WO2018139074A1 - Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin - Google Patents

Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin Download PDF

Info

Publication number
WO2018139074A1
WO2018139074A1 PCT/JP2017/044286 JP2017044286W WO2018139074A1 WO 2018139074 A1 WO2018139074 A1 WO 2018139074A1 JP 2017044286 W JP2017044286 W JP 2017044286W WO 2018139074 A1 WO2018139074 A1 WO 2018139074A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
mass
acid
parts
novolac type
Prior art date
Application number
PCT/JP2017/044286
Other languages
French (fr)
Japanese (ja)
Inventor
康典 大橋
霖 周
麻衣子 山本
勇希 谷口
木村 肇
大塚 恵子
松本 明博
Original Assignee
ハリマ化成株式会社
地方独立行政法人大阪産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社, 地方独立行政法人大阪産業技術研究所 filed Critical ハリマ化成株式会社
Publication of WO2018139074A1 publication Critical patent/WO2018139074A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/24Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates

Definitions

  • the present invention relates to a novolac type phenol resin, a resin composition, and a method for producing a novolac type phenol resin. More specifically, the present invention relates to a novolac type phenol resin, a resin composition containing the novolac type phenol resin, and the novolac type phenol. The present invention relates to a method for producing a resin.
  • thermosetting resins have been widely used in various industrial fields such as electric parts, automobile parts, building materials, and daily necessities.
  • novolac type phenolic resins are widely used as molding materials because they are excellent in electrical insulation, heat resistance, mechanical properties, moldability, and the like.
  • the novolac type phenol resin can be obtained by reacting phenols and aldehydes in the presence of an acid catalyst.
  • an acid catalyst On the other hand, in recent years, from the viewpoint of protecting the global environment, etc., it has been required to reduce the amount of petroleum resources used, and the use of plant-derived raw materials instead of petroleum resources has been studied.
  • lignin As such a plant-derived raw material, lignin has attracted attention. Specifically, as a novolac type phenol resin obtained using lignin, for example, lignin, phenol or a phenol derivative, and aldehydes, A lignin-modified novolac type phenolic resin obtained by reacting in the presence of an organic acid has been proposed. (See Patent Document 1 below).
  • Patent Document 1 describes that as lignin, craft lignin obtained from raw materials such as wood and grassy materials, lignin sulfonic acid and the like can be used without limitation.
  • lignin sulfonic acid and the like can be used.
  • the reactivity with phenol and aldehydes is inferior, and the productivity (resin yield, production rate, etc.) of the lignin-modified novolac type phenol resin is inferior.
  • An object of the present invention is to provide a novolak type phenol resin excellent in productivity, a resin composition containing the novolac type phenol resin, and a method for producing the novolac type phenol resin.
  • the present invention [1] is a reaction product of a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde under an acid catalyst, and the content of the aliphatic hydroxyl group in the lignin is:
  • a novolac-type phenol resin is contained in an amount of 0.5% by mass or more and 7.0% by mass or less based on the total amount of the lignin.
  • the present invention [2] includes the novolak type phenol resin according to the above [1], which is a reaction product of a lignin-phenol composition containing the reaction product of the lignin and the phenols and the aldehyde. It is out.
  • the present invention includes the novolac phenol resin according to the above [1] or [2], wherein the lignin is a lignin modified with acetic acid.
  • the present invention [4] includes a resin composition containing the novolac type phenol resin according to any one of the above [1] to [3].
  • the present invention [5] includes a step of reacting a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde in the presence of an acid catalyst, wherein the content of the aliphatic hydroxyl group in the lignin is as described above.
  • the novolak-type phenolic resin and resin composition of the present invention are excellent in productivity (resin yield, production rate, etc.) because lignin having an aliphatic hydroxyl group in the molecule at a predetermined ratio is used as a raw material.
  • a novolac type phenol resin of the present invention can be obtained with high productivity.
  • the novolac type phenol resin of the present invention can be obtained by reacting lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols and aldehydes in the presence of an acid catalyst. That is, the novolak type phenol resin of the present invention is a reaction product of lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols, and aldehydes.
  • Lignin is a high molecular phenolic compound having a basic skeleton such as guaiacyl lignin (G type), syringyl lignin (S type), p-hydroxyphenyl lignin (H type) and the like.
  • lignin is classified according to, for example, the type of plant used as a raw material, and specific examples include woody plant-derived lignin and herbaceous plant-derived lignin.
  • woody plant-derived lignin examples include coniferous lignin contained in conifers (eg, cedar), for example, broadleaf lignin contained in broadleaf trees. Such woody plant-derived lignin does not contain lignin having H-type basic skeleton, for example, conifer lignin has G-type basic skeleton, and hardwood lignin has G-type and S-type basic skeleton. Yes.
  • Examples of the herbaceous plant-derived lignin include, for example, rice-based lignin contained in Gramineae plants, and more specifically, wheat straw lignin contained in wheat straw, rice straw lignin contained in rice straw, and corn. Examples include corn lignin and bamboo lignin contained in bamboo. Such herbaceous plant-derived lignin has all of H-type, G-type and S-type as the basic skeleton.
  • lignins can be used alone or in combination of two or more.
  • the lignin is preferably a herbaceous plant-derived lignin, more preferably a herbaceous plant-derived lignin derived from straw, or a herbaceous plant-derived lignin derived from corn.
  • lignin from the viewpoint of reactivity, it is preferable to contain an H-type basic skeleton in a proportion of 3% by mass or more, more preferably 9% by mass or more, and still more preferably 14% by mass or more. It is done.
  • Such lignin is contained in waste liquid (black liquor) discharged when pulp is produced from a plant by a known method such as an alkali method (soda method), a sulfurous acid method, or a kraft method. More specifically, the waste liquid (black liquor) discharged in the alkali method contains alkali lignin, and the waste liquid (black liquor) discharged in the sulfurous acid method contains sulfite lignin. The discharged waste liquid (black liquor) contains kraft lignin.
  • examples of lignin include acid-modified lignin obtained by modifying lignin with an acid (such as a carboxylic acid), and explosion lignin obtained by treating a plant with an explosion method.
  • an acid such as a carboxylic acid
  • explosion lignin obtained by treating a plant with an explosion method.
  • the lignin is preferably an acid-modified lignin, more preferably a carboxylic acid-modified lignin.
  • examples of the carboxylic acid include a carboxylic acid having one carboxy group (hereinafter, sometimes referred to as a monofunctional carboxylic acid).
  • Functional carboxylic acid unsaturated aliphatic monofunctional carboxylic acid, aromatic monofunctional carboxylic acid and the like can be mentioned.
  • saturated aliphatic monofunctional carboxylic acid examples include acetic acid, propionic acid, butyric acid, lauric acid and the like.
  • Examples of the unsaturated aliphatic monofunctional carboxylic acid include acrylic acid, methacrylic acid, and linoleic acid.
  • aromatic monofunctional carboxylic acid examples include benzoic acid, 2-phenoxybenzoic acid, and 4-methylbenzoic acid.
  • carboxylic acids can be used alone or in combination of two or more.
  • the carboxylic acid is preferably a saturated aliphatic monofunctional carboxylic acid, more preferably acetic acid (in other words, lignin modified with acetic acid is used as lignin). If the carboxylic acid is used, a carboxylic acid-modified lignin can be easily obtained, and the carboxylic acid-modified lignin obtained has a relatively high solubility in an organic solvent and has a melting temperature as described later. Since it is relatively low temperature (about 100 to 200 ° C.), it is excellent in handleability.
  • the carboxylic acid can be prepared as an aqueous solution.
  • the concentration of the carboxylic acid aqueous solution is not particularly limited and is set as appropriate.
  • the production method of the carboxylic acid-modified lignin is not particularly limited, and can conform to a known method.
  • a plant material for example, a conifer, a broadleaf tree, a gramineous plant, etc.
  • a carboxylic acid preferably acetic acid
  • a carboxylic acid-modified lignin can be obtained as a pulp waste liquid by modifying with a carboxylic acid.
  • the cooking method is not particularly limited.
  • a plant material that is a raw material for lignin is mixed with a carboxylic acid and an inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) and reacted.
  • an inorganic acid for example, hydrochloric acid, sulfuric acid, etc.
  • the mixing ratio of the carboxylic acid is such that the carboxylic acid (100% conversion) is, for example, 500 parts by mass or more, preferably 900 parts by mass or more, for example, 30000 with respect to 100 parts by mass of the plant material that is the raw material for lignin. It is 1 part by mass or less, preferably 15000 parts by mass or less.
  • the blending ratio of the inorganic acid is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the plant material that is the raw material for lignin. For example, it is 10 parts by mass or less, preferably 5 parts by mass or less.
  • the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
  • the pulp is separated by a known separation method such as filtration, and the filtrate (pulp waste liquid) is recovered.
  • the unreacted carboxylic acid is known using, for example, a rotary evaporator, vacuum distillation or the like. It is removed (distilled off) by the method. Thereafter, a large excess of water is added to precipitate the carboxylic acid-modified lignin, followed by filtration to recover the carboxylic acid-modified lignin as a solid content.
  • the method for obtaining the carboxylic acid-modified lignin is not limited to the above.
  • lignin not modified with carboxylic acid for example, the above alkaline lignin, the above sulfite lignin, the above kraft lignin, etc. (hereinafter referred to as unmodified lignin)
  • a carboxylic acid can be used to modify an aliphatic hydroxyl group (described later) of lignin with a carboxylic acid to obtain a carboxylic acid-modified lignin.
  • the native lignin is preferably powdered native lignin.
  • the average particle size of the powdered unmodified lignin is, for example, 0.1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the average particle diameter is in the above range, aggregation of the unmodified lignin can be suppressed and the unmodified lignin can be favorably dispersed in the carboxylic acid.
  • the powdered unmodified lignin can be obtained by drying and pulverizing the lump unmodified lignin by a known method, or a commercially available product can be used.
  • unmodified lignin and carboxylic acid for example, unmodified lignin, carboxylic acid and inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) are mixed and reacted.
  • unmodified lignin, carboxylic acid and inorganic acid for example, hydrochloric acid, sulfuric acid, etc.
  • the mixing ratio of the carboxylic acid is, for example, 300 parts by mass or more, preferably 500 parts by mass or more, for example, 15000 parts by mass or less, based on 100 parts by mass of the unmodified lignin. Preferably, it is 10000 parts by mass or less.
  • the blending ratio of the inorganic acid is such that the inorganic acid (100% conversion) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the unmodified lignin. 10 parts by mass or less, preferably 5 parts by mass or less.
  • the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
  • Such carboxylic acid-modified lignin is excellent in handleability.
  • lignin that has not been modified with carboxylic acid has relatively low solubility in organic solvents and does not melt, so that it may be inferior in handleability depending on the application.
  • lignin modified with carboxylic acid as described above is an organic solvent (for example, esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone).
  • esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • aliphatic alcohols such as methanol, for example, phenols such as phenol, cresol, bisphenol A, for example, ethers such as diethyl ether, tetrahydrofuran and dioxane, such as methyl cellosolve acetate, ethyl cellosolve acetate, methylcarbyl Tall acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybuty Glycol ether esters such as acetate and ethyl-3-ethoxypropionate, for example, nitriles such as acetonitrile, others, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexa Since it is relatively soluble in polar solvents such as methylphosphonilamide
  • the carboxylic acid-modified lignin can also be used as a solution of the above organic solvent.
  • the concentration of the carboxylic acid-modified lignin in the solution is, for example, 10% by mass or more, and preferably 30% by mass or more.
  • the average particle size of the carboxylic acid-modified lignin is, for example, 0.1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 2 cm or less, preferably 1 cm or less.
  • the carboxylic acid-modified lignin is obtained as a mixture of a component (soluble component) that can be dissolved by the organic solvent (preferably ethyl acetate) and a component that cannot be dissolved by the organic solvent (insoluble component).
  • soluble component preferably ethyl acetate
  • insoluble component a component that cannot be dissolved by the organic solvent
  • a mixture of a soluble component and an insoluble component (referred to as crude carboxylic acid-modified lignin) can be used as the carboxylic acid-modified lignin.
  • the carboxylic acid-modified lignin is preferably a soluble component.
  • the extraction conditions are appropriately set according to the organic solvent used and the physical properties of the crude carboxylic acid-modified lignin.
  • lignin (such as unmodified lignin and carboxylic acid-modified lignin) has an aliphatic hydroxyl group in the molecule.
  • An aliphatic hydroxyl group is a hydroxyl group that is not directly bonded to an aromatic ring but directly bonded to an aliphatic hydrocarbon, and is distinguished from a hydroxyl group directly bonded to an aromatic ring (aromatic hydroxyl group (phenolic hydroxyl group)).
  • the content of the aliphatic hydroxyl group of lignin is 0.5% by mass or more, preferably 3.0% by mass or more, and 7.0% by mass or less, preferably 5.5% by mass with respect to the total amount of lignin. % Or less.
  • the lignin containing an aliphatic hydroxyl group in the above range is preferably a carboxylic acid-modified lignin derived from a herbaceous plant, more preferably an acetic acid-modified lignin derived from a herbaceous plant.
  • Phenols are phenols and derivatives thereof such as phenol, and further, for example, o-cresol, p-cresol, p-ter-butylphenol, p-phenylphenol, p-cumylphenol, p-nonylphenol, Examples include 2,4- or 2,6-xylenol, m-cresol, resorcinol, 3,5-xylenol, bisphenol A, dihydroxydiphenylmethane, and the like. Further, for example, halogenated phenols substituted with halogen such as chlorine and bromine can be mentioned. These phenols can be used alone or in combination of two or more.
  • Phenols are preferably phenol.
  • aldehydes examples include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyde (n-butyraldehyde, isobutyraldehyde), furfural, glyoxal, benzaldehyde, trioxane, tetraoxane and the like. Moreover, a part of aldehyde may be substituted with furfuryl alcohol or the like. These aldehydes can be used alone or in combination of two or more.
  • aldehydes include formaldehyde and paraformaldehyde.
  • aldehydes can be used as an aqueous solution, for example.
  • the concentration of aldehydes is, for example, 10% by mass or more, preferably 20% by mass or more, for example, 99% by mass or less, preferably 95% by mass or less.
  • ketones can be blended with aldehydes.
  • ketones examples include acetone, methyl ethyl ketone, diethyl ketone, acetophenone, diphenyl ketone, and the like. These ketones can be used alone or in combination of two or more.
  • the blending ratio of the ketones is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more with respect to 100 parts by mass of the aldehydes based on the solid content. 200 parts by mass or less, preferably 100 parts by mass or less.
  • the mixing ratio of the phenols is, for example, 30 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, for example, 1000 parts by mass with respect to 100 parts by mass of lignin.
  • it is preferably 500 parts by mass or less, and more preferably 350 parts by mass or less.
  • the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 35 parts by mass or less, preferably 30 parts by mass or less, relative to 100 parts by mass of phenols. is there.
  • the blending ratio of aldehydes is, for example, 1.5 parts by mass or more, preferably 3 parts by mass or more, for example, 350 parts by mass or less, preferably 300 parts by mass or less, with respect to 100 parts by mass of lignin. It is.
  • the blending ratio of each component is within the above range, various physical properties (electrical insulation, mechanical properties, heat resistance, water resistance, etc.) can be improved.
  • Examples of the acid catalyst include organic acids and inorganic acids.
  • organic acid examples include sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, for example, trimethyl phosphate, Examples thereof include phosphate esters having an alkyl group having 1 to 18 carbon atoms such as triethyl phosphate, monobutyl phosphate, dibutyl phosphate, tributyl phosphate, trioctyl phosphate, and the like, for example, formic acid, acetic acid, oxalic acid and the like.
  • sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylna
  • inorganic acids examples include phosphoric acid, hydrochloric acid, sulfuric acid, and nitric acid.
  • These acid catalysts can be used alone or in combination of two or more.
  • the acid catalyst is preferably an organic acid, more preferably oxalic acid.
  • the mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 100 parts by mass with respect to 100 parts by mass of phenols. 7 parts by mass or less.
  • the timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin, phenols, and aldehydes, and added at the same time when lignin, phenols, and aldehydes are blended. Further, it may be added after blending lignin, phenols and aldehydes.
  • the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • a novolac type phenol resin is obtained as a reaction product of lignin, phenols and aldehydes.
  • a novolac-type phenol resin is obtained by the reaction of phenols and aldehydes in the presence of an acid catalyst, and the novolac-type phenol resin is modified with lignin.
  • a novolak-type phenol resin modified with lignin (hereinafter sometimes referred to as a lignin-modified novolak-type phenol resin) is obtained.
  • lignin and phenols are reacted to prepare a lignin-phenol composition containing a reaction product of lignin and phenols, and then the lignin-phenol composition and aldehyde React with a kind.
  • the phenols are blended in an excess equivalent amount with respect to lignin.
  • the blending ratio of phenols is, for example, 30 parts by mass or more, preferably 100 parts by mass of lignin. 50 parts by mass or more, for example, 1000 parts by mass or less, preferably 500 parts by mass or less.
  • the mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the phenols. It is as follows.
  • the timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin and phenols, or may be added simultaneously with the blending of lignin and phenols. It may be added after blending lignin and phenols.
  • the reaction temperature is, for example, 60 ° C. or higher, preferably 80 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower.
  • the reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 10 hours or less, preferably 5 hours or less.
  • This reaction modifies lignin with phenols. Specifically, an aliphatic hydroxyl group in the lignin molecule (in the case where the lignin is a carboxylic acid-modified lignin, an aliphatic hydroxyl group modified with a carboxylic acid and an aliphatic hydroxyl group remaining unmodified with a carboxylic acid are included. .) Is replaced by phenols.
  • the lignin-phenol composition obtained by the above reaction contains a reaction product of lignin and phenols (lignin modified with phenols) and free phenols.
  • the lignin-phenol composition obtained as described above (that is, lignin modified with phenols and free phenols) is reacted with aldehydes.
  • the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, with respect to 100 parts by mass of phenols (phenols used as a raw material in the above reaction). , 35 parts by mass or less, preferably 30 parts by mass or less.
  • the above acid catalyst can be added at an appropriate ratio, if necessary.
  • the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
  • the above lignin-phenol composition reacts with aldehydes to obtain a novolak-type phenol resin modified with lignin (lignin-modified novolak-type phenol resin).
  • unreacted raw materials unreacted phenols, etc.
  • acid catalyst can be removed by a known method such as distillation, if necessary.
  • Such a novolak type phenolic resin (that is, lignin-modified novolak type phenolic resin) uses lignin having an aliphatic hydroxyl group in the molecule at a predetermined ratio as a raw material, so that productivity (resin yield, production rate, etc.) is improved. Excellent.
  • a molded product excellent in various physical properties electrical insulation, mechanical properties, heat resistance, water resistance, etc. can be obtained.
  • the novolac type phenol resin can be obtained with good productivity (resin yield, production rate, etc.).
  • the resin composition of this invention contains said novolak-type phenol resin as an essential component.
  • the resin composition can contain a phenol resin curing agent, if necessary.
  • the phenol resin curing agent is not particularly limited, and a known curing agent can be used. Specifically, for example, hexamethylenetetramine, methylolmelamine, methylolurea, phenol novolac and the like can be mentioned.
  • phenolic resin curing agents can be used alone or in combination of two or more.
  • the blending ratio of the phenol resin curing agent is appropriately set according to the purpose and application.
  • the resin composition can further contain an additive.
  • additives added to the resin composition examples include known additives added to the resin composition, known additives such as fillers (wood flour, pulp, glass fibers, etc.), colorants, plasticizers, stabilizers, release agents ( Metal soap such as zinc stearate).
  • additives can be used alone or in combination of two or more.
  • the content of the additive is appropriately set according to the purpose and application within a range that does not impair the excellent effects of the present invention.
  • the blending ratio is, for example, 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the resin composition. 500 parts by mass or less, preferably 300 parts by mass or less.
  • the additive may be added in advance to at least one of lignin, phenols, and aldehydes, or may be added at the same time when lignin, phenols, and aldehydes are blended, and lignin, phenol It may be added after blending of aldehydes and aldehydes, or may be added directly to their reaction products.
  • the resin composition thus obtained contains the above-described novolak-type phenol resin (that is, lignin-modified novolak-type phenol resin), and thus has excellent productivity and various physical properties.
  • Such a resin composition is suitably used for the production of a molded product.
  • the above resin composition is molded by a known thermosetting resin molding method such as transfer molding or compression molding.
  • a known thermosetting resin molding method such as transfer molding or compression molding.
  • the molded product obtained can be widely used in various industrial fields such as electric parts, automobile parts, building materials, and daily necessities.
  • Resin yield (%) [mass of obtained novolac-type phenol resin] ⁇ [total mass of charged raw materials] ⁇ 100 ⁇ Manufacture of lignin >> Production Example 1 (Lignin Acetate) 100 parts by mass of corn stover was mixed with 1000 parts by mass of 95% by mass acetic acid and 3 parts by mass of sulfuric acid, and reacted for 4 hours under reflux. After the reaction, the pulp was removed by filtration, and the pulp waste liquid was recovered. Next, after removing acetic acid in the pulp waste liquid using a rotary evaporator and concentrating until the volume becomes 1/10, 10 times the amount of the concentrated liquid (mass basis) is added and filtered, Acetic acid-modified lignin was obtained as a solid content.
  • the content of aliphatic hydroxyl groups in acetic acid-modified lignin was 5.1% by mass.
  • the content of aliphatic hydroxyl group in alkali lignin was 3.1% by mass.
  • Example 1 493.5 g of phenol was put in a flask and heated to about 50 ° C. to liquefy the phenol, and then 150 g of lignin acetate obtained in Production Example 1 was added.
  • the yield of novolac type phenolic resin was 74.9%.
  • Examples 2 to 4 and Comparative Example 1 A novolac type phenolic resin and a resin composition were obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used.
  • Example 2 the alkaline lignin obtained in Production Example 2 was used in place of acetic acid lignin.
  • Example 3 kraft lignin (manufactured by SIGMA-ALDRICH, aliphatic hydroxyl group content 4.4 mass%) was used instead of acetic acid lignin.
  • Example 4 493.5 g of phenol was put in a flask and heated to about 50 ° C. to liquefy the phenol, and then 150 g of acetic acid-modified lignin obtained in Production Example 1 was added.
  • the yield of novolac type phenolic resin was 69.7%.
  • Example 5 A novolac type phenolic resin and a resin composition were obtained in the same manner as in Example 4 except that the formulation shown in Table 2 was used.
  • Example 5 alkaline lignin obtained in Production Example 2 was used in place of acetic acid lignin.
  • Comparative Example 2 846 g of phenol, 13.02 g of oxalic acid (acid catalyst) and 172.5 g of paraformaldehyde were placed in a flask and reacted at 95 ° C. for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
  • the yield of novolac type phenolic resin was 60.1%.
  • Glass transition temperature (Tg) The solid dynamic viscoelasticity was measured using Rhegel-E4000 (manufactured by UBM) (frequency 1 Hz, temperature rising rate 2 ° C./min). And the peak temperature of the obtained tan-delta curve was calculated
  • volume resistivity (electrical insulation) According to JIS K6911 (1995 edition), volume resistivity ( ⁇ ⁇ cm) was measured using HP4339A (manufactured by Agilent Technologies).
  • the production method of the novolac type phenolic resin, the resin composition and the novolac type phenolic resin of the present invention can be widely used in various industrial fields such as electric parts, automobile parts, building materials and daily necessities.

Abstract

This novolac type phenolic resin is a reaction product that is obtained by reacting a lignin that has an aliphatic hydroxyl group in each molecule, a phenol and an aldehyde in the presence of an acid catalyst; and the content ratio of the aliphatic hydroxyl group in the lignin is from 0.5% by mass to 7.0% by mass (inclusive) relative to the total mass of the lignin.

Description

ノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法NOVOLAC TYPE PHENOL RESIN, RESIN COMPOSITION AND METHOD FOR PRODUCING NOVOLAC TYPE PHENOL RESIN
 本発明は、ノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法に関し、詳しくは、ノボラック型フェノール樹脂、および、そのノボラック型フェノール樹脂を含有する樹脂組成物、さらに、そのノボラック型フェノール樹脂の製造方法に関する。 TECHNICAL FIELD The present invention relates to a novolac type phenol resin, a resin composition, and a method for producing a novolac type phenol resin. More specifically, the present invention relates to a novolac type phenol resin, a resin composition containing the novolac type phenol resin, and the novolac type phenol. The present invention relates to a method for producing a resin.
 従来、熱硬化性樹脂は、例えば、電気部品、自動車部品、建築材料、日用品などの各種産業分野において広く用いられている。とりわけ、ノボラック型フェノール樹脂は、電気絶縁性、耐熱性、機械物性、成形性などに優れるため、成形材料などとして、広く用いられている。 Conventionally, thermosetting resins have been widely used in various industrial fields such as electric parts, automobile parts, building materials, and daily necessities. In particular, novolac type phenolic resins are widely used as molding materials because they are excellent in electrical insulation, heat resistance, mechanical properties, moldability, and the like.
 ノボラック型フェノール樹脂は、フェノール類およびアルデヒド類を酸触媒下において反応させることにより得られる。一方、近年では、地球環境保護などの観点から、石油資源の使用量を低減することが要求されており、石油資源に代替して、植物由来の原料を用いることが検討されている。 The novolac type phenol resin can be obtained by reacting phenols and aldehydes in the presence of an acid catalyst. On the other hand, in recent years, from the viewpoint of protecting the global environment, etc., it has been required to reduce the amount of petroleum resources used, and the use of plant-derived raw materials instead of petroleum resources has been studied.
 そのような植物由来の原料としては、リグニンが注目されており、リグニンを用いて得られるノボラック型フェノール樹脂として、具体的には、例えば、リグニンと、フェノールまたはフェノール誘導体と、アルデヒド類とを、有機酸の存在下において反応させて得られるリグニン変性ノボラック型フェノール系樹脂が、提案されている。(下記特許文献1参照)。 As such a plant-derived raw material, lignin has attracted attention. Specifically, as a novolac type phenol resin obtained using lignin, for example, lignin, phenol or a phenol derivative, and aldehydes, A lignin-modified novolac type phenolic resin obtained by reacting in the presence of an organic acid has been proposed. (See Patent Document 1 below).
特開2008-156601号公報JP 2008-156601 A
 一方、特許文献1には、リグニンとして、木材や草木質材料などの原料から得られるクラフトリグニン、リグニンスルホン酸などを制限なく用いることができると記載されているが、例えば、リグニンスルホン酸などを用いると、フェノールおよびアルデヒド類との反応性に劣り、リグニン変性ノボラック型フェノール系樹脂の生産性(樹脂収率や生産速度など)に劣るという不具合がある。 On the other hand, Patent Document 1 describes that as lignin, craft lignin obtained from raw materials such as wood and grassy materials, lignin sulfonic acid and the like can be used without limitation. For example, lignin sulfonic acid and the like can be used. When used, the reactivity with phenol and aldehydes is inferior, and the productivity (resin yield, production rate, etc.) of the lignin-modified novolac type phenol resin is inferior.
 本発明の目的は、生産性に優れるノボラック型フェノール樹脂、そのノボラック型フェノール樹脂を含有する樹脂組成物、および、そのノボラック型フェノール樹脂の製造方法を提供することにある。 An object of the present invention is to provide a novolak type phenol resin excellent in productivity, a resin composition containing the novolac type phenol resin, and a method for producing the novolac type phenol resin.
 本発明[1]は、分子中に脂肪族水酸基を有するリグニンと、フェノール類と、アルデヒド類との、酸触媒下での反応生成物であり、前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5質量%以上7.0質量%以下である、ノボラック型フェノール樹脂を含んでいる。 The present invention [1] is a reaction product of a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde under an acid catalyst, and the content of the aliphatic hydroxyl group in the lignin is: A novolac-type phenol resin is contained in an amount of 0.5% by mass or more and 7.0% by mass or less based on the total amount of the lignin.
 本発明[2]は、前記リグニンおよび前記フェノール類の反応生成物を含むリグニン-フェノール組成物と、前記アルデヒド類との反応生成物である、上記[1]に記載のノボラック型フェノール樹脂を含んでいる。 The present invention [2] includes the novolak type phenol resin according to the above [1], which is a reaction product of a lignin-phenol composition containing the reaction product of the lignin and the phenols and the aldehyde. It is out.
 本発明[3]は、前記リグニンが、酢酸により変性されたリグニンである、上記[1]または[2]に記載のノボラック型フェノール樹脂を含んでいる。 [3] The present invention [3] includes the novolac phenol resin according to the above [1] or [2], wherein the lignin is a lignin modified with acetic acid.
 本発明[4]は、上記[1]~[3]のいずれか一項に記載のノボラック型フェノール樹脂を含有する、樹脂組成物を含んでいる。 The present invention [4] includes a resin composition containing the novolac type phenol resin according to any one of the above [1] to [3].
 本発明[5]は、分子中に脂肪族水酸基を有するリグニンと、フェノール類と、アルデヒド類とを、酸触媒下で反応させる工程を含み、前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5質量%以上7.0質量%以下である、ノボラック型フェノール樹脂の製造方法を含んでいる。 The present invention [5] includes a step of reacting a lignin having an aliphatic hydroxyl group in the molecule, a phenol, and an aldehyde in the presence of an acid catalyst, wherein the content of the aliphatic hydroxyl group in the lignin is as described above. A method for producing a novolac-type phenol resin, which is 0.5% by mass or more and 7.0% by mass or less with respect to the total amount of lignin, is included.
 本発明のノボラック型フェノール樹脂および樹脂組成物は、所定の割合で分子中に脂肪族水酸基を有するリグニンを原料として用いるため、生産性(樹脂収率や生産速度など)に優れる。 The novolak-type phenolic resin and resin composition of the present invention are excellent in productivity (resin yield, production rate, etc.) because lignin having an aliphatic hydroxyl group in the molecule at a predetermined ratio is used as a raw material.
 また、本発明のノボラック型フェノール樹脂の製造方法によれば、ノボラック型フェノール樹脂を、生産性よく得ることができる。 Further, according to the method for producing a novolac type phenol resin of the present invention, a novolac type phenol resin can be obtained with high productivity.
 本発明のノボラック型フェノール樹脂は、分子中に脂肪族水酸基(後述)を有するリグニンと、フェノール類と、アルデヒド類とを、酸触媒下で反応させることにより得られる。すなわち、本発明のノボラック型フェノール樹脂は、分子中に脂肪族水酸基(後述)を有するリグニンと、フェノール類と、アルデヒド類との反応生成物である。 The novolac type phenol resin of the present invention can be obtained by reacting lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols and aldehydes in the presence of an acid catalyst. That is, the novolak type phenol resin of the present invention is a reaction product of lignin having an aliphatic hydroxyl group (described later) in the molecule, phenols, and aldehydes.
 リグニンは、グアイアシルリグニン(G型)、シリンギルリグニン(S型)、p-ヒドロキシフェニルリグニン(H型)などの基本骨格からなる高分子フェノール性化合物である。 Lignin is a high molecular phenolic compound having a basic skeleton such as guaiacyl lignin (G type), syringyl lignin (S type), p-hydroxyphenyl lignin (H type) and the like.
 より具体的には、リグニンは、例えば、原料となる植物の種類によって分類され、具体的には、木本系植物由来リグニン、草本系植物由来リグニンが挙げられる。 More specifically, lignin is classified according to, for example, the type of plant used as a raw material, and specific examples include woody plant-derived lignin and herbaceous plant-derived lignin.
 木本系植物由来リグニンとしては、例えば、針葉樹(例えば、スギなど)に含まれる針葉樹系リグニン、例えば、広葉樹に含まれる広葉樹系リグニンなどが挙げられる。このような木本系植物由来リグニンは、H型を基本骨格とするリグニンを含まず、例えば、針葉樹系リグニンはG型を基本骨格とし、広葉樹系リグニンは、G型およびS型を基本骨格としている。 Examples of woody plant-derived lignin include coniferous lignin contained in conifers (eg, cedar), for example, broadleaf lignin contained in broadleaf trees. Such woody plant-derived lignin does not contain lignin having H-type basic skeleton, for example, conifer lignin has G-type basic skeleton, and hardwood lignin has G-type and S-type basic skeleton. Yes.
 また、草本系植物由来リグニンとしては、例えば、イネ科植物に含まれるイネ系リグニンなどが挙げられ、より具体的には、麦わらに含まれる麦わらリグニン、稲わらに含まれる稲わらリグニン、とうもろこしに含まれるとうもろこしリグニン、タケに含まれるタケリグニンなどが挙げられる。このような草本系植物由来リグニンは、H型、G型およびS型の全てを基本骨格としている。 Examples of the herbaceous plant-derived lignin include, for example, rice-based lignin contained in Gramineae plants, and more specifically, wheat straw lignin contained in wheat straw, rice straw lignin contained in rice straw, and corn. Examples include corn lignin and bamboo lignin contained in bamboo. Such herbaceous plant-derived lignin has all of H-type, G-type and S-type as the basic skeleton.
 これらのリグニンは、単独使用または2種類以上併用することができる。 These lignins can be used alone or in combination of two or more.
 リグニンとして、好ましくは、草本系植物由来リグニン、より好ましくは、麦わらに由来する草本系植物由来リグニン、とうもろこしに由来する草本系植物由来リグニンが挙げられる。 The lignin is preferably a herbaceous plant-derived lignin, more preferably a herbaceous plant-derived lignin derived from straw, or a herbaceous plant-derived lignin derived from corn.
 また、リグニンとして、好ましくは、反応性の観点から、H型の基本骨格を3質量%以上、より好ましくは、9質量%以上、さらに好ましくは、14質量%以上の割合で含有することが挙げられる。 Further, as lignin, from the viewpoint of reactivity, it is preferable to contain an H-type basic skeleton in a proportion of 3% by mass or more, more preferably 9% by mass or more, and still more preferably 14% by mass or more. It is done.
 このようなリグニンは、例えば、アルカリ法(ソーダ法)、亜硫酸法、クラフト法などの公知の方法によって、植物からパルプを製造する際、排出される廃液(黒液)中に含まれる。より具体的には、アルカリ法において排出される廃液(黒液)には、アルカリリグニンが含有され、亜硫酸法において排出される廃液(黒液)には、サルファイトリグニンが含有され、クラフト法において排出される廃液(黒液)には、クラフトリグニンが含有される。 Such lignin is contained in waste liquid (black liquor) discharged when pulp is produced from a plant by a known method such as an alkali method (soda method), a sulfurous acid method, or a kraft method. More specifically, the waste liquid (black liquor) discharged in the alkali method contains alkali lignin, and the waste liquid (black liquor) discharged in the sulfurous acid method contains sulfite lignin. The discharged waste liquid (black liquor) contains kraft lignin.
 また、リグニンとしては、上記の他、リグニンを酸(カルボン酸など)で変性して得られる酸変性リグニン、植物を爆砕法で処理して得られる爆砕リグニンなども挙げられる。 In addition to the above, examples of lignin include acid-modified lignin obtained by modifying lignin with an acid (such as a carboxylic acid), and explosion lignin obtained by treating a plant with an explosion method.
 リグニンとして、好ましくは、酸変性リグニンが挙げられ、より好ましくは、カルボン酸変性リグニンが挙げられる。 The lignin is preferably an acid-modified lignin, more preferably a carboxylic acid-modified lignin.
 カルボン酸変性リグニンにおいて、カルボン酸としては、例えば、カルボキシ基を1つ有するカルボン酸(以下、単官能カルボン酸と称する場合がある。)が挙げられ、具体的には、例えば、飽和脂肪族単官能カルボン酸、不飽和脂肪族単官能カルボン酸、芳香族単官能カルボン酸などが挙げられる。 In the carboxylic acid-modified lignin, examples of the carboxylic acid include a carboxylic acid having one carboxy group (hereinafter, sometimes referred to as a monofunctional carboxylic acid). Functional carboxylic acid, unsaturated aliphatic monofunctional carboxylic acid, aromatic monofunctional carboxylic acid and the like can be mentioned.
 飽和脂肪族単官能カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、ラウリル酸などが挙げられる。 Examples of the saturated aliphatic monofunctional carboxylic acid include acetic acid, propionic acid, butyric acid, lauric acid and the like.
 不飽和脂肪族単官能カルボン酸としては、例えば、アクリル酸、メタクリル酸、リノール酸などが挙げられる。 Examples of the unsaturated aliphatic monofunctional carboxylic acid include acrylic acid, methacrylic acid, and linoleic acid.
 芳香族単官能カルボン酸としては、例えば、安息香酸、2-フェノキシ安息香酸、4-メチル安息香酸などが挙げられる。 Examples of the aromatic monofunctional carboxylic acid include benzoic acid, 2-phenoxybenzoic acid, and 4-methylbenzoic acid.
 これらカルボン酸は、単独使用または2種類以上併用することができる。 These carboxylic acids can be used alone or in combination of two or more.
 カルボン酸として、好ましくは、飽和脂肪族単官能カルボン酸、より好ましくは、酢酸が挙げられる(換言すれば、リグニンとして、酢酸により変性されたリグニンが用いられる。)。上記のカルボン酸を用いれば、カルボン酸変性リグニンを簡易に得ることができ、また、得られるカルボン酸変性リグニンは、後述するように、有機溶媒に対する溶解性が比較的高く、また、溶融温度が比較的低温(100~200℃程度)であるため、取扱性にも優れる。 The carboxylic acid is preferably a saturated aliphatic monofunctional carboxylic acid, more preferably acetic acid (in other words, lignin modified with acetic acid is used as lignin). If the carboxylic acid is used, a carboxylic acid-modified lignin can be easily obtained, and the carboxylic acid-modified lignin obtained has a relatively high solubility in an organic solvent and has a melting temperature as described later. Since it is relatively low temperature (about 100 to 200 ° C.), it is excellent in handleability.
 また、カルボン酸は、水溶液として調製することができる。そのような場合、カルボン酸水溶液の濃度は、特に制限されず、適宜設定される。 Also, the carboxylic acid can be prepared as an aqueous solution. In such a case, the concentration of the carboxylic acid aqueous solution is not particularly limited and is set as appropriate.
 カルボン酸変性リグニンの製造方法は、特に制限されず、公知の方法に準拠することができる。 The production method of the carboxylic acid-modified lignin is not particularly limited, and can conform to a known method.
 具体的には、例えば、リグニンの原料となる植物材料(例えば、針葉樹、広葉樹、イネ科植物など)を、カルボン酸(好ましくは、酢酸)を用いて蒸解することによって、リグニンの脂肪族水酸基(後述)をカルボン酸で変性し、パルプ廃液としてカルボン酸変性リグニンを得ることができる。 Specifically, for example, a plant material (for example, a conifer, a broadleaf tree, a gramineous plant, etc.) that is a raw material for lignin is digested with a carboxylic acid (preferably acetic acid). A carboxylic acid-modified lignin can be obtained as a pulp waste liquid by modifying with a carboxylic acid.
 蒸解方法としては、特に制限されないが、例えば、リグニンの原料となる植物材料と、カルボン酸および無機酸(例えば、塩酸、硫酸など)とを混合し、反応させる。 The cooking method is not particularly limited. For example, a plant material that is a raw material for lignin is mixed with a carboxylic acid and an inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) and reacted.
 カルボン酸の配合割合は、リグニンの原料となる植物材料100質量部に対して、カルボン酸(100%換算)が、例えば、500質量部以上、好ましくは、900質量部以上であり、例えば、30000質量部以下、好ましくは、15000質量部以下である。 The mixing ratio of the carboxylic acid is such that the carboxylic acid (100% conversion) is, for example, 500 parts by mass or more, preferably 900 parts by mass or more, for example, 30000 with respect to 100 parts by mass of the plant material that is the raw material for lignin. It is 1 part by mass or less, preferably 15000 parts by mass or less.
 また、無機酸の配合割合は、リグニンの原料となる植物材料100質量部に対して、無機酸(100%換算)が、例えば、0.01質量部以上、好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the inorganic acid is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the plant material that is the raw material for lignin. For example, it is 10 parts by mass or less, preferably 5 parts by mass or less.
 また、反応条件としては、大気圧下、反応温度が、例えば、30℃以上、好ましくは、50℃以上であり、例えば、400℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、20時間以下、好ましくは、10時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
 このような蒸解によって、パルプが得られるとともに、パルプ廃液としてカルボン酸変性リグニンが得られる。 By such cooking, pulp is obtained and carboxylic acid-modified lignin is obtained as a pulp waste liquid.
 次いで、この方法では、濾過などの公知の分離方法によってパルプを分離し、濾液(パルプ廃液)を回収し、必要により、未反応のカルボン酸を、例えば、ロータリーエバポレーター、減圧蒸留などを用いた公知の方法により除去(留去)する。その後、大過剰の水を添加してカルボン酸変性リグニンを沈殿させ、濾過することによって、固形分としてカルボン酸変性リグニンを回収する。 Next, in this method, the pulp is separated by a known separation method such as filtration, and the filtrate (pulp waste liquid) is recovered. If necessary, the unreacted carboxylic acid is known using, for example, a rotary evaporator, vacuum distillation or the like. It is removed (distilled off) by the method. Thereafter, a large excess of water is added to precipitate the carboxylic acid-modified lignin, followed by filtration to recover the carboxylic acid-modified lignin as a solid content.
 また、カルボン酸変性リグニンを得る方法は、上記に限定されず、例えば、カルボン酸により変性されていないリグニン(例えば、上記アルカリリグニン、上記サルファイトリグニン、上記クラフトリグニンなど(以下、未変性リグニン))とカルボン酸とを反応させることにより、リグニンの脂肪族水酸基(後述)をカルボン酸で変性し、カルボン酸変性リグニンを得ることもできる。 Further, the method for obtaining the carboxylic acid-modified lignin is not limited to the above. For example, lignin not modified with carboxylic acid (for example, the above alkaline lignin, the above sulfite lignin, the above kraft lignin, etc. (hereinafter referred to as unmodified lignin) ) And a carboxylic acid can be used to modify an aliphatic hydroxyl group (described later) of lignin with a carboxylic acid to obtain a carboxylic acid-modified lignin.
 このような方法では、未変性リグニンとして、好ましくは、粉末状の未変性リグニンが挙げられる。 In such a method, the native lignin is preferably powdered native lignin.
 粉末状の未変性リグニンの平均粒子径は、例えば、0.1μm以上、好ましくは、5μm以上であり、例えば、1000μm以下、好ましくは、500μm以下である。 The average particle size of the powdered unmodified lignin is, for example, 0.1 μm or more, preferably 5 μm or more, for example, 1000 μm or less, preferably 500 μm or less.
 平均粒子径が上記範囲であれば、未変性リグニンの凝集を抑制して、未変性リグニンをカルボン酸に対して良好に分散することができる。 If the average particle diameter is in the above range, aggregation of the unmodified lignin can be suppressed and the unmodified lignin can be favorably dispersed in the carboxylic acid.
 なお、粉末状の未変性リグニンは、塊状の未変性リグニンを公知の方法で乾燥および粉砕することにより得ることができ、また、市販品を用いることもできる。 The powdered unmodified lignin can be obtained by drying and pulverizing the lump unmodified lignin by a known method, or a commercially available product can be used.
 未変性リグニンとカルボン酸とを反応させる方法としては、例えば、未変性リグニンと、カルボン酸および無機酸(例えば、塩酸、硫酸など)とを混合し、反応させる。 As a method of reacting unmodified lignin and carboxylic acid, for example, unmodified lignin, carboxylic acid and inorganic acid (for example, hydrochloric acid, sulfuric acid, etc.) are mixed and reacted.
 カルボン酸の配合割合は、未変性リグニン100質量部に対して、カルボン酸(100%換算)が、例えば、300質量部以上、好ましくは、500質量部以上であり、例えば、15000質量部以下、好ましくは、10000質量部以下である。 The mixing ratio of the carboxylic acid is, for example, 300 parts by mass or more, preferably 500 parts by mass or more, for example, 15000 parts by mass or less, based on 100 parts by mass of the unmodified lignin. Preferably, it is 10000 parts by mass or less.
 また、無機酸の配合割合は、未変性リグニン100質量部に対して、無機酸(100%換算)が、例えば、0.01質量部以上、好ましくは、0.05質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The blending ratio of the inorganic acid is such that the inorganic acid (100% conversion) is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more with respect to 100 parts by mass of the unmodified lignin. 10 parts by mass or less, preferably 5 parts by mass or less.
 また、反応条件としては、大気圧下、反応温度が、例えば、30℃以上、好ましくは、50℃以上であり、例えば、400℃以下、好ましくは、250℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、20時間以下、好ましくは、10時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 30 ° C. or more, preferably 50 ° C. or more, for example, 400 ° C. or less, preferably 250 ° C. or less. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 20 hours or less, preferably 10 hours or less.
 このようなカルボン酸変性リグニンは、取扱性に優れる。 Such carboxylic acid-modified lignin is excellent in handleability.
 すなわち、カルボン酸により変性されていないリグニンは、有機溶媒に対する溶解性が比較的低く、また、溶融しないため、用途によっては、取扱性に劣る場合がある。 That is, lignin that has not been modified with carboxylic acid has relatively low solubility in organic solvents and does not melt, so that it may be inferior in handleability depending on the application.
 一方、上記のようにカルボン酸により変性されたリグニンは、有機溶媒(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、メタノールなどの脂肪族アルコール類、例えば、フェノール、クレゾール、ビスフェノールAなどのフェノール類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、アセトニトリルなどのニトリル類、その他、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性溶媒など)に対する溶解性が比較的高く、比較的低温(100~200℃程度)において溶融可能であるため、取扱性に優れる。 On the other hand, lignin modified with carboxylic acid as described above is an organic solvent (for example, esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone). For example, aliphatic alcohols such as methanol, for example, phenols such as phenol, cresol, bisphenol A, for example, ethers such as diethyl ether, tetrahydrofuran and dioxane, such as methyl cellosolve acetate, ethyl cellosolve acetate, methylcarbyl Tall acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-methoxybuty Glycol ether esters such as acetate and ethyl-3-ethoxypropionate, for example, nitriles such as acetonitrile, others, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexa Since it is relatively soluble in polar solvents such as methylphosphonilamide and can be melted at a relatively low temperature (about 100 to 200 ° C.), it is excellent in handling.
 そのため、カルボン酸変性リグニンは、上記の有機溶媒の溶液として用いることもできる。そのような場合、溶液におけるカルボン酸変性リグニンの濃度は、例えば、10質量%以上、好ましくは、30質量%以上である。 Therefore, the carboxylic acid-modified lignin can also be used as a solution of the above organic solvent. In such a case, the concentration of the carboxylic acid-modified lignin in the solution is, for example, 10% by mass or more, and preferably 30% by mass or more.
 また、カルボン酸変性リグニンの平均粒子径は、例えば、0.1μm以上、好ましくは、5μm以上であり、例えば、2cm以下、好ましくは、1cm以下である。 The average particle size of the carboxylic acid-modified lignin is, for example, 0.1 μm or more, preferably 5 μm or more, for example, 2 cm or less, preferably 1 cm or less.
 また、カルボン酸変性リグニンは、上記の有機溶媒(好ましくは、酢酸エチル)により溶解可能な成分(可溶成分)と、上記の有機溶媒によって溶解不能な成分(不溶成分)との混合物として得られる場合がある。 The carboxylic acid-modified lignin is obtained as a mixture of a component (soluble component) that can be dissolved by the organic solvent (preferably ethyl acetate) and a component that cannot be dissolved by the organic solvent (insoluble component). There is a case.
 このような場合、カルボン酸変性リグニンとして、可溶成分と不溶成分との混合物(粗カルボン酸変性リグニンと称する。)を用いることができる。 In such a case, a mixture of a soluble component and an insoluble component (referred to as crude carboxylic acid-modified lignin) can be used as the carboxylic acid-modified lignin.
 また、可溶成分と不溶成分とを分離して、可溶成分のみを用いることもでき、また、不溶成分のみを用いることもできる。さらには、分離された可溶成分と不溶成分とを、混合して用いることもできる。 In addition, it is possible to separate the soluble component and the insoluble component and use only the soluble component, or it is possible to use only the insoluble component. Furthermore, the separated soluble component and insoluble component can be mixed and used.
 カルボン酸変性リグニンとして、好ましくは、可溶成分が挙げられる。 The carboxylic acid-modified lignin is preferably a soluble component.
 可溶成分と不溶成分とを分離する方法としては、例えば、上記した有機溶媒による抽出法などが採用される。 As a method for separating the soluble component and the insoluble component, for example, the above-described extraction method using an organic solvent is employed.
 なお、抽出条件は、使用される有機溶媒、および、粗カルボン酸変性リグニンの物性などに応じて、適宜設定される。 The extraction conditions are appropriately set according to the organic solvent used and the physical properties of the crude carboxylic acid-modified lignin.
 また、リグニン(未変性リグニン、カルボン酸変性リグニンなど)は、分子中に脂肪族水酸基を有する。 Also, lignin (such as unmodified lignin and carboxylic acid-modified lignin) has an aliphatic hydroxyl group in the molecule.
 脂肪族水酸基とは、芳香環に直接結合せず、脂肪族炭化水素に直接結合する水酸基であって、芳香環に直接結合する水酸基(芳香族水酸基(フェノール性水酸基))とは区別される。 An aliphatic hydroxyl group is a hydroxyl group that is not directly bonded to an aromatic ring but directly bonded to an aliphatic hydrocarbon, and is distinguished from a hydroxyl group directly bonded to an aromatic ring (aromatic hydroxyl group (phenolic hydroxyl group)).
 リグニンの脂肪族水酸基の含有割合は、リグニンの総量に対して、0.5質量%以上、好ましくは、3.0質量%以上であり、7.0質量%以下、好ましくは、5.5質量%以下である。 The content of the aliphatic hydroxyl group of lignin is 0.5% by mass or more, preferably 3.0% by mass or more, and 7.0% by mass or less, preferably 5.5% by mass with respect to the total amount of lignin. % Or less.
 リグニンの脂肪族水酸基の含有割合が上記下限を下回っていると、リグニンとフェノール類との反応性や、リグニンとアルデヒド類との反応性に劣り、ノボラック型フェノール樹脂の生産性が低下する。 If the content of the aliphatic hydroxyl group of lignin is below the above lower limit, the reactivity between lignin and phenols and the reactivity between lignin and aldehydes are inferior, and the productivity of the novolak-type phenol resin decreases.
 また、リグニンの脂肪族水酸基の含有割合が上記上限を上回っていると、リグニン、フェノール類およびアルデヒド類の反応時にゲル化を生じやすくなるため、ノボラック型フェノール樹脂の生産性が低下する。 Further, if the content of the aliphatic hydroxyl group of lignin exceeds the above upper limit, gelation is likely to occur during the reaction of lignin, phenols and aldehydes, so that the productivity of the novolak type phenol resin is lowered.
 一方、リグニンの脂肪族水酸基の含有割合が上記範囲であれば、リグニンとフェノール類との反応性や、リグニンとアルデヒド類との反応性に優れ、また、それらの反応時にゲル化を生じにくいため、ノボラック型フェノール樹脂の生産性が向上される。 On the other hand, if the content of the aliphatic hydroxyl group of lignin is within the above range, the reactivity between lignin and phenols and the reactivity between lignin and aldehydes are excellent, and gelation is unlikely to occur during these reactions. The productivity of the novolac type phenol resin is improved.
 なお、脂肪族水酸基の含有割合は、後述する実施例に準拠して求められる。 In addition, the content rate of an aliphatic hydroxyl group is calculated | required based on the Example mentioned later.
 また、脂肪族水酸基が上記範囲で含有されるリグニンとして、好ましくは、草本系植物に由来するカルボン酸変性リグニンが挙げられ、より好ましくは、草本系植物に由来する酢酸変性リグニンが挙げられる。 The lignin containing an aliphatic hydroxyl group in the above range is preferably a carboxylic acid-modified lignin derived from a herbaceous plant, more preferably an acetic acid-modified lignin derived from a herbaceous plant.
 フェノール類は、フェノールおよびその誘導体であって、例えば、フェノール、さらには、例えば、o-クレゾール、p-クレゾール、p-ter-ブチルフェノール、p-フェニルフェノール、p-クミルフェノール、p-ノニルフェノール、2,4-または2,6-キシレノール、m-クレゾール、レゾルシノール、3,5-キシレノール、ビスフェノールA、ジヒドロキシジフェニルメタンなどが挙げられる。また、例えば、塩素、臭素などのハロゲンにより置換されたハロゲン化フェノール類なども挙げられる。これらフェノール類は、単独使用または2種類以上併用することができる。 Phenols are phenols and derivatives thereof such as phenol, and further, for example, o-cresol, p-cresol, p-ter-butylphenol, p-phenylphenol, p-cumylphenol, p-nonylphenol, Examples include 2,4- or 2,6-xylenol, m-cresol, resorcinol, 3,5-xylenol, bisphenol A, dihydroxydiphenylmethane, and the like. Further, for example, halogenated phenols substituted with halogen such as chlorine and bromine can be mentioned. These phenols can be used alone or in combination of two or more.
 フェノール類として、好ましくは、フェノールが挙げられる。 Phenols are preferably phenol.
 アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド(n-ブチルアルデヒド、イソブチルアルデヒド)、フルフラール、グリオキサール、ベンズアルデヒド、トリオキサン、テトラオキサンなどが挙げられる。また、アルデヒドの一部が、フルフリルアルコールなどに置換されていてもよい。これらアルデヒド類は、単独使用または2種類以上併用することができる。 Examples of aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, butyraldehyde (n-butyraldehyde, isobutyraldehyde), furfural, glyoxal, benzaldehyde, trioxane, tetraoxane and the like. Moreover, a part of aldehyde may be substituted with furfuryl alcohol or the like. These aldehydes can be used alone or in combination of two or more.
 アルデヒド類として、好ましくは、ホルムアルデヒド、パラホルムアルデヒドが挙げられる。 Preferred examples of aldehydes include formaldehyde and paraformaldehyde.
 また、アルデヒド類は、例えば、水溶液として用いることができる。そのような場合において、アルデヒド類の濃度は、例えば、10質量%以上、好ましくは、20質量%以上であり、例えば、99質量%以下、好ましくは、95質量%以下である。 Further, aldehydes can be used as an aqueous solution, for example. In such a case, the concentration of aldehydes is, for example, 10% by mass or more, preferably 20% by mass or more, for example, 99% by mass or less, preferably 95% by mass or less.
 また、アルデヒド類とともに、ケトン類を配合することもできる。 Also, ketones can be blended with aldehydes.
 ケトン類としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノン、ジフェニルケトンなどが挙げられる。これらケトン類は、単独使用または2種類以上併用することができる。 Examples of ketones include acetone, methyl ethyl ketone, diethyl ketone, acetophenone, diphenyl ketone, and the like. These ketones can be used alone or in combination of two or more.
 ケトン類が配合される場合、ケトン類の配合割合は、固形分基準で、アルデヒド類100質量部に対して、例えば、0.01質量部以上、好ましくは、1質量部以上であり、例えば、200質量部以下、好ましくは、100質量部以下である。 When the ketones are blended, the blending ratio of the ketones is, for example, 0.01 parts by mass or more, preferably 1 part by mass or more with respect to 100 parts by mass of the aldehydes based on the solid content. 200 parts by mass or less, preferably 100 parts by mass or less.
 そして、リグニン(分子中に脂肪族水酸基を有するリグニン)とフェノール類とアルデヒド類(および必要により配合されるケトン類(以下同様))とを反応させるには、上記の各成分(リグニン、フェノール類およびアルデヒド類)を配合し、加熱する。 In order to react lignin (lignin having an aliphatic hydroxyl group in the molecule) with phenols and aldehydes (and ketones blended if necessary (hereinafter the same)), the above components (lignin, phenols) And aldehydes) and heat.
 この反応において、フェノール類の配合割合は、リグニン100質量部に対して、例えば、30質量部以上、好ましくは、50質量部以上、より好ましくは、100質量部以上であり、例えば、1000質量部以下、好ましくは、500質量部以下、より好ましくは、350質量部以下である。 In this reaction, the mixing ratio of the phenols is, for example, 30 parts by mass or more, preferably 50 parts by mass or more, more preferably 100 parts by mass or more, for example, 1000 parts by mass with respect to 100 parts by mass of lignin. Hereinafter, it is preferably 500 parts by mass or less, and more preferably 350 parts by mass or less.
 また、アルデヒド類の配合割合が、フェノール類100質量部に対して、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、35質量部以下、好ましくは、30質量部以下である。また、アルデヒド類の配合割合は、リグニン100質量部に対して、例えば、1.5質量部以上、好ましくは、3質量部以上であり、例えば、350質量部以下、好ましくは、300質量部以下である。 The blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 35 parts by mass or less, preferably 30 parts by mass or less, relative to 100 parts by mass of phenols. is there. The blending ratio of aldehydes is, for example, 1.5 parts by mass or more, preferably 3 parts by mass or more, for example, 350 parts by mass or less, preferably 300 parts by mass or less, with respect to 100 parts by mass of lignin. It is.
 各成分の配合割合が上記範囲であれば、各種物性(電気絶縁性、機械物性、耐熱性、耐水性など)の向上を図ることができる。 If the blending ratio of each component is within the above range, various physical properties (electrical insulation, mechanical properties, heat resistance, water resistance, etc.) can be improved.
 また、この反応では、酸触媒が添加される。すなわち、上記の各成分は、酸触媒下において反応する。 In this reaction, an acid catalyst is added. That is, each of the above components reacts under an acid catalyst.
 酸触媒としては、例えば、有機酸、無機酸などが挙げられる。 Examples of the acid catalyst include organic acids and inorganic acids.
 有機酸としては、例えば、メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、キュメンスルホン酸、ジノニルナフタレンモノスルホン酸、ジノニルナフタレンジスルホン酸などのスルホン酸化合物、例えば、リン酸トリメチル、リン酸トリエチル、リン酸モノブチル、リン酸ジブチル、リン酸トリブチル、リン酸トリオクチルなどの炭素数1~18のアルキル基を有するリン酸エステル類、例えば、ギ酸、酢酸、シュウ酸などが挙げられる。 Examples of the organic acid include sulfonic acid compounds such as methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, for example, trimethyl phosphate, Examples thereof include phosphate esters having an alkyl group having 1 to 18 carbon atoms such as triethyl phosphate, monobutyl phosphate, dibutyl phosphate, tributyl phosphate, trioctyl phosphate, and the like, for example, formic acid, acetic acid, oxalic acid and the like.
 無機酸としては、例えば、リン酸、塩酸、硫酸、硝酸などが挙げられる。 Examples of inorganic acids include phosphoric acid, hydrochloric acid, sulfuric acid, and nitric acid.
 これら酸触媒は、単独使用または2種類以上併用することができる。 These acid catalysts can be used alone or in combination of two or more.
 酸触媒として、好ましくは、有機酸、より好ましくは、シュウ酸が挙げられる。 The acid catalyst is preferably an organic acid, more preferably oxalic acid.
 酸触媒の配合割合は、フェノール類100質量部に対して、酸触媒が、例えば、0.1質量部以上、好ましくは、0.3質量部以上であり、例えば、10質量部以下、好ましくは、7質量部以下である。 The mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 100 parts by mass with respect to 100 parts by mass of phenols. 7 parts by mass or less.
 なお、酸触媒の添加のタイミングは、特に制限されず、リグニン、フェノール類およびアルデヒド類の少なくともいずれかに予め添加されていてもよく、また、リグニン、フェノール類およびアルデヒド類の配合時に同時に添加されてもよく、さらに、リグニン、フェノール類およびアルデヒド類の配合後に添加されてもよい。 The timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin, phenols, and aldehydes, and added at the same time when lignin, phenols, and aldehydes are blended. Further, it may be added after blending lignin, phenols and aldehydes.
 反応条件としては、大気圧下、反応温度が、例えば、50℃以上、好ましくは、80℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。また、反応時間が、例えば、1時間以上、好ましくは、2時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
 これにより、リグニン、フェノール類およびアルデヒド類の反応生成物として、ノボラック型フェノール樹脂が得られる。 Thereby, a novolac type phenol resin is obtained as a reaction product of lignin, phenols and aldehydes.
 より具体的には、酸触媒下におけるフェノール類とアルデヒド類との反応によって、ノボラック型フェノール樹脂が得られ、また、そのノボラック型フェノール樹脂が、リグニンにより変性される。 More specifically, a novolac-type phenol resin is obtained by the reaction of phenols and aldehydes in the presence of an acid catalyst, and the novolac-type phenol resin is modified with lignin.
 すなわち、リグニンにより変性されたノボラック型フェノール樹脂(以下、リグニン変性ノボラック型フェノール樹脂と称する場合がある。)が得られる。 That is, a novolak-type phenol resin modified with lignin (hereinafter sometimes referred to as a lignin-modified novolak-type phenol resin) is obtained.
 また、リグニンとフェノール類とアルデヒド類との反応では、上記のように、上記各成分を一括配合して反応(一括反応)させることもできるが、上記各成分を順次配合して反応(順次反応)させることもできる。 In the reaction of lignin, phenols and aldehydes, as described above, the above components can be combined and reacted (collective reaction), but the above components are mixed and reacted (sequential reaction). ).
 順次反応では、具体的には、まず、リグニンとフェノール類とを反応させ、リグニンおよびフェノール類の反応生成物を含むリグニン-フェノール組成物を調製し、次いで、そのリグニン-フェノール組成物と、アルデヒド類とを反応させる。 Specifically, in the sequential reaction, first, lignin and phenols are reacted to prepare a lignin-phenol composition containing a reaction product of lignin and phenols, and then the lignin-phenol composition and aldehyde React with a kind.
 リグニンとフェノール類との反応では、リグニンに対してフェノール類は過剰当量配合され、具体的には、フェノール類の配合割合は、リグニン100質量部に対して、例えば、30質量部以上、好ましくは、50質量部以上であり、例えば、1000質量部以下、好ましくは、500質量部以下である。 In the reaction of lignin and phenols, the phenols are blended in an excess equivalent amount with respect to lignin. Specifically, the blending ratio of phenols is, for example, 30 parts by mass or more, preferably 100 parts by mass of lignin. 50 parts by mass or more, for example, 1000 parts by mass or less, preferably 500 parts by mass or less.
 また、この反応では、上記の酸触媒が添加される。 In this reaction, the above acid catalyst is added.
 酸触媒の配合割合は、フェノール類100質量部に対して、例えば、0.1質量部以上、好ましくは、0.3質量部以上であり、例えば、10質量部以下、好ましくは、5質量部以下である。 The mixing ratio of the acid catalyst is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, for example, 10 parts by mass or less, preferably 5 parts by mass with respect to 100 parts by mass of the phenols. It is as follows.
 なお、酸触媒の添加のタイミングは、特に制限されず、リグニンおよびフェノール類の少なくともいずれかに予め添加されていてもよく、また、リグニンおよびフェノール類の配合時に同時に添加されてもよく、さらに、リグニンおよびフェノール類の配合後に添加されてもよい。 The timing of addition of the acid catalyst is not particularly limited, and may be added in advance to at least one of lignin and phenols, or may be added simultaneously with the blending of lignin and phenols. It may be added after blending lignin and phenols.
 反応条件としては、大気圧下、反応温度が、例えば、60℃以上、好ましくは、80℃以上であり、例えば、250℃以下、好ましくは、200℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、10時間以下、好ましくは、5時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 60 ° C. or higher, preferably 80 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower. The reaction time is, for example, 0.5 hours or more, preferably 1 hour or more, for example, 10 hours or less, preferably 5 hours or less.
 この反応により、リグニンがフェノール類により変性される。具体的には、リグニンの分子中の脂肪族水酸基(リグニンがカルボン酸変性リグニンである場合、カルボン酸で変性された脂肪族水酸基と、カルボン酸で変性されずに残存する脂肪族水酸基とを含む。)が、フェノール類に置換される。 This reaction modifies lignin with phenols. Specifically, an aliphatic hydroxyl group in the lignin molecule (in the case where the lignin is a carboxylic acid-modified lignin, an aliphatic hydroxyl group modified with a carboxylic acid and an aliphatic hydroxyl group remaining unmodified with a carboxylic acid are included. .) Is replaced by phenols.
 なお、上記の反応では、過剰のフェノール類が、未反応成分として残存する。そのため、上記の反応で得られるリグニン-フェノール組成物には、リグニンおよびフェノール類の反応生成物(フェノール類により変性されたリグニン)と、遊離のフェノール類とが含有される。 In the above reaction, excess phenols remain as unreacted components. Therefore, the lignin-phenol composition obtained by the above reaction contains a reaction product of lignin and phenols (lignin modified with phenols) and free phenols.
 次いで、この方法では、上記により得られるリグニン-フェノール組成物(すなわち、フェノール類により変性されたリグニン、および、遊離のフェノール類を含む。)と、アルデヒド類とを反応させる。 Next, in this method, the lignin-phenol composition obtained as described above (that is, lignin modified with phenols and free phenols) is reacted with aldehydes.
 この反応において、アルデヒド類の配合割合は、フェノール類(上記反応において原料として用いられたフェノール類)100質量部に対して、例えば、5質量部以上、好ましくは、10質量部以上であり、例えば、35質量部以下、好ましくは、30質量部以下である。 In this reaction, the blending ratio of aldehydes is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, with respect to 100 parts by mass of phenols (phenols used as a raw material in the above reaction). , 35 parts by mass or less, preferably 30 parts by mass or less.
 また、この反応では、必要に応じて、上記の酸触媒を適宜の割合で添加することもできる。 In this reaction, the above acid catalyst can be added at an appropriate ratio, if necessary.
 反応条件としては、大気圧下、反応温度が、例えば、50℃以上、好ましくは、80℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。また、反応時間が、例えば、1時間以上、好ましくは、2時間以上であり、例えば、20時間以下、好ましくは、15時間以下である。 As reaction conditions, under atmospheric pressure, the reaction temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, for example, 200 ° C. or lower, preferably 180 ° C. or lower. The reaction time is, for example, 1 hour or more, preferably 2 hours or more, for example, 20 hours or less, preferably 15 hours or less.
 これにより、上記のリグニン-フェノール組成物と、アルデヒド類とが反応し、リグニンにより変性されたノボラック型フェノール樹脂(リグニン変性ノボラック型フェノール樹脂)が得られる。 As a result, the above lignin-phenol composition reacts with aldehydes to obtain a novolak-type phenol resin modified with lignin (lignin-modified novolak-type phenol resin).
 上記のような順次反応によれば、耐熱性、電気絶縁性および耐水性の向上を図ることができる。 According to the sequential reaction as described above, it is possible to improve heat resistance, electrical insulation and water resistance.
 なお、リグニン変性ノボラック型フェノール樹脂の製造では、必要により、蒸留などの公知の方法によって、未反応原料(未反応のフェノール類など)や酸触媒を除去することができる。 In the production of a lignin-modified novolac type phenol resin, unreacted raw materials (unreacted phenols, etc.) and acid catalyst can be removed by a known method such as distillation, if necessary.
 このようなノボラック型フェノール樹脂(すなわち、リグニン変性ノボラック型フェノール樹脂)は、所定の割合で分子中に脂肪族水酸基を有するリグニンを原料として用いるため、生産性(樹脂収率や生産速度など)に優れる。また、各種物性(電気絶縁性、機械物性、耐熱性、耐水性など)に優れる成形品を得ることができる。 Such a novolak type phenolic resin (that is, lignin-modified novolak type phenolic resin) uses lignin having an aliphatic hydroxyl group in the molecule at a predetermined ratio as a raw material, so that productivity (resin yield, production rate, etc.) is improved. Excellent. In addition, a molded product excellent in various physical properties (electrical insulation, mechanical properties, heat resistance, water resistance, etc.) can be obtained.
 また、上記のノボラック型フェノール樹脂の製造方法によれば、ノボラック型フェノール樹脂を、生産性(樹脂収率や生産速度など)よく得ることができる。 Further, according to the above-described method for producing a novolac type phenol resin, the novolac type phenol resin can be obtained with good productivity (resin yield, production rate, etc.).
 そして、本発明の樹脂組成物は、上記のノボラック型フェノール樹脂を、必須成分として含有している。 And the resin composition of this invention contains said novolak-type phenol resin as an essential component.
 また、樹脂組成物は、必要により、フェノール樹脂硬化剤を含有することができる。 Moreover, the resin composition can contain a phenol resin curing agent, if necessary.
 フェノール樹脂硬化剤としては、特に制限されず、公知の硬化剤を用いることができる。具体的には、例えば、ヘキサメチレンテトラミン、メチロールメラミン、メチロール尿素、フェノールノボラックなどが挙げられる。 The phenol resin curing agent is not particularly limited, and a known curing agent can be used. Specifically, for example, hexamethylenetetramine, methylolmelamine, methylolurea, phenol novolac and the like can be mentioned.
 これらフェノール樹脂硬化剤は、単独使用または2種類以上併用することができる。 These phenolic resin curing agents can be used alone or in combination of two or more.
 フェノール樹脂硬化剤の配合割合は、目的および用途に応じて、適宜設定される。 The blending ratio of the phenol resin curing agent is appropriately set according to the purpose and application.
 また、樹脂組成物は、さらに、添加剤を含有することができる。 The resin composition can further contain an additive.
 添加剤としては、樹脂組成物に添加される公知の添加剤、公知の添加剤、例えば、充填剤(木粉、パルプ、ガラス繊維など)、着色剤、可塑剤、安定剤、離型剤(ステアリン酸亜鉛などの金属石鹸など)などが挙げられる。 Examples of the additive include known additives added to the resin composition, known additives such as fillers (wood flour, pulp, glass fibers, etc.), colorants, plasticizers, stabilizers, release agents ( Metal soap such as zinc stearate).
 これら添加剤は、単独使用または2種類以上併用することができる。添加剤の含有量は、本発明の優れた効果を阻害しない範囲において、目的および用途に応じて、適宜設定される。 These additives can be used alone or in combination of two or more. The content of the additive is appropriately set according to the purpose and application within a range that does not impair the excellent effects of the present invention.
 例えば、充填剤が添加される場合には、その配合割合は、樹脂組成物100質量部に対して、充填剤が、例えば、10質量部以上、好ましくは、20質量部以上であり、例えば、500質量部以下、好ましくは、300質量部以下である。 For example, when a filler is added, the blending ratio is, for example, 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the resin composition. 500 parts by mass or less, preferably 300 parts by mass or less.
 また、添加剤は、リグニン、フェノール類およびアルデヒド類の少なくともいずれかに予め添加されていてもよく、また、リグニン、フェノール類およびアルデヒド類の配合時に同時に添加されてもよく、また、リグニン、フェノール類およびアルデヒド類の配合後に添加されてもよく、さらには、それらの反応生成物に直接添加されていてもよい。 The additive may be added in advance to at least one of lignin, phenols, and aldehydes, or may be added at the same time when lignin, phenols, and aldehydes are blended, and lignin, phenol It may be added after blending of aldehydes and aldehydes, or may be added directly to their reaction products.
 このようにして得られる樹脂組成物は、上記のノボラック型フェノール樹脂(すなわち、リグニン変性ノボラック型フェノール樹脂)を含有しているため、生産性に優れ、また、各種物性に優れる。 The resin composition thus obtained contains the above-described novolak-type phenol resin (that is, lignin-modified novolak-type phenol resin), and thus has excellent productivity and various physical properties.
 そのため、このような樹脂組成物は、成形品の製造に好適に用いられる。 Therefore, such a resin composition is suitably used for the production of a molded product.
 より具体的には、上記の樹脂組成物を、例えば、トランスファ成形、圧縮成形などの公知の熱硬化性樹脂の成形方法により成形する。これにより、各種物性に優れる成形品を得ることができる。 More specifically, the above resin composition is molded by a known thermosetting resin molding method such as transfer molding or compression molding. Thereby, the molded article which is excellent in various physical properties can be obtained.
 そのため、得られる成形品は、電気部品、自動車部品、建築材料、日用品などの各種産業分野において、広範に用いることができる。 Therefore, the molded product obtained can be widely used in various industrial fields such as electric parts, automobile parts, building materials, and daily necessities.
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。また、以下の説明において特に言及がない限り、「部」および「%」は質量基準である。なお、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the following examples. In the following description, “part” and “%” are based on mass unless otherwise specified. In addition, specific numerical values such as a blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio corresponding to them ( Substituting the upper limit value (numerical value defined as “less than” or “less than”) or the lower limit value (number defined as “greater than” or “exceeded”) such as content ratio), physical property values, parameters be able to.
 <<脂肪族水酸基の含有割合>>
 リグニンの総量に対する脂肪族水酸基の含有割合は、以下の方法で測定した。
<< Content ratio of aliphatic hydroxyl group >>
The content ratio of the aliphatic hydroxyl group to the total amount of lignin was measured by the following method.
 すなわち、まず、リグニン500mgに、ピリジンおよび無水酢酸それぞれ5mLずつを入れ、室温で24時間放置し、水酸基をアセチル化した。次いで、トルエンを添加しつつエバポレーターでピリジンおよび無水酢酸を除去した。 That is, first, 5 mL each of pyridine and acetic anhydride was added to 500 mg of lignin, and allowed to stand at room temperature for 24 hours to acetylate the hydroxyl group. Subsequently, pyridine and acetic anhydride were removed with an evaporator while adding toluene.
 その後、アセチル化されたリグニン5mgを溶媒1gに溶かし、下記の条件でプロトンNMR測定することにより、約1.9ppmに現れるアセチル基のプロトン量を定量した。一方、アセチル化されていないリグニンについても、同じ条件でプロトンNMR測定し、アセチル基のプロトン量を定量した。 Thereafter, 5 mg of acetylated lignin was dissolved in 1 g of a solvent, and proton NMR measurement was performed under the following conditions to determine the amount of protons of the acetyl group appearing at about 1.9 ppm. On the other hand, proton NMR measurement was also performed on lignin that was not acetylated under the same conditions, and the amount of protons in the acetyl group was quantified.
 そして、アセチル化されたリグニンの約1.9ppmにおけるピーク強度から、アセチル化されていないリグニンの約1.9ppmにおけるピーク強度を差し引き、アセチル化によるピーク量を求めた。これを、脂肪族水酸基量とした。
装置:Bruker製 AscendTM 400 NMR装置
溶媒:DO37.5g+NaOD12.5g+DSS-d(3-(トリメチルシリル)-1-プロパン-1,1,2,2,3,3-d-スルホン酸ナトリウム、標準物質)25mg
測定周波数:400MHz
測定温度:25℃
スキャン回数:128回
 <<樹脂収率>>
 ノボラック型フェノール樹脂の収率を、以下の式により算出した。
Then, from the peak intensity at about 1.9 ppm of acetylated lignin, the peak intensity at about 1.9 ppm of non-acetylated lignin was subtracted to obtain the peak amount due to acetylation. This was made into the amount of aliphatic hydroxyl groups.
Apparatus: Bruker Ltd. AscendTM 400 NMR apparatus solvent: D 2 O37.5g + NaOD12.5g + DSS -d 6 (3- ( trimethylsilyl) -1-propane -1,1,2,2,3,3-d 6 - sulfonate, sodium Standard substance) 25mg
Measurement frequency: 400MHz
Measurement temperature: 25 ° C
Number of scans: 128 times << resin yield >>
The yield of novolac type phenolic resin was calculated by the following formula.
 樹脂収率(%)=[得られたノボラック型フェノール樹脂の質量]÷[仕込み原料の総質量]×100
 <<リグニンの製造>>
  製造例1(酢酸リグニン)
 コーンストーバー100質量部を、95質量%の酢酸1000質量部および硫酸3質量部と混合し、還流下において4時間反応させた。反応後、濾過してパルプを除去し、パルプ廃液を回収した。次いで、ロータリーエバポレーターを用いてパルプ廃液中の酢酸を除去し、体積が1/10になるまで濃縮した後、その濃縮液の10倍量(質量基準)の水を添加し、濾過することにより、固形分として酢酸変性リグニンを得た。
Resin yield (%) = [mass of obtained novolac-type phenol resin] ÷ [total mass of charged raw materials] × 100
<< Manufacture of lignin >>
Production Example 1 (Lignin Acetate)
100 parts by mass of corn stover was mixed with 1000 parts by mass of 95% by mass acetic acid and 3 parts by mass of sulfuric acid, and reacted for 4 hours under reflux. After the reaction, the pulp was removed by filtration, and the pulp waste liquid was recovered. Next, after removing acetic acid in the pulp waste liquid using a rotary evaporator and concentrating until the volume becomes 1/10, 10 times the amount of the concentrated liquid (mass basis) is added and filtered, Acetic acid-modified lignin was obtained as a solid content.
 酢酸変性リグニンの脂肪族水酸基含有割合は、5.1質量%であった。 The content of aliphatic hydroxyl groups in acetic acid-modified lignin was 5.1% by mass.
  製造例2(アルカリリグニン)
 麦わらのアルカリ蒸解パルプ廃液(黒液)を中和した後、濾過することにより、固形分としてアルカリリグニンを得た。
Production Example 2 (Alkaline Lignin)
The alkali digestion pulp waste liquid (black liquor) of the straw was neutralized and then filtered to obtain alkali lignin as a solid content.
 アルカリリグニンの脂肪族水酸基含有割合は、3.1質量%であった。 The content of aliphatic hydroxyl group in alkali lignin was 3.1% by mass.
 <順次反応>
  実施例1
 フェノール493.5gをフラスコに入れ、50℃程度まで加熱してフェノールを液化させ、その後、製造例1で得られた酢酸リグニン150gを添加した。
<Sequential reaction>
Example 1
493.5 g of phenol was put in a flask and heated to about 50 ° C. to liquefy the phenol, and then 150 g of lignin acetate obtained in Production Example 1 was added.
 次いで、シュウ酸(酸触媒)7.62gを添加し、その後、130℃で2.5時間反応させた。これにより、酢酸変性リグニンをフェノールにより変性させた。 Next, 7.62 g of oxalic acid (acid catalyst) was added, and then reacted at 130 ° C. for 2.5 hours. This modified the acetic acid-modified lignin with phenol.
 その後、80℃まで冷却し、パラホルムアルデヒド117.4gを添加し、95℃で2.5時間反応させた。次いで、0.5℃/minで110℃まで昇温し、110℃で1.5時間反応させた。次いで、0.5℃/minで120℃まで昇温し、120℃で2時間反応させた。 Then, it cooled to 80 degreeC, 117.4 g of paraformaldehyde was added, and it was made to react at 95 degreeC for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
 反応後、2300gの水を添加し、強く撹拌した後に静置し、デカンテーションで水を除去することによって、シュウ酸およびフェノールを除去した。さらに、適宜、水を加えつつ120℃、0.08MPaの条件で減圧蒸留し、残留フェノールを除去した。なお、減圧蒸留はフェノール残存率が1%以下になるまで繰り返した。 After the reaction, 2300 g of water was added, and after stirring vigorously, the mixture was allowed to stand, and water was removed by decantation to remove oxalic acid and phenol. Further, the residual phenol was removed by distillation under reduced pressure under conditions of 120 ° C. and 0.08 MPa while adding water as appropriate. The vacuum distillation was repeated until the phenol residual ratio became 1% or less.
 これにより、酢酸変性リグニンにより変性されたノボラック型フェノール樹脂を得た。 Thereby, a novolac type phenol resin modified with acetic acid-modified lignin was obtained.
 ノボラック型フェノール樹脂の収率は、74.9%であった。 The yield of novolac type phenolic resin was 74.9%.
 また、得られた樹脂450gと、充填剤としての木粉(旭有機材工業社製)150gと、フェノール樹脂硬化剤としてのヘキサメチレンテトラミン(リグナイト社製)54gと、離型剤としてのステアリン酸亜鉛(和光純薬工業社製)4.5gとを順次配合し、2本の熱ロールにて100℃で10分間混練して、樹脂組成物を得た。 Moreover, 450 g of the obtained resin, 150 g of wood flour (Asahi Organic Materials Co., Ltd.) as a filler, 54 g of hexamethylenetetramine (manufactured by Lignite) as a phenol resin curing agent, and stearic acid as a mold release agent Zinc (made by Wako Pure Chemical Industries) 4.5g was mix | blended sequentially, and it knead | mixed for 10 minutes at 100 degreeC with two hot rolls, and obtained the resin composition.
  実施例2~4および比較例1
 表1に示す配合処方とした以外は、実施例1と同様にして、ノボラック型フェノール樹脂および樹脂組成物を得た。
Examples 2 to 4 and Comparative Example 1
A novolac type phenolic resin and a resin composition were obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used.
 なお、実施例2では、酢酸リグニンに代えて、製造例2で得られたアルカリリグニンを用いた。 In Example 2, the alkaline lignin obtained in Production Example 2 was used in place of acetic acid lignin.
 また、実施例3では、酢酸リグニンに代えて、クラフトリグニン(SIGMA-ALDRICH社製、脂肪族水酸基含有量4.4質量%)を用いた。 In Example 3, kraft lignin (manufactured by SIGMA-ALDRICH, aliphatic hydroxyl group content 4.4 mass%) was used instead of acetic acid lignin.
 また、比較例1では、酢酸リグニンに代えて、リグニンスルホン酸ナトリウム(東京化成工業社製、脂肪族水酸基含有量0.3質量%)を用いた。 In Comparative Example 1, sodium lignin sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., aliphatic hydroxyl group content: 0.3% by mass) was used in place of lignin acetate.
 <一括反応>
  実施例4
 フェノール493.5gをフラスコに入れ、50℃程度まで加熱してフェノールを液化させ、その後、製造例1で得られた酢酸変性リグニン150gを添加した。
<Batch reaction>
Example 4
493.5 g of phenol was put in a flask and heated to about 50 ° C. to liquefy the phenol, and then 150 g of acetic acid-modified lignin obtained in Production Example 1 was added.
 次いで、シュウ酸(酸触媒)7.62gと、パラホルムアルデヒド117.4gとを添加し、95℃で2.5時間反応させた。次いで、0.5℃/minで110℃まで昇温し、110℃で1.5時間反応させた。次いで、0.5℃/minで120℃まで昇温し、120℃で2時間反応させた。 Next, 7.62 g of oxalic acid (acid catalyst) and 117.4 g of paraformaldehyde were added and reacted at 95 ° C. for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
 反応後、2300gの水を添加し、強く撹拌した後に静置し、デカンテーションで水を除去することによって、シュウ酸およびフェノールを除去した。さらに、適宜、水を加えつつ120℃、0.08MPaの条件で減圧蒸留し、残留フェノールを除去した。なお、減圧蒸留はフェノール残存率が1%以下になるまで繰り返した。 After the reaction, 2300 g of water was added, and after stirring vigorously, the mixture was allowed to stand, and water was removed by decantation to remove oxalic acid and phenol. Further, the residual phenol was removed by distillation under reduced pressure under conditions of 120 ° C. and 0.08 MPa while adding water as appropriate. The vacuum distillation was repeated until the phenol residual ratio became 1% or less.
 これにより、酢酸変性リグニンにより変性されたノボラック型フェノール樹脂を得た。 Thereby, a novolac type phenol resin modified with acetic acid-modified lignin was obtained.
 ノボラック型フェノール樹脂の収率は、69.7%であった。 The yield of novolac type phenolic resin was 69.7%.
 また、得られた樹脂450gと、充填剤としての木粉(旭有機材工業社製)150gと、フェノール樹脂硬化剤としてのヘキサメチレンテトラミン(リグナイト社製)54gと、離型剤としてのステアリン酸亜鉛(和光純薬工業社製)4.5gとを順次配合し、2本の熱ロールにて100℃で10分間混練して、樹脂組成物を得た。 Moreover, 450 g of the obtained resin, 150 g of wood flour (Asahi Organic Materials Co., Ltd.) as a filler, 54 g of hexamethylenetetramine (manufactured by Lignite) as a phenol resin curing agent, and stearic acid as a mold release agent Zinc (made by Wako Pure Chemical Industries) 4.5g was mix | blended sequentially, and it knead | mixed for 10 minutes at 100 degreeC with two hot rolls, and obtained the resin composition.
  実施例5
 表2に示す配合処方とした以外は、実施例4と同様にして、ノボラック型フェノール樹脂および樹脂組成物を得た。
Example 5
A novolac type phenolic resin and a resin composition were obtained in the same manner as in Example 4 except that the formulation shown in Table 2 was used.
 なお、実施例5では、酢酸リグニンに代えて、製造例2で得られたアルカリリグニンを用いた。 In Example 5, alkaline lignin obtained in Production Example 2 was used in place of acetic acid lignin.
  比較例2
 フェノール846g、シュウ酸(酸触媒)13.02gおよびパラホルムアルデヒド172.5gをフラスコに入れ、95℃で2.5時間反応させた。次いで、0.5℃/minで110℃まで昇温し、110℃で1.5時間反応させた。次いで、0.5℃/minで120℃まで昇温し、120℃で2時間反応させた。
Comparative Example 2
846 g of phenol, 13.02 g of oxalic acid (acid catalyst) and 172.5 g of paraformaldehyde were placed in a flask and reacted at 95 ° C. for 2.5 hours. Next, the temperature was raised to 110 ° C. at 0.5 ° C./min and reacted at 110 ° C. for 1.5 hours. Next, the temperature was raised to 120 ° C. at 0.5 ° C./min and reacted at 120 ° C. for 2 hours.
 反応後、3030gの水を添加し、強く撹拌した後に静置し、デカンテーションで水を除去することによって、シュウ酸およびフェノールを除去した。さらに、適宜、水を加えつつ120℃、0.08MPaの条件で減圧蒸留し、残留フェノールを除去した。なお、減圧蒸留はフェノール残存率が1%以下になるまで繰り返した。 After the reaction, 3030 g of water was added, and after stirring vigorously, the mixture was allowed to stand and water was removed by decantation to remove oxalic acid and phenol. Further, the residual phenol was removed by distillation under reduced pressure under conditions of 120 ° C. and 0.08 MPa while adding water as appropriate. The vacuum distillation was repeated until the phenol residual ratio became 1% or less.
 これにより、リグニンを含有しないノボラック型フェノール樹脂を得た。 Thereby, a novolac type phenol resin containing no lignin was obtained.
 ノボラック型フェノール樹脂の収率は、60.1%であった。 The yield of novolac type phenolic resin was 60.1%.
 また、得られた樹脂450gと、充填剤としての木粉(旭有機材工業社製)150gと、硬化剤としてのヘキサメチレンテトラミン(リグナイト社製)54gと、離型剤としてのステアリン酸亜鉛(和光純薬工業社製)4.5gとを順次配合し、2本の熱ロールにて100℃で10分間混練して、樹脂組成物を得た。 Moreover, 450 g of the obtained resin, 150 g of wood flour (Asahi Organic Materials Co., Ltd.) as a filler, 54 g of hexamethylenetetramine (manufactured by Lignite) as a curing agent, and zinc stearate (as a mold release agent) 4.5 g) (manufactured by Wako Pure Chemical Industries, Ltd.) were sequentially blended and kneaded with two hot rolls at 100 ° C. for 10 minutes to obtain a resin composition.
 <評価>
 各実施例および各比較例において得られた樹脂組成物について、170℃において15分間トランスファ成形し、成形品として、曲げ試験用の矩形試験片と、75mmφの円盤形試験片とを得た。
<Evaluation>
About the resin composition obtained in each Example and each comparative example, it transfer-molded for 15 minutes at 170 degreeC, and obtained the rectangular test piece for a bending test, and the disk-shaped test piece of 75 mmphi as a molded article.
 そして、得られた成形品を、下記の方法により評価した。その結果を、表1に示す。 Then, the obtained molded product was evaluated by the following method. The results are shown in Table 1.
 (1)ガラス転移温度(Tg)
 Rheogel-E4000(ユ-ビーエム社製)を用い、固体動的粘弾性を測定した(周波数1Hz、昇温速度2℃/分)。そして、得られるtanδ曲線のピーク温度を、ガラス転移温度(Tg)として求めた。その結果を、表1に示す。
(1) Glass transition temperature (Tg)
The solid dynamic viscoelasticity was measured using Rhegel-E4000 (manufactured by UBM) (frequency 1 Hz, temperature rising rate 2 ° C./min). And the peak temperature of the obtained tan-delta curve was calculated | required as glass transition temperature (Tg). The results are shown in Table 1.
 (2)曲げ強度
 JIS K6911(1995年版)に準拠して、クロスヘッド速度3mm/分、スパン100mmにて曲げ強度を測定した。
(2) Bending strength The bending strength was measured at a crosshead speed of 3 mm / min and a span of 100 mm in accordance with JIS K6911 (1995 edition).
 (3)荷重たわみ温度
 ASTM D648(2004年版)に準拠して、ヒートディストーションテスター(マイズ試験機製)を用い、シリコーンオイル中において、昇温速度2℃/分、荷重18.5kg/cmの条件で、標準たわみ量(0.25mm)に到達したときの温度を測定した。
(3) Deflection temperature under load In accordance with ASTM D648 (2004 edition), using a heat distortion tester (manufactured by Mize Tester), in silicone oil, a temperature rising rate of 2 ° C./min and a load of 18.5 kg / cm 2 Then, the temperature when the standard deflection amount (0.25 mm) was reached was measured.
 (4)線膨張係数
 TMA/SS6000(日立ハイテクサイエンス社製)を用い、窒素雰囲気下、圧縮モード、昇温速度2℃/分で熱機械分析(TMA)し、得られるTMA曲線の傾きから、40℃~60℃での線膨張係数を求めた。
(4) Linear expansion coefficient Using TMA / SS6000 (manufactured by Hitachi High-Tech Science Co., Ltd.), thermomechanical analysis (TMA) at a compression mode and a heating rate of 2 ° C / min under a nitrogen atmosphere, and from the slope of the obtained TMA curve, The linear expansion coefficient at 40 ° C. to 60 ° C. was determined.
 (5)体積抵抗率(電気絶縁性)
 JIS K6911(1995年版)に従い、HP4339A(アジレント・テクノロジー社製)を用いて、体積抵抗率(Ω・cm)を測定した。
(5) Volume resistivity (electrical insulation)
According to JIS K6911 (1995 edition), volume resistivity (Ω · cm) was measured using HP4339A (manufactured by Agilent Technologies).
 (6)誘電率
 インピーダンスアナライザーE4991A(アジレント・テクノロジー社製)を用い、周波数1GHzにおける誘電率を容量法にて測定した。
(6) Dielectric constant Using an impedance analyzer E4991A (manufactured by Agilent Technologies), the dielectric constant at a frequency of 1 GHz was measured by the capacitance method.
 (7)吸水率
 成形品の初期質量(乾燥質量)を測定し、次いで、成形品を沸騰水に2時間浸漬した後、その質量(吸水質量)および増加量を測定し、下記式により、吸水率を求めた。
(7) Water Absorption Rate After measuring the initial mass (dry mass) of the molded product and then immersing the molded product in boiling water for 2 hours, the mass (water absorption mass) and the amount of increase were measured. The rate was determined.
 吸水率(質量%)
   = 100 × 沸騰水の浸漬後における質量増加量 / 乾燥質量
Water absorption (mass%)
= 100 x mass increase after immersion in boiling water / dry mass
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 本発明のノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法は、電気部品、自動車部品、建築材料、日用品などの各種産業分野において、広範に用いることができる。 The production method of the novolac type phenolic resin, the resin composition and the novolac type phenolic resin of the present invention can be widely used in various industrial fields such as electric parts, automobile parts, building materials and daily necessities.

Claims (5)

  1.  分子中に脂肪族水酸基を有するリグニンと、
     フェノール類と、
     アルデヒド類と
    の、酸触媒下での反応生成物であり、
     前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5質量%以上7.0質量%以下である
    ことを特徴とする、ノボラック型フェノール樹脂。
    Lignin having an aliphatic hydroxyl group in the molecule;
    Phenols,
    It is a reaction product of an aldehyde with an acid catalyst,
    The novolac type phenol resin, wherein the content of the aliphatic hydroxyl group in the lignin is 0.5% by mass or more and 7.0% by mass or less based on the total amount of the lignin.
  2.  前記リグニンおよび前記フェノール類の反応生成物を含むリグニン-フェノール組成物と、
     前記アルデヒド類と
    の反応生成物である、請求項1に記載のノボラック型フェノール樹脂。
    A lignin-phenol composition comprising a reaction product of the lignin and the phenols;
    The novolac-type phenol resin according to claim 1, which is a reaction product with the aldehydes.
  3.  前記リグニンが、酢酸により変性されたリグニンである、
    請求項1に記載のノボラック型フェノール樹脂。
    The lignin is lignin modified with acetic acid,
    The novolak type phenol resin according to claim 1.
  4.  請求項1に記載のノボラック型フェノール樹脂を含有することを特徴とする、樹脂組成物。 A resin composition comprising the novolak type phenol resin according to claim 1.
  5.  分子中に脂肪族水酸基を有するリグニンと、フェノール類と、アルデヒド類とを、酸触媒下で反応させる工程を含み、
     前記リグニンの前記脂肪族水酸基の含有割合が、前記リグニンの総量に対して、0.5質量%以上7.0質量%以下である
    ことを特徴とする、ノボラック型フェノール樹脂の製造方法。
    Including a step of reacting a lignin having an aliphatic hydroxyl group in the molecule with a phenol and an aldehyde under an acid catalyst,
    The method for producing a novolac type phenolic resin, wherein a content ratio of the aliphatic hydroxyl group of the lignin is 0.5% by mass or more and 7.0% by mass or less based on a total amount of the lignin.
PCT/JP2017/044286 2017-01-24 2017-12-11 Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin WO2018139074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010724 2017-01-24
JP2017010724A JP2020055888A (en) 2017-01-24 2017-01-24 Novolak type phenolic resin, resin composition and method for producing novolak type phenolic resin

Publications (1)

Publication Number Publication Date
WO2018139074A1 true WO2018139074A1 (en) 2018-08-02

Family

ID=62978214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044286 WO2018139074A1 (en) 2017-01-24 2017-12-11 Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin

Country Status (2)

Country Link
JP (1) JP2020055888A (en)
WO (1) WO2018139074A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233570A1 (en) * 2018-01-26 2019-08-01 Hexion Inc. Manufacture of novolacs and resoles using lignin
JP2020050814A (en) * 2018-09-28 2020-04-02 住友ベークライト株式会社 Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
CN113728053A (en) * 2018-12-27 2021-11-30 苏扎诺有限公司 Novolac-type phenol resin, method for synthesizing same, and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156601A (en) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd Lignin-modified novolac type phenolic resin, method of producing the same, and phenolic resin molding material
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
WO2015147165A1 (en) * 2014-03-28 2015-10-01 住友ベークライト株式会社 Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product
WO2016098667A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition
JP2016540058A (en) * 2013-09-30 2016-12-22 ユー ピー エム キュンメネ コーポレーション Methods for increasing lignin reactivity
US20160369033A1 (en) * 2013-06-26 2016-12-22 Compagnie Industrielle De La Matiere Vegetale-Cimv Phenolic resin obtained by polycondensation of formaldehyde, phenol and lignin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156601A (en) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd Lignin-modified novolac type phenolic resin, method of producing the same, and phenolic resin molding material
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
US20160369033A1 (en) * 2013-06-26 2016-12-22 Compagnie Industrielle De La Matiere Vegetale-Cimv Phenolic resin obtained by polycondensation of formaldehyde, phenol and lignin
JP2016540058A (en) * 2013-09-30 2016-12-22 ユー ピー エム キュンメネ コーポレーション Methods for increasing lignin reactivity
WO2015147165A1 (en) * 2014-03-28 2015-10-01 住友ベークライト株式会社 Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product
WO2016098667A1 (en) * 2014-12-16 2016-06-23 ハリマ化成株式会社 Impregnated sheet, laminated sheet, and resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233570A1 (en) * 2018-01-26 2019-08-01 Hexion Inc. Manufacture of novolacs and resoles using lignin
US10808068B2 (en) * 2018-01-26 2020-10-20 Hexion Inc. Manufacture of novolacs and resoles using lignin
JP2020050814A (en) * 2018-09-28 2020-04-02 住友ベークライト株式会社 Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
CN113728053A (en) * 2018-12-27 2021-11-30 苏扎诺有限公司 Novolac-type phenol resin, method for synthesizing same, and use thereof
EP3904459A4 (en) * 2018-12-27 2022-09-07 Suzano S.A. Novolac phenolic resins, process of synthesis of said phenolic resins and use thereof

Also Published As

Publication number Publication date
JP2020055888A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5256813B2 (en) Lignin resin composition and molding material
JP5348113B2 (en) Method for producing lignin resin composition
JP2023024831A (en) Modified lignin manufacturing method, modified lignin, and modified lignin-containing resin composition material
WO2018139074A1 (en) Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
US11518886B2 (en) Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
JP6825925B2 (en) Resin coated sand and its manufacturing method
TWI613187B (en) Polymers, composites, and methods for making polymers and composites
JP2010159362A (en) Novolac resin and process for producing the same
WO2015178103A1 (en) Resin composition and method for producing same
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JP2020050815A (en) Production method of resin material comprising phenol-modified lignin resin, and production method of structure body by using the same
JP5920069B2 (en) Lignin resin composition and lignin resin molding material
JPWO2018190171A1 (en) Friction material
JP6217064B2 (en) Resin composition and resin molded body
JP5581046B2 (en) Method for producing novolac resin and novolac resin
JP5641101B2 (en) Method for producing lignin resin composition
WO2016098667A1 (en) Impregnated sheet, laminated sheet, and resin composition
JP2015048361A (en) Lignin resin composition, resin molded article, prepreg, and molding material
JP2021123716A (en) Novolac phenolic resin and resin composition
JP2015048359A (en) Lignin resin composition, resin molded article, and molding material
WO2016194600A1 (en) Resin composition, method for producing resin composition, and molded article
WO2018179820A1 (en) Sliding material
JP2015048360A (en) Lignin resin composition, resin molded article, and molding material
WO2018179821A1 (en) Sliding material
JP2022106052A (en) Slide material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP