same as in Example 1. The discharge capacity and maximum discharge capacity in the first cycle of each electrode are shown in FIG. The discharge capacity in the first cycle was No. 1 with a large amount of Cr. 24, N not containing Co and Mo
o. Nos. 20, 28, and No. It became a low value at 23. In addition, No. Nos. 19 and 21 showed high initial activity, but the elution of Mn and the like was severe, so that the capacity deterioration was large and the maximum capacity was small. It was found that all the electrodes according to the present invention showed a discharge capacity of 250 mAh / g or more from the first cycle, high initial activity was obtained, and the maximum discharge capacity was about 350 to 400 mAh / g. .

【0025】次に、合金電極を使用して、実施例1と同
様にして、正極により容量規制された公称容量1.6A
hの密閉電池を構成した。No.19〜39の各合金に
対して電池をそれぞれ10個ずつ作成し、充放電サイク
ル試験によって評価した。まず、これらの電池を25℃
において0.1Cで15時間充電し、0.2Cで放電す
る初充放電をした後、50℃で2日間放置し、その後、
初充放電と同じ条件で10サイクル充放電を行った。こ
の間にすべての電池は理論容量の95%以上の放電容量
を示した。これらの電池を、20℃において0.2Cで
150%充電し、0℃において1Cで終止電圧1.0V
まで放電して電池の低温高率放電特性を調べた。0℃で
の1C放電時の中間電圧および正極理論容量に対する放
電容量比率を図4に示す。本発明による電極を用いた電
池は、すべて0℃での1C放電において中間電圧が1.
145V以上、放電容量比率85%以上の2つの条件を
満たしており、優れた低温高率放電特性を示した。
Next, using an alloy electrode, in the same manner as in Example 1, a nominal capacity of 1.6 A regulated by the positive electrode was used.
A sealed battery of h was constructed. No. Ten batteries were prepared for each of the alloys 19 to 39 and evaluated by a charge / discharge cycle test. First, put these batteries at 25 ℃
At 15 ° C. for 15 hours and then discharged at 0.2 C for the first charge / discharge, then left at 50 ° C. for 2 days, then
Charging / discharging was performed for 10 cycles under the same conditions as the initial charging / discharging. During this time, all the batteries showed a discharge capacity of 95% or more of the theoretical capacity. These batteries are charged to 150% at 0.2C at 20 ° C, and the final voltage of 1.0V at 1C at 0 ° C.
The low temperature high rate discharge characteristics of the battery were investigated by discharging up to. The discharge capacity ratio to the intermediate voltage and the positive electrode theoretical capacity during 1 C discharge at 0 ° C. is shown in FIG. All the batteries using the electrodes according to the present invention have an intermediate voltage of 1.C at 1C discharge at 0 ° C.
It satisfied two conditions of 145 V or more and a discharge capacity ratio of 85% or more, and showed excellent low temperature high rate discharge characteristics.

