JPH08134566A - Hydrogen storage alloy and hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy and hydrogen storage alloy electrode

Info

Publication number
JPH08134566A
JPH08134566A JP6273786A JP27378694A JPH08134566A JP H08134566 A JPH08134566 A JP H08134566A JP 6273786 A JP6273786 A JP 6273786A JP 27378694 A JP27378694 A JP 27378694A JP H08134566 A JPH08134566 A JP H08134566A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
sample
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6273786A
Other languages
Japanese (ja)
Inventor
Hajime Seri
肇 世利
Toru Yamamoto
徹 山本
Koji Yamamura
康治 山村
Yoichiro Tsuji
庸一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6273786A priority Critical patent/JPH08134566A/en
Publication of JPH08134566A publication Critical patent/JPH08134566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE: To obtain a hydrogen storage alloy giving an electrode maintaining high capacity, less liable to dissolution in an alkali electrolytic soln. and excellent in preservability at high temp. CONSTITUTION: This hydrogen storage alloy is represented by the formula ZrMna Vb Mx Coy Niz (where M is at least one kind of element selected from among Al, Cr, Fe, Cu and Zn, 0.4<=a<=0.8, 0.05<=b<=0.3, 0<=x<=0.3, 0.2<y<=0.5, 0.8<=z<=1.3 and 2.0<=a+b+x+y+z<=2.4) or the formula Zr1.2-w Tiw Mna Vb Mx Coy Niz (where M is the M in the above-mentioned formula, 0<w<=0.6, 0.4<=a<=0.8, 0.1<=b<=0.4, 0<=x<=0.3, 0.2<y<=0.5, 0.8<=z<=1.3 and 1.7<=(a+ b+x+y+z)/1.2<=2.2) and the base of the alloy phase is C15 (MgCu2 ) type Laves phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金および同合金ま
たはその水素化物を用いた電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy capable of reversibly electrochemically storing and releasing hydrogen, and an electrode using the alloy or a hydride thereof.

【0002】[0002]

【従来の技術】水素を可逆的に吸収・放出しうる水素吸
蔵合金を用いた水素吸蔵合金電極は、理論容量密度がカ
ドミウム電極より大きく、亜鉛電極のような変形やデン
ドライトの形成などもないことから、長寿命・無公害で
あり、しかも高エネルギー密度のアルカリ蓄電池を与え
る負極として期待されている。この水素吸蔵合金電極に
用いられる合金は、通常アーク溶解法や高周波誘導加熱
溶解法などで作製され、一般的にはTi−Ni系および
La(またはMm)−Ni系の多元系合金がよく知られ
ている。Ti−Ni系の多元系合金は、ABタイプ
(A:La、Zr、Tiなどの水素との親和性の大きい
元素、B:Ni、Mn、Crなどの遷移元素)として分
類される。ABタイプの合金は、充放電サイクルの初期
には比較的大きな放電容量を示す特徴を有するが、充放
電を繰り返すと、その容量を長く維持することが困難で
あるという問題がある。また、AB5タイプのLa(ま
たはMm)−Ni系の多元系合金は、近年電極材料とし
て多くの開発が進められ、特にMm−Ni系の多元系合
金はすでに実用化されている。このLa(またはMm)
−Ni系の多元系合金も比較的放電容量が小さい、電池
電極としての寿命性能が不十分である、材料コストが高
い、などの問題を有している。したがって、さらに放電
容量が大きく長寿命である新規水素吸蔵合金材料が望ま
れている。
2. Description of the Related Art A hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen has a theoretical capacity density higher than that of a cadmium electrode, and does not cause deformation such as a zinc electrode or formation of dendrites. Therefore, it is expected as a negative electrode that provides a long life, pollution-free, and high energy density alkaline storage battery. The alloy used for the hydrogen storage alloy electrode is usually produced by an arc melting method, a high frequency induction heating melting method, or the like, and generally, Ti-Ni-based and La (or Mm) -Ni-based multi-component alloys are well known. Has been. The Ti-Ni-based multi-component alloy is classified as an AB type (A: an element having a high affinity with hydrogen such as La, Zr, and Ti, and B: a transition element such as Ni, Mn, and Cr). The AB type alloy has a characteristic that it exhibits a relatively large discharge capacity at the beginning of the charge / discharge cycle, but there is a problem that it is difficult to maintain the capacity for a long time when the charge / discharge is repeated. Further, the AB 5 type La (or Mm) -Ni-based multi-component alloys have been extensively developed in recent years as electrode materials, and in particular, the Mm-Ni-based multi-component alloy has already been put into practical use. This La (or Mm)
The Ni-based multi-component alloy also has problems such as relatively small discharge capacity, insufficient life performance as a battery electrode, and high material cost. Therefore, a novel hydrogen storage alloy material having a large discharge capacity and a long life is desired.

【0003】これに対して、AB2タイプのラーバス
(Laves)相合金は、水素吸蔵能が比較的高く、高
容量かつ長寿命の電極材料として有望である。この合金
系については、既にZrーMnーVーCrーNi系合金
をはじめ多くの合金が提案されている。しかしながら、
AB2タイプのラーバス相合金を電極に用いた場合、T
i−Ni系やLa(またはMm)−Ni系の多元系合金
に比べて放電容量は大きいが、充放電サイクルの初期に
おける放電特性が非常に悪いという問題があった。
On the other hand, the AB 2 type Laves phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode material having a high capacity and a long life. Many alloys such as Zr-Mn-V-Cr-Ni alloys have already been proposed for this alloy system. However,
When an AB 2 type Larbus phase alloy is used for the electrode, T
Although the discharge capacity is larger than that of the i-Ni-based or La (or Mm) -Ni-based multi-component alloy, there is a problem that the discharge characteristics at the beginning of the charge / discharge cycle are very poor.

【0004】そこで、Zr−Mn−V−M−Ni系合金
(MはFeまたはCoの中から選ばれる少なくとも1種
の元素)で組成を調整することにより、高容量を維持し
たまま初期放電特性を改善する提案がされた(特開平5
−82125号公報)。また、少量のCrを添加するこ
とにより、初期放電特性を損なわずに高温保存特性を改
善するという提案もある(特開平5−347156号公
報)。
Therefore, by adjusting the composition with a Zr-Mn-VM-Ni-based alloy (M is at least one element selected from Fe or Co), the initial discharge characteristics are maintained while maintaining a high capacity. Has been proposed (Japanese Patent Laid-Open No. Hei 5)
-82125). There is also a proposal that the high temperature storage characteristics are improved without impairing the initial discharge characteristics by adding a small amount of Cr (JP-A-5-347156).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記前者の提
案による合金からなる電極を用いて密閉電池を構成した
場合、アルカリ電解液への合金成分の溶出が激しく、そ
のため溶出した元素が導電性の酸化物などの形で析出し
て短絡を生じる不都合があった。また、電池を65℃程
度の高温で放置すると、すぐに電池電圧が低下するなど
の問題があった。上記後者のCrを添加した合金を用い
ると、高温保存特性が改善されるが、65℃程度の高温
における放置期間が30日を越えると、電池電圧が低下
するという不都合があった。今日では、電池の信頼性の
確保が最重要課題であり、高温中での放置期間が60日
を経過しても正常に作動することが求められている。本
発明は、以上に鑑み、さらに高温保存特性が改善され、
高い信頼性を有するアルカリ蓄電池を与える水素吸蔵合
金および電極を提供することを目的とする。
However, when a sealed battery is constructed by using the electrode made of the alloy proposed by the former, the elution of the alloy component into the alkaline electrolyte is violent, so that the eluted element is conductive. There is a problem that a short circuit occurs due to precipitation in the form of oxide or the like. Further, if the battery is left at a high temperature of about 65 ° C., there is a problem that the battery voltage immediately drops. When the latter alloy containing Cr is used, the high temperature storage characteristics are improved, but there is a disadvantage that the battery voltage decreases when the storage period at a high temperature of about 65 ° C. exceeds 30 days. Nowadays, ensuring the reliability of the battery is the most important issue, and it is required to operate normally even when the period of standing at high temperature for 60 days has passed. In view of the above, the present invention has further improved high temperature storage characteristics,
An object of the present invention is to provide a hydrogen storage alloy and an electrode that provide an alkaline storage battery having high reliability.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵合金
は、一般式ZrMnabxCoyNiz(ただし、Mは
Al、Cr、Fe、CuおよびZnよりなる群から選ば
れる少なくとも1種の元素であり、0.4≦a≦0.
8、0.05≦b≦0.3、0≦x≦0.3、0.2<
y≦0.5、0.8≦z≦1.3、かつ2.0≦a+b
+x+y+z≦2.4)で示され、合金相の主成分がC
15(MgCu2)型ラーバス相である。また、本発明
の水素吸蔵合金は、一般式Zr1.2-wTiwMnabx
CoyNiz(ただし、MはAl、Cr、Fe、Cuおよ
びZnよりなる群から選ばれる少なくとも1種の元素で
あり、0<w≦0.6、0.4≦a≦0.8、0.1≦
b≦0.4,0≦x≦0.3、0.2<y≦0.5、
0.8≦z≦1.3、かつ1.7≦(a+b+x+y+
z)/1.2≦2.2)で示され、合金相の主成分がC
15(MgCu2)型ラーバス相である。
Means for Solving the Problems] hydrogen storage alloy of the present invention at least has the general formula ZrMn a V b M x Co y Ni z ( however, M is Al, Cr, Fe, selected from the group consisting of Cu and Zn One element, 0.4 ≦ a ≦ 0.
8, 0.05 ≦ b ≦ 0.3, 0 ≦ x ≦ 0.3, 0.2 <
y ≦ 0.5, 0.8 ≦ z ≦ 1.3, and 2.0 ≦ a + b
+ X + y + z ≦ 2.4) and the main component of the alloy phase is C
It is a 15 (MgCu 2 ) type Larvus phase. The hydrogen storage alloy of the present invention have the general formula Zr 1.2-w Ti w Mn a V b M x
Co y Ni z (where M is at least one element selected from the group consisting of Al, Cr, Fe, Cu and Zn, and 0 <w ≦ 0.6, 0.4 ≦ a ≦ 0.8, 0.1 ≦
b ≦ 0.4, 0 ≦ x ≦ 0.3, 0.2 <y ≦ 0.5,
0.8 ≦ z ≦ 1.3, and 1.7 ≦ (a + b + x + y +
z) /1.2≦2.2), and the main component of the alloy phase is C
It is a 15 (MgCu 2 ) type Larvus phase.

【0007】前記の一般式において、y+z≦1.5で
あることが好ましい。また、前記合金は、合金作製後、
真空中もしくは不活性ガス雰囲気中において、1000
〜1300℃で少なくとも1時間の均質化熱処理を施さ
れたものであることが好ましい。さらに、本発明の水素
吸蔵合金電極は、上記の水素吸蔵合金またはその水素化
物から構成される。
In the above general formula, it is preferable that y + z ≦ 1.5. In addition, the alloy, after the alloy production,
1000 in vacuum or in an inert gas atmosphere
It is preferably subjected to homogenizing heat treatment at ˜1300 ° C. for at least 1 hour. Further, the hydrogen storage alloy electrode of the present invention is composed of the above hydrogen storage alloy or a hydride thereof.

【0008】[0008]

【作用】本発明の水素吸蔵合金は、従来のZrベースの
ラーバス相合金およびZr−Tiベースのラーバス相合
金をそれぞれ改善したものであり、合金中のCo量を増
加することにより、従来合金に比べて合金の微粉化を抑
制し、アルカリ電解液への合金組成の溶出を少なくした
ものである。Co量、すなわち、前記一般式におけるy
が0.2を越えると微粉化抑制の効果が現れ、水素吸蔵
−放出サイクルを繰り返しても合金粒径がある一定以下
にはならない。そのため、合金が割れることにより現れ
る新生面が少なくなり、アルカリ電解液への合金成分の
溶出も少なくなる。従って、本発明の電極を用いて構成
したアルカリ蓄電池、例えばニッケル−水素蓄電池は、
従来のこの種電池に比べて高温保存特性をさらに向上さ
せることが可能になる。また、合金の微粉化が抑制され
ているので、充放電サイクルを繰り返しても合金が劣化
せず、長期にわたって安定した性能を持続できる。しか
し、Co量yが0.5を越えるとPCT曲線(水素圧力
−組成等温線)のプラトー圧が高くなり、放電容量が小
さくなる。従って、Co量yの範囲は0.2<y≦0.
5が適当である。Co以外の組成範囲は主に350mA
h/g以上の放電容量を確保する観点から定められる。
高容量電池を作製するためには、負極の容量が350m
Ah/g程度は必要である。
The hydrogen storage alloy of the present invention is an improvement of the conventional Zr-based Larvus phase alloy and the Zr-Ti-based Lavus phase alloy, respectively. By increasing the amount of Co in the alloy, Compared with this, pulverization of the alloy is suppressed, and elution of the alloy composition into the alkaline electrolyte is reduced. Co amount, that is, y in the above general formula
When the ratio exceeds 0.2, the effect of suppressing pulverization appears, and the alloy grain size does not fall below a certain level even if the hydrogen storage-release cycle is repeated. Therefore, the new surface that appears due to the cracking of the alloy decreases, and the elution of alloy components into the alkaline electrolyte also decreases. Therefore, an alkaline storage battery configured using the electrode of the present invention, for example, a nickel-hydrogen storage battery,
It is possible to further improve the high temperature storage characteristics as compared with the conventional battery of this type. Further, since the pulverization of the alloy is suppressed, the alloy does not deteriorate even if the charge / discharge cycle is repeated, and stable performance can be maintained for a long time. However, when the Co amount y exceeds 0.5, the plateau pressure of the PCT curve (hydrogen pressure-composition isotherm) increases and the discharge capacity decreases. Therefore, the range of the Co amount y is 0.2 <y ≦ 0.
5 is suitable. The composition range other than Co is mainly 350 mA
It is determined from the viewpoint of ensuring a discharge capacity of at least h / g.
To make a high capacity battery, the capacity of the negative electrode is 350m.
About Ah / g is necessary.

【0009】まず、一般式ZrMnabxCoyNiz
で表されるZrベースの合金について説明する。Vは水
素との親和性の高い元素であり、水素吸蔵−放出量の増
加に寄与する。しかし、V量bが0.05より小さいと
Vの効果が現れない。また、bが0.3を越えると、合
金の均質性が悪くなり逆に水素吸蔵−放出量は減少す
る。従って、V量bは0.05≦b≦0.3がよい。N
iは水素吸蔵−放出量の低下を引き起こすが、電気化学
的な水素の吸蔵−放出に対する活性の向上に寄与する。
通常、Ni量zが1.0より小さいと電気化学的な活性
に乏しく放電容量が小さくなるが、Niと同様に電気化
学的な水素の吸蔵−放出に対する活性の向上にも寄与す
るCoが0.2<y≦0.5の範囲で含まれているた
め、Ni量zは0.8以上あればよい。しかし、zが
1.3より大きくなると、プラトー圧が大きくなり水素
吸蔵−放出量が減少する。従って、Ni量zは0.8≦
z≦1.3が適当である。また、NiとCoは電気化学
的な水素の吸蔵−放出に対する活性を有するという点で
似た元素であり、Ni+Co量(y+z)が1.5以下
であれば、特に水素吸蔵−放出量が大きくなる。従っ
て、y+z≦1.5であることが望ましい。
[0009] First, the general formula ZrMn a V b M x Co y Ni z
The Zr-based alloy represented by will be described. V is an element having a high affinity for hydrogen and contributes to an increase in hydrogen storage-release amount. However, if the V amount b is less than 0.05, the effect of V does not appear. Further, when b exceeds 0.3, the homogeneity of the alloy is deteriorated and conversely the hydrogen storage-release amount is reduced. Therefore, the V amount b is preferably 0.05 ≦ b ≦ 0.3. N
i causes a decrease in the amount of hydrogen storage-release, but contributes to the improvement of the electrochemical activity for hydrogen storage-release.
Generally, when the Ni content z is less than 1.0, the electrochemical activity is poor and the discharge capacity is reduced, but as with Ni, Co, which contributes to the improvement of the electrochemical hydrogen storage-release activity, is 0. .2 <y ≦ 0.5, the Ni content z should be 0.8 or more. However, when z is larger than 1.3, the plateau pressure increases and the hydrogen storage-release amount decreases. Therefore, the Ni amount z is 0.8 ≦
z ≦ 1.3 is suitable. Further, Ni and Co are similar elements in that they have an activity for electrochemical hydrogen storage-release, and if the Ni + Co amount (y + z) is 1.5 or less, the hydrogen storage-release amount is particularly large. Become. Therefore, it is desirable that y + z ≦ 1.5.

【0010】MnはPCT曲線におけるプラトー領域の
平坦性に影響を及ぼし、Mn量aが0.4以上でその平
坦性が非常に良くなり、放電容量が増加する。しかし、
Mn量aが0.8を越えると、Mnの電解液への溶出が
激しくなり微粉化抑制の効果が現れない。従って、Mn
量aは0.4≦a≦0.8が適当である。M(Al、C
r、Fe、Cu、Zn)は、充放電サイクルによる放電
容量の低下を抑える元素であり、M量xが0.3以下で
あれば効果を発揮する。しかし、M量xが0.3を越え
ると合金の均質性の低下やプラトー圧の上昇などを招
き、放電容量が低下する。故に、0≦x≦0.3が適当
である。Aサイト原子数に対するBサイト原子数の比率
(a+b+x+y+z)は2.0以上になると、合金の
均質性が大きく向上し、放電容量が大きくなる。しか
し、2.4より大きくなると、結晶格子定数が非常に小
さくなるためにプラトー圧が上昇し、放電容量の低下を
招く。従って、2.0≦a+b+x+y+z≦2.4で
あることが適当である。
Mn affects the flatness of the plateau region in the PCT curve, and when the Mn amount a is 0.4 or more, the flatness becomes very good and the discharge capacity increases. But,
When the Mn amount a exceeds 0.8, Mn is apt to be eluted into the electrolytic solution and the effect of suppressing pulverization does not appear. Therefore, Mn
The amount a is preferably 0.4 ≦ a ≦ 0.8. M (Al, C
(r, Fe, Cu, Zn) is an element that suppresses a decrease in discharge capacity due to charge / discharge cycles, and is effective when the M amount x is 0.3 or less. However, when the M content x exceeds 0.3, the homogeneity of the alloy is reduced, the plateau pressure is increased, and the discharge capacity is reduced. Therefore, 0 ≦ x ≦ 0.3 is appropriate. When the ratio of the number of B-site atoms to the number of A-site atoms (a + b + x + y + z) is 2.0 or more, the homogeneity of the alloy is greatly improved and the discharge capacity is increased. However, when it is larger than 2.4, the plateau pressure rises because the crystal lattice constant becomes very small, and the discharge capacity decreases. Therefore, it is appropriate that 2.0 ≦ a + b + x + y + z ≦ 2.4.

【0011】次に一般式Zr1.2-wTiwMnabx
yNizで表されるZr−Tiベースの合金について説
明する。この合金において、TiはZrと同様にAサイ
トを占める元素である。そして、Tiは原子半径が小さ
いためにTi量がZr量より大きくなると、合金の結晶
格子定数が非常に小さくなるので、水素吸蔵−放出量は
大きく低下する。従って、Ti量はZr量より小さいこ
とが必要である。Tiを含むことにより、Zrベースの
合金に比べて結晶格子定数は低下するので、その分原子
半径の大きなV量の上限および下限を上げる必要があ
る。よって、V量bは、0.1≦b≦0.4が適当であ
る。Mn、M、Niについては、上記のZrベースの合
金の場合と同様である。Aサイト原子数に対するBサイ
ト原子数の比率(a+b+x+y+z/1.2)に関し
ては、Tiを含むために2.2より大きくなると、結晶
格子定数の低下が起こるので2.2以下がよい。下限は
1.7まで下げても合金の均質性の顕著な低下は見られ
ない。従って、1.7≦(a+b+x+y+z)/1.
2≦2.2が適当である。
[0011] Then the general formula Zr 1.2-w Ti w Mn a V b M x C
It explained o y Ni z Zr-Ti-based alloys represented by. In this alloy, Ti is an element that occupies the A site like Zr. Since the atomic radius of Ti is small, when the amount of Ti becomes larger than the amount of Zr, the crystal lattice constant of the alloy becomes extremely small, so that the amount of hydrogen absorption-desorption greatly decreases. Therefore, the Ti content needs to be smaller than the Zr content. Since the inclusion of Ti lowers the crystal lattice constant as compared with the Zr-based alloy, it is necessary to increase the upper limit and the lower limit of the amount of V having a large atomic radius. Therefore, the V amount b is appropriately 0.1 ≦ b ≦ 0.4. Mn, M, and Ni are the same as in the case of the Zr-based alloy described above. The ratio (a + b + x + y + z / 1.2) of the number of B-site atoms to the number of A-site atoms is preferably 2.2 or less because the crystal lattice constant lowers when it exceeds 2.2 because it contains Ti. Even if the lower limit is lowered to 1.7, the homogeneity of the alloy is not significantly reduced. Therefore, 1.7 ≦ (a + b + x + y + z) / 1.
2 ≦ 2.2 is suitable.

【0012】また、ZrベースおよびZr−Tiベース
のいずれの合金においても、合金作製後、均質化熱処理
を行うことにより、合金の均質性および結晶性が向上す
るので、放電容量が特に大きくなる。しかし、熱処理温
度が1000℃より低いと熱処理の効果がなく、130
0℃より高いと多量のMnが蒸発して合金組成が大きく
ずれるため、逆に放電容量は小さくなる。熱処理時間は
1時間より短いと熱処理の効果が現れない。また、合金
の酸化を防ぐために、熱処理は真空中もしくは不活性ガ
ス雰囲気中で行う方がよい。したがって、合金作製後、
1000〜1300℃の真空中もしくは不活性ガス雰囲
気中で1時間以上の均質化熱処理を行うことが好まし
い。
In both Zr-based alloys and Zr-Ti-based alloys, homogenization heat treatment after alloy preparation improves the homogeneity and crystallinity of the alloys, resulting in a particularly large discharge capacity. However, if the heat treatment temperature is lower than 1000 ° C., the heat treatment has no effect and
If it is higher than 0 ° C., a large amount of Mn is evaporated and the alloy composition is largely deviated, so that the discharge capacity is decreased. If the heat treatment time is shorter than 1 hour, the effect of heat treatment does not appear. Further, in order to prevent the alloy from being oxidized, the heat treatment is preferably performed in vacuum or in an inert gas atmosphere. Therefore, after alloy production,
It is preferable to perform homogenizing heat treatment for 1 hour or more in a vacuum of 1000 to 1300 ° C. or in an inert gas atmosphere.

【0013】[0013]

【実施例】以下に、本発明をその実施例によりさらに詳
しく説明する。 [実施例1]市販のZr、Mn、V、Co、Ni、A
l、Fe、CuおよびZnの各金属を原料として、アル
ゴン雰囲気中、アーク溶解炉で加熱溶解することによ
り、表1に示す組成の合金を作製した。ただし、Mn量
aが0.8以上のものは、アーク炉で作製すると多量の
Mnが蒸発し、目的合金を得ることが困難であるため、
誘導加熱炉で作製した。次いで、真空中、1100℃で
12時間熱処理し、合金試料とした。
EXAMPLES The present invention will be described in more detail below by way of its examples. Example 1 Commercially available Zr, Mn, V, Co, Ni, A
Alloys having the compositions shown in Table 1 were prepared by heating and melting each metal of 1, 1, Fe, Cu, and Zn in an argon atmosphere in an arc melting furnace. However, if the Mn amount a is 0.8 or more, a large amount of Mn evaporates when it is produced in an arc furnace, and it is difficult to obtain the target alloy.
It was produced in an induction heating furnace. Next, heat treatment was performed in vacuum at 1100 ° C. for 12 hours to obtain an alloy sample.

【0014】[0014]

【表1】 [Table 1]

【0015】試料No.1〜7は比較例であり、試料N
o.8〜22は本発明の水素吸蔵合金のいくつかの実施
例である。まず、微粉化の進行度合いについて調べた。
表1の試料No.1〜22の合金をステンレス鋼製の測
定容器に入れ、150℃においてロータリーポンプで脱
ガスした後、20℃で水素を吸蔵させ、150℃で放出
させるというサイクルを75サイクル繰り返した後、合
金を取り出して平均粒径を測定した。その結果、Co量
の少ない試料No.4および5では、10ミクロン程度
まで微粉化しているのに対して、Co量の多い試料N
o.1〜3、6〜22では、20〜25ミクロン程度の
粒径を維持していることがわかった。
Sample No. 1 to 7 are comparative examples, sample N
o. 8 to 22 are some examples of the hydrogen storage alloy of the present invention. First, the degree of progress of pulverization was examined.
In Table 1, the sample No. The alloys 1 to 22 were placed in a stainless steel measuring container, degassed with a rotary pump at 150 ° C., hydrogen was absorbed at 20 ° C., and hydrogen was released at 150 ° C. After repeating 75 cycles, the alloys were It was taken out and the average particle size was measured. As a result, the sample No. with a small amount of Co. Samples 4 and 5 were finely pulverized to about 10 microns, whereas sample N containing a large amount of Co
o. It was found that the particle sizes of 1 to 3 and 6 to 22 maintain a particle size of about 20 to 25 microns.

【0016】次に、表1の試料No.1〜22の合金に
ついて、電気化学的な充放電反応によるアルカリ蓄電池
用負極としての電極特性を評価するために単電池試験を
行った。合金を300メッシュ以下の粒径になるように
粉砕し、この合金粉末1gと導電剤としてのカーボニル
ニッケル粉末3gおよび結着剤としてのポリエチレン微
粉末0.12gを十分混合攪拌し、プレス加工により直
径24.5mm、厚み2.5mmの円板状に成形した。
これを真空中、130℃で1時間加熱し、結着剤を溶融
させて水素吸蔵合金電極とした。この水素吸蔵合金電極
にニッケル線のリードを取り付けた負極を、過剰の容量
を有する焼結式ニッケル電極からなる正極およびポリア
ミド不織布からなるセパレータと組み合わせ、比重1.
30の水酸化カリウム水溶液からなる電解液中におい
て、25℃で一定電流で充電と放電を繰り返し、各サイ
クルでの放電容量を測定した。なお、充電は水素吸蔵合
金1gあたり100mAで5時間行い、放電は同様に1
gあたり50mAで行い、0.8Vでカットした。試料
No.1〜3、6、7は放電容量が小さく、250〜3
00mAh/gであった。試料No.1はMn量が多い
ため、サイクルによる放電容量の劣化が大きく、試料N
o.2、3、6は水素吸蔵量自体が小さいため、放電容
量も小さくなった。また、試料No.7はNi量が少な
いために電気化学的な水素の吸蔵−放出に対する活性が
小さく、放電容量が減少したと考えられる。これらに対
して、試料No.4、5、8〜22は、いずれも350
〜380mAh/gの放電容量を示すことがわかった。
Next, the sample No. The alloys 1 to 22 were subjected to a single cell test in order to evaluate the electrode characteristics as a negative electrode for an alkaline storage battery by an electrochemical charge / discharge reaction. The alloy was pulverized to a particle size of 300 mesh or less, 1 g of this alloy powder, 3 g of carbonyl nickel powder as a conductive agent and 0.12 g of polyethylene fine powder as a binder were thoroughly mixed and stirred, and the diameter was obtained by pressing. It was molded into a disk shape having a thickness of 24.5 mm and a thickness of 2.5 mm.
This was heated in vacuum at 130 ° C. for 1 hour to melt the binder to obtain a hydrogen storage alloy electrode. A negative electrode having a nickel wire lead attached to the hydrogen storage alloy electrode was combined with a positive electrode made of a sintered nickel electrode having an excessive capacity and a separator made of a polyamide nonwoven fabric to have a specific gravity of 1.
Charging and discharging were repeated at a constant current at 25 ° C. in an electrolytic solution containing 30 potassium hydroxide aqueous solution, and the discharge capacity in each cycle was measured. It should be noted that charging was performed at 100 mA / g of hydrogen storage alloy for 5 hours, and discharging was similarly performed at 1 mA.
It was performed at 50 mA / g and cut at 0.8V. Sample No. 1 to 3, 6 and 7 have small discharge capacities and 250 to 3
It was 00 mAh / g. Sample No. Sample No. 1 had a large amount of Mn, so that the discharge capacity was greatly deteriorated by the cycle,
o. In Nos. 2, 3 and 6, the hydrogen storage capacity itself was small, so the discharge capacity was also small. In addition, the sample No. It is considered that since No. 7 had a small amount of Ni, its activity for electrochemical hydrogen storage-release was small, and the discharge capacity was reduced. For these, the sample No. 4, 5, 8 to 22 are all 350
It was found to exhibit a discharge capacity of ~ 380 mAh / g.

【0017】さらに、これらの水素吸蔵合金を用いて、
以下に示したような方法で密閉型ニッケル−水素蓄電池
を作製した。表1に示した試料No.1〜22の合金を
300メッシュ以下に粉砕し、それぞれカルボキシメチ
ルセルローズ(CMC)の希水溶液と混合攪拌してペー
スト状にし、電極支持体である平均ポアサイズ150ミ
クロン、多孔度95%、厚さ1.0mmの発泡状ニッケ
ルシートに充填した。これを120℃で乾燥してローラ
ープレスで加圧し、さらにその表面にフッ素樹脂粉末を
コーティングして水素吸蔵合金電極とした。この電極を
それぞれ幅3.3cm、長さ21cm、厚さ0.40m
mに調整し、リード板を所定の2カ所に取り付けた。そ
して、容量3.0Ahの正極およびセパレータと組み合
わせて渦巻き状に捲回してSCサイズの電槽に収納し
た。このときの正極は公知の発泡式ニッケル電極であ
り、幅3.3cm、長さ18cmのサイズのものを用い
た。この正極もリード板を2カ所に取り付けた。また、
セパレータには親水性を付与したポリプロピレン不織布
を使用し、電解液としては、比重1.20の水酸化カリ
ウム水溶液に水酸化リチウムを30g/l溶解したもの
を用いた。上記のように電極群および電解液を収容した
電槽を封口して密閉型電池とした。
Further, using these hydrogen storage alloys,
A sealed nickel-hydrogen storage battery was produced by the method as shown below. Sample No. shown in Table 1 The alloys 1 to 22 were crushed to 300 mesh or less, and mixed and stirred with a dilute aqueous solution of carboxymethyl cellulose (CMC) to form a paste, and the electrode support had an average pore size of 150 microns, a porosity of 95%, and a thickness of 1 It was filled in a foamed nickel sheet of 0.0 mm. This was dried at 120 ° C., pressed with a roller press, and further coated on its surface with a fluororesin powder to form a hydrogen storage alloy electrode. Each of these electrodes has a width of 3.3 cm, a length of 21 cm, and a thickness of 0.40 m.
The lead plate was attached at two predetermined places. Then, it was spirally wound in combination with a positive electrode and a separator having a capacity of 3.0 Ah and housed in an SC size battery case. The positive electrode at this time was a known foaming nickel electrode, and had a width of 3.3 cm and a length of 18 cm. This positive electrode also had lead plates attached at two positions. Also,
A polypropylene non-woven fabric having hydrophilicity was used as the separator, and an electrolyte solution was prepared by dissolving 30 g / l of lithium hydroxide in an aqueous potassium hydroxide solution having a specific gravity of 1.20. The battery case containing the electrode group and the electrolytic solution as described above was sealed to form a sealed battery.

【0018】このようにして作製した電池を、20℃に
おいて、0.5C(2時間率)で150%まで充電し、
0.2C(5時間率)で終止電圧1.0Vまで放電する
充放電を20サイクル繰り返し、その後65℃の雰囲気
中に放置した。図1に保存期間に対する各電池電圧をプ
ロットして示す。図中の番号は表1の試料No.と一致
している。試料No.1、4は保存期間が20日、試料
No.5は保存期間が30日を過ぎると、それぞれ電池
電圧が急激に低下した。試料No.1はMn量が多いた
め、Co量を増加して微粉化を抑制してもMnの溶出を
抑えることができず、また試料No.4、5はCo量が
少ないために微粉化が進行し、合金成分の溶出を抑制で
きなかったものと考えられる。それに対して、試料N
o.2、3、6〜22は、Co量yが0.3以上含まれ
ているために微粉化が抑えられ、60日の保存でも電池
電圧の低下が非常に小さいことがわかった。また、Co
量の多い試料No.2、3、6〜22は、300サイク
ル経過しても安定した性能を維持できることがわかっ
た。以上のように、微粉化実験、単電池試験、高温保存
試験の結果を総合すると、本発明の合金No.8〜22
は350mAh/g以上の放電容量を有し、かつ高温保
存60日でも電池電圧の低下が非常に小さいことがわか
った。
The battery thus produced was charged to 150% at 0.5 ° C. (2 hour rate) at 20 ° C.,
20 cycles of charging and discharging at 0.2 C (5 hour rate) to a final voltage of 1.0 V were repeated and then left in an atmosphere of 65 ° C. FIG. 1 shows the voltage of each battery plotted against the storage period. The numbers in the figure indicate the sample No. of Table 1. Is consistent with Sample No. Samples Nos. 1 and 4 had a storage period of 20 days and sample No. In No. 5, when the storage period passed 30 days, the battery voltage dropped sharply. Sample No. Since No. 1 has a large amount of Mn, even if the amount of Co is increased to suppress pulverization, the elution of Mn cannot be suppressed. It is considered that Nos. 4 and 5 could not suppress the elution of the alloy components because the pulverization proceeded due to the small amount of Co. On the other hand, sample N
o. It was found that Nos. 2, 3, and 6 to 22 contained Co amount y of 0.3 or more, so that pulverization was suppressed, and the decrease in battery voltage was very small even after storage for 60 days. Also, Co
Sample No. with a large amount It was found that 2, 3, 6 to 22 can maintain stable performance even after 300 cycles. As described above, when the results of the pulverization experiment, the single cell test, and the high temperature storage test are combined, the alloy No. 8-22
It has a discharge capacity of 350 mAh / g or more, and it is found that the battery voltage drop is very small even after 60 days of high temperature storage.

【0019】[実施例2]市販のZr、Ti、Mn、
V、Co、Ni、Al、Fe、CuおよびZnの各金属
を原料として、アルゴン雰囲気中、アーク溶解炉で加熱
溶解することにより、表2に示す組成の合金を作製し
た。ただし、Mn量aが0.8以上のものはアーク炉で
作製すると多量のMnが蒸発し、目的合金を得ることが
困難であるため、誘導加熱炉で作製した。次いで、真空
中、1100℃で12時間熱処理し、合金試料とした。
Example 2 Commercially available Zr, Ti, Mn,
Alloys having the compositions shown in Table 2 were prepared by heating and melting each metal of V, Co, Ni, Al, Fe, Cu, and Zn in an argon atmosphere in an arc melting furnace. However, when the Mn amount a is 0.8 or more, a large amount of Mn evaporates when it is manufactured in an arc furnace, and it is difficult to obtain the target alloy. Therefore, it was manufactured in an induction heating furnace. Next, heat treatment was performed in vacuum at 1100 ° C. for 12 hours to obtain an alloy sample.

【0020】[0020]

【表2】 [Table 2]

【0021】試料No.23〜30は比較例であり、試
料No.31〜46は本発明の水素吸蔵合金のいくつか
の実施例である。まず、実施例1と同様に表2の試料N
o.23〜46の合金について微粉化の進行度合いにつ
いて調べた。その結果、Co量の少ない試料No.2
6、27は10ミクロン程度まで微粉化しているのに対
して、Co量の多い試料No.23〜25、28〜46
は20〜25ミクロン程度の粒径を維持していることが
わかった。
Sample No. Sample Nos. 23 to 30 are comparative examples. 31 to 46 are some examples of the hydrogen storage alloy of the present invention. First, as in Example 1, the sample N in Table 2 was used.
o. The degree of progress of pulverization was examined for alloys 23 to 46. As a result, the sample No. with a small amount of Co. Two
Samples Nos. 6 and 27 are finely pulverized up to about 10 microns, while Sample No. 6 having a large amount of Co. 23-25, 28-46
Was found to maintain a particle size of about 20 to 25 microns.

【0022】次に、表2の試料No.23〜46の合金
について、電気化学的な充放電反応によるアルカリ蓄電
池用負極としての電極特性を評価するために単電池試験
を行った。試験方法は実施例1と同様である。試料N
o.23〜25、28〜30は放電容量が小さく、25
0〜300mAh/gであった。試料No.23はMn
量が多いため、サイクルによる放電容量の劣化が大き
く、試料No.24、25、28、30は水素吸蔵量自
体が小さいため、放電容量も小さくなった。また、試料
No.29はNi量が少ないために電気化学的な水素の
吸蔵−放出に対する活性が小さく、放電容量が減少した
と考えられる。それに対して、試料No.26、27、
31〜46は、いずれも350〜380mAh/gの放
電容量を示すことがわかった。
Next, sample No. With respect to the alloys Nos. 23 to 46, a unit cell test was conducted in order to evaluate the electrode characteristics as the negative electrode for alkaline storage batteries by the electrochemical charge / discharge reaction. The test method is the same as in Example 1. Sample N
o. 23 to 25 and 28 to 30 have a small discharge capacity,
It was 0 to 300 mAh / g. Sample No. 23 is Mn
Due to the large amount, the deterioration of the discharge capacity due to the cycle is large. Since 24, 25, 28, and 30 had a small hydrogen storage amount, the discharge capacity was also small. In addition, the sample No. It is considered that since No. 29 had a small amount of Ni, its activity for electrochemical hydrogen storage-release was small, and the discharge capacity was reduced. On the other hand, the sample No. 26, 27,
It was found that all of 31 to 46 have a discharge capacity of 350 to 380 mAh / g.

【0023】さらに、表2に示した試料No.23〜4
6の合金を用いて、実施例1と同様の方法で密閉型ニッ
ケル−水素蓄電池を作製し、20℃において、0.5C
(2時間率)で150%充電し、0.2C(5時間率)
で終止電圧1.0Vまで放電する充放電を20サイクル
繰り返し、その後65℃の雰囲気中に放置した。図2に
保存による各電池電圧の変化を示す。図中の番号は表2
の試料No.と一致している。試料No.23、26は
保存期間が20日、試料No.27は保存期間が30日
を過ぎると、それぞれ電池電圧が急激に低下した。試料
No.23はMn量が多いため、Co量を増加して微粉
化を抑制してもMnの溶出を抑えることができず、また
試料No.26、27はCo量が少ないために微粉化が
進行し、合金組成の溶出を抑制できなかったものと考え
られる。それに対して、試料No.24、25、28〜
46はCo量yが0.3以上含まれているために微粉化
が抑えられ、60日の保存でも電池電圧の低下が非常に
小さいことがわかった。また、Co量の多い試料No.
24、25、28〜46は300サイクル経過しても安
定した性能を維持できることがわかった。以上のよう
に、微粉化実験、単電池試験、高温保存試験の結果を総
合すると、本発明の合金No.31〜46は350mA
h/g以上の放電容量を有し、かつ高温保存60日でも
電池電圧の低下が非常に小さいことがわかった。
Further, the sample No. shown in Table 2 was used. 23-4
Using the alloy of No. 6, a sealed nickel-hydrogen storage battery was prepared in the same manner as in Example 1, and at 20 ° C., 0.5 C
Charged 150% at (2 hour rate), 0.2C (5 hour rate)
20 cycles of charging / discharging for discharging to a final voltage of 1.0 V were repeated and then left in an atmosphere of 65 ° C. FIG. 2 shows changes in each battery voltage due to storage. The numbers in the figure are Table 2
Sample No. Is consistent with Sample No. 23 and 26 have a storage period of 20 days and sample No. In No. 27, the battery voltage dropped sharply after the storage period of 30 days. Sample No. No. 23 has a large Mn content, so even if the Co content is increased to suppress pulverization, the elution of Mn cannot be suppressed. It is considered that 26 and 27 did not suppress the elution of the alloy composition due to the progress of pulverization due to the small amount of Co. On the other hand, the sample No. 24, 25, 28-
It was found that 46 has a Co content y of 0.3 or more, so that pulverization is suppressed, and that the battery voltage drop is very small even after storage for 60 days. In addition, Sample No. with a large amount of Co.
It was found that 24, 25, 28 to 46 can maintain stable performance even after 300 cycles. As described above, when the results of the pulverization experiment, the single cell test, and the high temperature storage test are combined, the alloy No. 31-46 is 350 mA
It was found that the battery had a discharge capacity of h / g or more, and the battery voltage dropped very little even after 60 days of high temperature storage.

【0024】[0024]

【発明の効果】本発明の水素吸蔵合金は、充放電による
微粉化が抑制され、アルカリ電解液への合金成分の溶出
が少なくなる。したがって、この合金を負極とするアル
カリ蓄電池は従来のこの種電池に比べて高温保存特性を
さらに向上させることができ、優れたサイクル寿命特性
も得られる。
EFFECTS OF THE INVENTION The hydrogen storage alloy of the present invention suppresses pulverization due to charge and discharge, and less elution of alloy components into the alkaline electrolyte. Therefore, the alkaline storage battery using this alloy as the negative electrode can have further improved high-temperature storage characteristics and excellent cycle life characteristics as compared with conventional batteries of this type.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例の水素吸蔵合金電
極を用いた蓄電池の65℃保存中の電池電圧の変化を示
す図である。
FIG. 1 is a diagram showing changes in battery voltage during storage at 65 ° C. of storage batteries using hydrogen storage alloy electrodes of Examples and Comparative Examples of the present invention.

【図2】本発明の他の実施例および比較例の水素吸蔵合
金電極を用いた蓄電池の65℃保存中の電池電圧の変化
を示す図である。
FIG. 2 is a diagram showing changes in battery voltage during storage at 65 ° C. of a storage battery using hydrogen storage alloy electrodes of other examples and comparative examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichiro Tsuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式ZrMnabxCoyNiz(た
だし、MはAl、Cr、Fe、CuおよびZnよりなる
群から選ばれる少なくとも1種の元素であり、0.4≦
a≦0.8、0.05≦b≦0.3、0≦x≦0.3、
0.2<y≦0.5、0.8≦z≦1.3、かつ2.0
≦a+b+x+y+z≦2.4)で示され、合金相の主
成分がC15(MgCu2)型ラーバス相である水素吸
蔵合金。
1. A general formula ZrMn a V b M x Co y Ni z ( however, M is at least one element selected Al, Cr, Fe, from the group consisting of Cu and Zn, 0.4 ≦
a ≦ 0.8, 0.05 ≦ b ≦ 0.3, 0 ≦ x ≦ 0.3,
0.2 <y ≦ 0.5, 0.8 ≦ z ≦ 1.3, and 2.0
≦ a + b + x + y + z ≦ 2.4), and the main component of the alloy phase is a C15 (MgCu 2 ) type Larvus phase, a hydrogen storage alloy.
【請求項2】 一般式Zr1.2-wTiwMnabxCoy
Niz(ただし、MはAl、Cr、Fe、CuおよびZ
nよりなる群から選ばれる少なくとも1種の元素であ
り、0<w≦0.6、0.4≦a≦0.8、0.1≦b
≦0.4,0≦x≦0.3、0.2<y≦0.5、0.
8≦z≦1.3、かつ1.7≦(a+b+x+y+z)
/1.2≦2.2)で示され、合金相の主成分がC15
(MgCu2)型ラーバス相である水素吸蔵合金。
2. The general formula Zr 1.2-w Ti w Mn a V b M x Co y.
Ni z (where M is Al, Cr, Fe, Cu and Z
at least one element selected from the group consisting of n, 0 <w ≦ 0.6, 0.4 ≦ a ≦ 0.8, 0.1 ≦ b
≦ 0.4, 0 ≦ x ≦ 0.3, 0.2 <y ≦ 0.5, 0.
8 ≦ z ≦ 1.3, and 1.7 ≦ (a + b + x + y + z)
/1.2≦2.2), and the main component of the alloy phase is C15
A hydrogen storage alloy that is a (MgCu 2 ) type Lavas phase.
【請求項3】 前記一般式においてy+z≦1.5であ
る請求項1または2記載の水素吸蔵合金。
3. The hydrogen storage alloy according to claim 1, wherein y + z ≦ 1.5 in the general formula.
【請求項4】 真空中もしくは不活性ガス雰囲気中にお
いて、1000〜1300℃で少なくとも1時間の均質
化熱処理を施された請求項1〜3のいずれかに記載の水
素吸蔵合金。
4. The hydrogen storage alloy according to claim 1, which has been subjected to a homogenizing heat treatment at 1000 to 1300 ° C. for at least 1 hour in a vacuum or an inert gas atmosphere.
【請求項5】 請求項1〜4のいずれかに記載の水素吸
蔵合金またはその水素化物からなることを特徴とする水
素吸蔵合金電極。
5. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to claim 1 or a hydride thereof.
JP6273786A 1994-11-08 1994-11-08 Hydrogen storage alloy and hydrogen storage alloy electrode Pending JPH08134566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6273786A JPH08134566A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy and hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6273786A JPH08134566A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy and hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH08134566A true JPH08134566A (en) 1996-05-28

Family

ID=17532570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6273786A Pending JPH08134566A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH08134566A (en)

Similar Documents

Publication Publication Date Title
EP0450590B2 (en) Hydrogen storage alloy electrode and process for producing the electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH08134566A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
US5541018A (en) Hydrogen storing alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH06145849A (en) Hydrogen storage alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
EP0612856B1 (en) Hydrogen storage alloy and electrode therefrom
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0582125A (en) Hydrogen occluding alloy electrode
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
JPH05343054A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees