JPH06228255A - Production of biodegradable phenolic resin - Google Patents

Production of biodegradable phenolic resin

Info

Publication number
JPH06228255A
JPH06228255A JP1616993A JP1616993A JPH06228255A JP H06228255 A JPH06228255 A JP H06228255A JP 1616993 A JP1616993 A JP 1616993A JP 1616993 A JP1616993 A JP 1616993A JP H06228255 A JPH06228255 A JP H06228255A
Authority
JP
Japan
Prior art keywords
phenol
mol
sugar
resin
phenols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1616993A
Other languages
Japanese (ja)
Inventor
Takuya Tochimoto
卓哉 栃本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP1616993A priority Critical patent/JPH06228255A/en
Publication of JPH06228255A publication Critical patent/JPH06228255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To obtain the subject resin excellent in heat resistance and biodegradability and useful as a heat-resistant material free from environmental pollution by reacting a phenolic compound with a sugar compound and further reacting the unreacted phenolic compound with formalin. CONSTITUTION:A phenolic compound such as phenol or cresol is reacted with a sugar compound in a molar ratio of 1:0.1-0.5 in the presence of an acidic catalyst such as sulfuric acid or hydrochloric acid, and the unreacted phenolic compound is subsequently reacted with formaldehyde in an amount of <=50mol.% based on the amount of the unreacted phenolic compound to obtain the objective resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性を有する熱硬
化性樹脂の製造方法に関するものである。更に詳しく
は、生分解性を付与することにより、使用後は速やかに
分解され、環境に悪影響を及ぼさない熱硬化性樹脂の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermosetting resin having biodegradability. More specifically, the present invention relates to a method for producing a thermosetting resin which is rapidly decomposed after use by imparting biodegradability and does not adversely affect the environment.

【0002】[0002]

【従来の技術】近年、産業廃棄物による環境汚染が深刻
な問題となっている。従来のこの様な廃棄物は、合成樹
脂が主体であるが、これらは、微生物により分解される
ことはほとんどなく、土壌中や海水中、水中で半永久的
に残存している。このことが環境汚染を拡大し、問題を
より深刻にしている。これらの問題を解決するために、
今日、生分解性プラスチックが注目を集めている。しか
しながら、これまでに開発されている生分解性プラスチ
ックは熱可塑性であるために耐熱性が要求される分野で
はその使用が制限されていた。
2. Description of the Related Art In recent years, environmental pollution due to industrial waste has become a serious problem. Such conventional wastes are mainly composed of synthetic resins, but these are hardly decomposed by microorganisms and remain semipermanently in soil, seawater, or water. This has increased environmental pollution and made the problem more serious. To solve these problems,
Biodegradable plastics are attracting attention today. However, the biodegradable plastics that have been developed so far are thermoplastic, and thus their use has been limited in fields requiring heat resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、耐熱性の要
求される分野においても、生分解性を有する高分子材料
の利用を可能にすべく検討を行ない完成されたものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been completed by studying to make it possible to use a biodegradable polymer material even in a field where heat resistance is required.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、フ
ェノール類と砂糖類を酸性触媒の存在下、フェノール類
1モルに対し、砂糖類が0.1〜0.5モルの割合で反応
させ、次いで酸性触媒下でホルムアルデヒドと反応させ
る際に、添加するホルムアルデヒドの量が未反応のフェ
ノール類に対して50モル%以下であることを特徴とす
る生分解性を有するフェノール樹脂の製造方法に関する
ものである。
[Means for Solving the Problems] That is, according to the present invention, phenols and sugars are reacted in the presence of an acidic catalyst at a ratio of 0.1 to 0.5 mol of sugar to 1 mol of phenol. And a method for producing a phenol resin having biodegradability, characterized in that the amount of formaldehyde added is 50 mol% or less with respect to unreacted phenols when reacted with formaldehyde under an acidic catalyst. Is.

【0005】[0005]

【作用】本発明で使用するフェノール類としては、フェ
ノール、クレゾール、キシレノール、カテコール、レゾ
ルシン、アルキルフェノール類、ビスフェノール類およ
びこれらの混合物が挙げられる。さらに、ハイドロキノ
ン、アニリン、尿素、メラミン、カシューナットシェル
オイルなどを物性に影響を及ぼさない範囲で使用するこ
とができる。砂糖類は、一般に主成分は、ショ糖である
が、カンショ糖とテンサイ糖に分類できる。また、製法
工程により含ミツ糖と分ミツ糖、精製程度により粗糖、
精製糖、色相により白砂糖、赤砂糖、黒砂糖、あるいは
加工形態により粉糖、角砂糖、氷砂糖などに分類され
る。これらは、いずれも本発明に使用可能である。
The phenols used in the present invention include phenol, cresol, xylenol, catechol, resorcin, alkylphenols, bisphenols and mixtures thereof. Furthermore, hydroquinone, aniline, urea, melamine, cashew nut shell oil and the like can be used within a range that does not affect the physical properties. Sugars, whose main component is generally sucrose, can be classified into cane sugar and sugar beet sugar. In addition, depending on the manufacturing process, sucrose containing sugar and sucrose, and depending on the degree of purification, raw sugar
It is classified into refined sugar, white sugar, brown sugar and brown sugar depending on the hue, or powdered sugar, lump sugar and rock sugar depending on the processing form. Any of these can be used in the present invention.

【0006】フェノール類と砂糖類を酸性触媒下で加熱
すると反応し樹脂を生成する。しかし、中性またはアル
カリ性触媒下ではほとんど反応しない。これは、酸によ
る砂糖類の加水分解によりブドウ糖と果糖が生成し、こ
れらが、分子中にアルデヒドおよびカルボニル基を有す
るためにフェノール類と反応するものである。砂糖1モ
ルは加水分解により2モルとして作用する。フェノール
類と砂糖類の反応に用いられる酸性触媒としては、硫
酸、塩酸、硝酸、リン酸などの無機酸、または、パラト
ルエンスルホン酸、ベンゼンスルホン酸、蓚酸、マレイ
ン酸、蟻酸、酢酸、琥珀酸などの有機酸が使用できる。
砂糖類とフェノール類を酸性触媒下で反応させた後、真
空下で脱水すると、赤褐色ないし黒褐色のノボラック型
フェノール樹脂が得られる。この樹脂は、フェノール類
とアルデヒド類を酸性触媒下で反応して得られる通常の
ノボラック型フェノール樹脂と同様に、ヘキサメチレン
テトラミン、パラホルムアルデヒド等のホルムアルデヒ
ド供与体を添加し加熱すると、化学的3次元架橋構造が
生成し硬化する。
When phenols and sugars are heated under an acidic catalyst, they react with each other to form a resin. However, it hardly reacts under a neutral or alkaline catalyst. This is because glucose and fructose are produced by hydrolysis of sugars with an acid, and these react with phenols because they have an aldehyde and a carbonyl group in the molecule. 1 mol of sugar acts as 2 mol by hydrolysis. Acidic catalysts used for the reaction of phenols and sugars include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, or paratoluenesulfonic acid, benzenesulfonic acid, oxalic acid, maleic acid, formic acid, acetic acid, succinic acid. Organic acids such as can be used.
When sugars and phenols are reacted under an acidic catalyst and dehydrated under vacuum, a reddish brown to blackish brown novolac type phenol resin is obtained. This resin, like a normal novolac type phenol resin obtained by reacting phenols and aldehydes under an acidic catalyst, is chemically three-dimensionally heated by adding a formaldehyde donor such as hexamethylenetetramine and paraformaldehyde. A crosslinked structure is formed and cured.

【0007】フェノール類と砂糖類が酸性触媒下で反応
することは、特開昭58−55146号公報ですでに報
告されている。しかしながら、この特許では生分解性に
関する知見は開示されていない。また、フェノール類と
砂糖類との反応後にホルムアルデヒドと反応させるにあ
たって、この公開特許公報に記載されているような、添
加するホルムアルデヒドがフェノール類1モルに対して
0.5モル以上の場合では、生成物中の生分解性に関与
する結合が減少し、樹脂の生分解性が乏しくなる。この
ような知見をもとにフェノールと砂糖類との反応後に添
加するホルムアルデヒドの量は、未反応のフェノール類
に対して50モル%以下が好ましい。特に好ましくは、
20〜30モル%である。30モル%以上では、先に述
べたように、生分解性が低下する傾向がでてくる。20
モル%以下では生分解性に影響はないが、硬化物の特
性、特に耐熱性が低下するようになり、用途によって
は、必要な特性を満たさないことがある。フェノール類
と砂糖類の仕込み割合は、フェノール類1モルに対して
砂糖類が0.1〜0.5モルであれば、本発明を実施する
ための良好な樹脂が得られる。この割合がフェノール類
1モルに対して砂糖類が 0.1モル未満の場合には、得
られた樹脂の硬化後の化学的三次元構造が密になり、生
分解性が低下する。反対に、フェノール類1モルに対し
て砂糖類が 0.5モル以上では、未反応の砂糖類が多く
なり機械物性および耐熱性の良好な樹脂が得られにく
い。
It has already been reported in JP-A-58-55146 that the phenols and sugars react with each other under an acidic catalyst. However, this patent does not disclose any findings regarding biodegradability. Further, in the case of reacting with formaldehyde after the reaction between phenols and sugars, when the formaldehyde to be added is 0.5 mol or more relative to 1 mol of phenols, it is generated. The bonds involved in biodegradability in the product are reduced, and the biodegradability of the resin becomes poor. Based on such knowledge, the amount of formaldehyde added after the reaction of phenol and sugars is preferably 50 mol% or less with respect to the unreacted phenols. Particularly preferably,
It is 20 to 30 mol%. When it is 30 mol% or more, as described above, the biodegradability tends to decrease. 20
If it is less than mol%, the biodegradability will not be affected, but the properties of the cured product, especially the heat resistance, will decrease, and depending on the application, the properties may not be satisfied. With respect to the charging ratio of phenols and sugars, if the sugars are 0.1 to 0.5 mol per mol of the phenols, a good resin for carrying out the present invention can be obtained. When this ratio is less than 0.1 mol of sugar relative to 1 mol of phenol, the chemical three-dimensional structure after curing of the obtained resin becomes dense and biodegradability is deteriorated. On the other hand, when the amount of sugar is 0.5 mol or more per mol of phenol, unreacted sugar is increased and it is difficult to obtain a resin having good mechanical properties and heat resistance.

【0008】[0008]

【実施例】以下、本発明を実施例において説明するが、
本発明はこれら実施例により限定されるものではない。
また、以下の実施例中に記載されている「部」及び
「%」は、すべて「重量部」、「重量%」を示す。 《実施例1》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール94g(1モル)、砂糖102.6g(0.
3モル)、純水47g、濃硫酸 0.2gを仕込んだの
ち、徐々に昇温した。内温100℃において、フェノー
ルと砂糖を180分間反応し、次いで常圧脱水を行ない
水分を除去した。この時点での収量は175gであり、
未反応のフェノールは23%であった。これに37%ホ
ルマリン 10.5g(未反応のフェノールに対して30
モル%)を逐次添加し、さらに96℃にて120分間反
応を行なった。次に、これを消石灰で中和した。これを
真空下で脱水反応を行ない、生分解性フェノール樹脂1
55gを得た。 《実施例2》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール94g(1モル)、砂糖68.4g(0.2
モル)、パラトルエンスルホン酸 18.8gを仕込んだ
のち、徐々に昇温した。内温100℃において、フェノ
ールと砂糖を240分間反応し,次いで常圧脱水を行な
い水分を除去した。この時点での収量は123gであ
り、未反応のフェノールは31%であった。これに37
%ホルマリン 6.6g(未反応のフェノールに対して2
0モル%)を逐次添加し、さらに96℃にて120分間
反応を行なった。次に、これを消石灰で中和した。これ
を真空下で脱水反応を行ない、生分解性フェノール樹脂
126gを得た。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples.
Moreover, all "parts" and "%" described in the following examples show "parts by weight" and "% by weight". Example 1 A reaction kettle equipped with a condenser and a stirrer was prepared, and 94 g of phenol (1 mol) and 102.6 g of sugar (0.
(3 mol), pure water (47 g) and concentrated sulfuric acid (0.2 g) were charged, and then the temperature was gradually raised. Phenol and sugar were reacted for 180 minutes at an internal temperature of 100 ° C., and then dehydration was carried out at atmospheric pressure to remove water. The yield at this point was 175 g,
Unreacted phenol was 23%. 37% formalin 10.5g (30% to unreacted phenol)
(Mol%) was sequentially added, and the reaction was further performed at 96 ° C. for 120 minutes. Next, this was neutralized with slaked lime. This is dehydrated under vacuum and biodegradable phenol resin 1
55 g was obtained. Example 2 A reaction kettle equipped with a condenser and a stirrer was prepared, and 94 g (1 mol) of phenol and 68.4 g (0.2
Mol) and 18.8 g of paratoluenesulfonic acid, and then gradually heated. Phenol and sugar were reacted for 240 minutes at an internal temperature of 100 ° C., and then dehydration was carried out at atmospheric pressure to remove water. The yield at this point was 123 g, and the unreacted phenol was 31%. 37 to this
% Formalin 6.6 g (2 for unreacted phenol)
0 mol%) was added successively, and the reaction was further carried out at 96 ° C. for 120 minutes. Next, this was neutralized with slaked lime. This was dehydrated under vacuum to obtain 126 g of biodegradable phenol resin.

【0009】《比較例1》冷却器と撹拌機付き反応釜を
準備し、これにフェノール94g(1モル)、および蓚
酸 9.4gを仕込んだのち、徐々に昇温した。内温が9
6℃に達してから37%ホルマリン64.8g(0.8モ
ル)を逐次添加し、120分間反応し、ついで真空下で
脱水反応を行ない、ノボラック型フェノール樹脂97g
を得た。 《比較例2》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール94g(1モル)、砂糖17.1g(0.0
5モル)、純水47g、濃硫酸 0.2gを仕込んだの
ち、徐々に昇温した。内温100℃において、フェノー
ルと砂糖を180分間反応し、次いで常圧脱水を行ない
水分を除去した。この時点での収量は98gであり、未
反応のフェノールは74%であった。これに37%ホル
マリン 18.7g(未反応のフェノールに対して30モ
ル%)を逐次添加し、さらに96℃にて120分間反応
を行なった。次に、これを消石灰で中和した。これを真
空下で脱水反応を行ない、フェノール樹脂78gを得
た。
Comparative Example 1 A reaction vessel equipped with a condenser and a stirrer was prepared, and 94 g (1 mol) of phenol and 9.4 g of oxalic acid were charged therein, and then the temperature was gradually raised. Inner temperature is 9
After reaching 6 ° C., 64.8 g (0.8 mol) of 37% formalin was sequentially added, reacted for 120 minutes, and then dehydrated under vacuum to obtain 97 g of novolac type phenol resin.
Got << Comparative Example 2 >> A reaction vessel equipped with a condenser and a stirrer was prepared, and 94 g (1 mol) of phenol and 17.1 g (0.0
(5 mol), 47 g of pure water and 0.2 g of concentrated sulfuric acid were charged, and then the temperature was gradually raised. Phenol and sugar were reacted for 180 minutes at an internal temperature of 100 ° C., and then dehydration was carried out at atmospheric pressure to remove water. The yield at this point was 98 g and the unreacted phenol was 74%. To this, 18.7 g of 37% formalin (30 mol% relative to unreacted phenol) was sequentially added, and further reacted at 96 ° C. for 120 minutes. Next, this was neutralized with slaked lime. This was dehydrated under vacuum to obtain 78 g of phenol resin.

【0010】《比較例3》冷却器と撹拌機付き反応釜を
準備し、これにフェノール94g(1モル)、砂糖20
5.2g(0.6モル)、純水47g、濃硫酸 0.2gを
仕込んだのち、徐々に昇温した。内温100℃におい
て、フェノールと砂糖を180分間反応し、次いで常圧
脱水を行ない水分を除去した。この時点での収量は26
3gであり、未反応のフェノールは10%であった。こ
れに37%ホルマリン 6.7g(未反応のフェノールに
対して30モル%)を逐次添加し、さらに96℃にて1
20分間反応を行なった。次に、これを消石灰で中和し
た。これを真空下で脱水反応を行ない、フェノール樹脂
155gを得た。 《比較例4》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール94g(1モル)、砂糖102.6g(0.
3モル)、純水47g、濃硫酸 0.2gを仕込んだの
ち、徐々に昇温した。内温100℃において、フェノー
ルと砂糖を180分間反応し、次いで常圧脱水を行ない
水分を除去した。この時点での収量は175gであり、
未反応のフェノールは23%であった。これに37%ホ
ルマリン 20.9g(未反応のフェノールに対して60
モル%)を逐次添加し、96℃にて120分間さらに反
応を行なった。次に、これを消石灰で中和した。これを
真空下で脱水反応を行ない、フェノール樹脂161gを
得た。
Comparative Example 3 A reaction vessel equipped with a condenser and a stirrer was prepared, and 94 g (1 mol) of phenol and 20 g of sugar were added thereto.
After charging 5.2 g (0.6 mol), 47 g of pure water and 0.2 g of concentrated sulfuric acid, the temperature was gradually raised. Phenol and sugar were reacted for 180 minutes at an internal temperature of 100 ° C., and then dehydration was carried out at atmospheric pressure to remove water. The yield at this point is 26
It was 3 g, and the unreacted phenol was 10%. To this, 6.7 g of 37% formalin (30 mol% relative to unreacted phenol) was sequentially added, and further 1
The reaction was carried out for 20 minutes. Next, this was neutralized with slaked lime. This was dehydrated under vacuum to obtain 155 g of phenol resin. << Comparative Example 4 >> A reaction vessel equipped with a condenser and a stirrer was prepared, and 94 g (1 mol) of phenol and 102.6 g (0.1
(3 mol), pure water (47 g) and concentrated sulfuric acid (0.2 g) were charged, and then the temperature was gradually raised. Phenol and sugar were reacted for 180 minutes at an internal temperature of 100 ° C., and then dehydration was carried out at atmospheric pressure to remove water. The yield at this point was 175 g,
Unreacted phenol was 23%. 37% formalin 20.9g (60% to unreacted phenol)
(Mol%) was added successively, and further reaction was carried out at 96 ° C. for 120 minutes. Next, this was neutralized with slaked lime. This was dehydrated under vacuum to obtain 161 g of phenol resin.

【0011】以上、実施例1、2および比較例1、2、
3、4で得られたフェノール樹脂をそれぞれ微粉末に粉
砕し、かかるフェノール樹脂にヘキサメチレンテトラミ
ンを樹脂100部に対して10部加え、80℃/1時間
+110℃/1時間+150℃/1時間で硬化を行なっ
た。得られた硬化物を土中に埋設し、6ヵ月後の状態観
察および重量減少の測定を行なった。また、得られた硬
化物の熱分解開始温度を測定した。結果を表1に示す。
比較例1は砂糖を用いていないため、生分解性が得られ
ない。比較例2は、フェノールに対する砂糖の割合が低
いために、得られた樹脂の硬化後の化学的3次元構造が
密になり生分解性が低下したものである。比較例3は、
フェノールに対する砂糖の割合が高すぎるために、耐熱
性が低下した。比較例4は添加するホルムアルデヒドの
量が多いために生成物中の生分解性に寄与する結合が少
なくなり生分解性が低下したものである。なお、実施例
1、2で得られたフェノール樹脂は空気中に6か月放置
しても何の変化も見られなかった。 また、これらの樹
脂は300℃以上の熱分解開始温度を持ち、充分な耐熱
性を有していることがわかる。
As described above, Examples 1, 2 and Comparative Examples 1, 2,
Each of the phenol resins obtained in 3 and 4 was pulverized into a fine powder, and 10 parts of hexamethylenetetramine was added to 100 parts of the resin, and 80 ° C / 1 hour + 110 ° C / 1 hour + 150 ° C / 1 hour. It was cured at. The obtained cured product was embedded in soil, and after 6 months, the condition was observed and the weight reduction was measured. Moreover, the thermal decomposition start temperature of the obtained cured product was measured. The results are shown in Table 1.
Since Comparative Example 1 does not use sugar, biodegradability cannot be obtained. In Comparative Example 2, since the ratio of sugar to phenol was low, the chemical three-dimensional structure after curing of the obtained resin became dense and the biodegradability was lowered. Comparative Example 3
The heat resistance decreased because the ratio of sugar to phenol was too high. In Comparative Example 4, since the amount of formaldehyde added was large, the number of bonds contributing to the biodegradability in the product was reduced and the biodegradability was lowered. The phenolic resins obtained in Examples 1 and 2 showed no change even after being left in the air for 6 months. Further, it is understood that these resins have a thermal decomposition initiation temperature of 300 ° C. or higher and have sufficient heat resistance.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明により、生分解性を有し、しかも
耐熱性に優れた、熱硬化型生分解性樹脂を得ることが可
能となった。本発明で得られた生分解性フェノール樹脂
は、これまでの熱可塑性の生分解性プラスチックでは使
用できない、耐熱性を要する分野での使用が可能であ
り、生分解性樹脂の用途を拡大できるものである。
According to the present invention, a thermosetting biodegradable resin having biodegradability and excellent heat resistance can be obtained. The biodegradable phenolic resin obtained in the present invention can be used in a field requiring heat resistance, which cannot be used in conventional thermoplastic biodegradable plastics, and can be used in a wide range of applications of biodegradable resins. Is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類と砂糖類を酸性触媒の存在
下、フェノール類1モルに対し、砂糖類が0.1〜0.5
モルの割合で反応させ、次いで酸性触媒下でホルムアル
デヒドと反応させる際に、添加するホルムアルデヒドの
量が未反応のフェノール類に対して50モル%以下であ
ることを特徴とする生分解性を有するフェノール樹脂の
製造方法。
1. Phenols and sugars in the presence of an acidic catalyst, 0.1 to 0.5 sugars per mol of phenols.
Phenol having biodegradability, characterized in that the amount of formaldehyde to be added is 50 mol% or less based on the unreacted phenols when reacted at a molar ratio and then reacted with formaldehyde under an acidic catalyst. Resin manufacturing method.
JP1616993A 1993-02-03 1993-02-03 Production of biodegradable phenolic resin Pending JPH06228255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1616993A JPH06228255A (en) 1993-02-03 1993-02-03 Production of biodegradable phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1616993A JPH06228255A (en) 1993-02-03 1993-02-03 Production of biodegradable phenolic resin

Publications (1)

Publication Number Publication Date
JPH06228255A true JPH06228255A (en) 1994-08-16

Family

ID=11909015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1616993A Pending JPH06228255A (en) 1993-02-03 1993-02-03 Production of biodegradable phenolic resin

Country Status (1)

Country Link
JP (1) JPH06228255A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126695A (en) * 2008-11-28 2010-06-10 Gun Ei Chem Ind Co Ltd Phenolic resin for curing epoxy resin, and epoxy resin composition
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product
WO2011132579A1 (en) * 2010-04-20 2011-10-27 群栄化学工業株式会社 Biomass phenol resin production method and thermosetting material
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin
JP2017119765A (en) * 2015-12-28 2017-07-06 株式会社ブリヂストン Phenol resin, method for producing phenol resin, rubber composition, and tire
WO2017187907A1 (en) * 2016-04-25 2017-11-02 株式会社ブリヂストン Phenolic resin to be blended with rubber, rubber composition, and tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126695A (en) * 2008-11-28 2010-06-10 Gun Ei Chem Ind Co Ltd Phenolic resin for curing epoxy resin, and epoxy resin composition
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product
WO2011132579A1 (en) * 2010-04-20 2011-10-27 群栄化学工業株式会社 Biomass phenol resin production method and thermosetting material
JP2011225721A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin, and thermosetting material
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin
JP2017119765A (en) * 2015-12-28 2017-07-06 株式会社ブリヂストン Phenol resin, method for producing phenol resin, rubber composition, and tire
WO2017187907A1 (en) * 2016-04-25 2017-11-02 株式会社ブリヂストン Phenolic resin to be blended with rubber, rubber composition, and tire
US20190144638A1 (en) * 2016-04-25 2019-05-16 Bridgestone Corporation Phenolic resin to be blended with rubber, rubber composition, and tire

Similar Documents

Publication Publication Date Title
CN110144046B (en) Boron-containing phenolic resin microspheres and preparation method of carbon microspheres
JPH06228255A (en) Production of biodegradable phenolic resin
US4055546A (en) Novel thermosetting resins and process for preparing the same
JPH06248041A (en) Production of biodegradable phenol resin
JP2004292634A (en) Biodegradable resin composition and method for producing the same
JPH06248040A (en) Production of biodegradable phenol resin
JP3409668B2 (en) Molding material for sliding parts containing phenolic heat-resistant resin
US3950309A (en) Novel thermosetting resins and process for preparing the same comprising reacting a novolak with a titanic acid ester
US3197435A (en) Composition comprising a novolak and tri (lower alkylidene) hexitol and method of preparation
JP3207410B2 (en) Method for producing phenol melamine co-condensation resin
JPS5980418A (en) Preparation of high-ortho novolak resin
JPH06136082A (en) Production of phenolic resin
US3658759A (en) Fluorinated resole
JPH07119268B2 (en) Method for producing novolac type phenolic resin
JP5281834B2 (en) Cured phenol resin particles, method for producing the same, and method for producing activated carbon particles using the same
US2618618A (en) Cashew nut shell liquor-vinsol compositions
JPH04331223A (en) Production of naphthol-modified phenolic resin
JPH02113011A (en) Production of novolak resin
SU753855A1 (en) Method of preparing phenol-acetaldehyde resin novolacs
CA1080871B (en) Calcia catalyzed resins
JP2000273132A (en) Novolak type phenolic resin
JPH10139845A (en) Modified phenolic resin composition
JP2000273133A (en) Production of novolak type phenolic resin
CN103450429A (en) Phosphorus-modified phenolic resin and preparation method thereof
JPH06192357A (en) Wood meal novolak resin and its production