【0026】[実施例3]以上の実施例から明らかなよ
うに、Moを添加することによって、高容量で、初期活
性、高率放電特性に優れる水素吸蔵合金が得られること
がわかった。これは、Moが持つ化学的特性によるもの
であると考えられる。そこで、さらに、合金組織的に特
性を改善する要因があるかどうかを調べるために、合金
の断面をSEM、及び電子プローブX線マイクロアナラ
イザー(EPMA)で分析した。すると、合金中にはM
oが多い相と少ない相の少なくとも2相が存在すること
が確認された。この相の組成をEPMAで分析した結
果、たとえば、No.12の合金ではZrMn0.59
0.11Mo0.08Cr0.22Co0.13Ni1.33とZrMn0.51
0.09Mo0.41Cr0.25Co0.12Ni1.03の2つの相が
みられ、No.32ではZrTi0.21Mn0.560.10
0.04Cr0.25Co0.11Ni1.24とZrTi0.20Mn
0.520.09Mo0.24Cr0.28Co0.09Ni1.01とZrT
0.2Ni1.6の3相が観察された。
[Embodiment 3] As is clear from the above embodiment, it has been found that by adding Mo, a hydrogen storage alloy having a high capacity, excellent initial activation and high rate discharge characteristics can be obtained. It is considered that this is due to the chemical properties of Mo. Therefore, in order to further investigate whether or not there is a factor that improves the characteristics in terms of alloy structure, the cross section of the alloy was analyzed by SEM and an electron probe X-ray microanalyzer (EPMA). Then, M in the alloy
It was confirmed that there were at least two phases, one with more o and the other with less o. As a result of EPMA analysis of the composition of this phase, for example, No. ZrMn 0.59 V for alloy No. 12
0.11 Mo 0.08 Cr 0.22 Co 0.13 Ni 1.33 and ZrMn 0.51
Two phases of V 0.09 Mo 0.41 Cr 0.25 Co 0.12 Ni 1.03 were observed, and No. 32, ZrTi 0.21 Mn 0.56 V 0.10 M
o 0.04 Cr 0.25 Co 0.11 Ni 1.24 and ZrTi 0.20 Mn
0.52 V 0.09 Mo 0.24 Cr 0.28 Co 0.09 Ni 1.01 and ZrT
Three phases of i 0.2 Ni 1.6 were observed.

【0027】また、前記の実施例による合金ではない
が、Moを含む合金であるNo.2の合金においても、
ZrMn0.380.10Mo0.11Cr0.28Ni1.31とZrM
0.410.09Mo0.37Cr0.21Ni1.05の2相が観察さ
れた。いずれの場合もMoが少ない相が母相となり、M
oの多い相とそれ以外の偏析相は島状あるいは樹枝状に
分布していた。これら多相化の影響を調べるために、上
記3種類の合金を双ロール法によって超急冷した合金を
作製した。それらの合金をこれまでと同様に真空中で1
100℃、12時間熱処理したものを試料とした。これ
らの合金はSEM、EPMAでみる限り均一で偏析相は
見られず、また、X線回折によってアモルファスではな
く、C15型ラーバス相が主であることが確認された。
Further, although it is not the alloy according to the above-mentioned embodiment, it is an alloy containing Mo. Also in the alloy of 2,
ZrMn 0.38 V 0.10 Mo 0.11 Cr 0.28 Ni 1.31 and ZrM
Two phases of n 0.41 V 0.09 Mo 0.37 Cr 0.21 Ni 1.05 were observed. In either case, the phase with less Mo becomes the parent phase, and M
The o-rich phase and the other segregated phases were distributed in island or dendritic form. In order to investigate the influence of these multi-phases, alloys were prepared by rapidly quenching the above three types of alloys by the twin roll method. 1 in vacuum as before with those alloys
What was heat-treated at 100 ° C. for 12 hours was used as a sample. It was confirmed by SEM and EPMA that these alloys were uniform and no segregated phase was observed, and that X-ray diffraction confirmed that they were not amorphous but mainly C15 type Larvous phase.

【0028】これらの合金を実施例1、2と同様の方法
で電極に成形し、電極特性を評価した。No.2、1
2、32の多相になっているものと、急冷によって単一
相になった合金の電極特性の比較を表5に示す。超急冷
によって均一な相となった合金は、最大放電容量こそあ
まり変化はないが、初期活性や低温高率放電特性に劣っ
ていることがわかった。これは本発明による合金と同様
に、そうでないNo.2の合金でも効果が確認され、M
oを含む合金に特有のものと考えられる。また、ここで
は3種類の合金について示したが、その他の組成の合金
についても同様の結果が得られた。したがって、Moを
含む合金を作製する場合には、多相となるように作製す
ることによって、電極特性に優れた合金が得られる。
These alloys were molded into electrodes in the same manner as in Examples 1 and 2, and the electrode characteristics were evaluated. No. Two, one
Table 5 shows a comparison of the electrode characteristics between the alloys having a multi-phase of 2, 32 and the alloys having a single phase by quenching. It was found that the alloy that became a uniform phase by ultra-quenching did not change much in the maximum discharge capacity, but was inferior in initial activity and low-temperature high-rate discharge characteristics. This is similar to the alloy according to the present invention, otherwise No. The effect was confirmed with the alloy of 2, M
It is considered to be unique to alloys containing o. Although three types of alloys are shown here, similar results were obtained for alloys having other compositions. Therefore, when preparing an alloy containing Mo, an alloy having excellent electrode characteristics can be obtained by preparing it so that it has multiple phases.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【発明の効果】以上のように本発明によれば、従来の水
素吸蔵合金にMoを添加することにより、高い水素吸蔵
量を維持し、かつ初期活性と低温高率放電特性に優れた
電極を与える水素吸蔵合金が得られる。
As described above, according to the present invention, by adding Mo to a conventional hydrogen storage alloy, an electrode having a high hydrogen storage capacity and excellent initial activity and low-temperature high-rate discharge characteristics can be obtained. A given hydrogen storage alloy is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び従来例の電極の開放系にお
ける1サイクル目の放電容量と最大放電容量を示した図
である。
FIG. 1 is a diagram showing a discharge capacity and a maximum discharge capacity in a first cycle in an open system of electrodes of an example of the present invention and a conventional example.

【図2】本発明の実施例及び従来例の負極を用いた正極
容量規制電池の低温高率放電時における理論容量に対す
る放電容量比率と中間電圧を示した図である。
FIG. 2 is a diagram showing a discharge capacity ratio to a theoretical capacity and an intermediate voltage at a low temperature high rate discharge of a positive electrode capacity regulated battery using a negative electrode of an example of the present invention and a conventional example.

【図3】本発明の実施例及び従来例の電極の開放系にお
ける1サイクル目の放電容量と最大放電容量を示した図
である。
FIG. 3 is a diagram showing the discharge capacity and the maximum discharge capacity in the first cycle in the open system of the electrode of the example of the present invention and the conventional example.

【図4】本発明の実施例及び従来例の負極を用いた正極
容量規制電池の低温高率放電時における理論容量に対す
る放電容量比率と中間電圧を示した図である。
FIG. 4 is a diagram showing a discharge capacity ratio with respect to a theoretical capacity and an intermediate voltage of a positive electrode capacity regulated battery using a negative electrode of an example of the present invention and a conventional example at low temperature and high rate discharge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 世利 肇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Seri Hajime 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式ZrMnabMocCrdCoe
f(0.4≦a≦0.8,0≦b<0.3,0<c≦
0.3,0<d≦0.3,0<e≦0.1,1.0≦f
≦1.5,0.1≦b+c≦0.3,かつ2.0≦a+
b+c+d+e+f≦2.4)で示され、合金相の主成
分がC15(MgCu2)型ラーバス相である水素吸蔵
合金。
1. A general formula ZrMn a V b Mo c Cr d Co e N
if (0.4 ≦ a ≦ 0.8, 0 ≦ b <0.3, 0 <c ≦
0.3, 0 <d ≦ 0.3, 0 <e ≦ 0.1, 1.0 ≦ f
≦ 1.5, 0.1 ≦ b + c ≦ 0.3, and 2.0 ≦ a +
b + c + d + e + f ≦ 2.4), and the main component of the alloy phase is a C15 (MgCu 2 ) -type Lavas phase, a hydrogen storage alloy.
【請求項2】 一般式Zr1-xTixMnabMocCrd
CoeNif(0<x≦0.5,0.4≦a≦0.8,0
≦b<0.3,0<c≦0.3,0<d≦0.3,0<
e≦0.1,1.0≦f≦1.5,0.1≦b+c≦
0.3,x≦b+c+d+e,かつ1.7≦a+b+c
+d+e+f≦2.2)で示され、合金相の主成分がC
15(MgCu2)型ラーバス相である水素吸蔵合金。
2. A general formula Zr 1-x Ti x Mn a V b Mo c Cr d
Co e Ni f (0 <x ≦ 0.5,0.4 ≦ a ≦ 0.8,0
≦ b <0.3, 0 <c ≦ 0.3, 0 <d ≦ 0.3, 0 <
e ≦ 0.1, 1.0 ≦ f ≦ 1.5, 0.1 ≦ b + c ≦
0.3, x ≦ b + c + d + e, and 1.7 ≦ a + b + c
+ D + e + f ≦ 2.2) and the main component of the alloy phase is C
Hydrogen storage alloy that is a 15 (MgCu 2 ) type Rabus phase.
【請求項3】 合金中に仕込み組成よりもMo量が多い
相と少ない相の少なくとも2相が存在することを特徴と
する水素吸蔵合金。
3. A hydrogen storage alloy, characterized in that at least two phases, a phase having a larger amount of Mo and a phase having a smaller amount of Mo, are present in the alloy.
【請求項4】 1000〜1300℃の真空中もしくは
不活性ガス雰囲気中において均質化熱処理を施された請
求項1、2または3に記載の水素吸蔵合金。
4. The hydrogen storage alloy according to claim 1, which is subjected to homogenizing heat treatment in a vacuum at 1000 to 1300 ° C. or in an inert gas atmosphere.
【請求項5】 請求項1〜4のいずれかに記載の水素吸
蔵合金またはその水素化物からなることを特徴とする水
素吸蔵合金電極。
5. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to claim 1 or a hydride thereof.
JP10398795A 1995-04-27 1995-04-27 Hydrogen storage alloy and hydrogen storage alloy electrode Expired - Fee Related JP3470987B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10398795A JP3470987B2 (en) 1995-04-27 1995-04-27 Hydrogen storage alloy and hydrogen storage alloy electrode
US08/634,008 US5753054A (en) 1995-04-27 1996-04-17 Hydrogen storage alloy and electrode therefrom
DE69601321T DE69601321T2 (en) 1995-04-27 1996-04-26 Hydrogen storage alloy and electrode made of it
EP96302956A EP0739990B1 (en) 1995-04-27 1996-04-26 Hydrogen storage alloy and electrode therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10398795A JP3470987B2 (en) 1995-04-27 1995-04-27 Hydrogen storage alloy and hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH08295970A true JPH08295970A (en) 1996-11-12
JP3470987B2 JP3470987B2 (en) 2003-11-25

Family

ID=14368665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10398795A Expired - Fee Related JP3470987B2 (en) 1995-04-27 1995-04-27 Hydrogen storage alloy and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3470987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154511A (en) * 1997-11-19 1999-06-08 Okuno Chem Ind Co Ltd Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103714A (en) * 2013-01-07 2015-09-11 오보닉 배터리 컴퍼니, 아이엔씨. Metal hydride alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154511A (en) * 1997-11-19 1999-06-08 Okuno Chem Ind Co Ltd Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy

Also Published As

Publication number Publication date
JP3470987B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP0504950A2 (en) Hydrogen storage electrode
EP0450590B2 (en) Hydrogen storage alloy electrode and process for producing the electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
EP0621647B1 (en) Hydrogen storage alloy and electrode therefrom
US5753054A (en) Hydrogen storage alloy and electrode therefrom
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
US6309779B1 (en) Hydrogen storage alloy electrode and method for manufacturing the same
JPH05287422A (en) Hydrogen occluding alloy electrode
US5468309A (en) Hydrogen storage alloy electrodes
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH04301045A (en) Hydrogen storage alloy electrode
US5541018A (en) Hydrogen storing alloy electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2000243388A (en) Hydrogen storage alloy electrode, manufacture of electrode and alkaline storage battery
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH08134566A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH08236111A (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees