JP2011225712A - Method for producing biomass phenol resin - Google Patents

Method for producing biomass phenol resin Download PDF

Info

Publication number
JP2011225712A
JP2011225712A JP2010096555A JP2010096555A JP2011225712A JP 2011225712 A JP2011225712 A JP 2011225712A JP 2010096555 A JP2010096555 A JP 2010096555A JP 2010096555 A JP2010096555 A JP 2010096555A JP 2011225712 A JP2011225712 A JP 2011225712A
Authority
JP
Japan
Prior art keywords
phenols
derived
phenol resin
phenol
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010096555A
Other languages
Japanese (ja)
Other versions
JP5674334B2 (en
Inventor
Hiroaki Saito
裕昭 斎藤
Masayuki Saito
正幸 齋藤
Yuki Yagi
優紀 八木
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2010096555A priority Critical patent/JP5674334B2/en
Publication of JP2011225712A publication Critical patent/JP2011225712A/en
Application granted granted Critical
Publication of JP5674334B2 publication Critical patent/JP5674334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive biomass phenol resin having a low softening point, high fluidity during molding, excellent molding property, and a high plant-derived material rate.SOLUTION: A production method of a biomass phenol resin is provided, comprising reacting a starch derivative as carbohydrates with phenols containing plant-derived unsaturated alkyl phenols and fossil fuel-derived phenols under acidic conditions. The phenols are preferably used by 200 to 800 parts by mass with respect to 100 parts by mass of the starch derivative.

Description

本発明は、成形材料、鋳造用鋳型、エポキシ樹脂硬化剤、各種バインダー等に用いられるバイオマスフェノール樹脂の製造方法に関する。   The present invention relates to a method for producing a biomass phenol resin used for molding materials, casting molds, epoxy resin curing agents, various binders and the like.

植物は、繰り返し同じ土地で生産でき、石油や鉱物より短時間で再生される資源である。また、石油などの化石燃料由来原料を使用したプラスチックは、製品の焼却時に二酸化炭素を排出し、大気中の二酸化炭素総量を増加させるが、植物由来の原料を使用したプラスチックは、大気中の二酸化炭素総量を増加させない、いわゆるカーボンニュートラル材料である。そのため、環境への配慮から、石油などの化石燃料由来原料の代わりに、植物由来原料を使用した、いわゆるバイオマス樹脂の開発が進められている。
植物由来原料を使用した熱硬化性プラスチックとして、フェノール類と、砂糖類及び澱粉類の混合物とを、酸性触媒の存在下で反応させて得られたフェノール樹脂が開示されている(例えば、特許文献1参照。)。
また、フェノール類とトウモロコシ種皮等の澱粉系物質とを酸性触媒の存在下で反応後、ホルムアルデヒドを加え、反応させて得られたフェノール樹脂が開示されている(例えば、特許文献2参照。)。
さらに、フェノール類と木材からフェノール樹脂を製造する際、融点100℃以下の反応性物質(ベンジルアルコール等)を添加することで、樹脂の軟化点を下げたフェノール樹脂が開示されている(例えば、特許文献3参照。)。
Plants are resources that can be repeatedly produced on the same land and regenerated in less time than oil and minerals. In addition, plastics that use fossil fuel-derived raw materials such as petroleum emit carbon dioxide during product incineration and increase the total amount of carbon dioxide in the atmosphere. However, plastics that use plant-derived raw materials do not emit carbon dioxide in the atmosphere. This is a so-called carbon neutral material that does not increase the total amount of carbon. Therefore, in consideration of the environment, so-called biomass resins using plant-derived materials instead of fossil fuel-derived materials such as petroleum are being developed.
As thermosetting plastics using plant-derived raw materials, phenol resins obtained by reacting phenols with a mixture of sugars and starches in the presence of an acidic catalyst are disclosed (for example, patent documents). 1).
Further, a phenol resin obtained by reacting phenols with starch-based substances such as corn seed coat in the presence of an acidic catalyst and then adding formaldehyde to react is disclosed (for example, see Patent Document 2).
Furthermore, when producing a phenol resin from phenols and wood, a phenol resin having a lowered softening point of the resin by adding a reactive substance (such as benzyl alcohol) having a melting point of 100 ° C. or lower is disclosed (for example, (See Patent Document 3).

特開平6−248040JP-A-6-248040 特開2001−123012JP2001-123012 特開2004−352978JP 2004-352978 A

ところが、特許文献1に記載のフェノール樹脂は高軟化点で成形時の流動性が低く、硬化物を得るための成形の際の加工性が不十分であった。
また、特許文献2に記載のフェノール樹脂は、化石燃料由来のフェノール類を使用した市販のノボラック樹脂に比べて成形物の曲げ強度が約35%も低く、それを改善するため、ホルマリンによる架橋反応を施しているが、それでも約20%も強度が低かった。
更に、特許文献3記載のフェノール樹脂は、ベンジルアルコールの添加によりベンジルフェノールを反応系で誘導し、低軟化点化を実現しているが、ベンジルアルコール自体が高価であることや植物由来率が低下するなどの課題があった。
本発明は、低軟化点で成形時の流動性が高く、成形加工性に優れ、植物由来率が高く、且つベンジルアルコールのような高価な石油系原料をしない、低コストなバイオマスフェノール樹脂を提供することを目的とする。
However, the phenol resin described in Patent Document 1 has a high softening point and low fluidity at the time of molding, and the workability at the time of molding to obtain a cured product was insufficient.
In addition, the phenol resin described in Patent Document 2 has a bending strength of about 35% lower than that of a commercially available novolak resin using a phenol derived from fossil fuel. However, the strength was still about 20% low.
Furthermore, although the phenol resin described in Patent Document 3 induces benzylphenol in the reaction system by adding benzyl alcohol and realizes a low softening point, benzyl alcohol itself is expensive and the plant-derived rate decreases. There were issues such as.
The present invention provides a low-cost biomass phenol resin with a low softening point, high fluidity during molding, excellent moldability, high plant-derived rate, and no expensive petroleum-based raw materials such as benzyl alcohol. The purpose is to do.

[1]糖質類として澱粉誘導体と、植物由来不飽和アルキルフェノール類及び化石燃料由来フェノール類を含有するフェノール類とを、酸性触媒存在下で反応させることを特徴とするバイオマスフェノール樹脂の製造方法。   [1] A method for producing a biomass phenol resin, comprising reacting a starch derivative as a saccharide with a phenol containing a plant-derived unsaturated alkylphenol and a fossil fuel-derived phenol in the presence of an acidic catalyst.

[2]澱粉誘導体100質量部に対して、フェノール類が200〜800質量部である[1]記載のバイオマスフェノール樹脂の製造方法。   [2] The method for producing a biomass phenol resin according to [1], wherein phenols are 200 to 800 parts by mass with respect to 100 parts by mass of the starch derivative.

[3]澱粉誘導体が、各種澱粉のエステル化及び/またはエーテル化及び/または酸化及び/または架橋した澱粉誘導体の単独または混合物である[1]または[2]記載のバイオマスフェノール樹脂の製造方法。   [3] The method for producing a biomass phenol resin according to [1] or [2], wherein the starch derivative is a single or mixture of starch derivatives obtained by esterification and / or etherification and / or oxidation and / or crosslinking of various starches.

[4]フェノール類中の植物原料由来不飽和アルキルフェノール類と化石燃料由来フェノール類の質量比率が、植物原料由来不飽和アルキルフェノール類:化石燃料由来フェノール類=1:99〜50:50である[1]〜[3]のいずれかに記載のバイオマスフェノール樹脂の製造方法。   [4] The mass ratio of unsaturated alkylphenols derived from plant raw materials to phenols derived from fossil fuels in phenols is plant raw material derived unsaturated alkylphenols: fossil fuel derived phenols = 1: 99 to 50:50. ] The manufacturing method of the biomass phenol resin in any one of [3].

本発明のバイオマスフェノール樹脂の製造方法によれば、高い植物由来率を有する上に、低軟化点で成形時の流動性が高く、成形加工性に優れるバイオマスフェノール樹脂を低コストで製造できる。   According to the method for producing a biomass phenol resin of the present invention, it is possible to produce a biomass phenol resin having a high plant-derived rate, a low softening point, high fluidity during molding, and excellent molding processability at low cost.

本発明のバイオマスフェノール樹脂の製造方法は、糖質類として澱粉誘導体と、植物由来不飽和アルキルフェノール類及び化石燃料由来フェノール類を含有するフェノール類とを、酸性触媒存在下で反応させる方法である。
この反応では、酸性触媒によって、澱粉誘導体からヒドロキシメチルフルフラールが生成し、そのヒドロキシメチルフルフラールとフェノール類とが酸性触媒によって反応することによって、バイオマスフェノール樹脂を形成する。
The method for producing a biomass phenol resin of the present invention is a method in which a starch derivative as a saccharide and a phenol containing a plant-derived unsaturated alkylphenol and a fossil fuel-derived phenol are reacted in the presence of an acidic catalyst.
In this reaction, hydroxymethylfurfural is produced from a starch derivative by an acidic catalyst, and the hydroxymethylfurfural and phenols react with the acidic catalyst to form a biomass phenol resin.

まずは、本発明のバイオマスフェノール樹脂に使用する澱粉誘導体について説明する。一般的に澱粉誘導体は、その糊化温度やその時の粘度が低くなっているため、特に澱粉を原料とした時に見られる樹脂製造時の急激な増粘に伴う、攪拌停止を回避できる。急激な増粘による攪拌停止は、局所的に熱がかかり糖質類の炭化を引き起こし、目的のバイオマスフェノール樹脂が製造出来なくなってしまう。
澱粉誘導体としては、各種澱粉のエステル化及び/またはエーテル化及び/または酸化及び/または架橋した澱粉誘導体の単独または混合物が好ましい。各種澱粉のエステル化した澱粉誘導体としては、酢酸澱粉、リン酸化澱粉、オクテニルコハク酸澱粉が挙げられ、各種澱粉をエーテル化した澱粉誘導体としては、ヒドロキシプロピル澱粉、ヒドロキシエチル澱粉が挙げられ、各種澱粉を酸化した澱粉誘導体としては酸化澱粉が挙げられ、各種澱粉を架橋した澱粉誘導体としては、リン酸架橋澱粉が挙げられる。また各種澱粉について、エステル化、エーテル化、酸化、架橋反応のいずれかを2種以上行った澱粉誘導体である複合澱粉としては、酢酸アジピン酸架橋澱粉、酢酸リン酸化架橋澱粉、酢酸酸化澱粉、ヒドロキシプロピルリン酸架橋澱粉、リン酸モノエステル化リン酸架橋澱粉が挙げられる。これら各種澱粉誘導体は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
First, the starch derivative used for the biomass phenol resin of this invention is demonstrated. In general, starch derivatives have a low gelatinization temperature and a low viscosity at that time, so that it is possible to avoid stirring stoppage accompanying a rapid increase in viscosity during resin production, particularly when starch is used as a raw material. Stopping stirring due to sudden thickening causes localized heat and carbonization of saccharides, making it impossible to produce the target biomass phenol resin.
As the starch derivative, a starch derivative alone or a mixture obtained by esterification and / or etherification and / or oxidation and / or crosslinking of various starches is preferable. Examples of esterified starch derivatives of various starches include starch acetate, phosphorylated starch, and octenyl succinate starch. Examples of starch derivatives obtained by etherifying various starches include hydroxypropyl starch and hydroxyethyl starch. The oxidized starch derivative includes oxidized starch, and the starch derivative obtained by crosslinking various starches includes phosphoric acid crosslinked starch. As for various starches, composite starches that are starch derivatives obtained by performing esterification, etherification, oxidation, or crosslinking reaction at least two kinds include starch adipic acid crosslinked starch, acetate phosphorylated crosslinked starch, acetate oxidized starch, hydroxy Examples thereof include propyl phosphate cross-linked starch and phosphate monoesterified phosphate cross-linked starch. These various starch derivatives may be used individually by 1 type, and may be used in combination of 2 or more type.

フェノール類に含まれる植物原料由来不飽和アルキルフェノール類としては、例えば、カルダノール、カシューナッツシェルリキッドなどが挙げられるが、反応性が高く、入手が容易な点からカルダノールが好ましい。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   Examples of the plant material-derived unsaturated alkylphenols contained in the phenols include cardanol and cashew nut shell liquid, but cardanol is preferred because of its high reactivity and easy availability. These may be used individually by 1 type and may be used in combination of 2 or more type.

フェノール類中に含まれる化石燃料由来フェノール類としては特に限定されないが、フェノール、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、ブチルクレゾール、フェニルフェノール、クミルフェノール、メトキシフェノール、ブロモフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールSなどが挙げられる。これらの中でも、反応性が高く、しかも入手容易な点で、フェノール、クレゾール、キシレノール、ビスフェノールAが好ましい。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。   The fossil fuel-derived phenols contained in the phenols are not particularly limited, but phenol, cresol, xylenol, propylphenol, butylphenol, butylcresol, phenylphenol, cumylphenol, methoxyphenol, bromophenol, bisphenol A, bisphenol F , Bisphenol S and the like. Among these, phenol, cresol, xylenol, and bisphenol A are preferable because they are highly reactive and easily available. These may be used individually by 1 type and may be used in combination of 2 or more type.

フェノール類中の植物原料由来不飽和アルキルフェノール類と化石燃料由来フェノール類の質量比率は、植物原料由来不飽和アルキルフェノール類:化石燃料由来フェノール類が1:99〜50:50であることが好ましく、5:95〜40:60であることがより好ましい。植物原料由来不飽和アルキルフェノール類の質量比率が1:99以上であれば、得られるバイオマスフェノール樹脂の軟化点を下げることが可能で、成形時の流動性が高く、成形加工性に優れ、50:50以下であれば、成形物に要求される実用特性を満足することができる。   The mass ratio of the plant material-derived unsaturated alkylphenols to the fossil fuel-derived phenols in the phenols is preferably 1:99 to 50:50 in terms of the plant material-derived unsaturated alkylphenols: fossil fuel-derived phenols. : 95 to 40:60 is more preferable. If the mass ratio of the unsaturated alkylphenol derived from plant raw materials is 1:99 or more, the softening point of the obtained biomass phenol resin can be lowered, the fluidity during molding is high, and the molding processability is excellent. If it is 50 or less, the practical characteristics required for the molded product can be satisfied.

バイオマスフェノール樹脂を得る際の糖質類とフェノール類との質量比率は、糖質類固形分を1としたときに、フェノール類が1〜20倍であることが好ましく、2〜8倍であることがより好ましい。フェノール類が糖質類の1倍以上であれば、反応性、収率も高く、非常に高い植物由来率のバイオマスフェノール樹脂が得られ、20倍以下であれば、経済的にも安価にバイオマスフェノール樹脂が得られる。   The mass ratio of saccharides and phenols when obtaining a biomass phenol resin is preferably 1 to 20 times, preferably 2 to 8 times, when the saccharide solid content is 1. It is more preferable. If phenols are 1 time or more of carbohydrates, the reactivity and yield are high, and a biomass phenol resin with a very high plant-derived rate is obtained. If it is 20 times or less, biomass is economically inexpensive. A phenolic resin is obtained.

糖質類とフェノール類とを反応させる際には、酸性触媒が用いられる。酸性触媒としては、例えば、鉱酸類(例えば、塩酸、硫酸等)、有機酸類(例えば、パラトルエンスルホン酸、シュウ酸等)などが使用される。酸性触媒の使用量は、糖質類固形分とフェノール類との合計を100質量%とした際に0.1〜50質量%であることが好ましく、0.2から10質量%であることがより好ましい。酸性触媒の使用量が0.1質量%以上であれば、十分な糖質類の液状化が可能で、50質量%以下であれば、酸分解やゲル化を抑制できる。   An acidic catalyst is used when reacting carbohydrates and phenols. As the acidic catalyst, for example, mineral acids (for example, hydrochloric acid, sulfuric acid, etc.), organic acids (for example, paratoluenesulfonic acid, oxalic acid, etc.) are used. The amount of the acidic catalyst used is preferably 0.1 to 50% by mass and preferably 0.2 to 10% by mass when the total of the saccharide solids and phenols is 100% by mass. More preferred. If the usage-amount of an acidic catalyst is 0.1 mass% or more, sufficient liquefaction of carbohydrates is possible, and if it is 50 mass% or less, acid decomposition and gelation can be suppressed.

反応温度は20〜200℃であることが好ましく、120〜160℃であることがより好ましい。反応温度が20℃以上であれば、充分に反応させることができ、200℃以下であれば過分解を抑制できる。   The reaction temperature is preferably 20 to 200 ° C, more preferably 120 to 160 ° C. If reaction temperature is 20 degreeC or more, it can be made to react sufficiently, and if it is 200 degrees C or less, overdecomposition can be suppressed.

反応時間は0.5〜20時間であることが好ましく、1〜3時間であることがより好ましい。反応時間が0.5時間以上であれば、高い収率で樹脂を得ることができ、20時間以下であれば、生産性の低下を抑制できる。   The reaction time is preferably 0.5 to 20 hours, more preferably 1 to 3 hours. If the reaction time is 0.5 hours or more, the resin can be obtained in a high yield, and if it is 20 hours or less, a decrease in productivity can be suppressed.

本発明の製造方法によれば、低軟化点で流動性が高く、成形加工性に優れるバイオマスフェノール樹脂が得られる。また、植物由来率が高いことから、いわゆるカーボンニュートラルの概念により、二酸化炭素量増加を抑制できる。
上記のようなバイオマスフェノール樹脂は、成形材料、鋳造用鋳型、エポキシ樹脂硬化剤、各種バインダー等に用いることができる。
According to the production method of the present invention, a biomass phenol resin having a low softening point and high fluidity and excellent moldability can be obtained. Moreover, since the plant-derived rate is high, an increase in the amount of carbon dioxide can be suppressed by the so-called carbon neutral concept.
The biomass phenol resin as described above can be used for molding materials, casting molds, epoxy resin curing agents, various binders, and the like.

以下の実施例および比較例では、得られたバイオマスフェノール樹脂について、軟化点、ゲル化時間、流動性、植物由来率を以下の方法で調べた。   In the following Examples and Comparative Examples, the obtained biomass phenol resin was examined for softening point, gelation time, fluidity, and plant-derived rate by the following methods.

[軟化点]
JIS K 6910に準じて軟化点を測定した。
[ゲル化時間]
JIS K 6912に準じてゲル化時間を測定した。(ヘキサメチレンテトラミン添加量10質量%)
[流動性]
JIS K 6910に準じて流動性を測定した。
[植物由来率]
100−{[(フェノール仕込み量)−(留去した未反応フェノール量)+(中和塩の量(理論値))]/(樹脂収量)}×100
[Softening point]
The softening point was measured according to JIS K 6910.
[Gelification time]
Gelation time was measured according to JIS K6912. (Hexamethylenetetramine addition amount 10% by mass)
[Liquidity]
The fluidity was measured according to JIS K 6910.
[Plant-derived rate]
100-{[(Phenol charge amount)-(Distilled unreacted phenol amount) + (Amount of neutralized salt (theoretical value))] / (Resin yield)} × 100

[実施例1]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール1128g、カルダノール60g、酢酸澱粉396g、濃硫酸7.9gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:3、カルダノールとフェノールの質量比率は5:95、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム6.0gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール401gを留去し1017gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Example 1]
1128 g of phenol, 60 g of cardanol, 396 g of starch acetate and 7.9 g of concentrated sulfuric acid were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer and a condenser. The mass ratio of saccharides and phenols is 1: 3, the mass ratio of cardanol and phenol is 5:95, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of saccharides and phenols. It was 0.5 mass%.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 6.0 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 401 g of unreacted phenol was distilled off at 180 ° C. under a reduced pressure of 11 kPa to obtain 1017 g of a phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[実施例2]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール1128g、カルダノール125g、酸化澱粉418g、濃硫酸8.4gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:3、カルダノールとフェノールの質量比率は10:90、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム6.4gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール400gを留去し1070gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Example 2]
1128 g of phenol, 125 g of cardanol, 418 g of oxidized starch and 8.4 g of concentrated sulfuric acid were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer and a condenser. The mass ratio of saccharides and phenols is 1: 3, the mass ratio of cardanol and phenol is 10:90, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of saccharides and phenols. It was 0.5 mass%.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 6.4 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 400 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 1070 g of a phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[実施例3]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール940g、カルダノール235g、酢酸澱粉294g、濃硫酸7.3gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:4、カルダノールとフェノールの質量比率は20:80、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム5.6gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール441gを留去し936gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Example 3]
940 g of phenol, 235 g of cardanol, 294 g of acetic acid starch, and 7.3 g of concentrated sulfuric acid were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer, and a condenser. In addition, the mass ratio of carbohydrates and phenols is 1: 4, the mass ratio of cardanol and phenol is 20:80, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of carbohydrates and phenols. It was 0.5 mass%.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 5.6 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 441 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 936 g of phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[実施例4]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール:752g、カルダノール:501g、ヒドロキシプロピル澱粉:501g、濃硫酸8.8gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:2.5、カルダノールとフェノールの質量比率は40:60、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム6.6gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール282gを留去し1328gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Example 4]
A 2 L three-necked flask equipped with a thermometer, a stirrer, and a condenser tube was charged with 752 g of phenol, 501 g of cardanol, 501 g of hydroxypropyl starch, and 8.8 g of concentrated sulfuric acid. The mass ratio of saccharides and phenols is 1: 2.5, the mass ratio of cardanol and phenol is 40:60, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of saccharides and phenols. It was 0.5 mass% with respect to.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 6.6 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 282 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 1328 g of a phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[実施例5]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール:1368g、カルダノール:72g、酢酸リン酸架橋澱粉:180g、濃硫酸8.1gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:8、カルダノールとフェノールの質量比率は5:95、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム6.1gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール987gを留去し530gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Example 5]
A 2 L three-necked flask equipped with a thermometer, a stirrer, and a cooling tube was charged with 1368 g of phenol, 72 g of cardanol, 180 g of acetic acid phosphoric acid crosslinked starch, and 8.1 g of concentrated sulfuric acid. The mass ratio of saccharides and phenols is 1: 8, the mass ratio of cardanol and phenol is 5:95, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of saccharides and phenols. It was 0.5 mass%.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 6.1 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 987 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 530 g of a phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[比較例1]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール1128g、酢酸澱粉376g、濃硫酸7.5gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:3、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して0.5質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム5.7gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール372gを留去し1025gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Comparative Example 1]
1128 g of phenol, 376 g of starch acetate and 7.5 g of concentrated sulfuric acid were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer and a condenser. The mass ratio of saccharides to phenols was 1: 3, and the amount of concentrated sulfuric acid added was 0.5% by mass with respect to the total of 100% by mass of the saccharides solids and phenols.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. 5.7 g of calcium hydroxide dissolved in a small amount of water was added for neutralization. Thereafter, 372 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 1025 g of a phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

[比較例2]
温度計、攪拌装置、冷却管を備えた内容量2Lの三口フラスコに、フェノール940g、カルダノール235g、木粉294g、濃硫酸43.8gを仕込んだ。なお、糖質類とフェノール類の質量比率は1:4、カルダノールとフェノールの質量比率は20:80、濃硫酸添加量は、糖質類の固形分とフェノール類の合計100質量%に対して2.9質量%であった。
次いで、昇温途中で生成する水を除きながら155℃まで加熱し、155℃を保ったまま、1時間攪拌した。少量の水に溶解させた水酸化カルシウム33.1gを添加して中和した。その後、180℃、11kPaの減圧下で未反応のフェノール479gを留去し882gのフェノール樹脂を得た。得られた樹脂の軟化点、ゲル化時間、流動性、植物由来率を表1に示す。
[Comparative Example 2]
Phenol 940 g, cardanol 235 g, wood flour 294 g and concentrated sulfuric acid 43.8 g were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer and a condenser. In addition, the mass ratio of carbohydrates and phenols is 1: 4, the mass ratio of cardanol and phenol is 20:80, and the amount of concentrated sulfuric acid added is 100% by mass in total of the solid content of carbohydrates and phenols. It was 2.9% by mass.
Subsequently, it heated to 155 degreeC, removing the water produced | generated in the middle of temperature rising, and stirred for 1 hour, keeping 155 degreeC. The mixture was neutralized by adding 33.1 g of calcium hydroxide dissolved in a small amount of water. Thereafter, 479 g of unreacted phenol was distilled off under reduced pressure at 180 ° C. and 11 kPa to obtain 882 g of phenol resin. Table 1 shows the softening point, gelation time, fluidity, and plant-derived rate of the obtained resin.

Figure 2011225712
Figure 2011225712

実施例1〜5のフェノール樹脂は、軟化点が低く、流動性が高く、植物由来率が高かった。これに対し、カルダノールを含まない比較例1や、木粉を適用した比較例2は軟化点が高く、流動性が低かった。   The phenol resins of Examples 1 to 5 had a low softening point, high fluidity, and a high plant-derived rate. On the other hand, the comparative example 1 which does not contain cardanol and the comparative example 2 which applied wood flour had a high softening point, and its fluidity | liquidity was low.

Claims (4)

糖質類として澱粉誘導体と、植物由来不飽和アルキルフェノール類及び化石燃料由来フェノール類を含有するフェノール類とを、酸性触媒存在下で反応させることを特徴とするバイオマスフェノール樹脂の製造方法。   A method for producing a biomass phenol resin, comprising reacting a starch derivative as a carbohydrate with a phenol containing a plant-derived unsaturated alkylphenol and a fossil fuel-derived phenol in the presence of an acidic catalyst. 澱粉誘導体100質量部に対して、フェノール類が200〜800質量部であることを特徴とする請求項1記載のバイオマスフェノール樹脂の製造方法。   The method for producing a biomass phenol resin according to claim 1, wherein phenols are 200 to 800 parts by mass with respect to 100 parts by mass of the starch derivative. 澱粉誘導体が、各種澱粉のエステル化及び/またはエーテル化及び/または酸化及び/または架橋した澱粉誘導体の単独または混合物であることを特徴とする請求項1または2に記載のバイオマスフェノール樹脂の製造方法。   The method for producing a biomass phenol resin according to claim 1 or 2, wherein the starch derivative is a single or mixture of starch derivatives obtained by esterification and / or etherification and / or oxidation and / or crosslinking of various starches. . フェノール類中の植物原料由来不飽和アルキルフェノール類と化石燃料由来フェノール類の質量比率が、植物原料由来不飽和アルキルフェノール類:化石燃料由来フェノール類が1:99〜50:50である請求項1乃至3のいずれか1項に記載のバイオマスフェノール樹脂の製造方法。   The plant material-derived unsaturated alkylphenols and the fossil fuel-derived phenols in the phenols have a mass ratio of 1:99 to 50:50 of plant material-derived unsaturated alkylphenols: fossil fuel-derived phenols. The manufacturing method of biomass phenol resin of any one of these.
JP2010096555A 2010-04-20 2010-04-20 Method for producing biomass phenolic resin Active JP5674334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096555A JP5674334B2 (en) 2010-04-20 2010-04-20 Method for producing biomass phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096555A JP5674334B2 (en) 2010-04-20 2010-04-20 Method for producing biomass phenolic resin

Publications (2)

Publication Number Publication Date
JP2011225712A true JP2011225712A (en) 2011-11-10
JP5674334B2 JP5674334B2 (en) 2015-02-25

Family

ID=45041492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096555A Active JP5674334B2 (en) 2010-04-20 2010-04-20 Method for producing biomass phenolic resin

Country Status (1)

Country Link
JP (1) JP5674334B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177524A (en) * 2012-02-29 2013-09-09 Sumitomo Bakelite Co Ltd Biomass derivative, biomass derivative composition and biomass derivative-cured product
CN103570901A (en) * 2013-10-08 2014-02-12 上海应用技术学院 Preparation method of environment-friendly phenol aldehyde resin
CN103601865A (en) * 2013-11-27 2014-02-26 山东圣泉化工股份有限公司 Starch modified phenolic resin and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228255A (en) * 1993-02-03 1994-08-16 Sumitomo Durez Co Ltd Production of biodegradable phenolic resin
JPH06248040A (en) * 1993-02-25 1994-09-06 Sumitomo Durez Co Ltd Production of biodegradable phenol resin
JP2001123012A (en) * 1999-10-27 2001-05-08 Nobuo Shiraishi Composition containing phenol resin and production method of its cured molded article
JP2002020731A (en) * 2000-07-06 2002-01-23 Akebono Brake Ind Co Ltd Friction material
JP2004292634A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Biodegradable resin composition and method for producing the same
JP2009132774A (en) * 2007-11-29 2009-06-18 Showa Highpolymer Co Ltd Cashew novolac resin, its preparation method and curing agent for epoxy resin
WO2011132579A1 (en) * 2010-04-20 2011-10-27 群栄化学工業株式会社 Biomass phenol resin production method and thermosetting material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228255A (en) * 1993-02-03 1994-08-16 Sumitomo Durez Co Ltd Production of biodegradable phenolic resin
JPH06248040A (en) * 1993-02-25 1994-09-06 Sumitomo Durez Co Ltd Production of biodegradable phenol resin
JP2001123012A (en) * 1999-10-27 2001-05-08 Nobuo Shiraishi Composition containing phenol resin and production method of its cured molded article
JP2002020731A (en) * 2000-07-06 2002-01-23 Akebono Brake Ind Co Ltd Friction material
JP2004292634A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Biodegradable resin composition and method for producing the same
JP2009132774A (en) * 2007-11-29 2009-06-18 Showa Highpolymer Co Ltd Cashew novolac resin, its preparation method and curing agent for epoxy resin
WO2011132579A1 (en) * 2010-04-20 2011-10-27 群栄化学工業株式会社 Biomass phenol resin production method and thermosetting material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177524A (en) * 2012-02-29 2013-09-09 Sumitomo Bakelite Co Ltd Biomass derivative, biomass derivative composition and biomass derivative-cured product
CN103570901A (en) * 2013-10-08 2014-02-12 上海应用技术学院 Preparation method of environment-friendly phenol aldehyde resin
CN103601865A (en) * 2013-11-27 2014-02-26 山东圣泉化工股份有限公司 Starch modified phenolic resin and application thereof

Also Published As

Publication number Publication date
JP5674334B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
US10266633B2 (en) Formaldehyde-free phenolic resins, downstream products, their synthesis and use
JP2023024831A (en) Modified lignin manufacturing method, modified lignin, and modified lignin-containing resin composition material
CN102558473A (en) Cashew nut oil-modified phenolic resin and preparation method thereof
JP5898525B2 (en) Method for producing resin composition for friction material
JP5674334B2 (en) Method for producing biomass phenolic resin
JP5731758B2 (en) Biomass phenol resin, production method thereof, thermosetting material
CN1155856A (en) Binder composition for mold production and process for producing mold
JP2023024830A (en) Methods for producing modified lignin and modified polyphenol, and resin composition material using modified lignin
JP2018118298A (en) Resin coated sand and method for producing the same
Sarika et al. Progress in Bio‐Based Phenolic Foams: Synthesis, Properties, and Applications
JP2021123716A (en) Novolac phenolic resin and resin composition
CN103554400A (en) Liquefaction method of lignin for preparing thermoplastic phenolic resin
Adhikari et al. Production of novolac resin after partial substitution of phenol from bio-oil
CN100497422C (en) Lignin modified phenol furfural resin for moulding material and preparation method thereof
CN104530639A (en) Lignin-modified phenolic molding plastic and preparation method thereof
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JPWO2018190171A1 (en) Friction material
JP2020050815A (en) Production method of resin material comprising phenol-modified lignin resin, and production method of structure body by using the same
WO2018139074A1 (en) Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
JP5478048B2 (en) Phenolic resin
Zhang Production and applications of formaldehyde-free phenolic resins using 5-hydroxymethylfurfural derived from glucose in-situ
JPWO2020162621A1 (en) Method for producing polyphenol derivative, polyphenol derivative, and resin composition material containing polyphenol derivative
CN113583199A (en) Preparation method of furan resin
Zuo et al. Processing of biomass in deep eutectic solvents
KR102678221B1 (en) Novolac phenolic resin, method for synthesizing the phenolic resin and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140401

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250