WO2011132579A1 - Biomass phenol resin production method and thermosetting material - Google Patents

Biomass phenol resin production method and thermosetting material Download PDF

Info

Publication number
WO2011132579A1
WO2011132579A1 PCT/JP2011/059154 JP2011059154W WO2011132579A1 WO 2011132579 A1 WO2011132579 A1 WO 2011132579A1 JP 2011059154 W JP2011059154 W JP 2011059154W WO 2011132579 A1 WO2011132579 A1 WO 2011132579A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
phenol resin
plant
biomass
phenol
Prior art date
Application number
PCT/JP2011/059154
Other languages
French (fr)
Japanese (ja)
Inventor
優紀 八木
裕昭 斎藤
正幸 齋藤
明浩 大久保
Original Assignee
群栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群栄化学工業株式会社 filed Critical 群栄化学工業株式会社
Publication of WO2011132579A1 publication Critical patent/WO2011132579A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol

Definitions

  • the present invention relates to a method for producing a biomass phenol resin using a plant-derived raw material and a thermosetting material.
  • Patent Documents 1 and 2 disclose phenol resins obtained by reacting phenols and sugar under an acidic catalyst.
  • Patent Document 3 discloses a biomass phenol resin having a low softening point obtained by adding a reactive substance (eg, benzyl alcohol) having a melting point of 100 ° C. or lower when producing a phenol resin from phenols and wood. Yes.
  • a reactive substance eg, benzyl alcohol
  • JP 58-55146 A Japanese Patent Laid-Open No. 6-248040 JP 2004-352978 A
  • the biomass phenol resins described in Patent Documents 1 and 2 have a high softening point, low fluidity during molding, and insufficient moldability.
  • the softening point is lowered by the addition of benzyl alcohol.
  • the cost is increased and the plant-derived rate is lowered.
  • the phenol resin is cured with a curing agent to form a cured product and used for various purposes.
  • the cured products obtained by curing the biomass phenol resins described in Patent Documents 1 to 3 have low strength and high Young's modulus, and do not necessarily have sufficient mechanical properties. It was.
  • An object of the present invention is to provide a method for producing a biomass phenol resin that is excellent in molding processability, has a high plant-derived rate, and can produce a biomass phenol resin from which a cured product having a high strength and a low Young's modulus can be obtained. To do.
  • Another object of the present invention is to provide a thermosetting material that is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus.
  • the present invention has the following configuration.
  • a method for producing a biomass phenol resin comprising reacting a phenol containing a plant raw material-derived unsaturated alkylphenol with a carbohydrate containing more than 50% by mass of a fructose source under an acidic catalyst.
  • thermosetting material of the present invention is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus.
  • a plant-derived rate is a ratio of the plant-derived component in the obtained phenol resin or hardened
  • the amount of carbon dioxide generated during the incineration of plant-derived components is offset by the amount of carbon dioxide absorbed during photosynthesis and does not affect the increase in carbon dioxide in the atmosphere (so-called carbon neutral). Therefore, the higher the plant-derived rate, the more the amount of carbon dioxide in the atmosphere can be suppressed, and the effect of preventing global warming will increase.
  • the method for producing a biomass phenol resin of the present invention is a method in which a phenol containing a plant raw material-derived unsaturated alkylphenol is reacted with a saccharide under an acidic catalyst.
  • hydroxymethylfurfural is produced from fructose source-rich carbohydrates by an acidic catalyst, and the hydroxymethylfurfural and phenols react with the acidic catalyst to form a biomass phenol resin.
  • Examples of the plant material-derived unsaturated alkylphenols contained in the phenols include cardanol and cashew nut shell liquid, and cardanol is preferred. If the plant material-derived unsaturated alkylphenol is cardanol, the molding processability is higher, the bending strength of the resulting cured product can be higher, and the Young's modulus can be lower.
  • the unsaturated alkylphenols may be used alone, or two or more unsaturated alkylphenols may be used in combination.
  • the phenols may contain fossil fuel (petroleum, coal, natural gas, etc.) derived phenols as necessary.
  • fossil fuel-derived phenols include phenol, cresol, xylenol, propylphenol, butylphenol, butylcresol, phenylphenol, cumylphenol, methoxyphenol, bromophenol, and bisphenol A. These may be used alone or in combination of two or more fossil fuel-derived phenols.
  • phenol, cresol, xylenol, bisphenol A, and the like are preferable because they are highly reactive and easily available.
  • the content of plant-derived material unsaturated alkylphenols in the phenols is preferably 5 to 100% by mass. More preferably, it is 50 mass%. If the content of the plant-derived raw material unsaturated alkylphenol is 5% by mass or more, the plant-derived rate of the obtained biomass phenol resin can be substantially increased, and the cured product obtained from the biomass phenol resin has higher strength. And lower Young's modulus. Moreover, if content of plant-derived raw material unsaturated alkylphenol is 50 mass% or less, in the obtained biomass phenol resin, it is easy to hold
  • the saccharides contain a fructose source in an amount of more than 50% by mass, preferably 55% by mass or more, preferably 75% by mass or more when the total solid content of saccharides is 100% by mass. More preferred. Furthermore, it is most preferable that 100% by mass of the carbohydrates is a fructose source.
  • the fructose source is a fructose simple substance or a compound having a part that generates fructose by hydrolysis or the like.
  • the fructose source content of fructose, fructan, fructooligosaccharides, and entire carbohydrates is 50 mass. And oligosaccharides containing more than 50% by mass of fructose source.
  • the fructose source content in the carbohydrates is 50% by mass or less, the fluidity of the biomass phenol resin becomes low, and the moldability becomes insufficient.
  • the carbohydrates may be high fructose source-containing carbohydrates containing more than 50% by mass fructose source.
  • the fructose source-rich saccharides isomerized sugars containing more than 50% by mass of a fructose source are preferable in terms of easy availability.
  • Carbohydrates include monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, etc. within a range where the fructose source content of the whole carbohydrates does not fall below 50% by mass in addition to high fructose source content carbohydrates.
  • saccharides having a fructose source content of 50% by mass or less of these saccharides as a whole are collectively referred to as “other saccharides” may be reacted with phenols.
  • carbose source content of carbohydrates is 50 mass.
  • the other carbohydrates described above may be used alone, or two or more carbohydrates may be used in combination.
  • carbohydrates contain high fructose source content carbohydrates and other carbohydrates, the higher the fructose source content of fructose source content carbohydrates, the higher the fructose source content of the carbohydrates. It is easy to make more than 50% by mass.
  • the mass ratio of phenols to saccharides in obtaining the phenol resin is preferably 1 to 20 times that of phenols and 2 to 4 times when the solid content of the saccharides is 1. It is more preferable. If phenols are 2 times or more of carbohydrates, the reaction rate can be increased to increase the yield, and the molecular weight can be increased. If the phenols are 20 times or less, production can be performed without reducing productivity.
  • An acidic catalyst is used in the reaction between phenols and carbohydrates.
  • mineral acids for example, sulfuric acid, hydrochloric acid, etc.
  • organic acids for example, paratoluenesulfonic acid, oxalic acid, etc.
  • the amount of the acidic catalyst used is preferably 0.1 to 50% by mass, and preferably 0.2 to 10% by mass, when the total solid content of phenols and saccharides is 100% by mass. More preferred. If the usage-amount of an acidic catalyst is 0.1 mass% or more, it can fully be made to react, and if it is 50 mass% or less, acid decomposition and gelatinization can be suppressed.
  • the reaction temperature is preferably 20 to 200 ° C, more preferably 120 to 160 ° C. If the reaction temperature is 20 ° C. or higher, the reaction can be sufficiently performed, and if it is 200 ° C. or lower, decomposition can be suppressed.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 3 hours. If the reaction time is 0.5 hours or more, the resin can be obtained in a high yield, and if it is 20 hours, a decrease in productivity can be suppressed.
  • biomass phenol resin with a high plant-derived rate can be obtained.
  • an increase in carbon dioxide emission can be suppressed by the concept of carbon neutral.
  • the biomass phenol resin obtained by the said manufacturing method has high fluidity
  • strength of the hardening body obtained by hardening can be made high, and a Young's modulus can be made small.
  • the biomass phenol resin as described above can be used for casting molds, molding materials, epoxy curing agents, various binders, rubber material additives, and the like.
  • thermosetting material of this invention contains the biomass phenol resin obtained by the said manufacturing method, and a hardening
  • curing agent hardens the said biomass phenol resin.
  • the curing agent for example, hexamethylenetetramine, benzylamine, benzoxazine, azomethine, or a resol type phenol resin can be used. Among these, hexamethylenetetramine is preferable because of excellent curability.
  • the compounding amount of the curing agent is preferably 1 to 40 parts by mass, and more preferably 3 to 30 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin.
  • curing agent is 1 mass part or more, it is excellent in sclerosis
  • the thermosetting material may contain a filler such as a plant-derived filler or an inorganic filler in order to improve the mechanical properties of the obtained molded product.
  • a filler such as a plant-derived filler or an inorganic filler in order to improve the mechanical properties of the obtained molded product.
  • the plant-derived filler include wood powder, straw powder, cotton powder, bamboo powder, walnut shell powder, paper powder, bamboo fiber, and kenaf fiber. Among these, wood powder is preferable because it has a large effect of improving mechanical properties and is easily available.
  • the average particle size is preferably 0.1 to 1000 ⁇ m.
  • the average particle diameter is a biaxial average development diameter.
  • the biaxial average developed diameter is determined by using a microscope and image analysis software (for example, KEYENCE Microscope VH-5000 and the company) for each of 100 arbitrary particles, the major axis diameter ( ⁇ m) and minor axis diameter ( ⁇ m).
  • the value of (major axis diameter + minor axis diameter) / 2 is obtained by measurement using software VH-H1A5), and the obtained values are averaged.
  • the average particle size of the particulate plant-derived filler is 0.1 ⁇ m or more, the fluidity of the thermosetting material can be increased, and if it is 1000 ⁇ m or less, the mechanical properties of the molded product can be further increased.
  • the average fiber length is preferably 0.1 to 100 mm.
  • the average fiber length is a value measured by a polarized light source method described in JIS P8226. If the average fiber length of the fibrous plant-derived filler is 0.1 mm or more, the mechanical properties of the molded product can be increased, and if it is 100 mm or less, the fluidity of the thermosetting material can be increased.
  • the inorganic filler examples include powders such as silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white, and fiber bodies such as glass fiber and carbon fiber.
  • the average particle diameter is preferably 0.1 to 1000 ⁇ m for the same reason as the plant-derived filler.
  • the average fiber length is preferably 0.1 to 100 mm for the same reason as the plant-derived filler.
  • the content of the filler is preferably 30 to 500 parts by mass, and more preferably 50 to 300 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin. If the filler content is 30 parts by mass or more, the mechanical properties of the molded product can be further increased, and if it is 500 parts by mass or less, the fluidity can be further increased.
  • the thermosetting material of the present invention may contain a curing catalyst.
  • the curing catalyst promotes the reaction between the biomass phenol resin and the curing agent. Specific examples include calcium hydroxide (slaked lime), calcium oxide, and magnesium oxide.
  • the content of the curing catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin. If content of a curing catalyst is 0.1 mass part or more, it can fully harden in a short time. However, even if it exceeds 20 parts by mass and the curing catalyst is included, the curing acceleration effect is saturated and the cost is increased.
  • thermosetting material of the present invention may contain a lubricant in order to further improve the fluidity.
  • a lubricant for example, carnauba wax, montanic acid wax, calcium stearate, aluminum stearate, zinc stearate, low molecular weight polyethylene (polyethylene wax) or the like is used.
  • thermosetting material of the present invention may contain additives such as a colorant such as carbon black, a release agent, a coupling agent, an antioxidant, and an ultraviolet absorber.
  • additives such as a colorant such as carbon black, a release agent, a coupling agent, an antioxidant, and an ultraviolet absorber.
  • thermosetting material can be obtained by mixing a biomass phenol resin, a curing agent, and, if necessary, a filler, a curing catalyst, a lubricant, and other additives.
  • a mixer such as a mixing roll may be used.
  • thermosetting material of the present invention contains the biomass phenol resin, it is excellent in moldability, has a high plant-derived rate, and can produce a molded product having high strength and low Young's modulus.
  • Example 2 In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 300.8 g of phenol, 60.2 g of cardanol, isomerized sugar HF95 manufactured by Gunei Chemical Industry Co., Ltd. (fructose source content 95 mass%, solid content 75 mass%) 96 g (aqueous solution) 96 g (solid content 72 g), Gunei Chemical Industry isomerized sugar HF55 (fructose source content 55 mass%, solid content 75 mass% aqueous solution) 96 g (solid content 72 g), and sulfuric acid 2.5 g were charged.
  • the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
  • it was heated to 155 ° C. while removing water generated during the temperature rising, and stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 164 g of unreacted phenol was distilled off at 200 ° C. under a reduced pressure of 11 kPa to obtain 278 g of phenol resin (F-2).
  • Example 3 In a 500 ml three-necked flask equipped with a thermometer, stirrer, and condenser, 300.8 g of phenol, 60.2 g of cardanol, isomerized sugar HF55 manufactured by Gunei Chemical Industry Co., Ltd. (fructose source content 55 mass%, solid content 75 mass%) Aqueous solution) 192 g (solid content 144 g) and sulfuric acid 2.5 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
  • Example 4 In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser, 300.8 g of phenol, 105.3 g of cardanol, isomerized sugar HF55 (manufactured by Gunei Chemical Industry Co., Ltd., 55% by mass of fructose content source, 75% by mass of solid content) Aqueous solution) 192 g (solid content 144 g) and sulfuric acid 2.8 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates. Next, it was heated to 155 ° C.
  • the phenol resins of Examples 1 to 4 obtained by reacting phenols containing cardanol with isomerized sugar (fructose source content exceeds 50% by mass) have a low softening point, excellent fluidity, and plant origin. The rate was high.
  • the phenol resins of Comparative Examples 1 to 3 obtained using starch and sugar (the fructose source content is 50% by mass or less) as sugars had a high softening point and low fluidity.
  • the phenol resin of Comparative Example 4 which is a general phenol resin using formalin, had a low plant-derived rate.
  • the phenol resins of Comparative Examples 5 and 6 obtained by reacting phenol with isomerized sugar (fructose source content exceeds 50% by mass) have a low plant-derived rate, a high softening point, and a fluidity. It was low.
  • thermosetting materials 100 g of phenol resin (F-1), 98 g of wood flour, 20 g of hexamethylenetetramine as a curing agent, 7 g of calcium hydroxide as a curing aid, 3 g of zinc stearate as a lubricant, 1.5 g of carbon black as a colorant are mixed and kneaded. A molding material was prepared. [Examples 6 to 8, Comparative Examples 7 to 12] A molding material was produced in the same manner as in Example 5 except that the phenol resin (F-1) was changed to the phenol resin shown in Table 2.
  • the molding materials of Examples 5 to 8 containing each phenol resin of Examples 1 to 4 were excellent in molding processability, and the resulting molded articles had high bending strength and low Young's modulus.
  • Examples 5, 6 and 7 had a low Young's modulus while having bending strength comparable to that obtained when a general phenol resin (Comparative Example 10) was used.
  • the molding material of Comparative Example 9 containing a phenol resin obtained by using starch / sugar sugars of Comparative Example 3 had low molding processability and low bending strength.
  • the molding material of Comparative Example 10 using Comparative Example 4 obtained by using formalin as a phenol resin had a low plant-derived rate. Further, the obtained molded article had a high Young's modulus and a small amount of bending deflection.
  • the resulting molded product has a low bending strength, a high Young's modulus, and a bending deflection amount. It was small.
  • the molding material of Comparative Example 7 containing the phenolic resin of Comparative Example 1, the molding material of Comparative Example 8 containing the phenolic resin of Comparative Example 2, and the molding material of Comparative Example 11 containing the phenolic resin of Comparative Example 5 were used. Since the phenol resin had a high softening point and low fluidity, the resin viscosity during injection molding was high and injection molding could not be performed.
  • thermosetting material of the present invention is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus. Moreover, since the thermosetting material of this invention has a high plant origin rate, the increase in the amount of carbon dioxide in air

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

Disclosed is a production method for a biomass phenol resin that includes reacting a phenol containing an unsaturated alkyl phenol derived from a plant material and a sugar containing a fructose source of more than 50% by mass, in the presence of an acidic catalyst. Also disclosed is a thermosetting material which contains the biomass phenol resin and a curing agent. The biomass phenol resin production method can produce a biomass phenol resin that can obtain a cured body of high strength and a low Young's modulus in addition to excellent moldability and a high plant-derivation ratio. The thermosetting material can produce a cured body of high strength with a low Young's modulus, excellent moldability and a high plant-derivation ratio.

Description

バイオマスフェノール樹脂の製造方法および熱硬化性材料Biomass phenol resin production method and thermosetting material
 本発明は、植物由来の原料を使用したバイオマスフェノール樹脂の製造方法および熱硬化性材料に関するものである。
 本願は、2010年4月20日に、日本に出願された特願2010-096988号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a biomass phenol resin using a plant-derived raw material and a thermosetting material.
This application claims priority based on Japanese Patent Application No. 2010-096988 filed in Japan on April 20, 2010, the contents of which are incorporated herein by reference.
 近年、大気中の二酸化炭素量増加を抑制するため、植物由来の原料を使用した、いわゆるカーボンニュートラル材料であるバイオマスプラスチックが注目を集めている。
 バイオマスプラスチックとしては熱可塑性樹脂だけでなく、フェノール樹脂等の熱硬化性樹脂についても検討されている。例えば、特許文献1,2にはフェノール類と砂糖とを酸性触媒下で反応させて得たフェノール樹脂が開示されている。また、特許文献3には、フェノール類と木材からフェノール樹脂を製造する際に融点100℃以下の反応性物質(ベンジルアルコールなど)を添加して得た低軟化点のバイオマスフェノール樹脂が開示されている。
In recent years, in order to suppress an increase in the amount of carbon dioxide in the atmosphere, biomass plastics, which are so-called carbon neutral materials, using plant-derived raw materials have attracted attention.
As a biomass plastic, not only a thermoplastic resin but also a thermosetting resin such as a phenol resin has been studied. For example, Patent Documents 1 and 2 disclose phenol resins obtained by reacting phenols and sugar under an acidic catalyst. Patent Document 3 discloses a biomass phenol resin having a low softening point obtained by adding a reactive substance (eg, benzyl alcohol) having a melting point of 100 ° C. or lower when producing a phenol resin from phenols and wood. Yes.
特開昭58-55146号公報JP 58-55146 A 特開平6-248040号公報Japanese Patent Laid-Open No. 6-248040 特開2004-352978号公報JP 2004-352978 A
 しかし、特許文献1,2に記載のバイオマスフェノール樹脂は高軟化点であり、成形時の流動性が低く、成形加工性が不充分であった。特許文献3に記載のバイオマスフェノール樹脂では、ベンジルアルコールの添加により軟化点を低下させているが、高コストになる上に、植物由来率が低下するなどの問題が生じた。
 また、通常、フェノール樹脂は硬化剤により硬化されて硬化体にされ、各種用途に使用される。しかし、特許文献1~3に記載のバイオマスフェノール樹脂を硬化させて得た硬化体は、強度が低く、ヤング率が高いものであり、必ずしも充分な機械的物性を有しているとはいえなかった。
 本発明は、成形加工性に優れ、高い植物由来率を有する上に、高強度且つ低ヤング率の硬化体が得られるバイオマスフェノール樹脂を製造できるバイオマスフェノール樹脂の製造方法を提供することを目的とする。また、成形加工性に優れ、高い植物由来率を有する上に、高強度且つ低ヤング率の硬化体を製造できる熱硬化性材料を提供することを目的とする。
However, the biomass phenol resins described in Patent Documents 1 and 2 have a high softening point, low fluidity during molding, and insufficient moldability. In the biomass phenol resin described in Patent Document 3, the softening point is lowered by the addition of benzyl alcohol. However, there is a problem that the cost is increased and the plant-derived rate is lowered.
In general, the phenol resin is cured with a curing agent to form a cured product and used for various purposes. However, the cured products obtained by curing the biomass phenol resins described in Patent Documents 1 to 3 have low strength and high Young's modulus, and do not necessarily have sufficient mechanical properties. It was.
An object of the present invention is to provide a method for producing a biomass phenol resin that is excellent in molding processability, has a high plant-derived rate, and can produce a biomass phenol resin from which a cured product having a high strength and a low Young's modulus can be obtained. To do. Another object of the present invention is to provide a thermosetting material that is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus.
 本発明は、以下の構成を有する。
[1]植物原料由来不飽和アルキルフェノールを含有するフェノール類と、フルクトース源を50質量%より多く含有する糖質類とを、酸性触媒下で反応させることを含むバイオマスフェノール樹脂の製造方法。
[2]植物原料由来不飽和アルキルフェノールがカルダノールである[1]に記載のバイオマスフェノール樹脂の製造方法。
[3][1]または[2]に記載のバイオマスフェノール樹脂の製造方法により製造されたバイオマスフェノール樹脂と、硬化剤とを含有する熱硬化性材料。
The present invention has the following configuration.
[1] A method for producing a biomass phenol resin, comprising reacting a phenol containing a plant raw material-derived unsaturated alkylphenol with a carbohydrate containing more than 50% by mass of a fructose source under an acidic catalyst.
[2] The method for producing a biomass phenol resin according to [1], wherein the plant material-derived unsaturated alkylphenol is cardanol.
[3] A thermosetting material containing a biomass phenol resin produced by the method for producing a biomass phenol resin according to [1] or [2] and a curing agent.
 本発明のバイオマスフェノール樹脂の製造方法によれば、成形加工性に優れ、高い植物由来率を有する上に、高強度且つ低ヤング率の硬化体を提供できるバイオマスフェノール樹脂を製造できる。
 本発明の熱硬化性材料は、成形加工性に優れ、高い植物由来率を有する上に、高強度および低ヤング率の硬化体を製造できる。
 なお、本明細書において、植物由来率とは、得られたフェノール樹脂または硬化体中の植物由来成分の割合のことである。植物由来成分は、大気中の二酸化炭素を用いた光合成により得られる。そのため、植物由来成分の焼却時の二酸化炭素発生量は、光合成時の二酸化炭素吸収量により相殺され、大気中の二酸化炭素増加に影響を与えないと考えられる(いわゆるカーボンニュートラル)。したがって、植物由来率が高い程、大気中の二酸化炭素量増加を抑制でき、地球温暖化防止効果が高くなる。
According to the method for producing a biomass phenol resin of the present invention, it is possible to produce a biomass phenol resin that is excellent in molding processability, has a high plant-derived rate, and can provide a cured product having high strength and low Young's modulus.
The thermosetting material of the present invention is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus.
In addition, in this specification, a plant-derived rate is a ratio of the plant-derived component in the obtained phenol resin or hardened | cured material. Plant-derived components are obtained by photosynthesis using carbon dioxide in the atmosphere. Therefore, it is considered that the amount of carbon dioxide generated during the incineration of plant-derived components is offset by the amount of carbon dioxide absorbed during photosynthesis and does not affect the increase in carbon dioxide in the atmosphere (so-called carbon neutral). Therefore, the higher the plant-derived rate, the more the amount of carbon dioxide in the atmosphere can be suppressed, and the effect of preventing global warming will increase.
<バイオマスフェノール樹脂の製造方法>
 本発明のバイオマスフェノール樹脂の製造方法は、植物原料由来不飽和アルキルフェノールを含有するフェノール類と、糖質類とを、酸性触媒下で反応させる方法である。
 この反応では、酸性触媒によって、フルクトース源高含有糖質類からヒドロキシメチルフルフラールが生成し、そのヒドロキシメチルフルフラールとフェノール類とが酸性触媒によって反応することによって、バイオマスフェノール樹脂を形成する。
<Manufacturing method of biomass phenol resin>
The method for producing a biomass phenol resin of the present invention is a method in which a phenol containing a plant raw material-derived unsaturated alkylphenol is reacted with a saccharide under an acidic catalyst.
In this reaction, hydroxymethylfurfural is produced from fructose source-rich carbohydrates by an acidic catalyst, and the hydroxymethylfurfural and phenols react with the acidic catalyst to form a biomass phenol resin.
 フェノール類に含まれる植物原料由来不飽和アルキルフェノール類としては、例えば、カルダノール、カシューナッツシェルリキッドなどが挙げられるが、カルダノールが好ましい。植物原料由来不飽和アルキルフェノール類がカルダノールであれば、成形加工性がより高くなり、また、得られる硬化体の曲げ強度をより高く、ヤング率をより低くできる。
 上記不飽和アルキルフェノール類は1種類で使用してもよいし、2種類以上の上記不飽和アルキルフェノール類を組み合わせて使用してもよい。
Examples of the plant material-derived unsaturated alkylphenols contained in the phenols include cardanol and cashew nut shell liquid, and cardanol is preferred. If the plant material-derived unsaturated alkylphenol is cardanol, the molding processability is higher, the bending strength of the resulting cured product can be higher, and the Young's modulus can be lower.
The unsaturated alkylphenols may be used alone, or two or more unsaturated alkylphenols may be used in combination.
 また、フェノール類には、植物原料由来不飽和アルキルフェノール類の他に、必要に応じて、化石燃料(石油、石炭、天然ガス等)由来フェノール類が含まれてもよい。
 化石燃料由来フェノール類としては、例えば、フェノール、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、ブチルクレゾール、フェニルフェノール、クミルフェノール、メトキシフェノール、ブロモフェノール、ビスフェノールAなどが挙げられる。これらは1種類で使用してもよいし、2種類以上の前記化石燃料由来フェノール類を組み合わせて使用してもよい。
 上記化石燃料由来フェノール類の中でも、反応性が高く、しかも入手容易な点で、フェノール、クレゾール、キシレノールまたはビスフェノールA等が好ましい。
In addition to the plant raw material-derived unsaturated alkylphenols, the phenols may contain fossil fuel (petroleum, coal, natural gas, etc.) derived phenols as necessary.
Examples of the fossil fuel-derived phenols include phenol, cresol, xylenol, propylphenol, butylphenol, butylcresol, phenylphenol, cumylphenol, methoxyphenol, bromophenol, and bisphenol A. These may be used alone or in combination of two or more fossil fuel-derived phenols.
Among the above fossil fuel-derived phenols, phenol, cresol, xylenol, bisphenol A, and the like are preferable because they are highly reactive and easily available.
 フェノール類が植物原料由来不飽和アルキルフェノール類と化石燃料由来フェノール類とを含有する場合、前記フェノール類における植物由来原料不飽和アルキルフェノール類の含有量が5~100質量%であることが好ましく、10~50質量%であることがより好ましい。植物由来原料不飽和アルキルフェノール類の含有量が5質量%以上であれば、得られるバイオマスフェノール樹脂の植物由来率を実質的に高くできる上に、該バイオマスフェノール樹脂から得られる硬化体をより高強度およびより低ヤング率にできる。また、植物由来原料不飽和アルキルフェノール類の含有量が50質量%以下であれば、得られるバイオマスフェノール樹脂において成形および加工に充分な硬化性を保持しやすい。 When the phenols contain plant material-derived unsaturated alkylphenols and fossil fuel-derived phenols, the content of plant-derived material unsaturated alkylphenols in the phenols is preferably 5 to 100% by mass. More preferably, it is 50 mass%. If the content of the plant-derived raw material unsaturated alkylphenol is 5% by mass or more, the plant-derived rate of the obtained biomass phenol resin can be substantially increased, and the cured product obtained from the biomass phenol resin has higher strength. And lower Young's modulus. Moreover, if content of plant-derived raw material unsaturated alkylphenol is 50 mass% or less, in the obtained biomass phenol resin, it is easy to hold | maintain sclerosis | hardenability sufficient for shaping | molding and processing.
 糖質類は、フルクトース源を、糖質類固形分全体を100質量%とした際に50質量%を超えて含有し、55質量%以上含有することが好ましく、75質量%以上含有することがより好ましい。さらには、糖質類の100質量%がフルクトース源であることが最も好ましい。ここで、フルクトース源とは、フルクトース単体、または加水分解等によりフルクトースを生成する部分を有する化合物のことであり、例えば、フルクトース、フラクタン、フラクトオリゴ糖、糖質類全体のフルクトース源含有率が50質量%より多いオリゴ糖、フルクトース源を50質量%より多く含有する異性化糖などが挙げられる。
 糖質類におけるフルクトース源含有率が50質量%以下であると、バイオマスフェノール樹脂の流動性が低くなり、成形加工性が不充分になる。
The saccharides contain a fructose source in an amount of more than 50% by mass, preferably 55% by mass or more, preferably 75% by mass or more when the total solid content of saccharides is 100% by mass. More preferred. Furthermore, it is most preferable that 100% by mass of the carbohydrates is a fructose source. Here, the fructose source is a fructose simple substance or a compound having a part that generates fructose by hydrolysis or the like. For example, the fructose source content of fructose, fructan, fructooligosaccharides, and entire carbohydrates is 50 mass. And oligosaccharides containing more than 50% by mass of fructose source.
When the fructose source content in the carbohydrates is 50% by mass or less, the fluidity of the biomass phenol resin becomes low, and the moldability becomes insufficient.
 糖質類中のフルクトース源含有率を50質量%より多くするためには、例えば、糖質類を、フルクトース源を50質量%より多く含有するフルクトース源高含有糖質類とすればよい。フルクトース源高含有糖質類としては、入手容易な点で、フルクトース源を50質量%より多く含有する異性化糖が好ましい。 In order to increase the fructose source content in the carbohydrates to more than 50% by mass, for example, the carbohydrates may be high fructose source-containing carbohydrates containing more than 50% by mass fructose source. As the fructose source-rich saccharides, isomerized sugars containing more than 50% by mass of a fructose source are preferable in terms of easy availability.
 糖質類は、フルクトース源高含有糖質類の他に、糖質類全体のフルクトース源含有率が50質量%以下にならない範囲で、単糖類、2糖類、3糖類、少糖類、多糖類等の糖質類(以下、これら糖質類全体のフルクトース源含有率が50質量%以下の糖類を「他の糖質類」と総称する。)を、フェノール類と反応させてもよい。他の糖質類としては、具体的には、グルコース、マンノース、ガラクトース、アラビノース、キシロース、マルトース、イソマルトース、ラクトース、スクロース、トレハロース、ラフィノース、デキストリン、糖質類全体のフルクトース源含有率が50質量%以下であるオリゴ糖、澱粉、粗澱粉、化工澱粉、アミロース、アミロペクチン、廃棄糖蜜などが挙げられる。上記他の糖質類は1種類で使用してもよいし、2種類以上の糖質類を組み合わせて使用してもよい。
 糖質類がフルクトース源高含有糖質類と他の糖質類とを含有する場合には、フルクトース源高含有糖質類のフルクトース源含有率が高い程、糖質類のフルクトース源含有率を50質量%より多くしやすい。
Carbohydrates include monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, etc. within a range where the fructose source content of the whole carbohydrates does not fall below 50% by mass in addition to high fructose source content carbohydrates. (Hereinafter, saccharides having a fructose source content of 50% by mass or less of these saccharides as a whole are collectively referred to as “other saccharides”) may be reacted with phenols. Specific examples of other carbohydrates include glucose, mannose, galactose, arabinose, xylose, maltose, isomaltose, lactose, sucrose, trehalose, raffinose, dextrin, and the total fructose source content of carbohydrates is 50 mass. % Oligosaccharide, starch, crude starch, modified starch, amylose, amylopectin, waste molasses and the like. The other carbohydrates described above may be used alone, or two or more carbohydrates may be used in combination.
When carbohydrates contain high fructose source content carbohydrates and other carbohydrates, the higher the fructose source content of fructose source content carbohydrates, the higher the fructose source content of the carbohydrates. It is easy to make more than 50% by mass.
 フェノール樹脂を得る際のフェノール類と糖質類との質量比率は、糖質類の固形分を1としたときに、フェノール類が1~20倍であることが好ましく、2~4倍であることがより好ましい。フェノール類が糖質類の2倍以上であれば反応率を高くして収率を高くできる上に分子量を大きくでき、20倍以下であれば、生産性を低下させずに製造できる。 The mass ratio of phenols to saccharides in obtaining the phenol resin is preferably 1 to 20 times that of phenols and 2 to 4 times when the solid content of the saccharides is 1. It is more preferable. If phenols are 2 times or more of carbohydrates, the reaction rate can be increased to increase the yield, and the molecular weight can be increased. If the phenols are 20 times or less, production can be performed without reducing productivity.
 フェノール類と糖質類との反応の際には酸性触媒が用いられる。酸性触媒としては、鉱酸類(例えば硫酸、塩酸など)、有機酸類(例えばパラトルエンスルホン酸、シュウ酸など)などが使用される。酸性触媒の使用量は、フェノール類と糖質類固形分の合計を100質量%とした際に、0.1~50質量%であることが好ましく、0.2~10質量%であることがより好ましい。酸性触媒の使用量が0.1質量%以上であれば、充分に反応させることができ、50質量%以下であれば酸分解やゲル化を抑制できる。 An acidic catalyst is used in the reaction between phenols and carbohydrates. As the acidic catalyst, mineral acids (for example, sulfuric acid, hydrochloric acid, etc.), organic acids (for example, paratoluenesulfonic acid, oxalic acid, etc.) and the like are used. The amount of the acidic catalyst used is preferably 0.1 to 50% by mass, and preferably 0.2 to 10% by mass, when the total solid content of phenols and saccharides is 100% by mass. More preferred. If the usage-amount of an acidic catalyst is 0.1 mass% or more, it can fully be made to react, and if it is 50 mass% or less, acid decomposition and gelatinization can be suppressed.
 反応温度は20~200℃であることが好ましく、120~160℃であることがより好ましい。反応温度が20℃以上であれば充分に反応させることができ、200℃以下ならば分解を抑制できる。 The reaction temperature is preferably 20 to 200 ° C, more preferably 120 to 160 ° C. If the reaction temperature is 20 ° C. or higher, the reaction can be sufficiently performed, and if it is 200 ° C. or lower, decomposition can be suppressed.
 反応時間は0.5~20時間であることが好ましく、1~3時間であることがより好ましい。反応時間が0.5時間以上であれば高い収率で樹脂を得ることができ、20時間であれば生産性の低下を抑制できる。 The reaction time is preferably 0.5 to 20 hours, more preferably 1 to 3 hours. If the reaction time is 0.5 hours or more, the resin can be obtained in a high yield, and if it is 20 hours, a decrease in productivity can be suppressed.
 上記製造方法では、植物由来原料不飽和アルキルフェノール類と、フルクトース源を50質量%より多く含有する糖質類とを反応させるため、植物由来率が高いバイオマスフェノール樹脂を得ることができる。このようなバイオマスフェノール樹脂によれば、カーボンニュートラルの概念により、二酸化炭素排出量の増加を抑制できる。
 また、上記製造方法により得られるバイオマスフェノール樹脂は低軟化点で流動性が高く、成形加工性に優れる。また、このバイオマスフェノール樹脂によれば、硬化させて得た硬化体の強度を高く、ヤング率を小さくできる。
 上記のようなバイオマスフェノール樹脂は、鋳造用鋳型、成形材料、エポキシ硬化剤、各種バインダー、ゴム材添加剤等に用いることができる。
In the said manufacturing method, since a plant-derived raw material unsaturated alkylphenol and saccharides containing more than 50 mass% of fructose sources are made to react, biomass phenol resin with a high plant-derived rate can be obtained. According to such a biomass phenol resin, an increase in carbon dioxide emission can be suppressed by the concept of carbon neutral.
Moreover, the biomass phenol resin obtained by the said manufacturing method has high fluidity | liquidity at the low softening point, and is excellent in molding processability. Moreover, according to this biomass phenol resin, the intensity | strength of the hardening body obtained by hardening can be made high, and a Young's modulus can be made small.
The biomass phenol resin as described above can be used for casting molds, molding materials, epoxy curing agents, various binders, rubber material additives, and the like.
<熱硬化性材料>
 本発明の熱硬化性材料は、上記製造方法により得たバイオマスフェノール樹脂と、硬化剤とを含有する。
 この熱硬化性材料を成形し、硬化することにより、硬化体からなる成形物が得られる。
<Thermosetting material>
The thermosetting material of this invention contains the biomass phenol resin obtained by the said manufacturing method, and a hardening | curing agent.
By molding and curing this thermosetting material, a molded product made of a cured product can be obtained.
(硬化剤)
 硬化剤は、上記バイオマスフェノール樹脂を硬化させるものである。
 硬化剤としては、例えば、ヘキサメチレンテトラミン、ベンジルアミン、ベンゾオキサジン、アゾメチン、レゾール型フェノール樹脂を用いることができる。これらの中でも、硬化性に優れることから、ヘキサメチレンテトラミンが好ましい。
 硬化剤の配合量は、バイオマスフェノール樹脂の合計100質量部に対して1~40質量部であることが好ましく、3~30質量部であることがより好ましい。硬化剤の配合量が1質量部以上であれば、熱硬化性材料の硬化性に優れ、40質量部以下であれば、得られる成形物の機械的物性をより高くできる。
(Curing agent)
A hardening | curing agent hardens the said biomass phenol resin.
As the curing agent, for example, hexamethylenetetramine, benzylamine, benzoxazine, azomethine, or a resol type phenol resin can be used. Among these, hexamethylenetetramine is preferable because of excellent curability.
The compounding amount of the curing agent is preferably 1 to 40 parts by mass, and more preferably 3 to 30 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin. If the compounding quantity of a hardening | curing agent is 1 mass part or more, it is excellent in sclerosis | hardenability of a thermosetting material, and if it is 40 mass parts or less, the mechanical physical property of the obtained molding can be made higher.
(フィラー)
 熱硬化性材料は、得られる成形物の機械的物性を向上させるために、植物由来フィラーや無機フィラー等のフィラーを含有してもよい。
 植物由来フィラーとしては、例えば、木粉、籾粉、綿粉、竹粉、胡桃殻粉、紙粉、竹繊維、ケナフ繊維等が挙げられる。これらの中でも、機械的物性の向上効果が大きく、また、入手が容易であることから、木粉が好ましい。
 植物由来フィラーが粒子状である場合、その平均粒子径は0.1~1000μmであることが好ましい。ここで、平均粒子径は、二軸平均展開径である。
 二軸平均展開径は、任意の100個の粒子につき、各々、長軸径(μm)および短軸径(μm)をマイクロスコープと画像解析ソフト(例えば、キーエンス社製マイクロスコープVH-5000と同社製ソフトVH-H1A5)により測定し、(長軸径+短軸径)/2の値を求め、得られた値を平均して求められる。
 粒子状の植物由来フィラーの平均粒子径が0.1μm以上であれば、熱硬化性材料の流動性をより高くでき、1000μm以下であれば、成形物の機械的物性をより高くできる。
 植物由来フィラーが繊維状である場合、その平均繊維長は0.1~100mmであることが好ましい。ここで、平均繊維長は、JIS P8226に記載の偏光光源方式により測定した値である。
 繊維状の植物由来フィラーの平均繊維長が0.1mm以上であれば、成形物の機械的物性をより高くでき、100mm以下であれば、熱硬化性材料の流動性をより高くできる。
(Filler)
The thermosetting material may contain a filler such as a plant-derived filler or an inorganic filler in order to improve the mechanical properties of the obtained molded product.
Examples of the plant-derived filler include wood powder, straw powder, cotton powder, bamboo powder, walnut shell powder, paper powder, bamboo fiber, and kenaf fiber. Among these, wood powder is preferable because it has a large effect of improving mechanical properties and is easily available.
When the plant-derived filler is in the form of particles, the average particle size is preferably 0.1 to 1000 μm. Here, the average particle diameter is a biaxial average development diameter.
The biaxial average developed diameter is determined by using a microscope and image analysis software (for example, KEYENCE Microscope VH-5000 and the company) for each of 100 arbitrary particles, the major axis diameter (μm) and minor axis diameter (μm). The value of (major axis diameter + minor axis diameter) / 2 is obtained by measurement using software VH-H1A5), and the obtained values are averaged.
If the average particle size of the particulate plant-derived filler is 0.1 μm or more, the fluidity of the thermosetting material can be increased, and if it is 1000 μm or less, the mechanical properties of the molded product can be further increased.
When the plant-derived filler is fibrous, the average fiber length is preferably 0.1 to 100 mm. Here, the average fiber length is a value measured by a polarized light source method described in JIS P8226.
If the average fiber length of the fibrous plant-derived filler is 0.1 mm or more, the mechanical properties of the molded product can be increased, and if it is 100 mm or less, the fluidity of the thermosetting material can be increased.
 無機フィラーとしては、例えば、シリカ、アルミナ、窒化ケイ素、炭化ケイ素、タルク、ケイ酸カルシウム、炭酸カルシウム、マイカ、クレー、チタンホワイト等の粉体、ガラス繊維、カーボン繊維等の繊維体が挙げられる。
 無機フィラーが粒子状である場合の平均粒子径は、植物由来フィラーと同様の理由により、0.1~1000μmであることが好ましい。また、無機フィラーが繊維状である場合の平均繊維長は、植物由来フィラーと同様の理由により、0.1~100mmであることが好ましい。
Examples of the inorganic filler include powders such as silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white, and fiber bodies such as glass fiber and carbon fiber.
When the inorganic filler is in the form of particles, the average particle diameter is preferably 0.1 to 1000 μm for the same reason as the plant-derived filler. In addition, when the inorganic filler is fibrous, the average fiber length is preferably 0.1 to 100 mm for the same reason as the plant-derived filler.
 フィラーの含有量は、バイオマスフェノール樹脂の合計100質量部に対して30~500質量部であることが好ましく、50~300質量部であることがより好ましい。フィラーの含有量が30質量部以上であれば、成形物の機械的物性をより高くでき、500質量部以下であれば、流動性をより高くできる。 The content of the filler is preferably 30 to 500 parts by mass, and more preferably 50 to 300 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin. If the filler content is 30 parts by mass or more, the mechanical properties of the molded product can be further increased, and if it is 500 parts by mass or less, the fluidity can be further increased.
(硬化触媒)
 本発明の熱硬化性材料は、硬化触媒を含有してもよい。硬化触媒は、バイオマスフェノール樹脂と硬化剤との反応を促進するものである。具体的には、水酸化カルシウム(消石灰)、酸化カルシウム、酸化マグネシウムなどが挙げられる。
 硬化触媒の含有量は、バイオマスフェノール樹脂の合計100質量部に対して0.1~20質量部であることが好ましく、0.5~15質量部であることがより好ましい。硬化触媒の含有量が0.1質量部以上であれば、短時間に充分に硬化させることができる。しかし、20質量部を超えて硬化触媒を含んでも、硬化促進効果は飽和し、コストが高くなる。
(Curing catalyst)
The thermosetting material of the present invention may contain a curing catalyst. The curing catalyst promotes the reaction between the biomass phenol resin and the curing agent. Specific examples include calcium hydroxide (slaked lime), calcium oxide, and magnesium oxide.
The content of the curing catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass in total of the biomass phenol resin. If content of a curing catalyst is 0.1 mass part or more, it can fully harden in a short time. However, even if it exceeds 20 parts by mass and the curing catalyst is included, the curing acceleration effect is saturated and the cost is increased.
(滑剤)
 また、本発明の熱硬化性材料は、流動性をより向上させるために滑剤を含有してもよい。滑剤としては、例えば、カルナバワックス、モンタン酸ワックス、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、低分子量ポリエチレン(ポリエチレンワックス)などが用いられる。
(Lubricant)
In addition, the thermosetting material of the present invention may contain a lubricant in order to further improve the fluidity. As the lubricant, for example, carnauba wax, montanic acid wax, calcium stearate, aluminum stearate, zinc stearate, low molecular weight polyethylene (polyethylene wax) or the like is used.
(その他の添加剤)
 また、本発明の熱硬化性材料には、例えば、カーボンブラック等の着色剤、離型剤、カップリング剤、酸化防止剤、紫外線吸収剤などの添加剤が含まれてもよい。
(Other additives)
The thermosetting material of the present invention may contain additives such as a colorant such as carbon black, a release agent, a coupling agent, an antioxidant, and an ultraviolet absorber.
(熱硬化性材料の製造方法)
 熱硬化性材料は、バイオマスフェノール樹脂と硬化剤と、必要に応じて、フィラー、硬化触媒、滑剤、その他の添加剤とを混合することで得られる。その混合の際、ミキシングロール等の混合機を用いてもよい。また、混合の際には、バイオマスフェノール樹脂が硬化しない範囲で加熱してもよい。また、加熱後、必要に応じて、粉砕してもよい。
(Method for producing thermosetting material)
The thermosetting material can be obtained by mixing a biomass phenol resin, a curing agent, and, if necessary, a filler, a curing catalyst, a lubricant, and other additives. During the mixing, a mixer such as a mixing roll may be used. Moreover, you may heat in the range which does not harden biomass phenol resin in the case of mixing. Moreover, you may grind | pulverize as needed after a heating.
(作用効果)
 以上説明した上記本発明の熱硬化性材料は、上記バイオマスフェノール樹脂を含有するため、成形加工性に優れ、高い植物由来率を有する上に、高強度および低ヤング率の成形物を製造できる。
(Function and effect)
Since the thermosetting material of the present invention described above contains the biomass phenol resin, it is excellent in moldability, has a high plant-derived rate, and can produce a molded product having high strength and low Young's modulus.
(フェノール樹脂の製造)
[実施例1]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール60.2g、群栄化学工業製異性化糖HF95(フルクトース源含有率95質量%、固形分75質量%水溶液)192g(固形分144g)、硫酸2.5gを仕込んだ。その際、硫酸の添加量はフェノールと糖質類の固形分の合計量の0.5質量%とした。
 次に、昇温途中で生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌した後、少量の水に懸濁させた水酸化カルシウム1.9gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール175gを留去して、266gのフェノール樹脂(F-1)を得た。
(Manufacture of phenolic resin)
[Example 1]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 300.8 g of phenol, 60.2 g of cardanol, isomerized sugar HF95 manufactured by Gunei Chemical Industry Co., Ltd. (fructose source content 95 mass%, solid content 75 mass%) Aqueous solution) 192 g (solid content 144 g) and sulfuric acid 2.5 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol and carbohydrates.
Next, it was heated to 155 ° C. while removing water generated during the temperature rising, and stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 175 g of unreacted phenol was distilled off under reduced pressure at 200 ° C. and 11 kPa to obtain 266 g of phenol resin (F-1).
[実施例2]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール60.2g、群栄化学工業製異性化糖HF95(フルクトース源含有率95質量%、固形分75質量%水溶液)96g(固形分72g)、群栄化学工業製異性化糖HF55(フルクトース源含有率55質量%、固形分75質量%水溶液)96g(固形分72g)、硫酸2.5gを仕込んだ。その際、硫酸の添加量はフェノールとカルダノールと糖質類の固形分の合計量の0.5質量%とした。
 次に、昇温途中で生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌した後、少量の水に懸濁させた水酸化カルシウム1.9gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール164gを留去して、278gのフェノール樹脂(F-2)を得た。
[Example 2]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 300.8 g of phenol, 60.2 g of cardanol, isomerized sugar HF95 manufactured by Gunei Chemical Industry Co., Ltd. (fructose source content 95 mass%, solid content 75 mass%) 96 g (aqueous solution) 96 g (solid content 72 g), Gunei Chemical Industry isomerized sugar HF55 (fructose source content 55 mass%, solid content 75 mass% aqueous solution) 96 g (solid content 72 g), and sulfuric acid 2.5 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
Next, it was heated to 155 ° C. while removing water generated during the temperature rising, and stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 164 g of unreacted phenol was distilled off at 200 ° C. under a reduced pressure of 11 kPa to obtain 278 g of phenol resin (F-2).
[実施例3]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール60.2g、群栄化学工業製異性化糖HF55(フルクトース源含有率55質量%、固形分75質量%水溶液)192g(固形分144g)、硫酸2.5gを仕込んだ。その際、硫酸の添加量はフェノールとカルダノールと糖質類の固形分の合計量の0.5質量%とした。
 次に、昇温途中で生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム1.9gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール155gを留去して、289gのフェノール樹脂(F-3)を得た。
[Example 3]
In a 500 ml three-necked flask equipped with a thermometer, stirrer, and condenser, 300.8 g of phenol, 60.2 g of cardanol, isomerized sugar HF55 manufactured by Gunei Chemical Industry Co., Ltd. (fructose source content 55 mass%, solid content 75 mass%) Aqueous solution) 192 g (solid content 144 g) and sulfuric acid 2.5 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
Next, after removing the water generated during the heating, it was heated to 155 ° C., stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 155 g of unreacted phenol was distilled off under reduced pressure at 200 ° C. and 11 kPa to obtain 289 g of phenol resin (F-3).
[実施例4]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール105.3g、群栄化学工業製異性化糖HF55(フルクトース含有源率55質量%、固形分75質量%水溶液)192g(固形分144g)、硫酸2.8gを仕込んだ。その際、硫酸の添加量はフェノールとカルダノールと糖質類の固形分の合計量の0.5質量%とした。
 次に、昇温途中で生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム2.1gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール153gを留去して、312gのフェノール樹脂(F-4)を得た。
[Example 4]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser, 300.8 g of phenol, 105.3 g of cardanol, isomerized sugar HF55 (manufactured by Gunei Chemical Industry Co., Ltd., 55% by mass of fructose content source, 75% by mass of solid content) Aqueous solution) 192 g (solid content 144 g) and sulfuric acid 2.8 g were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
Next, it was heated to 155 ° C. while removing the water generated during the temperature increase, stirred for 1 hour while maintaining 155 ° C., and then added with 2.1 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 153 g of unreacted phenol was distilled off under reduced pressure at 200 ° C. and 11 kPa to obtain 312 g of phenol resin (F-4).
[比較例1]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール60.2g、タピオカ澱粉(フルクトース源含有率0質量%、固形分88質量%)78.7g(固形分69.2g)、砂糖(フルクトース源含有率50質量%)74.8g、硫酸2.5gを仕込んだ。その際、硫酸の添加量はフェノールとカルダノールと糖質類の固形分の合計量の0.5質量%とした。
 次に、昇温途中の生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム1.9gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール131gを留去し、315gのフェノール樹脂(F-5)を得た。
[Comparative Example 1]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer and a condenser, 300.8 g of phenol, cardanol 60.2 g, tapioca starch (fructose source content 0 mass%, solid content 88 mass%) 78.7 g (solid content) 69.2 g), 74.8 g of sugar (fructose source content: 50% by mass) and 2.5 g of sulfuric acid were charged. At that time, the addition amount of sulfuric acid was 0.5% by mass of the total amount of solids of phenol, cardanol and carbohydrates.
Next, while removing the water generated during the temperature rise, it was heated to 155 ° C., stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 131 g of unreacted phenol was distilled off at 200 ° C. under a reduced pressure of 11 kPa to obtain 315 g of a phenol resin (F-5).
[比較例2]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール60.2g、タピオカ澱粉(フルクトース源含有率0質量%、固形分88質量%)128.8g(固形分113.3g)、砂糖(フルクトース源含有率50質量%)30.6g、硫酸2.5gを仕込んだ。なお、硫酸の添加量はフェノールとカルダノールと糖質の固形分の合計量の0.5質量%とした。
 次に、昇温途中の生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム1.9gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール122gを留去し、316gのフェノール樹脂(F-6)を得た。
[Comparative Example 2]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer and a condenser, 300.8 g of phenol, cardanol 60.2 g, tapioca starch (fructose source content 0 mass%, solid content 88 mass%) 128.8 g (solid content) 113.3 g), sugar (fructose source content 50 mass%) 30.6 g, and sulfuric acid 2.5 g were charged. In addition, the addition amount of sulfuric acid was 0.5 mass% of the total amount of solid content of phenol, cardanol, and sugar.
Next, while removing the water generated during the temperature rise, it was heated to 155 ° C., stirred for 1 hour while maintaining 155 ° C., and then added with 1.9 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 122 g of unreacted phenol was distilled off under reduced pressure of 200 ° C. and 11 kPa to obtain 316 g of phenol resin (F-6).
[比較例3]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300.8g、カルダノール105.3g、タピオカ澱粉(フルクトース源含有率0質量%、固形分88質量%)128.8g(固形分113.3g)、砂糖(フルクトース源含有率50質量%)30.6g、硫酸2.8gを仕込んだ。なお、硫酸の添加量はフェノールとカルダノール糖質の固形分の合計量の0.5質量%とした。
 次に、昇温途中の生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム2.1gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール114gを留去し、359gのフェノール樹脂(F-7)を得た。
[Comparative Example 3]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser, 300.8 g of phenol, 105.3 g of cardanol, tapioca starch (fructose source content 0 mass%, solid content 88 mass%) 128.8 g (solid content) 113.3 g), 30.6 g of sugar (fructose source content: 50% by mass), and 2.8 g of sulfuric acid were charged. In addition, the addition amount of sulfuric acid was 0.5 mass% of the total amount of solid content of phenol and cardanol saccharide.
Next, it was heated to 155 ° C. while removing the water generated during the temperature rise, stirred for 1 hour while maintaining 155 ° C., and then added with 2.1 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 114 g of unreacted phenol was distilled off at 200 ° C. under a reduced pressure of 11 kPa to obtain 359 g of a phenol resin (F-7).
[比較例4]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール300g、50質量%ホルマリン156g、シュウ酸2.1gを仕込んだ。なお、フェノールに対するホルマリンのモル比率は0.815、シュウ酸の添加量はフェノールの0.7質量%とした。
 次に、61kPaの減圧下95℃まで加熱し減圧、温度を保持したまま2時間撹拌した後、11kPaに減圧し反応で生じた水を除去した。さらに常圧下、生成する水を取り除きながら180℃まで加熱し、180℃、11kPaの減圧下で未反応のフェノール36gおよび水を留去し、312gのフェノール樹脂(F-8)を得た。
[Comparative Example 4]
A 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser tube was charged with 300 g of phenol, 156 g of 50% by mass formalin, and 2.1 g of oxalic acid. The molar ratio of formalin to phenol was 0.815, and the amount of oxalic acid added was 0.7% by mass of phenol.
Next, the mixture was heated to 95 ° C. under a reduced pressure of 61 kPa and stirred for 2 hours while maintaining the reduced pressure and temperature, and then the pressure was reduced to 11 kPa and water generated by the reaction was removed. Furthermore, it heated to 180 degreeC, removing the water produced | generated under normal pressure, 36g of unreacted phenol and water were distilled off under reduced pressure of 180 degreeC and 11 kPa, and 312 g of phenol resin (F-8) was obtained.
[比較例5]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール270g、群栄化学工業製異性化糖HF55(フルクトース源含有率55質量%、固形分75質量%水溶液)144g(固形分108g)、硫酸1.9gを仕込んだ。なお、硫酸の添加量はフェノールと糖質の固形分の合計量の0.5質量%とした。
 次に、昇温途中の生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム1.4gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール109gを留去し、201gのフェノール樹脂(F-9)を得た。
[Comparative Example 5]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser tube, 270 g of phenol, 144 g of isomerized sugar HF55 (fructose source content 55 mass%, solid content 75 mass% aqueous solution) manufactured by Gunei Chemical Industry Co., Ltd. (solid content 108 g) ) And 1.9 g of sulfuric acid were charged. The amount of sulfuric acid added was 0.5% by mass of the total amount of phenol and saccharide solids.
Next, it was heated to 155 ° C. while removing the water generated during the temperature rise, stirred for 1 hour while maintaining 155 ° C., and then added with 1.4 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 109 g of unreacted phenol was distilled off under reduced pressure at 200 ° C. and 11 kPa to obtain 201 g of phenol resin (F-9).
[比較例6]
 温度計、撹拌装置、冷却管を備えた500mlの三口フラスコに、フェノール338.4g、群栄化学工業製異性化糖HF55(フルクトース源含有率55質量%、固形分75質量%水溶液)144g(固形分108g)、硫酸2.2gを仕込んだ。硫酸の添加量はフェノールと糖質の固形分の合計量の0.5質量%とした。
 次に、昇温途中の生成する水を取り除きながら155℃まで加熱し、155℃を保持したまま1時間撹拌したあと、少量の水に懸濁させた水酸化カルシウム1.7gを添加して中和した。その後、200℃、11kPaの減圧下で未反応のフェノール162gを留去し、223gのフェノール樹脂(F-10)を得た。
[Comparative Example 6]
In a 500 ml three-necked flask equipped with a thermometer, a stirrer, and a cooling tube, 1448.4 g of phenol (338.4 g), isomerized sugar HF55 (fructose source content 55 mass%, solid content 75 mass% aqueous solution) manufactured by Gunei Chemical Industry Co., Ltd. 108 g) and 2.2 g of sulfuric acid were charged. The amount of sulfuric acid added was 0.5% by mass of the total amount of phenol and saccharide solids.
Next, it was heated to 155 ° C. while removing the water generated during the temperature rise, stirred for 1 hour while maintaining 155 ° C., and then added with 1.7 g of calcium hydroxide suspended in a small amount of water. It was summed up. Thereafter, 162 g of unreacted phenol was distilled off at 200 ° C. under a reduced pressure of 11 kPa to obtain 223 g of a phenol resin (F-10).
(評価)
 得られたフェノール樹脂について、軟化点、流動性、植物由来率、カルダノール変性率を以下の方法で測定した。測定結果を表1に示す。
[軟化点]JIS K6910に従って測定した。
[流動性]JIS K6910に従って測定した。
[植物由来率]植物由来率=100-{[(フェノール仕込み質量)-(留去した未反応フェノール質量)+(中和塩の質量(理論値))]/(樹脂収量質量)}×100
[カルダノール変性率]カルダノール変性率=[(カルダノール仕込み質量)/(樹脂収量質量)]×100
(Evaluation)
About the obtained phenol resin, the softening point, the fluidity, the plant-derived rate, and the cardanol modification rate were measured by the following methods. The measurement results are shown in Table 1.
[Softening point] Measured according to JIS K6910.
[Flowability] Measured according to JIS K6910.
[Plant-derived ratio] Plant-derived ratio = 100-{[(phenol charge mass)-(distilled unreacted phenol mass) + (mass of neutralized salt (theoretical value))] / (resin yield mass)} × 100
[Cardanol modification rate] Cardanol modification rate = [(Cardanol charge mass) / (Resin yield mass)] × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 カルダノールを含むフェノール類と異性化糖(フルクトース源含有率が50質量%を超える)とを反応させて得た実施例1~4のフェノール樹脂は軟化点が低く、流動性に優れ、さらに植物由来率が高かった。
 糖質類として澱粉・砂糖(フルクトース源含有率が50質量%以下)を用いて得た比較例1~3のフェノール樹脂は軟化点が高く、流動性が低かった。
 ホルマリンを用いた一般的なフェノール樹脂である比較例4のフェノール樹脂は植物由来率が低かった。
 フェノールと異性化糖(フルクトース源含有率が50質量%を超える)とを反応させて得た比較例5,6のフェノール樹脂は、植物由来率が低い上に、軟化点が高く、流動性が低かった。
The phenol resins of Examples 1 to 4 obtained by reacting phenols containing cardanol with isomerized sugar (fructose source content exceeds 50% by mass) have a low softening point, excellent fluidity, and plant origin. The rate was high.
The phenol resins of Comparative Examples 1 to 3 obtained using starch and sugar (the fructose source content is 50% by mass or less) as sugars had a high softening point and low fluidity.
The phenol resin of Comparative Example 4, which is a general phenol resin using formalin, had a low plant-derived rate.
The phenol resins of Comparative Examples 5 and 6 obtained by reacting phenol with isomerized sugar (fructose source content exceeds 50% by mass) have a low plant-derived rate, a high softening point, and a fluidity. It was low.
(熱硬化性材料の製造)
[実施例5]
 フェノール樹脂(F-1)100g、木粉98g、硬化剤としてヘキサメチレンテトラミン20g、硬化助剤として水酸化カルシウム7g、滑剤としてステアリン酸亜鉛3g、着色剤としてカーボンブラック1.5gを混合混練して、成形材料を作製した。
[実施例6~8、比較例7~12]
 フェノール樹脂(F-1)を表2に示すフェノール樹脂に変更した以外は実施例5と同様にして、成形材料を作製した。
(Manufacture of thermosetting materials)
[Example 5]
100 g of phenol resin (F-1), 98 g of wood flour, 20 g of hexamethylenetetramine as a curing agent, 7 g of calcium hydroxide as a curing aid, 3 g of zinc stearate as a lubricant, 1.5 g of carbon black as a colorant are mixed and kneaded. A molding material was prepared.
[Examples 6 to 8, Comparative Examples 7 to 12]
A molding material was produced in the same manner as in Example 5 except that the phenol resin (F-1) was changed to the phenol resin shown in Table 2.
[成形加工性]
 各実施例および各比較例の成形材料を、射出成形機(日精樹脂工業社製PNX-40)を用いて170℃にて2分間の成形条件で射出成形すると共に硬化させて成形物を得た。
その際の生産性、得られた成形物の品質を、以下の基準で評価した。評価結果を表2に示す。
 ◎:流動性が高いため成形しやすく、成形物外観にも問題なし。
 ○:成形できるが、流動性がやや低く、射出時ショートショットになりやすい。
 △:流動性が高いため成形しやすいが、硬化が遅いため、成形物にふくれが生じる。
 ▲:流動性が低いため成形しにくく、硬化が遅いため成形物にふくれが生じる。
 ×:射出時の樹脂粘度が高く、射出することができない。
[Molding processability]
The molding material of each example and each comparative example was injection molded under a molding condition of 170 ° C. for 2 minutes using an injection molding machine (PNX-40 manufactured by Nissei Plastic Industry Co., Ltd.) and cured to obtain a molded product. .
The productivity at that time and the quality of the obtained molded product were evaluated according to the following criteria. The evaluation results are shown in Table 2.
A: Since the fluidity is high, molding is easy and there is no problem in the appearance of the molded product.
○: Molding is possible, but fluidity is slightly low, and short shots are likely to occur during injection.
Δ: Molding is easy due to high fluidity, but blistering occurs in the molded product due to slow curing.
(Triangle | delta): It is difficult to shape | mold because of low fluidity | liquidity, and since a hardening is slow, a blister will arise in a molding.
X: Resin viscosity at the time of injection is high and cannot be injected.
[曲げ強度、ヤング率および曲げたわみ量の測定]
 各実施例および各比較例の成形材料を、射出成形機(日精樹脂工業社製PNX-40)により射出成形すると共に硬化させて成形物を得た。得られた成形物を用いて、JIS 
K6911に従って、曲げ強度、ヤング率(曲げ弾性率)を25℃にて測定した。また、曲げ試験において成形物が破断までにたわんだ変位量を曲げたわみ量として測定した。測定結果を表2に示す。曲げ強度が高い程、ヤング率が低い程、曲げたわみ量が小さい程、機械的物性が良好となる。
 なお、比較例7,8および11については、成形不能であったので、曲げ強度、ヤング率および曲げたわみ量を測定しなかった。
[Measurement of bending strength, Young's modulus and bending deflection]
The molding materials of each Example and each Comparative Example were injection molded with an injection molding machine (Nissei Plastic Industries PNX-40) and cured to obtain a molded product. Using the obtained molding, JIS
The bending strength and Young's modulus (flexural modulus) were measured at 25 ° C. according to K6911. Further, the amount of displacement of the molded product that was bent before breaking in the bending test was measured as the amount of bending deflection. The measurement results are shown in Table 2. The higher the bending strength, the lower the Young's modulus, and the smaller the bending deflection, the better the mechanical properties.
In Comparative Examples 7, 8 and 11, since molding was impossible, the bending strength, Young's modulus and bending deflection were not measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4の各フェノール樹脂を含有する実施例5~8の成形材料は、成形加工性に優れる上に、得られた成形物の曲げ強度が高く、ヤング率が小さかった。特に、実施例5,6および7は、一般的なフェノール樹脂(比較例10)を用いた場合と同程度の曲げ強度を持ちながらも、ヤング率が低かった。
 比較例3の、澱粉・砂糖の糖質類を用いて得たフェノール樹脂を含有する比較例9の成形材料は、成形加工性が低く、得られた曲げ強度が低かった。
 比較例4の、フェノール樹脂としてホルマリンを用いて得たものを用いた比較例10の成形材料は、植物由来率が低かった。また、得られた成形物のヤング率が高く、曲げたわみ量が小さかった。
 比較例6の、フェノールと澱粉・砂糖とを反応させて得たフェノール樹脂を含有する比較例12の成形材料では、得られた成形物の曲げ強度が低く、ヤング率が高く、曲げたわみ量が小さかった。
 比較例1のフェノール樹脂を含有する比較例7の成形材料、比較例2のフェノール樹脂を含有する比較例8の成形材料、比較例5のフェノール樹脂を含有する比較例11の成形材料は、使用したフェノール樹脂の軟化点が高く流動性が低いため、射出成形時の樹脂粘度が高く、射出成形できなかった。
The molding materials of Examples 5 to 8 containing each phenol resin of Examples 1 to 4 were excellent in molding processability, and the resulting molded articles had high bending strength and low Young's modulus. In particular, Examples 5, 6 and 7 had a low Young's modulus while having bending strength comparable to that obtained when a general phenol resin (Comparative Example 10) was used.
The molding material of Comparative Example 9 containing a phenol resin obtained by using starch / sugar sugars of Comparative Example 3 had low molding processability and low bending strength.
The molding material of Comparative Example 10 using Comparative Example 4 obtained by using formalin as a phenol resin had a low plant-derived rate. Further, the obtained molded article had a high Young's modulus and a small amount of bending deflection.
In the molding material of Comparative Example 12 containing a phenol resin obtained by reacting phenol with starch / sugar in Comparative Example 6, the resulting molded product has a low bending strength, a high Young's modulus, and a bending deflection amount. It was small.
The molding material of Comparative Example 7 containing the phenolic resin of Comparative Example 1, the molding material of Comparative Example 8 containing the phenolic resin of Comparative Example 2, and the molding material of Comparative Example 11 containing the phenolic resin of Comparative Example 5 were used. Since the phenol resin had a high softening point and low fluidity, the resin viscosity during injection molding was high and injection molding could not be performed.
 本発明のバイオマスフェノール樹脂の製造方法によれば、成形加工性に優れ、高い植物由来率を有する上に、高強度且つ低ヤング率の硬化体を提供できるバイオマスフェノール樹脂を製造できる。本発明の熱硬化性材料は、成形加工性に優れ、高い植物由来率を有する上に、高強度および低ヤング率の硬化体を製造できる。また、本発明の熱硬化性材料は、高い植物由来率を有するため、大気中の二酸化炭素量増加を抑制でき、地球温暖化防止効果が高くなる。 According to the method for producing a biomass phenol resin of the present invention, it is possible to produce a biomass phenol resin that is excellent in molding processability, has a high plant-derived rate, and can provide a cured product having high strength and low Young's modulus. The thermosetting material of the present invention is excellent in moldability, has a high plant-derived rate, and can produce a cured product having high strength and low Young's modulus. Moreover, since the thermosetting material of this invention has a high plant origin rate, the increase in the amount of carbon dioxide in air | atmosphere can be suppressed and the global warming prevention effect becomes high.

Claims (3)

  1.  植物原料由来不飽和アルキルフェノールを含有するフェノール類と、フルクトース源を50質量%より多く含有する糖質類とを、酸性触媒下で反応させることを含むバイオマスフェノール樹脂の製造方法。 A method for producing a biomass phenol resin, comprising reacting a phenol containing a plant raw material-derived unsaturated alkylphenol with a carbohydrate containing more than 50% by mass of a fructose source under an acidic catalyst.
  2.  植物原料由来不飽和アルキルフェノールがカルダノールである請求項1に記載のバイオマスフェノール樹脂の製造方法。 The method for producing a biomass phenol resin according to claim 1, wherein the plant material-derived unsaturated alkylphenol is cardanol.
  3.  請求項1または2に記載のバイオマスフェノール樹脂の製造方法により製造されたバイオマスフェノール樹脂と、硬化剤とを含有する熱硬化性材料。 A thermosetting material containing a biomass phenol resin produced by the method for producing a biomass phenol resin according to claim 1 or 2, and a curing agent.
PCT/JP2011/059154 2010-04-20 2011-04-13 Biomass phenol resin production method and thermosetting material WO2011132579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010096988A JP5731758B2 (en) 2010-04-20 2010-04-20 Biomass phenol resin, production method thereof, thermosetting material
JP2010-096988 2010-04-20

Publications (1)

Publication Number Publication Date
WO2011132579A1 true WO2011132579A1 (en) 2011-10-27

Family

ID=44834102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059154 WO2011132579A1 (en) 2010-04-20 2011-04-13 Biomass phenol resin production method and thermosetting material

Country Status (3)

Country Link
JP (1) JP5731758B2 (en)
TW (1) TW201207036A (en)
WO (1) WO2011132579A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin
JP2013177524A (en) * 2012-02-29 2013-09-09 Sumitomo Bakelite Co Ltd Biomass derivative, biomass derivative composition and biomass derivative-cured product
JP2014125595A (en) * 2012-12-27 2014-07-07 Hitachi Chemical Co Ltd Resin composition, and molded product thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013008687A1 (en) 2013-05-22 2014-11-27 Stefan Martin Hanstein Production of aqueous reaction solutions based on vegetable hydroxycinnamic acids (phenolic acids / phenylpropanoids / phenylpropenes) and lignin for the coating of fertilizer granules. In particular: preparation of appropriate reaction solutions
JP6614483B2 (en) * 2015-10-26 2019-12-04 まり子 吉岡 Phenol liquefied resin
JP6694711B2 (en) * 2015-12-28 2020-05-20 株式会社ブリヂストン Phenolic resin, method for producing phenolic resin, rubber composition and tire
JPWO2017187907A1 (en) * 2016-04-25 2019-03-07 株式会社ブリヂストン Phenol resin for rubber compounding, rubber composition and tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855146A (en) * 1981-09-30 1983-04-01 Sumitomo Deyurezu Kk Phenolic resin binder for shell mold and resin coated sand produced by using said binder
JPS5996117A (en) * 1982-11-24 1984-06-02 Gunei Kagaku Kogyo Kk Phenolic resin composition
JPH06228255A (en) * 1993-02-03 1994-08-16 Sumitomo Durez Co Ltd Production of biodegradable phenolic resin
JP2004292634A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Biodegradable resin composition and method for producing the same
JP2008255133A (en) * 2007-03-30 2008-10-23 Akebono Brake Ind Co Ltd Method for synthesizing organic friction-regulator by utilizing superheated steam
JP2009132774A (en) * 2007-11-29 2009-06-18 Showa Highpolymer Co Ltd Cashew novolac resin, its preparation method and curing agent for epoxy resin
JP2010090297A (en) * 2008-10-09 2010-04-22 Gun Ei Chem Ind Co Ltd Phenol resin
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855146A (en) * 1981-09-30 1983-04-01 Sumitomo Deyurezu Kk Phenolic resin binder for shell mold and resin coated sand produced by using said binder
JPS5996117A (en) * 1982-11-24 1984-06-02 Gunei Kagaku Kogyo Kk Phenolic resin composition
JPH06228255A (en) * 1993-02-03 1994-08-16 Sumitomo Durez Co Ltd Production of biodegradable phenolic resin
JP2004292634A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Biodegradable resin composition and method for producing the same
JP2008255133A (en) * 2007-03-30 2008-10-23 Akebono Brake Ind Co Ltd Method for synthesizing organic friction-regulator by utilizing superheated steam
JP2009132774A (en) * 2007-11-29 2009-06-18 Showa Highpolymer Co Ltd Cashew novolac resin, its preparation method and curing agent for epoxy resin
JP2010090297A (en) * 2008-10-09 2010-04-22 Gun Ei Chem Ind Co Ltd Phenol resin
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin
JP2013177524A (en) * 2012-02-29 2013-09-09 Sumitomo Bakelite Co Ltd Biomass derivative, biomass derivative composition and biomass derivative-cured product
JP2014125595A (en) * 2012-12-27 2014-07-07 Hitachi Chemical Co Ltd Resin composition, and molded product thereof

Also Published As

Publication number Publication date
TW201207036A (en) 2012-02-16
JP5731758B2 (en) 2015-06-10
JP2011225721A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5731758B2 (en) Biomass phenol resin, production method thereof, thermosetting material
ES2677554T3 (en) Resin composition and rubber composition
JP2023024831A (en) Modified lignin manufacturing method, modified lignin, and modified lignin-containing resin composition material
CN104448698A (en) Melamine formaldehyde mould plastic and preparation method thereof
JP3911614B2 (en) Biomass resin composition, method for producing the same, and molding material comprising the biomass resin composition
JP2007177147A (en) Phenol resin molding material
CN107686628A (en) The manufacture method of compositions of thermosetting resin, friction material and compositions of thermosetting resin
JP5771088B2 (en) Solid resol type biomass phenol resin and rubber composition
US7276591B2 (en) Biomass resin composition, process for preparing the same and molding material using the biomass composition
JPWO2016159218A1 (en) Resol-type modified phenolic resin composition, production method thereof and adhesive
JP7215046B2 (en) Method for producing resin material containing phenol-modified lignin resin, and method for producing structure using the same
JP5437053B2 (en) Thermosetting molding material and molded product
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JP5478048B2 (en) Phenolic resin
JPWO2018190171A1 (en) Friction material
US5002994A (en) Phenolic moulding compositions
JP2015057454A (en) Phenol resin composition for friction material and friction material
JPH0343442A (en) Production of lignocelulose-phenol resin molded product
JP7117218B2 (en) ROTOR CORE MAGNET FIXING RESIN COMPOSITION AND ROTOR CORE
JP2010126695A (en) Phenolic resin for curing epoxy resin, and epoxy resin composition
JP6624884B2 (en) Biomass phenol liquefied resin
JP2011225712A (en) Method for producing biomass phenol resin
JP2007246689A (en) Phenolic resin composition for friction material, and friction material
JP2006257114A (en) Phenolic resin molding material for commutator
JP7197064B1 (en) Thermosetting resin composition for friction material and friction material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771914

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771914

Country of ref document: EP

Kind code of ref document: A1