JPH05151967A - Electrode of hydrogen occluding alloy - Google Patents

Electrode of hydrogen occluding alloy

Info

Publication number
JPH05151967A
JPH05151967A JP3361243A JP36124391A JPH05151967A JP H05151967 A JPH05151967 A JP H05151967A JP 3361243 A JP3361243 A JP 3361243A JP 36124391 A JP36124391 A JP 36124391A JP H05151967 A JPH05151967 A JP H05151967A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
nickel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3361243A
Other languages
Japanese (ja)
Other versions
JP3123800B2 (en
Inventor
Tadashi Ise
忠司 伊勢
Kazuo Moriwaki
和郎 森脇
Mitsuzo Nogami
光造 野上
Mikiaki Tadokoro
幹朗 田所
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03361243A priority Critical patent/JP3123800B2/en
Publication of JPH05151967A publication Critical patent/JPH05151967A/en
Application granted granted Critical
Publication of JP3123800B2 publication Critical patent/JP3123800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an electrode of hydrogen occluding alloy, with which the high rate discharging characteristics and low temperature discharging characteristics of the battery are enhanced to a great extent by activating the hydrogen occluding alloy from the beginning of operating cycles. CONSTITUTION:An electrode is made of a hydrogen occluding alloy containing cobalt or nickel, wherein the inter-metal compound phase with cobalt or nickel concentrated exists without forming solid solution with the parent phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コバルト或いはニッケ
ルを含有する水素吸蔵合金から成る水素吸蔵合金電極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode made of a hydrogen storage alloy containing cobalt or nickel.

【0002】[0002]

【従来の技術】従来からよく用いられる蓄電池として
は、鉛電池及びニッケル−カドミウム電池がある。しか
し、近年、これら電池より軽量で且つ高容量となる可能
性があるということで、特に常圧で負極活物質である水
素を可逆的に吸蔵及び放出することのできる水素吸蔵合
金を備えた電極を負極に用い、水酸化ニッケルなどの金
属酸化物を正極活物質とする電極を正極に用いた金属−
水素アルカリ蓄電池が注目されている。
2. Description of the Related Art Lead-acid batteries and nickel-cadmium batteries have been conventionally used as storage batteries. However, in recent years, since it is possible to have a lighter weight and a higher capacity than these batteries, an electrode provided with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, which is a negative electrode active material, particularly under normal pressure. Is used as the negative electrode, and a metal oxide having a metal oxide such as nickel hydroxide as the positive electrode active material is used as the positive electrode.
Hydrogen alkaline storage batteries are receiving attention.

【0003】ところで、上記金属−水素アルカリ蓄電池
においては、電池の充放電サイクル初期の充電において
水素を十分吸蔵,放出することができないので、初期容
量が小さくなるという課題を有していた。そこで、従来
より、電池の出荷以前に水素を吸蔵,放出させて合金体
積の膨張と収縮とを繰り返すことにより、水素吸蔵合金
の表面にクラックを形成させるような化成処理を行っ
て、水素吸蔵合金を活性化するような方法が提案されて
いる。
However, the above-mentioned metal-hydrogen alkaline storage battery has a problem that the initial capacity becomes small because hydrogen cannot be sufficiently absorbed and released during charging at the beginning of the charge / discharge cycle of the battery. Therefore, conventionally, hydrogen storage alloys have been subjected to chemical conversion treatment such that cracks are formed on the surface of the hydrogen storage alloys by absorbing and releasing hydrogen and repeating expansion and contraction of the alloy volume before shipping the batteries. Have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法では、十分に活性化を図ることができず、この結果
充放電サイクル当初の高率放電特性や低温放電特性にお
いて、飛躍的な向上を図ることができないという課題を
有していた。本発明はかかる現状に鑑みてなされたもの
であり、サイクル当初より水素吸蔵合金の活性化を図っ
て、これを用いた電池の高率放電特性や低温放電特性を
飛躍的に向上することができる水素吸蔵合金電極を提供
することを目的とする。
However, in the above method, the activation cannot be sufficiently achieved, and as a result, the high rate discharge characteristics and the low temperature discharge characteristics at the beginning of the charge / discharge cycle are dramatically improved. There was a problem that it was not possible. The present invention has been made in view of the present situation, and can activate the hydrogen storage alloy from the beginning of the cycle to dramatically improve the high rate discharge characteristics and the low temperature discharge characteristics of the battery using the same. An object is to provide a hydrogen storage alloy electrode.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、コバルト或いはニッケルを含有する水素吸
蔵合金から成る水素吸蔵合金電極において、前記水素吸
蔵合金中には、少なくともコバルト或いはニッケルが一
成分となる金属間化合物相が母相と固溶せずに存在する
ことを特徴とする。
In order to achieve the above object, the present invention provides a hydrogen storage alloy electrode comprising a hydrogen storage alloy containing cobalt or nickel, wherein at least cobalt or nickel is contained in the hydrogen storage alloy. It is characterized in that the intermetallic compound phase as one component is present without forming a solid solution with the matrix phase.

【0006】[0006]

【作用】上記構成の如く、水素吸蔵合金中に母相と固溶
しない金属間化合物相が存在していれば、合金の結晶構
造に歪みを生じているため、水素吸蔵時に結晶格子が膨
張すると、大きな内部応力が発生する。したがって、水
素吸蔵合金に多数のクラックが生じて新たな活性面が形
成されるので、水素吸蔵合金の反応表面積が大きくな
る。この結果、充放電サイクル当初より、合金の活性化
が進行することになる。
As described above, if an intermetallic compound phase that does not form a solid solution with the parent phase exists in the hydrogen storage alloy, the crystal structure of the alloy is distorted, so that the crystal lattice expands during hydrogen storage. , Large internal stress occurs. Therefore, many cracks are generated in the hydrogen storage alloy to form a new active surface, so that the reaction surface area of the hydrogen storage alloy becomes large. As a result, activation of the alloy proceeds from the beginning of the charge / discharge cycle.

【0007】加えて、合金にクラックが生じた場合、新
たな活性面にはニッケル或いはコバルトが存在する。こ
の場合において、ニッケル或いはコバルトは水素の吸蔵
放出反応を促進するという触媒作用が大きい。この結
果、水素の吸蔵放出反応が生じ難い低温でも放電特性が
良好となる。
In addition, if cracks occur in the alloy, nickel or cobalt will be present on the new active surface. In this case, nickel or cobalt has a large catalytic action to promote the hydrogen storage / release reaction. As a result, the discharge characteristics are improved even at low temperatures at which hydrogen storage / release reactions are unlikely to occur.

【0008】[0008]

【実施例】【Example】

(第1実施例)本発明の第1実施例を、図1〜図10に
基づいて、以下に説明する。 〔実施例1〕本発明に係る水素吸蔵合金電極の作製方法
の一例を、以下に示す。
(First Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. [Example 1] An example of a method for producing a hydrogen storage alloy electrode according to the present invention will be described below.

【0009】先ず、市販のMm(ミッシュメタルであっ
て、希土類元素の混合物)とNiとCoとMnとAlと
Moとを元素比で1:3.4:0.8:0.4:0.
4:0.09の割合となるように秤量した後、高周波溶
解炉内で溶解して溶湯を作成する。次に、上記溶湯を冷
却することにより、MmNi3.4Co0.8Mn
0.4Al0.4Mo0.09で示される水素吸蔵合金
鋳塊を作成した。次に、この水素吸蔵合金鋳塊の粒径が
50μm以下となるように粉砕した後、この水素吸蔵合
金粉末(1g)に、結着剤としてのPTFE(ポリテト
ラフルオロエチレン,0.2g)と、導電剤としてのニ
ッケル粉末(0.8g)とを加えて混練し、更にこの混
合物をニッケルメッシュに包んで圧力を加えることによ
り作製した。
First, commercially available Mm (mixture of rare earth elements, which is a misch metal), Ni, Co, Mn, Al and Mo in an element ratio of 1: 3.4: 0.8: 0.4: 0. .
After weighing so that the ratio becomes 4: 0.09, it is melted in a high-frequency melting furnace to prepare a molten metal. Next, by cooling the molten metal, MmNi 3.4 Co 0.8 Mn
A hydrogen storage alloy ingot represented by 0.4 Al 0.4 Mo 0.09 was prepared. Next, the hydrogen-storing alloy ingot was pulverized to have a particle size of 50 μm or less, and then the hydrogen-storing alloy powder (1 g) was mixed with PTFE (polytetrafluoroethylene, 0.2 g) as a binder. , Nickel powder (0.8 g) as a conductive agent were added and kneaded, and the mixture was wrapped in a nickel mesh to apply pressure.

【0010】このようにして作製した電極を、以下(A
)電極と称する。 〔実施例2〕水素吸蔵合金の原料として、Moの代わり
にBを用いる他は、上記実施例1と同様にして水素吸蔵
合金電極を作製した(即ち、水素吸蔵合金はMmNi
3.4Co0.8Mn0.4Al0.40.09で表
される)。
The electrode thus prepared is described below (A
1 ) It is called an electrode. Example 2 A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that B was used in place of Mo as a raw material of the hydrogen storage alloy (that is, the hydrogen storage alloy was MmNi.
3.4 Co 0.8 Mn 0.4 Al 0.4 B 0.09 ).

【0011】このようにして作製した電極を、以下(A
)電極と称する。 〔実施例3〕水素吸蔵合金の原料として、Moの代わり
にTaを用いる他は、上記実施例1と同様にして水素吸
蔵合金電極を作製した(即ち、水素吸蔵合金はMmNi
3.4Co0.8Mn0.4Al0.4Ta0.09
表される)。
The electrode thus produced is described below (A
2 ) Referred to as an electrode. [Example 3] A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that Ta was used instead of Mo as a raw material for the hydrogen storage alloy (that is, the hydrogen storage alloy was MmNi.
3.4 Co 0.8 Mn 0.4 Al 0.4 Ta 0.09 ).

【0012】このようにして作製した電極を、以下(A
)電極と称する。 〔比較例1〕水素吸蔵合金の原料として、Moを用いな
い他は、上記実施例1と同様にして電池を作製した(即
ち、水素吸蔵合金はMmNi3.4Co0.8Mn
0.4Al0.4で表される)。
The electrode produced in this manner is described below (A
3 ) It is called an electrode. As a raw material of Comparative Example 1 a hydrogen storage alloy, other using no Mo is A battery was fabricated in the same manner as in Example 1 (i.e., the hydrogen storage alloy MmNi 3.4 Co 0.8 Mn
0.4 Al 0.4 ).

【0013】このようにして作製した電極を、以下
(X)電極と称する。 〔実験1〕上記本発明の(A)電極〜(A)電極及
び比較例の(X)電極における初期の放電率特性を調べ
たので、その結果を下記表1に示す。尚、実験に際して
は、電解液としてKOHの30%溶液、対極として焼結
式ニッケル正極を用いた。また、実験条件は、50mA
/gの電流で8時間充電した後、50mA/g及び20
0mA/gの電流でそれぞれ放電するという条件であ
り、また実験温度は、25℃及び−10℃の2つの温度
で行った。そして、実験の評価は、50mA/gで放電
したときの放電容量をC,200mA/gで放電した
ときの放電容量をCとし、C/C×100(%)
〔放電容量比〕を算出することにより行った。
The electrode thus manufactured is hereinafter referred to as (X) electrode. [Experiment 1] The initial discharge rate characteristics of the (A 1 ) electrode to (A 3 ) electrode of the present invention and the (X) electrode of the comparative example were examined, and the results are shown in Table 1 below. In the experiment, a 30% KOH solution was used as an electrolytic solution and a sintered nickel positive electrode was used as a counter electrode. The experimental condition is 50 mA.
50 mA / g and 20 after charging for 8 hours at a current of / g
The conditions were such that each was discharged at a current of 0 mA / g, and the experiment temperature was two temperatures of 25 ° C and -10 ° C. Then, the evaluation of the experiment was performed by setting the discharge capacity when discharged at 50 mA / g to C 1 and the discharge capacity when discharged at 200 mA / g to C 2, and C 2 / C 1 × 100 (%)
It was performed by calculating [discharge capacity ratio].

【0014】[0014]

【表1】 上記表1より明らかなように、比較例の(X)電極で
は、25℃での放電容量比が70%であるのに対して、
本発明の(A)電極〜(A)電極では、25℃での
放電容量比が87〜92%であり、放電容量比が高くな
っていることが認められる。
[Table 1] As is clear from Table 1 above, the (X) electrode of the comparative example has a discharge capacity ratio of 70% at 25 ° C.
In the (A 1 ) electrode to (A 3 ) electrode of the present invention, the discharge capacity ratio at 25 ° C. is 87 to 92%, and it is recognized that the discharge capacity ratio is high.

【0015】また、表1より明らかなように、比較例の
(X)電極では、−10℃での放電容量比が30%であ
り、25℃での放電容量比と比べて著しく低下している
のに対して、本発明の(A)電極〜(A)電極で
は、−10℃での放電容量比が76〜80%であり、2
5℃での放電容量比と比べて余り低下していないことが
認められる。
Further, as is clear from Table 1, in the (X) electrode of the comparative example, the discharge capacity ratio at -10 ° C was 30%, which was significantly lower than the discharge capacity ratio at 25 ° C. On the other hand, in the (A 1 ) electrode to (A 3 ) electrode of the present invention, the discharge capacity ratio at −10 ° C. is 76 to 80%, and
It is recognized that the discharge capacity ratio at 5 ° C. is not so much decreased.

【0016】そこで、本発明の(A)電極〜(A
電極が比較例の(X)電極より放電率特性が向上する理
由を調べるべく、以下に示す実験2〜4を行った。 〔実験2〕本発明の(A)電極,(A)電極の水素
吸蔵合金をX線回折法により調べたので、その結果を図
1及び図2に示す。
Therefore, the (A 1 ) electrodes to (A 3 ) of the present invention are used.
Experiments 2 to 4 described below were conducted in order to investigate the reason why the electrode has better discharge rate characteristics than the (X) electrode of the comparative example. [Experiment 2] The hydrogen storage alloys of the (A 1 ) electrode and the (A 2 ) electrode of the present invention were examined by the X-ray diffraction method, and the results are shown in FIGS. 1 and 2.

【0017】図1より明らかなように、(A)電極の
水素吸蔵合金では、μ−Co−Ni−Mo(CoMo
Ni)で表される金属間化合物相が新たに出現している
ことが認められる。また、図2より明らかなように、
(A)電極の水素吸蔵合金では、MmCoBで表さ
れる金属間化合物相が新たに出現していることが認めら
れる。
As is apparent from FIG. 1, in the hydrogen storage alloy of the (A 1 ) electrode, μ-Co-Ni-Mo (CoMo 2
It is recognized that an intermetallic compound phase represented by Ni) has newly appeared. Also, as is clear from FIG.
In the hydrogen storage alloy of the (A 2 ) electrode, it is recognized that an intermetallic compound phase represented by MmCo 4 B has newly appeared.

【0018】尚、図には示さないが、比較例の(X)電
極の水素吸蔵合金ではμ−Co−Ni−MoやMmCo
Bは現れていないことを確認している。また、添加元
素としてTaを用いた場合〔(A)電極〕の金属間化
合物相としては、NiTa,CoTaとなること
を、実験により確認している。 〔実験3〕上記(A)電極,(A)電極の水素吸蔵
合金における電子反射画像を調べ(それぞれ図3,図4
に示す)、母相とは異なる部位(μ−Co−Ni−M
o、MmCoBが存在する部位)におけるEPMA−
ZAFによる定量分析を行ったので、それらの結果をそ
れぞれ図5及び図6に示す。尚、図5においては図3の
線分A−Bで示す部位、図6においては図4の線分A′
−B′で示す部位を調べた。
Although not shown in the figure, in the hydrogen storage alloy of the (X) electrode of the comparative example, μ-Co-Ni-Mo and MmCo were used.
4 B is make sure that does not appear. Further, it has been confirmed by experiments that the intermetallic compound phase in the case of using Ta as the additive element [(A 3 ) electrode] is Ni 3 Ta, CoTa 2 . [Experiment 3] Electron reflection images of the hydrogen storage alloys of the (A 1 ) electrode and the (A 2 ) electrode were examined (see FIGS. 3 and 4 respectively).
Shown in Fig.), A site different from the matrix (μ-Co-Ni-M
o, EPMA-in the site where MmCo 4 B exists)
Since the quantitative analysis by ZAF was performed, those results are shown in FIG. 5 and FIG. 6, respectively. It should be noted that in FIG. 5, the portion indicated by the line segment AB in FIG. 3 and in FIG. 6 the line segment A ′ in FIG.
The site indicated by -B 'was examined.

【0019】図5及び図6より明らかなように、母相と
は異なる部位ではMoやBの量が多くなっており、且つ
これに伴ってCoの量が多くなっていることが確認され
る。 〔実験4〕上記(A)電極を1サイクル充放電した後
に、(A)電極の水素吸蔵合金を電子顕微鏡(SE
M)及びX線で調べたので、それらの結果をそれぞれ図
7,図8に示す。尚、充放電条件は前記実験1で示す条
件と同様の条件である。
As is clear from FIGS. 5 and 6, it is confirmed that the amounts of Mo and B are large in the part different from the matrix phase, and that the amount of Co is also increased accordingly. .. [Experiment 4] After the above (A 1 ) electrode was charged and discharged for one cycle, the hydrogen storage alloy of the (A 1 ) electrode was observed with an electron microscope (SE).
M) and X-ray, the results are shown in FIGS. 7 and 8, respectively. The charging / discharging conditions are the same as those shown in Experiment 1 above.

【0020】図7及び図8から明らかなように、Moが
多い部分(図8中白い部分)で水素吸蔵合金のクラック
が多数生じていることが認められる。また、同様にし
て、上記(A)電極を1サイクル充放電した後に、
(A)電極の水素吸蔵合金を電子顕微鏡及びX線で調
べたので、それらの結果をそれぞれ図9,図10に示
す。
As is clear from FIGS. 7 and 8, it is recognized that a large number of cracks are formed in the hydrogen storage alloy in the Mo-rich portion (white portion in FIG. 8). Similarly, after charging and discharging the (A 3 ) electrode for one cycle,
The hydrogen storage alloy of the (A 3 ) electrode was examined by an electron microscope and X-ray, and the results are shown in FIGS. 9 and 10, respectively.

【0021】図9及び図10から明らかなように、Ta
が多い部分(図10中白い部分)で水素吸蔵合金のクラ
ックが多数生じていることが認められる。 〔実験2〜4のまとめ〕実験4より明らかなように、本
発明の電極においてはMo等が多く存在する部位でクラ
ックが生じることが認められる。そして、このようなM
o等が多く存在する部位には、実験2及び実験3より明
らかなように、Coが多く存在することになる。したが
って、本発明の電極においては、Coが多く存在する部
分で充放電サイクル当初よりクラックが生じることにな
る。
As is apparent from FIGS. 9 and 10, Ta
It can be seen that a large number of cracks in the hydrogen storage alloy are generated in a portion with a large amount (white portion in FIG. 10). [Summary of Experiments 2 to 4] As is clear from Experiment 4, it is recognized that in the electrode of the present invention, a crack is generated at a site where a large amount of Mo or the like is present. And such M
As is clear from Experiment 2 and Experiment 3, a large amount of Co is present at the site where a large amount of o and the like are present. Therefore, in the electrode of the present invention, a crack is generated from the beginning of the charge / discharge cycle in the portion where a large amount of Co is present.

【0022】このように、充放電サイクル当初よりクラ
ックが多数発生すれば、水素吸蔵合金の反応面積が増大
(即ち、新たな活性面が生成)するので、充放電サイク
ル当初より高率放電特性が向上する。加えて、Coが多
く存在する部分でクラックが多数生じれば、Coの触媒
作用により低温での放電特性が向上する。尚、上記実施
例では、母相と異なる金属間化合物相にCoが多く存在
する場合についてのみ説明したが、該金属間化合物相に
Niが多く存在する場合にも同様の効果を有する。この
ことは、下記の第2実施例において明らかにする。
As described above, if a large number of cracks are generated from the beginning of the charge / discharge cycle, the reaction area of the hydrogen storage alloy increases (that is, a new active surface is generated), so that the high rate discharge characteristic is higher than that at the beginning of the charge / discharge cycle. improves. In addition, if a large number of cracks are generated in a portion where a large amount of Co is present, the catalytic action of Co improves the discharge characteristics at low temperatures. In the above examples, the case where a large amount of Co is present in the intermetallic compound phase different from the parent phase has been described, but the same effect is obtained when a large amount of Ni is present in the intermetallic compound phase. This will be clarified in the second embodiment described below.

【0023】(第2実施例) 〔実施例1〕水素吸蔵合金の原料として、Moの代わり
にZrを用いる他は、上記実施例1と同様にして水素吸
蔵合金電極を作製した(即ち、水素吸蔵合金はMmNi
3.4Co0.8Mn0.4Al0.4Zr0.09
表される)。
(Second Example) [Example 1] A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that Zr was used in place of Mo as the raw material of the hydrogen storage alloy (that is, hydrogen). Storage alloy is MmNi
3.4 Co 0.8 Mn 0.4 Al 0.4 Zr 0.09 ).

【0024】このようにして作製した電極を、以下(B
)電極と称する。尚、この場合には、水素吸蔵合金内
の金属間化合物相としてCoZrが生じる。 〔実施例2〕水素吸蔵合金の原料として、Moの代わり
にTiを用いる他は、上記実施例1と同様にして水素吸
蔵合金電極を作製した(即ち、水素吸蔵合金はMmNi
3.4Co0.8Mn0.4Al0.4Ti0.09
表される)。
The electrode thus prepared is
1 ) It is called an electrode. In this case, Co 2 Zr is generated as an intermetallic compound phase in the hydrogen storage alloy. Example 2 A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that Ti was used instead of Mo as a raw material of the hydrogen storage alloy (that is, the hydrogen storage alloy was MmNi.
3.4 Co 0.8 Mn 0.4 Al 0.4 Ti 0.09 ).

【0025】このようにして作製した電極を、以下(B
)電極と称する。尚、この場合には、水素吸蔵合金内
の金属間化合物相としてNiTiが生じる。 〔実施例3〕水素吸蔵合金の原料として、Moの代わり
にWを用いる他は、上記実施例1と同様にして水素吸蔵
合金電極を作製した(即ち、水素吸蔵合金はMmNi
3.4Co0.8Mn0.4Al0.40.09で表
される)。
The electrode thus prepared is
2 ) Referred to as an electrode. In this case, Ni 4 Ti 3 is produced as an intermetallic compound phase in the hydrogen storage alloy. [Example 3] A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that W was used instead of Mo as a raw material of the hydrogen storage alloy (that is, the hydrogen storage alloy was MmNi.
3.4 Co 0.8 Mn 0.4 Al 0.4 W 0.09 ).

【0026】このようにして作製した電極を、以下(B
)電極と称する。尚、この場合には、水素吸蔵合金内
の金属間化合物相としてW−Coが生じる。 〔実験〕上記本発明の(B)電極〜(B)電極にお
ける初期の放電率特性を調べたので、その結果を下記表
2に示す。尚、実験条件及び実験の評価は、前記第1実
施例の実験1と同様である。
The electrode thus prepared is
3 ) It is called an electrode. In this case, W-Co is generated as an intermetallic compound phase in the hydrogen storage alloy. [Experiment] The initial discharge rate characteristics of the (B 1 ) electrode to (B 3 ) electrode of the present invention were examined, and the results are shown in Table 2 below. The experimental conditions and the evaluation of the experiment are the same as those of the experiment 1 of the first embodiment.

【0027】[0027]

【表2】 上記表2より明らかなように、本発明の(B)電極〜
(B)電極では、25℃での放電容量比が77〜93
%であり、前記第1実施例の(A)電極〜(A)電
極と同様、放電容量比が高くなっていることが認められ
る。また、表2より明らかなように、本発明の(B
電極〜(B)電極では、−10℃での放電容量比が6
5〜81%であり、25℃での放電容量比と比べて余り
低下していないことが認められる。 〔その他の事項〕 母相の水素吸蔵合金としては上記実施例に示すものに
限定するものではなく、Ni或いはCoを含有している
何れの水素吸蔵合金にも本発明を適用することが可能で
ある。 金属間化合物相としては上記実施例に示すものに限定
されず、例えば、添加元素としてNbを用いた場合のN
Ni等があることも実験により確認している。 金属間化合物相としてはコバルト或いはニッケルが濃
縮された構成のものに限定されるものではなく、少なく
ともコバルト或いはニッケルが一成分となっていればよ
いことを実験により確認している。 本発明の水素吸蔵合金電極は、円筒型の蓄電池や扁平
型の蓄電池に用いることが可能である。
[Table 2] As is clear from Table 2 above, the (B 1 ) electrode of the present invention
In the (B 3 ) electrode, the discharge capacity ratio at 25 ° C. was 77 to 93.
%, And it is recognized that the discharge capacity ratio is high as in the case of the (A 1 ) electrode to (A 3 ) electrode of the first embodiment. Further, as is clear from Table 2, (B 1 ) of the present invention
In the electrode to (B 3 ) electrode, the discharge capacity ratio at −10 ° C. is 6
It is 5 to 81%, and it is recognized that the discharge capacity ratio at 25 ° C. does not decrease so much. [Other Matters] The hydrogen storage alloy of the parent phase is not limited to the ones shown in the above examples, and the present invention can be applied to any hydrogen storage alloy containing Ni or Co. is there. The intermetallic compound phase is not limited to those shown in the above-mentioned examples, and, for example, N in the case of using Nb as an additional element
It has also been confirmed by experiments that b 5 Ni and the like are present. The intermetallic compound phase is not limited to the one in which cobalt or nickel is concentrated, and it has been confirmed by experiments that at least cobalt or nickel is one component. The hydrogen storage alloy electrode of the present invention can be used for a cylindrical storage battery or a flat storage battery.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、充
放電サイクル当初より水素吸蔵合金に多数のクラックが
生じるので、新たな活性面が生成されて、水素吸蔵合金
の反応表面積が大きくなる。この結果、充放電サイクル
当初より合金の活性化が進行し、当初より高率放電特性
が向上する。
As described above, according to the present invention, a large number of cracks are generated in the hydrogen storage alloy from the beginning of the charge / discharge cycle, so that a new active surface is generated and the reaction surface area of the hydrogen storage alloy is increased. .. As a result, the activation of the alloy proceeds from the beginning of the charge / discharge cycle, and the high rate discharge characteristics are improved from the beginning.

【0029】加えて、新たな活性面には触媒作用が大き
なニッケル或いはコバルトが多量に存在するので、水素
の吸蔵放出反応が生じ難い低温時であっても放電特性が
向上するといった優れた効果を奏する。
In addition, since a large amount of nickel or cobalt, which has a large catalytic action, is present on the new active surface, it has an excellent effect that the discharge characteristics are improved even at a low temperature at which hydrogen absorption / desorption reaction hardly occurs. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)電極の水素吸蔵合金のX線回折図であ
る。
FIG. 1 is an X-ray diffraction diagram of a hydrogen storage alloy of an (A 1 ) electrode.

【図2】(A)電極の水素吸蔵合金のX線回折図であ
る。
FIG. 2 is an X-ray diffraction diagram of the hydrogen storage alloy of the (A 2 ) electrode.

【図3】(A)電極の水素吸蔵合金における電子反射
画像を示す写真である。
FIG. 3 is a photograph showing an electron reflection image of the hydrogen storage alloy of the (A 1 ) electrode.

【図4】(A)電極の水素吸蔵合金における電子反射
画像を示す写真である。
FIG. 4 is a photograph showing an electron reflection image of the hydrogen storage alloy of the (A 2 ) electrode.

【図5】(A)電極の水素吸蔵合金におけるEPMA
−ZAFによる定量分析を示すグラフである。
FIG. 5: EPMA in hydrogen storage alloy of (A 1 ) electrode
It is a graph which shows the quantitative analysis by ZAF.

【図6】(A)電極の水素吸蔵合金におけるEPMA
−ZAFによる定量分析を示すグラフである。
FIG. 6 EPMA in hydrogen storage alloy of (A 2 ) electrode
It is a graph which shows the quantitative analysis by ZAF.

【図7】(A)電極の水素吸蔵合金の電子顕微鏡写真
である。
FIG. 7 is an electron micrograph of the hydrogen storage alloy of the (A 1 ) electrode.

【図8】(A)電極の水素吸蔵合金のX線写真であ
る。
FIG. 8 is an X-ray photograph of the hydrogen storage alloy of the (A 1 ) electrode.

【図9】(A)電極の水素吸蔵合金の電子顕微鏡写真
である。
FIG. 9 is an electron micrograph of the hydrogen storage alloy of the (A 3 ) electrode.

【図10】(A)電極の水素吸蔵合金のX線写真であ
る。
FIG. 10 is an X-ray photograph of the hydrogen storage alloy of the (A 3 ) electrode.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月16日[Submission date] December 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】(A1 )電極の水素吸蔵合金のX線回折図であ
る。
FIG. 1 is an X-ray diffraction diagram of a hydrogen storage alloy of an (A 1 ) electrode.

【図2】(A2 )電極の水素吸蔵合金のX線回折図であ
る。
FIG. 2 is an X-ray diffraction diagram of the hydrogen storage alloy of the (A 2 ) electrode.

【図3】(A1 )電極の水素吸蔵合金における金属組成
の電子反射画像を示す写真である。
FIG. 3 is a photograph showing an electron reflection image of the metal composition in the hydrogen storage alloy of the (A 1 ) electrode.

【図4】(A2 )電極の水素吸蔵合金における金属組成
の電子反射画像を示す写真である。
FIG. 4 is a photograph showing an electron reflection image of the metal composition in the hydrogen storage alloy of the (A 2 ) electrode.

【図5】(A1 )電極の水素吸蔵合金におけるEPMA
−ZAFによる定量分析を示すグラフである。
FIG. 5: EPMA in hydrogen storage alloy of (A 1 ) electrode
It is a graph which shows the quantitative analysis by ZAF.

【図6】(A2 )電極の水素吸蔵合金におけるEPMA
−ZAFによる定量分析を示すグラフである。
FIG. 6 EPMA in hydrogen storage alloy of (A 2 ) electrode
It is a graph which shows the quantitative analysis by ZAF.

【図7】(A1 )電極の水素吸蔵合金における金属組成
の電子顕微鏡写真である。
FIG. 7 is an electron micrograph of the metal composition of the hydrogen storage alloy of the (A 1 ) electrode.

【図8】(A1 )電極の水素吸蔵合金のX線写真であ
る。
FIG. 8 is an X-ray photograph of the hydrogen storage alloy of the (A 1 ) electrode.

【図9】(A3 )電極の水素吸蔵合金における金属組成
の電子顕微鏡写真である。
FIG. 9 is an electron micrograph of the metal composition of the hydrogen storage alloy of the (A 3 ) electrode.

【図10】(A3 )電極の水素吸蔵合金のX線写真であ
る。
FIG. 10 is an X-ray photograph of the hydrogen storage alloy of the (A 3 ) electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田所 幹朗 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikiro Tadokoro, 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18, Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト或いはニッケルを含有する水素
吸蔵合金から成る水素吸蔵合金電極において、 前記水素吸蔵合金中には、少なくともコバルト或いはニ
ッケルが一成分となる金属間化合物相が母相と固溶せず
に存在することを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode made of a hydrogen storage alloy containing cobalt or nickel, wherein an intermetallic compound phase in which at least cobalt or nickel is one component is solid-dissolved in the mother phase in the hydrogen storage alloy. A hydrogen storage alloy electrode characterized by being present without a hydrogen storage alloy electrode.
【請求項2】 上記金属間化合物相は、コバルト或いは
ニッケルが濃縮された構成となっていることを特徴とす
る請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the intermetallic compound phase has a structure in which cobalt or nickel is concentrated.
JP03361243A 1991-11-21 1991-11-21 Hydrogen storage alloy electrode Expired - Fee Related JP3123800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03361243A JP3123800B2 (en) 1991-11-21 1991-11-21 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03361243A JP3123800B2 (en) 1991-11-21 1991-11-21 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH05151967A true JPH05151967A (en) 1993-06-18
JP3123800B2 JP3123800B2 (en) 2001-01-15

Family

ID=18472783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03361243A Expired - Fee Related JP3123800B2 (en) 1991-11-21 1991-11-21 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3123800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066421A1 (en) * 2003-01-20 2004-08-05 Yuasa Corporation Closed nickel-hydrogen storage battery and its production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727928B1 (en) 2015-10-01 2017-04-19 손성권 Instant heating apparatus liquid juice for easy cleaning and repairing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066421A1 (en) * 2003-01-20 2004-08-05 Yuasa Corporation Closed nickel-hydrogen storage battery and its production method

Also Published As

Publication number Publication date
JP3123800B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JPH05151967A (en) Electrode of hydrogen occluding alloy
JPS6119063A (en) Hydrogen occlusion electrode
JP2719884B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH07268514A (en) Hydrogen occluding alloy and hydrogen occluding alloy electrode
JPH10147827A (en) Hydrogen storage alloy and its production
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH0393158A (en) Hydrogen storage alloy electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3272012B2 (en) Hydrogen storage alloy
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH05211063A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH10188972A (en) Hydrogen storage alloy electrode and manufacture thereof
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2000096177A (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel - hydrogen secondary battery
JPS6116471A (en) Hydrogen occluding electrode
JPS61168871A (en) Hydrogen occlusion electrode
JPH11181536A (en) Composition for hydrogen storage material
JPS61176065A (en) Hydrogen occlusion electrode
JPH1025528A (en) Hydrogen storage alloy
JPH01107454A (en) Alkaline secondary battery
JPH0950804A (en) Hydrogen storage alloy-based electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees