JPH06248040A - Production of biodegradable phenol resin - Google Patents

Production of biodegradable phenol resin

Info

Publication number
JPH06248040A
JPH06248040A JP3663893A JP3663893A JPH06248040A JP H06248040 A JPH06248040 A JP H06248040A JP 3663893 A JP3663893 A JP 3663893A JP 3663893 A JP3663893 A JP 3663893A JP H06248040 A JPH06248040 A JP H06248040A
Authority
JP
Japan
Prior art keywords
parts
sugars
starch
sugar
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3663893A
Other languages
Japanese (ja)
Inventor
Takuya Tochimoto
卓哉 栃本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP3663893A priority Critical patent/JPH06248040A/en
Publication of JPH06248040A publication Critical patent/JPH06248040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To obtain the subject resin, excellent in heat resistance and environmental pollution resistance and useful as moldings, etc., by reacting phenols with a mixture of sugars, etc., in a specific proportion in the presence of an acidic catalyst. CONSTITUTION:This phenol resin is obtained by reacting (A) 100 pts.wt. phenols with (B) 20-200 pts.wt. mixture of (i) sugars such as white sugar with (ii) starches such as corn starch [at preferably (10/90) to (90/10) mixing weight ratio of the components (i)/(ii)] in the presence of an acidic catalyst such as p-toluenesulfonic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性を有する熱硬
化性樹脂の製造方法に関するものである。更に詳しく
は、生分解性を付与することにより、使用後は速やかに
分解され、環境に悪影響を及ぼさない熱硬化性樹脂の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermosetting resin having biodegradability. More specifically, the present invention relates to a method for producing a thermosetting resin which is rapidly decomposed after use by imparting biodegradability and does not adversely affect the environment.

【0002】[0002]

【従来の技術】近年、産業廃棄物による環境汚染が深刻
な問題となっている。従来のこの様な廃棄物は、合成樹
脂が主体であるが、これらは、微生物により分解される
ことはほとんどなく、土壌中や海水中、水中で半永久的
に残存している。このことが環境汚染を拡大し、問題を
より深刻にしている。これらの問題を解決するために、
今日、生分解性プラスチックが注目を集めている。しか
しながら、これまでに開発されている生分解性プラスチ
ックは熱可塑性であるために耐熱性が要求される分野で
はその使用が制限されていた。
2. Description of the Related Art In recent years, environmental pollution due to industrial waste has become a serious problem. Such conventional wastes are mainly composed of synthetic resins, but these are hardly decomposed by microorganisms and remain semipermanently in soil, seawater, or water. This has increased environmental pollution and made the problem more serious. To solve these problems,
Biodegradable plastics are attracting attention today. However, the biodegradable plastics that have been developed so far are thermoplastic, and thus their use has been limited in fields requiring heat resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、耐熱性の要
求される分野においても、生分解性を有する高分子材料
の利用を可能にすべく検討を行い完成されたものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been completed by studying to enable the use of a biodegradable polymer material even in the field where heat resistance is required.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、フ
ェノール類と砂糖類及び澱粉類の混合物を、フェノール
類100重量部に対し、砂糖類及び澱粉類の混合物を2
0〜200重量部の割合で、酸性触媒の存在下、反応さ
せることを特徴とする生分解性を有するフェノール樹脂
の製造方法に関するものである。
That is, according to the present invention, a mixture of phenols and sugars and starches is added to 2 parts of the mixture of sugars and starches per 100 parts by weight of phenols.
The present invention relates to a method for producing a phenol resin having biodegradability, which comprises reacting in the presence of an acidic catalyst at a ratio of 0 to 200 parts by weight.

【0005】[0005]

【作用】本発明で使用するフェノール類としては、フェ
ノール、クレゾール、キシレノール、カテコール、レゾ
ルシン、アルキルフェノール類、ビスフェノール類及び
これらの混合物が挙げられる。さらに、ハイドロキノ
ン、アニリン、尿素、メラミン、カシューナットシェル
オイルなどを物性に影響を及ぼさない範囲で使用するこ
とができる。砂糖類は、一般に主成分は、ショ糖である
が、カンショ糖とテンサイ糖に分類できる。また、製法
工程により含ミツ糖と分ミツ糖、精製程度により粗糖、
精製糖、色相により白砂糖、赤砂糖、黒砂糖、あるいは
加工形態により粉糖、角砂糖、氷砂糖などに分類され
る。これらはいずれも本発明に使用可能である。
The phenols used in the present invention include phenol, cresol, xylenol, catechol, resorcin, alkylphenols, bisphenols and mixtures thereof. Furthermore, hydroquinone, aniline, urea, melamine, cashew nut shell oil and the like can be used within a range that does not affect the physical properties. Sugars, whose main component is generally sucrose, can be classified into cane sugar and sugar beet sugar. In addition, depending on the manufacturing process, sucrose containing sugar and sucrose, and depending on the degree of purification, raw sugar
It is classified into refined sugar, white sugar, brown sugar and brown sugar depending on the hue, or powdered sugar, lump sugar and rock sugar depending on the processing form. Any of these can be used in the present invention.

【0006】澱粉は、植物の最も重要な貯蔵栄養素とし
て細胞内に粒状に存在する、α1−4結合のD−グルカ
ンを主鎖とする多糖である。日中に炭酸ガスと水とから
光合成された澱粉は夜間に可溶性の糖に加水分解してそ
れぞれの貯蔵場所に運ばれそこで粒状の貯蔵澱粉に変え
られるので、種子、果実、根、根茎に多く存在する。澱
粉粒は、原料植物(ジャガイモ、トウモロコシ、小麦な
ど)を冷水と粉砕し、固形物を除去した溶液から静置沈
降させて得ることができる。澱粉は、分子が規則正しく
配列して成長した一種の結晶とみなされる粒子として存
在する。顕微鏡で観察すると原料によって形や大きさを
異にし、凹みを持つもの、それを中心に層状構造をとる
ものなどがある。澱粉類のなかで大きいものとしては、
ジャガイモの澱粉があり、直径 0.1mm前後であり、小
さいものとしては米の澱粉粒などであり、数μmであ
る。澱粉は吸湿性が強く風乾状態で20%の水分を含
み、湿った空気中では35%の水分を吸収する。また、
冷水には不溶であるが、熱水中ではミセルが崩れて分子
間隔が拡がり、ついには溶けて、青みがかったゾルを生
成する。濃度が高いときは、冷えると固まり、白みがか
ったゲルになる。澱粉をそのまま加熱すると、まず水を
失い、約200℃で一部分はデキストリンに変わる。希
薄な無機酸で長時間加熱すると中間生成物として可溶性
澱粉、デキストリン、マルトースを経て、ほぼ定量的に
D−グルコースに加水分解される。
[0006] Starch is a polysaccharide having an α1-4 linked D-glucan as a main chain, which is present in granular form in cells as the most important storage nutrient of plants. Starch photosynthesized from carbon dioxide and water during the daytime is hydrolyzed into soluble sugars at night and is transported to each storage location where it can be converted into granular storage starch. Exists. Starch granules can be obtained by crushing a raw material plant (potato, corn, wheat, etc.) with cold water and allowing it to settle from a solution from which solids have been removed. Starch exists as particles, which are regarded as a kind of crystals in which molecules are regularly arranged and grown. When observed under a microscope, the shape and size differ depending on the raw material, and there are those that have a depression, and those that have a layered structure centered on it. Among the large starches,
There is potato starch, the diameter of which is around 0.1 mm, and the smaller one is rice starch granules, which are several μm. Starch is highly hygroscopic and contains 20% moisture in the air-dried state, and absorbs 35% moisture in moist air. Also,
It is insoluble in cold water, but in hot water the micelles collapse and the molecular spacing expands until it finally dissolves to form a bluish sol. At high concentrations, it solidifies on cooling and becomes a whitish gel. When starch is heated as it is, it loses water first, and at about 200 ° C, part of it is converted to dextrin. When heated with a dilute inorganic acid for a long period of time, it is hydrolyzed into D-glucose almost quantitatively through an intermediate product such as soluble starch, dextrin and maltose.

【0007】澱粉粒を構成する主成分は、α1−4結合
のD−グルカンであるアミロースと、これにα1−6結
合の側鎖が加わったアミロペクチンである。両者の割合
は原料によって異なり、一般に、アミロペクチン含量は
70〜80%である。しかしながら、ある種の穀類では
98%に達するものもあり、反対に30%以下のものも
ある。澱粉粒を70℃の温水で膨潤させるとアミロース
だけが溶解抽出される。アミロースは、250ないし3
00個のD−グルコピラノース単位がα1−4グルコシ
ド結合した直鎖状分子からなり、これが螺旋状に巻く傾
向がある。アミロペクチンにα−アミラーゼを長時間作
用させるとマルトトリオース、マルトテトラオースとと
もに、イソマルトースを生成する。
The main constituents of the starch granules are amylose, which is α1-4 linked D-glucan, and amylopectin, to which an α1-6 linked side chain is added. The ratio of the two differs depending on the raw material, and generally the amylopectin content is 70 to 80%. However, some cereals can reach up to 98% and, conversely, less than 30%. When the starch granules are swollen with hot water at 70 ° C., only amylose is dissolved and extracted. Amylose is 250 to 3
00 D-glucopyranose units consisted of α1-4 glucoside-bonded linear molecules, which tend to spiral. When α-amylase is allowed to act on amylopectin for a long time, it produces isomaltose together with maltotriose and maltotetraose.

【0008】このように種々の澱粉類が存在するが、す
べて本発明に使用可能である。砂糖類及び澱粉類の混合
物と併用して、通常のノボラックを合成する際に使用す
るホルムアルデヒド等のアルデヒド類、ケトン類などを
物性に影響を及ぼさない範囲で使用することも可能であ
る。しかしながら、ホルムアルデヒド等を使用した場
合、機械的特性、耐熱性は向上するが、生分解性が低下
する傾向が現われる。フェノール類と砂糖類及び澱粉類
を酸性触媒下で加熱すると、反応し樹脂を生成する。し
かし、中性又はアルカリ性触媒下ではほとんど反応しな
い。これは、酸により砂糖類及び澱粉類が加水分解され
るためである。砂糖類は加水分解により、ブドウ糖と果
糖を生成する。また、澱粉類は加水分解により最終的に
はその構造単位であるグルコースにまで分解されるが、
その分解条件によって、各種の中間分解物との混合物が
できる。これら砂糖類と澱粉類からの分解物が、分子中
にアルデヒド及びカルボニル基を有するためにフェノー
ル類と反応するものである。
As described above, various starches exist, but they can all be used in the present invention. In combination with a mixture of sugars and starches, it is possible to use aldehydes such as formaldehyde and ketones, which are used when synthesizing ordinary novolaks, within a range that does not affect the physical properties. However, when formaldehyde or the like is used, the mechanical properties and heat resistance are improved, but the biodegradability tends to decrease. When phenols and sugars and starches are heated under an acidic catalyst, they react with each other to form a resin. However, it hardly reacts under a neutral or alkaline catalyst. This is because sugars and starches are hydrolyzed by the acid. Sugars are hydrolyzed to produce glucose and fructose. Also, starch is decomposed into glucose, which is its structural unit, by hydrolysis,
Depending on the decomposition conditions, a mixture with various intermediate decomposition products is formed. The decomposition products from these sugars and starches react with phenols because they have aldehyde and carbonyl groups in the molecule.

【0009】フェノール類と砂糖類及び澱粉類の反応に
用いられる酸性触媒としては、硫酸、塩酸、硝酸、燐酸
などの無機酸、又はパラトルエンスルホン酸、ベンゼン
スルホン酸、蓚酸、マレイン酸、蟻酸、酢酸、琥珀酸な
どの有機酸が使用できる。フェノール類と砂糖類及び澱
粉類の混合物を酸性触媒下で反応させた後、真空下で脱
水すると、赤褐色ないし黒褐色のノボラック型フェノー
ル樹脂が得られる。この樹脂は、フェノール類とアルデ
ヒド類を酸性触媒下で反応して得られる通常のノボラッ
ク型フェノール樹脂と同様に、ヘキサメチレンテトラミ
ン、パラホルムアルデヒド等のホルムアルデヒド供与体
を添加し、加熱すると化学的3次元架橋構造が生成し硬
化する。フェノール類と砂糖類が酸性触媒下で反応する
ことは、特開昭58-55146号公報ですでに報告されてい
る。また、フェノール類と澱粉類との反応も、米国特許
第1,753,030号明細書や米国特許第1,923,321号明細書等
で報告されている。しかしながら、これらの特許には生
分解性に関する知見は報告されていない。
The acidic catalyst used in the reaction of phenols with sugars and starches includes inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, or paratoluenesulfonic acid, benzenesulfonic acid, oxalic acid, maleic acid, formic acid, Organic acids such as acetic acid and succinic acid can be used. A mixture of phenols, sugars and starches is reacted under an acidic catalyst and then dehydrated under vacuum to obtain a reddish brown to blackish brown novolac type phenolic resin. This resin, like a normal novolac type phenol resin obtained by reacting phenols and aldehydes under an acidic catalyst, is added with a formaldehyde donor such as hexamethylenetetramine and paraformaldehyde, and chemically three-dimensionally heated. A crosslinked structure is formed and cured. It has already been reported in JP-A-58-55146 that the phenols and sugars react with each other under an acidic catalyst. The reaction between phenols and starches has also been reported in US Pat. No. 1,753,030 and US Pat. No. 1,923,321. However, there is no report on biodegradability in these patents.

【0010】フェノール類と砂糖類及び澱粉類の混合物
の仕込み割合がフェノール類100重量部に対し、砂糖
類及び澱粉類の混合物が20〜200重量部であれば、
本発明を実施するための良好な樹脂が得られる。この割
合がフェノール類100重量部に対して、砂糖類及び澱
粉類の混合物が20重量部未満、あるいは反対に、20
0重量部以上では、生分解性には影響はないが、機械的
特性及び耐熱性の良好な樹脂が得られにくくなる傾向が
ある。フェノール類と反応させる砂糖類及び澱粉類の重
量割合は10:90〜90:10が好ましく、特に好ま
しくは40:60〜60:40である。澱粉類の重量割
合が90%を越えると得られる樹脂の生分解性がやや低
下する傾向が現われる。反対に、砂糖類の割合が90%
を越えると得られる樹脂の機械物性がやや低下する傾向
が現われる。
If the charge ratio of the mixture of phenols and sugars and starches is 20 to 200 parts by weight of the mixture of sugars and starches to 100 parts by weight of phenols,
Good resins for practicing the invention are obtained. This ratio is less than 20 parts by weight of a mixture of sugars and starch with respect to 100 parts by weight of phenols, or vice versa.
When it is 0 part by weight or more, biodegradability is not affected, but a resin having good mechanical properties and heat resistance tends to be difficult to obtain. The weight ratio of sugars and starches to be reacted with phenols is preferably 10:90 to 90:10, and particularly preferably 40:60 to 60:40. If the weight ratio of starch exceeds 90%, the biodegradability of the obtained resin tends to be slightly lowered. On the contrary, the proportion of sugar is 90%
If it exceeds, mechanical properties of the obtained resin tend to be slightly deteriorated.

【0011】[0011]

【実施例】以下、本発明を実施例において説明するが、
本発明は、これら実施例により限定されるものではな
い。また、以下の実施例中に記載されている「部」及び
「%」は、すべて「重量部」、「重量%」を示す。 《実施例1》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール100部、砂糖30部、澱粉30部、パラ
トルエンスルホン酸5部を仕込んだ後、徐々に昇温し
た。内温130℃において、180分間生成する水を留
去しながら反応を行った。次いで、内温を180℃まで
昇温し反応を終了した。ここへ、メチルイソブチルケト
ン200部を加え希釈した後、水洗を行い、触媒を除去
した。これを常圧で130℃まで脱水反応を行い、次い
で180℃まで真空下で脱水反応を行い、生分解性フェ
ノール樹脂117部を得た。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples. Moreover, all "parts" and "%" described in the following examples show "parts by weight" and "% by weight". Example 1 A reaction vessel equipped with a condenser and a stirrer was prepared, and 100 parts of phenol, 30 parts of sugar, 30 parts of starch, and 5 parts of paratoluenesulfonic acid were charged therein, and the temperature was gradually raised. The reaction was carried out at an internal temperature of 130 ° C. while distilling off the produced water for 180 minutes. Then, the internal temperature was raised to 180 ° C. to complete the reaction. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This was dehydrated to 130 ° C. under normal pressure and then to 180 ° C. under vacuum to obtain 117 parts of biodegradable phenol resin.

【0012】《実施例2》冷却器と撹拌機付き反応釜を
準備し、これにフェノール100部、砂糖30部、澱粉
20部、パラトルエンスルホン酸5部を仕込んだ後、徐
々に昇温した。内温130℃において、180分間、生
成する水を留去しながら反応を行った。次いで、内温を
180℃まで昇温し反応を終了した。ここへ、メチルイ
ソブチルケトン200部を加え希釈した後、水洗を行
い、触媒を除去した。これを常圧で130℃まで脱水反
応を行い、次いで180℃まで真空下で脱水反応を行
い、生分解性フェノール樹脂88部を得た。 《実施例3》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール100部、砂糖50部、澱粉50部、パラ
トルエンスルホン酸5部を仕込んだ後、徐々に昇温し
た。内温130℃において、180分間、生成する水を
留去しながら反応を行った。次いで、内温を180℃ま
で昇温し反応を終了した。ここへ、メチルイソブチルケ
トン200部を加え希釈した後、水洗を行い、触媒を除
去した。これを常圧で130℃まで脱水反応を行い、次
いで180℃まで真空下で脱水反応を行い、生分解性フ
ェノール樹脂135部を得た。
Example 2 A reaction vessel equipped with a condenser and a stirrer was prepared, charged with 100 parts of phenol, 30 parts of sugar, 20 parts of starch and 5 parts of paratoluenesulfonic acid, and then gradually heated. . The reaction was carried out at an internal temperature of 130 ° C. for 180 minutes while distilling off the produced water. Then, the internal temperature was raised to 180 ° C. to complete the reaction. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This was dehydrated to 130 ° C. under normal pressure, and then dehydrated to 180 ° C. under vacuum to obtain 88 parts of biodegradable phenol resin. Example 3 A reaction vessel equipped with a condenser and a stirrer was prepared, charged with 100 parts of phenol, 50 parts of sugar, 50 parts of starch, and 5 parts of paratoluenesulfonic acid, and then gradually heated. The reaction was carried out at an internal temperature of 130 ° C. for 180 minutes while distilling off the produced water. Then, the internal temperature was raised to 180 ° C. to complete the reaction. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This was dehydrated to 130 ° C. under normal pressure and then to 180 ° C. under vacuum to obtain 135 parts of biodegradable phenol resin.

【0013】《比較例1》冷却器と撹拌機付き反応釜を
準備し、これにフェノール100部、及び蓚酸10gを
仕込んだ後、徐々に昇温した。内温が96℃に達してか
ら37%ホルマリン69部を逐次添加し、120分間反
応し、ついで真空下で脱水反応を行いノボラック型フェ
ノール樹脂99部を得た。 《比較例2》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール100部、澱粉80部、パラトルエンスル
ホン酸5部を仕込んだ後、徐々に昇温した。内温130
℃において、180分間、生成する水を留去しながら反
応を行った。次いで、内温を180℃まで昇温し反応を
終了した。ここへ、メチルイソブチルケトン200部を
加え希釈した後、水洗を行い、触媒を除去した。これを
常圧で130℃まで脱水反応を行い、次いで180℃ま
で真空下で脱水反応を行い、フェノール樹脂138部を
得た。
Comparative Example 1 A reaction vessel equipped with a condenser and a stirrer was prepared, 100 parts of phenol and 10 g of oxalic acid were charged therein, and the temperature was gradually raised. After the internal temperature reached 96 ° C., 69 parts of 37% formalin was sequentially added and reacted for 120 minutes, followed by dehydration reaction under vacuum to obtain 99 parts of novolac type phenol resin. Comparative Example 2 A reaction kettle equipped with a condenser and a stirrer was prepared, 100 parts of phenol, 80 parts of starch, and 5 parts of paratoluenesulfonic acid were charged therein, and then the temperature was gradually raised. Inner temperature 130
The reaction was carried out at 180 ° C for 180 minutes while distilling off the produced water. Then, the internal temperature was raised to 180 ° C. to complete the reaction. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This was dehydrated to 130 ° C. under normal pressure and then to 180 ° C. under vacuum to obtain 138 parts of a phenol resin.

【0014】《比較例3》冷却器と撹拌機付き反応釜を
準備し、これにフェノール100部、砂糖5部、澱粉5
部、パラトルエンスルホン酸5部を仕込んだ後、徐々に
昇温した。内温130℃において、180分間、生成す
る水を留去しながら反応を行った。この時点での収量は
96部であり、未反応のフェノールは75%であった。
これに37%ホルマリン37.1部を逐次添加し、さら
に96℃にて120分間反応を行った。ここへ、メチル
イソブチルケトン200部を加え希釈した後、水洗を行
い、触媒を除去した。これを常圧で130℃まで脱水反
応を行い、次いで180℃まで真空下で脱水反応を行
い、フェノール樹脂98部を得た。 《比較例4》冷却器と撹拌機付き反応釜を準備し、これ
にフェノール100部、砂糖110部、澱粉110部、
パラトルエンスルホン酸5部を仕込んだ後、徐々に昇温
した。内温130℃において、180分間、生成する水
を留去しながら反応を行った。次いで、内温を180℃
まで昇温し反応を終了した。ここへ、メチルイソブチル
ケトン200部を加え希釈した後、水洗を行い、触媒を
除去した。これを常圧で130℃まで脱水反応を行い、
次いで180℃まで真空下で脱水反応を行い、生分解性
フェノール樹脂198部を得た。
Comparative Example 3 A reaction kettle equipped with a condenser and a stirrer was prepared, and 100 parts of phenol, 5 parts of sugar and 5 parts of starch were added thereto.
And 5 parts of paratoluenesulfonic acid were charged, and the temperature was gradually raised. The reaction was carried out at an internal temperature of 130 ° C. for 180 minutes while distilling off the produced water. The yield at this point was 96 parts and the unreacted phenol was 75%.
37.1 parts of 37% formalin was sequentially added thereto, and further reacted at 96 ° C. for 120 minutes. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This was dehydrated to 130 ° C. under normal pressure and then to 180 ° C. under vacuum to obtain 98 parts of a phenol resin. << Comparative Example 4 >> A reaction vessel equipped with a condenser and a stirrer was prepared, and 100 parts of phenol, 110 parts of sugar, 110 parts of starch,
After charging 5 parts of paratoluenesulfonic acid, the temperature was gradually raised. The reaction was carried out at an internal temperature of 130 ° C. for 180 minutes while distilling off the produced water. Then, the internal temperature is 180 ℃
The temperature was raised to and the reaction was completed. To this, 200 parts of methyl isobutyl ketone was added and diluted, followed by washing with water to remove the catalyst. This is dehydrated to 130 ℃ under normal pressure,
Then, dehydration reaction was performed under vacuum to 180 ° C. to obtain 198 parts of biodegradable phenol resin.

【0015】以上、実施例1、2、3及び比較例1、
2、3、4で得られた樹脂を微粉末に粉砕し、これにヘ
キサメチレンテトラミンを樹脂100部に対して10部
加え、80℃/1時間+110℃/1時間+150℃/
1時間で硬化を行った。得られた硬化物を土中に埋設
し、6ヵ月後の状態を観察し、重量減少率を求めた。ま
た、得られた硬化物の熱分解開始温度を測定した。結果
を表1に示す。比較例1は砂糖類及び澱粉類を用いてい
ないため、生分解性が得られない。比較例2は、砂糖を
用いていないために生分解性が低下したものである。比
較例3は、フェノールに対する砂糖及び澱粉の混合物の
割合が低く、また、未反応フェノールに対してホルムア
ルデヒドを加えているために生分解性が得られない。ま
た、比較例4は、フェノールに対する砂糖及び澱粉の混
合物の割合が高すぎるために、耐熱性が低下する傾向が
現われた。なお、実施例1、2、3の樹脂とも空気中に
6か月放置しても何の変化も見られなかった。また、実
施例1、2、3の樹脂とも300℃以上の熱分解開始温
度を持ち、充分な耐熱性を有している。
As described above, Examples 1, 2, 3 and Comparative Example 1,
The resin obtained in 2, 3, and 4 was pulverized into a fine powder, and 10 parts of hexamethylenetetramine was added to 100 parts of the resin, and 80 ° C / 1 hour + 110 ° C / 1 hour + 150 ° C /
Curing was carried out in 1 hour. The obtained cured product was buried in soil and the state after 6 months was observed to determine the weight reduction rate. Moreover, the thermal decomposition start temperature of the obtained cured product was measured. The results are shown in Table 1. Comparative Example 1 does not use biodegradability because sugars and starches are not used. Comparative Example 2 has a reduced biodegradability because it does not use sugar. In Comparative Example 3, since the ratio of the mixture of sugar and starch to phenol is low and formaldehyde is added to unreacted phenol, biodegradability cannot be obtained. Further, in Comparative Example 4, there was a tendency that the heat resistance was lowered because the ratio of the mixture of sugar and starch to phenol was too high. In addition, even if the resin of Examples 1, 2, and 3 was left in the air for 6 months, no change was observed. In addition, the resins of Examples 1, 2, and 3 have a thermal decomposition starting temperature of 300 ° C. or higher and have sufficient heat resistance.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明により、生分解性を有し、しかも
耐熱性に優れた、熱硬化型生分解性樹脂を得ることが可
能となった。本発明で得られた生分解性フェノール樹脂
は、これまでの熱可塑性の生分解性プラスチックでは使
用できない、耐熱性を要する分野での使用が可能であ
り、生分解性樹脂の用途を拡大できるものである。
According to the present invention, a thermosetting biodegradable resin having biodegradability and excellent heat resistance can be obtained. The biodegradable phenolic resin obtained in the present invention can be used in a field requiring heat resistance, which cannot be used in conventional thermoplastic biodegradable plastics, and can be used in a wide range of applications of biodegradable resins. Is.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類と砂糖類及び澱粉類の混合
物とを、フェノール類100重量部に対し砂糖類及び澱
粉類の混合物を20〜200重量部の割合で、酸性触媒
の存在下、反応させることを特徴とする生分解性を有す
るフェノール樹脂の製造方法。
1. A reaction between a phenol and a mixture of sugars and starch at a ratio of 20 to 200 parts by weight of a mixture of sugar and starch to 100 parts by weight of phenol in the presence of an acidic catalyst. A method for producing a phenol resin having biodegradability, which comprises:
【請求項2】 砂糖類及び澱粉類の混合割合(重量)が
10:90〜90:10である請求項1記載の生分解性
を有するフェノール樹脂の製造方法。
2. The method for producing a phenol resin having biodegradability according to claim 1, wherein the mixing ratio (weight) of sugars and starch is 10:90 to 90:10.
JP3663893A 1993-02-25 1993-02-25 Production of biodegradable phenol resin Pending JPH06248040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3663893A JPH06248040A (en) 1993-02-25 1993-02-25 Production of biodegradable phenol resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3663893A JPH06248040A (en) 1993-02-25 1993-02-25 Production of biodegradable phenol resin

Publications (1)

Publication Number Publication Date
JPH06248040A true JPH06248040A (en) 1994-09-06

Family

ID=12475387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3663893A Pending JPH06248040A (en) 1993-02-25 1993-02-25 Production of biodegradable phenol resin

Country Status (1)

Country Link
JP (1) JPH06248040A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057339A1 (en) 2007-11-02 2009-05-07 Nuclear Engineering, Ltd. Biodegradable composition, processed biodegradable article such as food container and method of producing the same
JP2010090297A (en) * 2008-10-09 2010-04-22 Gun Ei Chem Ind Co Ltd Phenol resin
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057339A1 (en) 2007-11-02 2009-05-07 Nuclear Engineering, Ltd. Biodegradable composition, processed biodegradable article such as food container and method of producing the same
US7955428B2 (en) 2007-11-02 2011-06-07 Nuclear Engineering, Ltd. Biodegradable composition, processed biodegradable article such as food container, and method of producing the same
JP2010090297A (en) * 2008-10-09 2010-04-22 Gun Ei Chem Ind Co Ltd Phenol resin
JP2011132339A (en) * 2009-12-24 2011-07-07 Gun Ei Chem Ind Co Ltd Thermosetting molding material and molded product
JP2011225712A (en) * 2010-04-20 2011-11-10 Gun Ei Chem Ind Co Ltd Method for producing biomass phenol resin

Similar Documents

Publication Publication Date Title
SU784787A3 (en) Method of preparing carbon-phenol resin
CA2666927C (en) Method of stabilizing resorcinol resins and gel compositions made therefrom
US4524164A (en) Thermosetting adhesive resins
US10906843B2 (en) Extrusion granulated urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer and preparation method thereof
US1886353A (en) Synthetic resin and method of making same
Jiao et al. Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/urea-formaldehyde polymers
BR112020002458A2 (en) production method of modified lignin, modified lignin, and resin composition material including modified lignin
WO1990007541A1 (en) Thermosettable resin intermediate
US3326665A (en) Process for the manufacture of granular urea-aldehyde fertilizer
CN102712743A (en) Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
JPH06248040A (en) Production of biodegradable phenol resin
EP2304058A1 (en) Decrystallization of cellulosic biomass with an acid mixture comprising phosphoric and sulfuric acids
CN103554400A (en) Liquefaction method of lignin for preparing thermoplastic phenolic resin
US4048126A (en) Process for producing carbohydrate-phenol condensation resins
CN106496339B (en) One kettle way prepares low viscosity, high-intensitive hydroxypropyl starch ether
JPS6348320A (en) Production of particulate phenolic resin
JPH06228255A (en) Production of biodegradable phenolic resin
JPH06248041A (en) Production of biodegradable phenol resin
JPS6348319A (en) Production of graphite/phenolic resin particle
US5034500A (en) Process for the manufacture of urea-formaldehyde resins
Kariuki et al. Characterization of composite material from the copolymerized polyphenolic matrix with treated cassava peels starch
US3391117A (en) Copolymers of phenol, hcho, 2, 7-dihy-droxynaphthalene and koh
CN110256586B (en) Degradable epoxy modified starch and preparation method thereof
CN104177574A (en) Phenol aldehyde resin and preparation method thereof, and automobile filter paper
JP5674334B2 (en) Method for producing biomass phenolic resin