WO2015147165A1 - Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product - Google Patents

Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product Download PDF

Info

Publication number
WO2015147165A1
WO2015147165A1 PCT/JP2015/059372 JP2015059372W WO2015147165A1 WO 2015147165 A1 WO2015147165 A1 WO 2015147165A1 JP 2015059372 W JP2015059372 W JP 2015059372W WO 2015147165 A1 WO2015147165 A1 WO 2015147165A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
lignin
resin
modified lignin
less
Prior art date
Application number
PCT/JP2015/059372
Other languages
French (fr)
Japanese (ja)
Inventor
村井威俊
田子浩明
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2016510485A priority Critical patent/JP6541007B2/en
Priority to CN201580003489.0A priority patent/CN105873970B/en
Publication of WO2015147165A1 publication Critical patent/WO2015147165A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/38Block or graft polymers prepared by polycondensation of aldehydes or ketones onto macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/24Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present disclosure relates to a phenol-modified lignin resin and a method for producing the same, and a resin composition, a rubber composition, and a cured product.
  • Patent Document 1 discloses an example in which wood is treated with acid and phenol.
  • cellulose derivatives hemicellulose derivatives and lignin derivatives.
  • lignin contained at a ratio of about 30% has a structure containing abundant aromatic rings, unlike cellulose derivatives and hemicellulose derivatives. Therefore, it is mainly a resin with excellent heat resistance and reactivity by taking out lignin. Examples of use as a raw material for resin compositions and tires are disclosed (for example, see Patent Documents 2 and 3).
  • Patent Documents 4 and 5 disclose lignin-modified phenolic resins in which phenol or a phenol derivative, an aldehyde, and lignin are reacted in the presence of an acid so that a part of the phenol or phenol derivative is substituted with lignin. It is disclosed that it can be obtained.
  • the lignin derivative has a highly polar structure rich in phenolic hydroxyl groups and alcoholic hydroxyl groups, performance as a reinforcing material for rubber compositions is also expected.
  • Patent Document 2 the lignin derivative is used as a filler instead of a carbon black instead of a phenol resin, and although the rubber elasticity of the rubber composition is increased, the mechanical strength is decreased.
  • Patent Document 5 discloses an example in which phenolic lignin obtained by directly adding lignin to phenol with concentrated sulfuric acid is used as a rubber reinforcing resin as a substitute for the phenol resin, but the rubber reinforcing effect such as rubber elasticity is sufficient. There wasn't.
  • JP 2004-352978 A Special table 2011-520208 gazette JP 2008-285626 A JP 2008-156601 A JP 2013-199561 A
  • the present disclosure provides a phenol-modified lignin resin with improved curability and excellent resin strength after curing.
  • the present disclosure provides a phenol-modified lignin resin for rubber reinforcement modified with phenols. In one or a plurality of embodiments, the present disclosure provides a phenol-modified lignin resin having a high rubber reinforcing effect. In one or a plurality of embodiments, the present disclosure provides a rubber composition that exhibits excellent elastic modulus, low hysteresis loss, tensile properties, or excellent balance of these properties.
  • the present disclosure is a phenol-modified lignin resin obtained by reacting lignins, phenols, and aldehydes in the presence of an acid, the number average of the lignins Phenol-modified lignin having a molecular weight of 100 or more and 5000 or less, and a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction of 0.4 or more and 1.5 or less It relates to resin.
  • the present disclosure is a method for producing a phenol-modified lignin resin, which comprises reacting a lignin, a phenol, and an aldehyde in the presence of an acid.
  • the number average molecular weight is 100 or more and 5000 or less, and the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 or more and 1.5 or less.
  • the present disclosure is a phenol-modified lignin resin for rubber reinforcement, which is obtained by reacting a mixture containing lignins, phenols, and aldehydes. It relates to a modified lignin resin.
  • the present disclosure relates to a rubber composition including the phenol-modified lignin resin according to the present disclosure and a diene rubber. In one or a plurality of embodiments, the present disclosure relates to a cured product obtained by curing the rubber composition in the present disclosure.
  • the present disclosure is a method for producing a phenol-modified lignin resin, which comprises reacting a lignin, a phenol, and an aldehyde in the presence of an acid.
  • the number average molecular weight is 100 or more and 5000 or less, and the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 or more and 1.5 or less.
  • the present disclosure relates to a resin composition containing the phenol-modified lignin resin according to the present disclosure in one or a plurality of embodiments.
  • a phenol-modified lignin resin having improved curability and excellent resin strength after curing.
  • a lignin modified with phenol or a phenol derivative it is possible to develop a lignin modified with phenol or a phenol derivative, thereby providing a phenol-modified lignin resin having a high rubber reinforcing effect. Furthermore, according to the present disclosure, in one or a plurality of embodiments, it is possible to provide a rubber composition that is excellent in elastic modulus, low hysteresis loss, and tensile properties.
  • the present disclosure is excellent in curability by setting the molar ratio (F / P) of aldehydes (F) and phenols (P) to 0.4 or more and 1.5 or less in the synthesis of phenol-modified lignin resin. Based on the finding that a phenol-modified lignin resin is obtained. Further, the present disclosure is based on the finding that, in the synthesis of a phenol-modified lignin resin, a phenol-modified lignin resin having excellent resin strength can be obtained by setting F / P to be 0.4 or more and 1.5 or less.
  • phenol-modified lignin resin In the synthesis of phenol-modified lignin resin, it is known that bending strength is improved by reacting lignin and phenol.
  • the present inventors considered that when the amount of phenol reacted with lignin is increased, the crosslinking point of the obtained phenol-modified lignin resin is increased, and as a result, the resin strength is excellent.
  • the present inventors use lignin having a number average molecular weight of 100 or more and 5000 or less, and by setting F / P to 0.4 or more and 1.5 or less, the curability of the resulting phenol-modified lignin resin. Has been found to improve the resin strength. The reason is not necessarily clear, but is estimated as follows.
  • F / P By setting F / P to be 0.4 or more and 1.5 or less, lignins and phenols have more covalent bonds and have a highly complex structure, which further enhances curability and resin strength. It is thought. However, the present disclosure is not limited to these mechanisms.
  • the phenol-modified lignin resin of the present disclosure in one or a plurality of embodiments, even when the amounts of phenols and aldehydes that react with lignin are the same amount or less, F / P is out of the above range. Compared to (when less than 0.4 or exceeding 1.5), it is possible to achieve an effect of exhibiting higher curability and resin strength. Moreover, according to the phenol modified lignin resin of this indication, in one or some embodiment, there can exist an effect that it is excellent in sclerosis
  • the curability includes a curing time and a curing degree in one or a plurality of embodiments.
  • the resin strength in the present disclosure includes bending strength.
  • the “phenol-modified lignin resin” means a product obtained by reacting lignin and / or a lignin derivative (also referred to as “lignins” in the present disclosure), a phenol and an aldehyde in the presence of an acid.
  • the phenol-modified lignin resin in the present disclosure may include a product obtained by further modifying a lignin by reacting an aldehyde and a phenol.
  • the present disclosure is a phenol-modified lignin resin obtained by reacting a lignin, a phenol, and an aldehyde in the presence of an acid, and the number average molecular weight of the lignin is 100.
  • a phenol-modified lignin resin (hereinafter referred to as “this disclosure”) having a molar ratio (F / P) of aldehydes (F) to phenols (P) in the reaction of 0.4 to 1.5. Also referred to as “phenol-modified lignin resin”.
  • the phenol-modified lignin resin of the present disclosure includes, in the presence of an acid, a lignin having a number average molecular weight of 100 or more and 5000 or less, a phenol and an aldehyde, and an aldehyde (F). It can manufacture by making it react with the molar ratio (F / P) with phenols (P) 0.4-1.5.
  • lignin refers to one selected from the group consisting of lignin, lignin derivatives, and combinations thereof. Lignin, together with cellulose and hemicellulose, is a major component that forms the skeleton of plants and is one of the most abundant substances in nature.
  • lignin in the present disclosure includes pulp lignin such as kraft lignin, lignin sulfonic acid, and organosolv lignin; explosive lignin; lignophenol; phenolized lignin and the like.
  • lignin is not particularly limited, and in one or a plurality of embodiments, examples thereof include wood and herbs that contain lignin and a woody part is formed, and conifers such as cedar, pine and cypress, beech, birch, oak and zelkova. And broad-leaved trees such as rice, wheat, corn and bamboo.
  • the “lignin derivative” refers to a compound having a unit structure constituting lignin or a structure similar to the unit structure constituting lignin.
  • the lignin derivative has a phenol derivative as a unit structure. Since this unit structure has a chemically and biologically stable carbon-carbon bond or carbon-oxygen-carbon bond, it is less susceptible to chemical degradation and biological degradation. For these reasons, the lignin derivative is useful as a resin raw material.
  • the lignin derivative includes guaiacylpropane (ferulic acid) represented by the formula (A) of the following formula (1), syringylpropane (sinapic acid) represented by the following formula (B), And 4-hydroxyphenylpropane (coumaric acid) represented by the following formula (C).
  • the composition of the lignin derivative varies depending on the biomass as the raw material.
  • a lignin derivative mainly containing a guaiacylpropane structure is extracted from conifers. From hardwoods, lignin derivatives mainly containing guaiacylpropane structure and syringylpropane structure are extracted. From the herbs, lignin derivatives mainly containing a guaiacylpropane structure, a syringylpropane structure and a 4-hydroxyphenylpropane structure are extracted.
  • the lignin derivative is preferably one obtained by decomposing biomass in one or a plurality of embodiments.
  • Biomass which is obtained by capturing and fixing carbon dioxide in the atmosphere during the photosynthesis process, contributes to the suppression of the increase in atmospheric carbon dioxide. This can contribute to the suppression of conversion.
  • biomass include lignocellulosic biomass in one or more embodiments.
  • lignocellulosic biomass include, in one or more embodiments, plant leaves, bark, branches and wood containing lignin, and processed products thereof.
  • plants containing lignin include the aforementioned broad-leaved trees, conifers, and gramineous plants.
  • the decomposition method includes a chemical treatment method, a hydrolysis treatment method, a steam explosion method, a supercritical water treatment method, a subcritical water treatment method, a mechanical treatment method, and a cresol sulfate method.
  • pulp production methods From the viewpoint of environmental load, a steam explosion method, a subcritical water treatment method, and a mechanical treatment method are preferable. From the viewpoint of cost, a pulp production method is preferred. From the viewpoint of cost, it is preferable to use a by-product using biomass.
  • the lignin derivative can be prepared by decomposing biomass in the presence of a solvent at 150 to 400 ° C., 1 to 40 MPa, and 8 hours or less. In one or more embodiments, the lignin derivative can be prepared by a method disclosed in JP2009-084320A, JP2012-201828A, or the like.
  • the lignin derivative examples include those obtained by decomposing lignocellulose in which lignin, cellulose, and hemicellulose are combined in one or a plurality of embodiments.
  • the lignin derivative may include a lignin decomposition product, a cellulose decomposition product, a hemicellulose decomposition product, and the like mainly composed of a compound having a lignin skeleton.
  • the lignin derivative preferably has a large number of reaction sites on which the curing agent acts by an electrophilic substitution reaction on the aromatic ring, and has better reactivity when there are fewer steric hindrances near the reaction site. Therefore, it is preferable that at least one of the ortho-position and para-position of the aromatic ring containing a phenolic hydroxyl group is unsubstituted.
  • the lignin derivative those disclosed in JP2009-084320A, JP2012-201828A, etc. can be used in one or a plurality of embodiments.
  • the lignin derivative may be a lignin derivative having a functional group (lignin secondary derivative).
  • the functional group possessed by the lignin secondary derivative is not particularly limited, but for example, those in which two or more of the same functional groups can react with each other, or those capable of reacting with other functional groups are suitable.
  • Specific examples include an epoxy group, a methylol group, a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, and an isocyanate group.
  • a lignin derivative having a methylol group introduced (methylolated) is preferably used.
  • Such a lignin secondary derivative is self-cross-linked by a self-condensation reaction between methylol groups and is more cross-linked to an alkoxymethyl group or a hydroxyl group in the following cross-linking agent.
  • a cured product having a particularly homogeneous and rigid skeleton and excellent in solvent resistance can be obtained.
  • the lignin and the lignin derivative have a number average molecular weight of 100 or more and 5000 or less.
  • a lignin having a number average molecular weight within the above range with the F / P ratio of the present disclosure, a phenol-modified lignin resin that can be molded and has excellent resin strength can be obtained.
  • the number average molecular weight is 100 or more and 5000 or less, and is 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less.
  • the number average molecular weight is 200 or more, 250 or more, 300 or more, or 350 or more.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography, and can be determined by the method of Examples.
  • the number average molecular weight of the lignin and the lignin derivative is such that, in one or a plurality of embodiments, the workability of a normal denaturation step is improved.
  • a phenol-modified lignin resin modified with such a number-average molecular weight lignin derivative is excellent in workability reactivity at the time of mixing in the modification step, and a phenol-modified lignin resin easy to mix at the time of rubber mixing is obtained. It is done.
  • the weight average molecular weights of lignin and lignin derivatives are 100 or more and 5000 or less in one or more embodiments from the viewpoint that a phenol-modified lignin resin having excellent moldability and resin strength is obtained.
  • the weight average molecular weight is 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2100 or less, or 1500 or less from the viewpoint of more uniformly mixing lignins and phenol during production.
  • the weight average molecular weight is 200 or more or 400 or more in one or more embodiments.
  • the weight average molecular weight is a number average molecular weight in terms of polystyrene measured by gel permeation chromatography, and can be determined by the method of the example.
  • the lignin derivative in the present disclosure is dissolved in a solvent to prepare a measurement sample.
  • the solvent used at this time is not particularly limited as long as it can dissolve the lignin derivative, but from the viewpoint of measurement accuracy of gel permeation chromatography, for example, tetrahydrofuran is preferable.
  • the number average molecular weight of the lignin derivative can be calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
  • the molecular weight of the standard polystyrene used for preparing the calibration curve is not particularly limited.
  • the number average molecular weight is 427,000, 190,000, 96,400, 37,900, 18,100.
  • Standard polystyrene (manufactured by Tosoh) of 10,200, 5,970, 2,630, 1,050 and 500 can be used.
  • the lignin derivative in the present disclosure may have a carboxyl group.
  • it may bridge
  • it may act as a catalyst of a crosslinking agent and the crosslinking reaction of a lignin derivative and a crosslinking agent can be accelerated
  • the carboxyl group can be confirmed by the presence or absence of absorption of a peak at 172 to 174 ppm when subjected to 13 C-NMR analysis belonging to the carboxyl group. it can.
  • the softening point of the lignin derivative of the present disclosure is not particularly limited, it is preferably 200 ° C. or lower because the workability of a normal denaturation process is improved. It is preferable that the temperature is 85 ° C. or higher and 150 ° C. or lower, more preferably 90 ° C. or higher and 140 ° C. or lower. If the softening point is less than the above range, there is too much heat melting and fluidity, and many burrs are generated at the time of molding, and the handling property is poor when making the resin composition and rubber composition. There is a big thing. On the other hand, if the softening point exceeds the above range, the heat melting property and fluidity may be poor and molding may not be possible.
  • the softening point is changed by controlling the amount of the volatile component within a certain range, controlling the average molecular weight of the lignin derivative according to the decomposition temperature of the biomass, and replacing a part of the lignin derivative with the other resin component. Can do.
  • the lignin derivative of the present disclosure can be similarly made into a resin composition and a rubber composition within the above-described range even when a part of the solvent-insoluble component is included.
  • the method for measuring the softening point was a ring and ball softening point tester (ASP-MG2 type manufactured by Meltech Co., Ltd.) according to JIS K2207.
  • a large amount of low molecular weight components may be mixed, which may cause a decrease in volatile content, odor, and softening point during heating. These components can be used as they are, or can be removed by heating, drying or the like of the lignin derivative to control the softening point and odor.
  • phenol, phenol derivatives, and these combination are mentioned as phenols.
  • a phenol derivative in one or some embodiment, what is necessary is just to have a phenol skeleton, and you may have arbitrary substituents on a benzene ring.
  • the substituent include, in one or more embodiments, a hydroxy group; a lower alkyl group such as a methyl group or an ethyl group; a halogen atom such as fluorine, chlorine, bromine, or iodine; an amino group; a nitro group; It is done.
  • Phenols include phenol, catechol, resorcinol, hydroquinone, o-cresol, m-cresol, p-cresol, o-fluorophenol, m-fluorophenol, p-fluorophenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, o-iodophenol, m-iodophenol, p-iodophenol, o-aminophenol, m-aminophenol, p-aminophenol, o-Nitrophenol, m-nitrophenol, p-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, salicylic acid, p-hydroxybenzoic acid, and combinations thereof.
  • alkylphenols include those having 2 to 18 carbon atoms, and the alkyl chain may have a branched chain or an unsaturated bond as long as the carbon number is within the above range.
  • the alkyl chain can be substituted at any of ortho, meta and para-substituted alkylphenols.
  • vegetable oil cashew nut shell liquid (cashew oil), urushi extract, and the like can be used.
  • aldehydes include, in one or more embodiments, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde.
  • Preferable examples include formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, acetaldehyde, paraxylene dimethyl ether, and combinations thereof. These may be used alone or in combination of two or more.
  • the acid may be any acid as long as it can be used as a reaction catalyst in one or a plurality of embodiments, and organic acids, inorganic acids, and combinations thereof can be used.
  • organic acids include, in one or more embodiments, acetic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, salicylic acid, sulfonic acid, phenolsulfonic acid, paratoluenesulfonic acid, and the like.
  • the inorganic acid include hydrochloric acid, sulfuric acid, sulfuric acid ester, phosphoric acid, and phosphoric acid ester in one or more embodiments.
  • the molar ratio (F / P) of aldehydes (F) and phenols (P) in the reaction is 0.4 or more and 1.5 or less.
  • 0.40 or more, 0.45 or more, or 0.50 or more is preferable.
  • it is preferably 1.50 or less, 1.30 or less, or 1.20 or less.
  • the weight average molecular weight of the phenol-modified lignin resin of the present disclosure is 1000 or more and 1500 or more, and is 10,000 or less. 6000 or less.
  • the number average molecular weight of the phenol-modified lignin resin is 300 or more, 400 or more, 500 or more, or 550 or more, and is 4000 or less, 2000 or less, 1500 or less, 1200 or less, 1100 or less, or 1000. It is as follows. A weight average molecular weight and a number average molecular weight can be calculated
  • the softening point of the phenol-modified lignin resin is 65 ° C or higher, 75 ° C or higher, or 85 ° C or higher, and is 170 ° C or lower, 160 ° C or lower, or 150 ° C or lower.
  • the hydroxyl equivalent of the lignin derivative in the present disclosure can be measured by the following method, for example.
  • the present disclosure provides a method for producing a phenol-modified lignin resin (hereinafter referred to as “lighenic lignin resin”), which comprises reacting a lignin (lignin and / or lignin derivative), a phenol and an aldehyde in the presence of an acid. Also referred to as “production method of the present disclosure”.
  • the number average molecular weight of the lignin is 100 or more and 5000 or less, and the molar ratio (F / P) of the aldehyde (F) and the phenol (P) in the reaction is 0.4 or more and 1 .5 or less.
  • the phenol-modified lignin resin of the present disclosure can be produced.
  • lignins, phenols, aldehydes and acids are as described above.
  • the production method of the present disclosure includes mixing lignins, phenols, aldehydes, and acids. In one or a plurality of embodiments, the production method of the present disclosure includes mixing phenols and lignins, and mixing the phenols and lignins with an acid in the mixture of phenols and lignins. And adding aldehydes to the mixture of phenols, lignins and acids.
  • the molar ratio (F / P) of aldehydes (F) to phenols (P) in the reaction is 0.4 to 1.5.
  • F / P is preferably 0.40 or more, 0.45 or more, or 0.50 or more from the viewpoint of improving curability and / or resin strength.
  • F / P is preferably 1.50 or less, 1.30 or less, or 1.20 or less from the viewpoint of suppressing an excessive increase in the softening temperature.
  • the addition amount of phenols is 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, and 500 parts by weight or less, 300 parts by weight with respect to 100 parts by weight of lignin. Or 200 parts by weight or less.
  • the amount of acid added is 0.1 parts by weight or more, 0.3 parts by weight or more, or 0.5 parts by weight or more, and 10 parts by weight or less, based on 100 parts by weight of lignin. 8 parts by weight or less or 5 parts by weight or less.
  • the mixing of phenols and lignins may be performed at room temperature or while heating. From the viewpoint of more uniformly mixing the phenols and lignins, it is preferable to perform part or all of the mixing at a temperature close to or higher than the softening point of the lignins. As such temperature, in one or some embodiment, they are 80 to 180 degreeC, 100 to 160 degreeC, 110 to 150 degreeC, or 120 to 150 degreeC. As mixing time, in one or some embodiment, 5 minutes or more and 2 hours or less are mentioned.
  • the reaction temperature of lignins, phenols and aldehydes in the presence of an acid is 70 to 130 ° C, or 80 to 120 ° C. In one or more embodiments, the reaction time is 10 minutes or longer and 6 hours or shorter, or 30 minutes or longer and 3 hours or shorter.
  • the reaction product obtained may be dehydrated by performing atmospheric distillation and / or vacuum distillation. Thereby, a phenol-modified lignin resin with high purity is obtained.
  • the yield can be calculated by the following formula from the amounts of lignin, phenol, and formaldehyde added (in order, Lg, Ph, and FA).
  • reaction solvent In producing the phenol-modified lignin resin, a reaction solvent can be used.
  • the reaction solvent is not particularly limited, and water, an organic solvent, and the like can be used. Usually, water or methanol is used. Moreover, you may carry out without using a reaction solvent, using paraformaldehyde as aldehydes.
  • organic solvent examples include alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin; ethylene glycol monomethyl ether, ethylene Examples thereof include glycol ethers such as glycol monoethyl ether, diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, ethers such as 1,4-dioxane, and aromatics such as toluene and xylene. These can be used alone or in combination of two or more.
  • alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol
  • ketones such as acetone and methyl ethyl ketone
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin
  • the molecular weight of the phenol-modified lignin resin is not particularly limited, but the number average molecular weight is preferably 400 or more and 5000 or less, and more preferably 450 or more and 3000 or less.
  • the handleability of the resin is good. That is, when the number average molecular weight is within the above range, it can be avoided that it becomes a highly viscous substance, or it can be prevented from becoming a substance that solidifies during summer storage, or it can be dissolved in solvents. And compatibility with the composition can be maintained.
  • the number average molecular weight can be analyzed using the same method as for the lignin derivative. Depending on the modification conditions, some of the components may become solvent-insoluble components. In that case, most of the dissolved components may be analyzed, but when there are many insoluble components, it is desirable to change to a suitable solvent.
  • the lignin content (lignin ratio) of the phenol-modified lignin resin in the present disclosure is not particularly limited, but the lignin derivative is 15% by weight or more and 95% by weight or less based on the entire phenol-modified lignin resin. Preferably, it is 25 wt% or more and 85 wt% or less.
  • the lignin ratio is higher than the lower limit, it is preferable in that the effect of improving the tensile properties of rubber due to the lignin structure is exhibited.
  • it is lower than the above upper limit it is preferable in that the effect of improving the elastic modulus of rubber is exhibited.
  • the phenol-modified lignin resin in the present disclosure may retain phenols, aldehydes, or acids used in the reaction, but the risk of inhalation of the residue is reduced. Therefore, the volatility of phenol or phenol derivative is preferably less than 5%. In addition, it is also possible to make phenol or a phenol derivative less than 1%, and in that case, it is achieved by making a higher vacuum or a high temperature not exceeding 250 ° C. Any method may be used as a method for measuring the residual ratio of phenols. As an example, a calibration curve can be prepared by gas chromatography using a standard substance, and the phenol-modified lignin resin after preparation can be measured.
  • the form of the phenol-modified lignin resin in the present disclosure is not particularly limited, but may be fine powder, granular, pellet, or varnish. From the viewpoint of handling properties when kneading into rubber, it is preferable to use granular and pellet forms.
  • the production method of the present disclosure in one or a plurality of embodiments, it is possible to produce an effect that a phenol-modified lignin resin can be produced with a high yield.
  • the phenol-modified lignin resin in one or a plurality of embodiments, can be produced with a high yield exceeding 60%, 65%, 70%, or 75%.
  • the manufacturing method of this indication in one or some embodiment, there can exist an effect that the reactivity of phenols and lignin can be improved.
  • the FP reaction rate is 0.43 or more, 0.45 or more, or 0.5 or more. The FP reaction rate can be determined by the method described in the examples.
  • the phenol-modified lignin resin obtained by the production method of the present disclosure has an effect that the curability is improved and the resin strength after curing is excellent.
  • a resin molded body having a bending strength of 70 MPa or more, or 90 MPa or more can be obtained.
  • the bending strength is measured based on JIS K6911.
  • the phenol-modified lignin resin of the present disclosure includes a crosslinking agent, a curing aid, a wood powder, fibers, a colorant, a release agent, a plasticizer, and / or a stabilizer as necessary. Etc., kneaded at a predetermined temperature, and then injection molded with an injection molding machine to produce a resin molded body.
  • a lignin-modified phenolic resin may be used alone as a resin and cured, but in terms of further improving curability and shortening the molding cycle, in one or a plurality of embodiments, a novolac phenolic resin or an epoxy resin is used. , And isocyanates, and combinations thereof may be mixed.
  • crosslinking agent examples include hexamethylenetetramine.
  • curing aid examples include slaked lime.
  • Wood flour is obtained by crushing, crushing, and finely crushing wood and the like, and the average particle size is preferably 80 mesh.
  • fibers examples include cellulose obtained from wood and the like.
  • plasticizer examples include aliphatic dibasic acid esters, hydroxy polyvalent carboxylic acid esters, fatty acid esters, polyester compounds, and phosphoric acid esters.
  • stabilizer examples include metal soaps, phosphorus compounds, sulfur compounds, phenolic compounds, L-ascorbic acids, and epoxy compounds.
  • the present disclosure relates to a resin composition including the phenol-modified lignin resin according to the present disclosure.
  • the resin composition of the present disclosure includes the phenol-modified lignin resin, besides this, a phenolic resin, a novolak-type phenolic resin, an epoxy resin, an isocyanate, and a combination thereof, as well as a filler and a crosslinking agent described later An agent or the like may be included.
  • the method for producing a resin composition of the present disclosure may include a step of kneading a phenol-modified lignin resin and a phenolic resin. In addition, you may knead
  • mixing is not specifically limited also when a filler, a crosslinking agent, anti-aging agent, and another additive are included.
  • examples of the kneader include a Banbury mixer, a kneader, a roll, and a biaxial kneader.
  • a phenol-modified lignin resin and a phenol-based resin When using a phenol-modified lignin resin and a phenol-based resin, they may be kneaded as described above, but mixed by heating and melting, or containing a phenol-modified lignin resin and a phenol-based resin using a solvent or the like. You may obtain by removing after making it melt
  • the phenol-modified lignin resin may be charged into a reactor after reaction with the phenol-based resin and melt-mixed. Alternatively, the phenol-modified lignin resin may be reacted to obtain a phenol after the reaction. A resin may be added and melt mixed. Other additives can be mixed in advance in the same manner.
  • an organic solvent may be used as necessary.
  • the organic solvent is not particularly limited.
  • methanol, ethanol, propanol, butanol, methyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- Examples include 2-pyrrolidone, quinoline, cyclopentanone, tetrahydrofuran, cyclohexane, benzene, toluene, xylene, cresol, dichloromethane, chloroform, and the like, and one or a mixture of two or more of these is used.
  • the solid content concentration in the resin composition is not particularly limited, but is, for example, about 60 to 98% by mass, preferably about 70 to 95% by mass.
  • the phenol-modified lignin resin described in the present disclosure can be used as a rubber composition.
  • the rubber composition is characterized in that the phenol-modified lignin resin and diene rubber are included as raw rubber.
  • the composition may contain a phenolic resin.
  • ⁇ Method for producing rubber composition As a manufacturing method of a rubber composition, the process of kneading
  • an organic solvent may be used as necessary.
  • the organic solvent is not particularly limited.
  • the solid content concentration in the rubber composition is not particularly limited, but is, for example, about 60 to 98% by mass,
  • diene rubber examples include natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), and ethylene propylene diene rubber.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • IIR butyl rubber
  • EPDM acrylonitrile butadiene rubber
  • CR chloroprene rubber
  • natural rubber NR
  • modified natural rubber SBR
  • butadiene rubber BR
  • one or more rubbers are preferable, and one or more rubbers among natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) are more preferable.
  • the rubber composition of the present disclosure includes natural rubber and / or modified natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) so that the content in the rubber component is in the range of 50 to 100% by mass. It is preferable that 1 or more types are included. When the content is 50% by mass or more, the effect of improving E ′ (storage modulus) and the effect of reducing tan ⁇ around 60 ° C. are particularly prominent.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • the content of the diene rubber is not particularly limited, but is preferably 100 parts by weight or more and 10,000 parts by weight or less, and 200 parts by weight or more and 5000 parts by weight with respect to 100 parts by weight of the phenol-modified lignin resin. More preferably, it is 300 parts by weight or more and 2000 parts by weight or less.
  • the content of the diene rubber is too small, the hardness becomes too high and the elongation at the time of cutting may be reduced.
  • the content is too large, the reinforcing effect may be lowered.
  • the diene rubber in the present disclosure is a functional group-containing natural product containing at least one functional group selected from an alkoxyl group, an alkoxysilyl group, an epoxy group, a glycidyl group, a carbonyl group, an ester group, a hydroxy group, an amino group, and a silanol group.
  • a rubber (modified natural rubber) and / or a functional group-containing diene rubber can be included.
  • natural rubber and / or diene rubber contains these functional groups, it reacts with or interacts with the surface of fillers such as silica and carbon black to improve the dispersibility of these fillers and improve rolling resistance. The effect is obtained.
  • alkoxyl group alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group
  • At least one functional group selected from silanol groups is preferably contained in the functional group-containing natural rubber or the functional group-containing diene rubber in the range of 0.001 to 80 mol%.
  • the content of the functional group is 0.001 mol% or more, the effect of reacting or interacting with the surface of the silica or carbon black can be obtained satisfactorily, and if it is 80 mol% or less, the unvulcanized rubber composition An increase in viscosity at the time of production is suppressed, and workability is improved.
  • the content of such a functional group is more preferably in the range of 0.01 to 50 mol%, and further preferably in the range of 0.02 to 25 mol%.
  • a method of incorporating natural rubber and / or diene rubber with at least one functional group selected from alkoxyl group, alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group, silanol group For example, a method of introducing a functional group into a polymerization terminal of a styrene-butadiene copolymer polymerized with an organolithium initiator in a hydrocarbon solvent, a natural rubber or a diene rubber by the chlorohydrin method, direct oxidation And a method of epoxidation by a method such as a hydrogen peroxide method, an alkyl hydroperoxide method, and a peracid method.
  • a filler may be further used.
  • a filler what is normally used in a resin composition or a rubber composition is employable.
  • the filler it is preferable to use one containing at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber, and an inorganic filler is particularly preferable.
  • carbon black is used, a good reinforcing effect can be obtained, and when silica is used, a tan ⁇ reduction effect can be obtained well.
  • E ′ storage The effect of improving the elastic modulus
  • the effect of reducing tan ⁇ around 60 ° C. are particularly good.
  • the content of the filler is preferably in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • E ′ storage elastic modulus
  • E ′ Storage modulus
  • the silica When silica is blended as a filler, the silica is in the range of 10 to 150 parts by mass and the silane coupling agent is 1 to 20% by mass with respect to the silica content with respect to 100 parts by mass of the rubber component. It is preferable to mix each so that it may become in the range.
  • the silica content when the silica content is 10 parts by mass or more with respect to 100 parts by mass of the rubber component, the effect of improving the E ′ (storage elastic modulus) of the tire rubber composition is good, and 150 parts by mass. When it is below, there is little possibility that E '(storage elastic modulus) will rise too much, and the workability at the time of preparation of the rubber composition for tires is good.
  • the content of silica is further preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 100 parts by mass or less, and further preferably 80 parts by mass or less.
  • the silica those conventionally used for reinforcing rubber can be used.
  • the silica can be appropriately selected from dry silica, wet silica, colloidal silica, and the like.
  • N2SA nitrogen adsorption specific surface area
  • N2SA of silica is 20 m 2 / g or more, it is preferable in terms of a large reinforcing effect on the tire rubber composition, and when it is 600 m 2 / g or less, the dispersibility of the silica in the tire rubber composition is good. It is preferable in that it can prevent an increase in heat generation during use of a pneumatic tire using the rubber composition.
  • the rubber composition of the present disclosure can contain a filler other than the above depending on the application.
  • a filler examples include talc, calcined clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide and alumina, magnesium silicate, and carbonic acid.
  • a cross-linking agent that cross-links the phenol-modified lignin resin or the phenol-based resin can be added to the resin composition and the rubber composition of the present disclosure as necessary.
  • the crosslinking agent is not particularly limited as long as it can crosslink with a phenol-modified lignin resin or a phenolic resin, and may further crosslink with a rubber component. What contains the compound represented by following formula (2) is preferable.
  • [Z in Formula (2) is any one of a melamine residue, a urea residue, a glycolyl residue, an imidazolidinone residue, and an aromatic ring residue.
  • M represents an integer of 2 to 14.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • —CH 2 OR represents the nitrogen atom of the melamine residue, the nitrogen atom of the primary amino group of the urea residue, the nitrogen atom of the secondary amino group of glycolyl residue, or the secondary amino group of the imidazolidinone residue. It is directly bonded to either the nitrogen atom or the carbon atom of the aromatic ring residue.
  • the resin composition and rubber composition containing such a compound are excellent in mechanical properties after curing, and contribute to improving the durability and appearance of the cured product.
  • the compound represented by the above formula (2) contained in the cross-linking agent can form a polyfunctional cross-linking point, so that the phenol-modified lignin resin is uniformly and rigidly cross-linked.
  • a skeleton is formed. The rigid skeleton will improve the mechanical properties and durability (boiling resistance, etc.) of the cured product, or improve the rubber reinforcing effect.
  • —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or a secondary amino group of an imidazolidinone residue. It is directly bonded to any one of the nitrogen atom of the group and the aromatic ring carbon atom of the aromatic ring residue, but two or more “—CH 2 OR” are bonded to the same nitrogen atom or carbon atom. In such a case, it is preferable that “R” contained in at least one of “—CH 2 OR” is an alkyl group. Thereby, a phenol modified lignin resin can be bridge
  • the melamine residue refers to a group having a melamine skeleton represented by the following formula (3).
  • the urea residue refers to a group having a urea skeleton represented by the following formula (4).
  • glycolyl residue refers to a group having a glycolyl skeleton represented by the following formula (5).
  • the imidazolidinone residue means a group having an imidazolidinone skeleton represented by the following formula (6).
  • the aromatic ring residue means a group having an aromatic ring (benzene ring).
  • a compound represented by any one of the following formulas (7) to (10) is particularly preferably used. These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the phenol-modified lignin resin to surely crosslink the phenol-modified lignin resin and cause self-crosslinking by a self-condensation reaction between functional groups. As a result, a cured product having a particularly homogeneous and rigid skeleton and excellent in mechanical properties, durability and appearance can be obtained, and a rubber cured product excellent in elastic modulus or low hysteresis loss can be obtained.
  • X is CH 2 OR or a hydrogen atom
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • N represents an integer of 1 to 3.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • a compound represented by the following formula (11) or (12) is particularly preferably used. These react with the cross-linking reaction points on the aromatic ring contained in the phenol skeleton in the phenol-modified lignin resin to specifically cross-link the phenol-modified lignin resin and cause self-crosslinking by self-condensation reaction between functional groups. . As a result, a cured product having a homogeneous and rigid skeleton, excellent mechanical properties, durability and appearance, and a rubber cured product excellent in elastic modulus or low hysteresis loss can be obtained.
  • n an integer of 1 to 3.
  • n an integer of 1 to 3.
  • the crosslinking agent may contain at least one compound of hemisamethylenetetramine, quinuclidine and pyridine instead of or together with the compound represented by the formula (2).
  • a cured product containing such a cross-linking agent has excellent mechanical strength, high durability and appearance, and a cured rubber product having excellent elastic modulus or low hysteresis loss is obtained. This is because hexamethylenetetramine, quinuclidine, and pididine cross-link the phenol-modified lignin resin at high density and uniformly to form a homogeneous and rigid skeleton.
  • cross-linking agent components other than the above compounds may be used.
  • cross-linking agent component other than the above compound include, for example, orthocresol novolac epoxy resin, bisphenol A type epoxy resin, epoxidized glycerin, epoxidized linseed oil, epoxy resin such as epoxidized soybean oil, hexamethylene diisocyanate, toluene diisocyanate.
  • an isocyanate compound a compound capable of crosslinking by electrophilic substitution reaction on the aromatic ring of a phenol-modified lignin resin, aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural, aldehyde sources such as polyoxymethylene, hexa
  • aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural
  • aldehyde sources such as polyoxymethylene, hexa
  • known phenolic resins such as resol type phenolic resins, known crosslinking agents, compounds capable of crosslinking by electrophilic substitution reaction on aromatic rings of lignin derivatives, etc. It can be.
  • the amount of the compound is preferably 5 to 150 parts by mass, more preferably 7.5 to 50 parts by mass with respect to 100 parts by mass of the phenol-modified lignin resin.
  • the rubber composition of the present disclosure includes, in addition to a rubber component, a phenol-modified lignin resin, and a filler, sulfur for vulcanizing the rubber, or other vulcanizing agent, softening agent, tackifier, antioxidant, and ozone deterioration preventing agent.
  • Anti-aging agent, Vulcanization accelerator, Vulcanization accelerator, Processing aid, Peeling agent, Tackifier, Peroxide, Zinc oxide, Stearic acid, Factis, Process oil, Aroma oil, Wax, etc. are necessary Additives corresponding to the above can be appropriately blended.
  • the vulcanizing agent an organic peroxide or a sulfur vulcanizing agent can be used.
  • organic peroxide examples include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne 3 or 1,3-bis (t-butylperoxypropyl) benzene or the like can be used.
  • sulfur vulcanizing agent for example, sulfur, sulfur chloride, morpholine disulfide, alkylphenol disulfide, polymer polysulfide, polysulfides and the like can be used.
  • Vulcanization accelerators include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine, aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Those containing at least one of them can be used.
  • amine-based, phenol-based and imidazole-based compounds, carbamic acid metal salts, waxes and the like can be appropriately selected and used.
  • a raw rubber, a phenol-modified lignin resin, and optional components are kneaded by a closed kneader such as a Banbury mixer, and contain a vulcanization system. No rubber composition is obtained.
  • the kneading conditions vary depending on the kneader.
  • a vulcanizing agent, a vulcanization accelerator and an optional component are added to the rubber composition obtained by the above (1) using rolls such as an open roll or the kneader, kneaded again, and added.
  • a rubber composition containing a sulfur system is obtained.
  • the cured product and tire of the rubber composition can be obtained by molding the rubber composition.
  • the molding method varies depending on the application and is not particularly limited. However, when molding using a mold, the produced rubber composition is molded using a mold equipped with a hydraulic press, and the rubber composition A cured product is obtained.
  • the rubber composition of the present disclosure when used for a tire member, it is manufactured by a normal method. That is, the rubber composition is extruded into the shape of a tire member at an unvulcanized stage, and bonded together by a normal method on a tire molding machine to form an unvulcanized tire.
  • the unvulcanized tire can be heated and pressurized in a vulcanizer to obtain a tire.
  • the molding temperature is preferably about 100 to 280 ° C., more preferably about 120 to 250 ° C., and further preferably about 130 to 230 ° C. If the molding temperature exceeds 230 ° C, the rubber may be deteriorated. If it is less than 100 ° C, molding may not be possible.
  • a phenol-modified lignin resin obtained by reacting lignin and / or a lignin derivative, a phenol, and an aldehyde in the presence of an acid, The lignin and lignin derivative have a number average molecular weight of 100 to 5,000, A phenol-modified lignin resin, wherein a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
  • a phenol-modified lignin resin obtained by reacting lignin and / or a lignin derivative, a phenol, and an aldehyde in the presence of an acid, The lignin and lignin derivative have a weight average molecular weight of 100 to 5,000, A phenol-modified lignin resin, wherein a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
  • F / P aldehydes
  • P aldehydes
  • the number average molecular weight of the lignin and / or lignin derivative is 100 to 5000, 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less, and / or 200 or more.
  • the phenol-modified lignin resin according to any one of [A1] to [A3], which is 250 or more, 300 or more, or 350 or more.
  • the molar ratio is 0.40 or more, 0.45 or more, or 0.50 or more, or 1.50 or less, 1.30 or less, or 1.20 or less from [A1] to [A4].
  • the phenol-modified lignin resin according to any one of the above.
  • the weight average molecular weight of the lignin and / or lignin derivative is 5000 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, or 1500 or less, and / or 100 or more, 200 or more, or 400.
  • the lignin derivative is a lignin derivative obtained by decomposing biomass at 150 to 400 ° C., 1 to 40 MPa and a treatment time of 8 hours or less in the presence of a solvent, from [A1] to [A7].
  • the phenol-modified lignin resin according to any one of the above.
  • the lignin derivative includes at least one selected from the group consisting of guaiacylpropane (ferulic acid), syringylpropane (sinapic acid), and 4-hydroxyphenylpropane (coumaric acid) represented by [A1 ]
  • the softening point is 85 ° C or higher, 90 ° C or higher, or 95 ° C or higher, 65 ° C or higher, 75 ° C or higher, or 85 ° C or higher, and 170 ° C or lower, 160 ° C or lower, or 150 ° C or lower.
  • the number average molecular weight is 300 or more, 400 or more, 500 or more, or 550 or more, and / or 4000 or less, 2000 or less, 1500 or less, 1200 or less, 1100 or less, or 1000 or less.
  • the phenol-modified lignin resin according to any one of [A11].
  • a method for producing a phenol-modified lignin resin comprising reacting lignin and / or a lignin derivative, a phenol and an aldehyde in the presence of an acid,
  • the lignin and lignin derivative have a number average molecular weight of 100 to 5,000
  • the production method wherein the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
  • [B2] A method for producing a phenol-modified lignin resin comprising reacting lignin and / or a lignin derivative, a phenol and an aldehyde in the presence of an acid, The lignin and lignin derivative have a weight average molecular weight of 100 to 5,000, The production method wherein the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
  • [B3] The production method according to [B1] or [B2], wherein the lignin derivative is a lignin derivative obtained by decomposing biomass.
  • the number average molecular weight of the lignin and / or lignin derivative is 100 to 5000, 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less, and / or 200 or more.
  • the production method according to any one of [B1] to [B3], which is 250 or more, 300 or more, or 350 or more.
  • the molar ratio is 0.40 or more, 0.45 or more, or 0.50 or more, or 1.50 or less, 1.30 or less, or 1.20 or less from [B1] to [B4].
  • the manufacturing method in any one.
  • the weight average molecular weight of the lignin and / or lignin derivative is 5000 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less or 1500 or less, and / or 100 or more, 200 or more, or 400.
  • the lignin derivative is a lignin derivative obtained by decomposing biomass at 150 to 400 ° C., 1 to 40 MPa, and a treatment time of 8 hours or less in the presence of a solvent, from [B1] to [B7].
  • the manufacturing method in any one.
  • the lignin derivative includes at least one selected from the group consisting of guaiacylpropane (ferulic acid), syringylpropane (sinapic acid), and 4-hydroxyphenylpropane (coumaric acid) represented by [B1 ] To [B8].
  • the addition amount of the phenols is 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, and 500 parts by weight or less, 300 parts by weight or less or 200 parts by weight with respect to 100 parts by weight of lignins.
  • the acid is an organic acid or an inorganic acid, and the organic acid is acetic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, salicylic acid, sulfonic acid, phenolsulfonic acid.
  • the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, sulfuric acid ester, phosphoric acid, phosphoric acid ester, etc., and any one of [B1] to [B10] The manufacturing method as described.
  • [B12] The production method according to any one of [B1] to [B11], wherein the phenol-modified lignin resin according to any one of [A1] to [A12] is produced.
  • [C1] A resin composition comprising the phenol-modified lignin resin according to any one of [A1] to [A12].
  • a phenol-modified lignin resin for rubber reinforcement which is obtained by reacting a lignin derivative, a phenol or a phenol derivative, and a mixture containing aldehydes.
  • the phenol-modified lignin resin according to [D2] wherein the acid includes an organic acid.
  • [D4] The phenol-modified lignin resin according to any one of [D1] to [D5], wherein the phenol-modified lignin resin has a number average molecular weight of 200 or more and 5000 or less.
  • [D5] The phenol-modified lignin resin according to any one of [D1] to [D4], wherein a softening point of the phenol-modified lignin resin is 60 ° C or higher and 160 ° C or lower.
  • [D6] The phenol-modified lignin resin according to any one of [D1] to [D5], wherein the number average molecular weight of the lignin derivative is 200 or more and 5000 or less.
  • [D7] The molar ratio (F / (P + L)) of the aldehydes (F) and the phenol or the phenol derivative (P) and the lignin derivative (L) in the resin is 0.01 or more and 5.0 or less.
  • [E1] A resin composition comprising the phenol-modified lignin resin according to any one of [D1] to [D7].
  • [F1] A rubber composition comprising the phenol-modified lignin resin according to any one of [D1] to [D7] and a diene rubber.
  • [F2] The rubber composition according to [F1], wherein the rubber composition contains a filler.
  • [F3] The rubber composition according to [F1] or [F2], wherein the filler contains at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber.
  • [G1] A cured product obtained by curing the rubber composition according to any one of [F1] to [F3].
  • lignin derivative 1 A lignin derivative was prepared from cedar by the following procedure. First, 100 parts by weight of cedar wood flour (60 mesh under) and 567 parts by weight of a solvent made of pure water were mixed and introduced into a 1 L autoclave. Then, while stirring the contents at 300 rpm, as a pretreatment, the mixture was stirred for 15 minutes at room temperature, and after thoroughly blending the cedar wood flour and the solvent, it was treated at 300 ° C. and 9 MPa for 60 minutes to decompose the cedar wood flour. did. Subsequently, the obtained decomposition product was filtered, and the solid component separated by filtration was recovered.
  • the obtained solid component was immersed in 250 parts of acetone for 12 hours. This was filtered to recover acetone-soluble components. Next, acetone was distilled off from the acetone-soluble component and dried to obtain 15.2 parts by weight of a lignin derivative.
  • the physical properties of the obtained lignin derivative were measured by the following methods, and the obtained results are shown in Table 1.
  • (Lignin derivative 2) A lignin derivative was prepared in the same manner as the lignin derivative 1 except that the treatment temperature was 230 ° C. and the treatment pressure was 3 MPa.
  • lignin derivative 3 A lignin derivative was prepared in the same manner as lignin derivative 1 except that 283 parts by weight of solvent and 283 parts by weight of acetone were used as the solvent, the processing temperature was 230 ° C., and the processing pressure was 5 MPa.
  • lignin derivative 4 A lignin derivative was prepared in the same manner as the lignin derivative 1 except that beech was used instead of cedar as a raw material.
  • lignin derivative 5 A lignin derivative was prepared in the same manner as the lignin derivative 1 except that beech was used instead of rice straw as a raw material.
  • Example 1 After adding the lignin derivative 1 to the three-necked flask, phenol (manufactured by Wako Pure Chemical Industries, Ltd.) was added at the ratio shown in Table 2 below, and the mixture was stirred at about 120 ° C. for 20 minutes after the temperature was raised. Thereafter, oxalic acid was added at a ratio of 1.8 parts by weight to lignin and stirred. Next, 37% formaldehyde was added successively so as to have the ratio shown in Table 2 below, and after completion of the sequential addition, the mixture was stirred at 100 ° C. for 1 hour.
  • phenol manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the formaldehyde was changed to the ratio shown in Table 2 below.
  • Example 3 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
  • Example 4 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
  • Example 5 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
  • Example 6 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the lignin derivative 2 was used and the ratios of phenol and formaldehyde were as shown in Table 2 below.
  • Example 7 A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the lignin derivative 3 was used and the ratio of phenol and formaldehyde was as shown in Table 2 below.
  • Example 8 Using lignin derivative 4, a phenol-modified lignin resin was obtained in the same manner as in Example 4.
  • Example 9 Using lignin derivative 5, a phenol-modified lignin resin was obtained in the same manner as in Example 4.
  • Example 2 Comparative Example 2 except that high molecular weight lignin (weight average molecular weight: 7700, number average molecular weight: 1600, sulfuric acid content: 7.1, softening point: 175 ° C.) was used, and the ratio of formaldehyde was as shown in Table 2 below. Similarly, a phenol-modified lignin resin was prepared. However, since it gelled during preparation, it could not be used as a resin, and an accurate molecular weight could not be measured.
  • high molecular weight lignin weight average molecular weight: 7700, number average molecular weight: 1600, sulfuric acid content: 7.1, softening point: 175 ° C.
  • the number average molecular weight and weight average molecular weight of the lignin derivative or phenol-modified lignin were calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
  • Yield> It was calculated by the following formula from the yield of the phenol-modified lignin resin and the charged amount of raw material (excluding the solvent).
  • the resin composition thus formed into tablets was subjected to time-dependent shear direction viscoelasticity measurement under the conditions of 1% strain, vibration frequency 1 Hz, and 175 ° C.
  • the time required to reach a storage elastic modulus of 90% of the storage elastic modulus after 30 minutes of measurement was defined as a curing time (T90).
  • T90 curing time
  • ⁇ Curing degree> 15 parts by mass of hexamethylenetetramine was added at room temperature to 100 parts by mass of a phenol-modified lignin resin or lignin derivative, mixed by pulverization, and then placed in a heat oven and heated at 175 ° C. for 10 minutes to obtain a cured product.
  • the obtained cured product was pulverized, and the pulverized cured product placed in a cylindrical filter paper was immersed in boiling acetone solvent and boiled for 1 hour using a rapid solvent extraction device “Soctest SER148 / 6 (manufactured by Actac)”.
  • the cylindrical filter paper was pulled up from the acetone solvent, and acetone cooled down and liquefied at the upper part of the apparatus was dropped onto the sample in the cylindrical filter paper, and rinsed for 1 hour.
  • the obtained acetone extract was air-dried for 12 hours and further dried under reduced pressure at 50 ° C. for 2 hours.
  • the weight of the extracted solid obtained by drying was defined as the weight of acetone eluted.
  • the glass fiber (glass milled fiber, manufactured by Nitto Boseki Co., Ltd., standard fiber diameter 10 ⁇ 1.5 ⁇ m, average fiber length 90 ⁇ m) is mixed with the lignin resin composition in a mixing ratio of 50.5 wt. % Was added.
  • the mixture was kneaded at 90 ° C. and 50 rpm in a lab plast mill, and the kneaded product was compression molded at 175 ° C. for 3 minutes to obtain a resin molded body having a width of 10 mm, a length of 100 mm, and a height of 4 mm.
  • ⁇ Appearance> About the obtained resin molding, the external appearance was confirmed visually and evaluated.
  • the appearance evaluation criteria are as follows.
  • Evaluation criteria ⁇ The surface of the molded product is smooth, and the surface of the molded product has no irregularities that can be seen with the naked eye, or has 1 to 2 strains, wrinkles, and spots.
  • Unevenness that can be seen with the naked eye is observed on the surface of the molded product, or there are 3 to 5 strains, wrinkles, and spots.
  • X Remarkable unevenness
  • Examples 1 to 9 had higher yields than Comparative Example 1.
  • the phenol-modified lignin resins of Examples 1 to 9 had a higher softening point than that of Comparative Example 1.
  • the phenol-modified lignin resins of Examples 1 to 9 all had a degree of cure exceeding 85%, and in particular, Examples 1, 4 and 6 were 95% or more, which was higher than the comparative example. Therefore, it can be evaluated that the phenol-modified lignin resins of Examples 1 to 9 have higher curability than the comparative examples.
  • Examples 4 to 9 have a higher lignin ratio than Comparative Example 1, that is, they have a lower amount of phenols and aldehydes reacted with lignin than Comparative Example 1, but are less than Comparative Example 1. High bending strength was obtained.
  • the resin moldings prepared using the phenol-modified lignin resins of Examples 1 to 9 were all excellent in moldability and showed a good appearance as compared with the moldings of Comparative Example 1.
  • Example 11 (1) Extraction of lignin derivative 100 parts of cedar wood flour (60 mesh under) and 400 parts of a solvent consisting of pure water were mixed and introduced into a 1 L autoclave. Then, while stirring the contents at 300 rpm, as a pretreatment, the mixture was stirred for 15 minutes at room temperature. After sufficiently blending the cedar wood flour and the solvent, it was treated at 300 ° C. and 10 MPa for 60 minutes to obtain cedar wood flour. Disassembled. Subsequently, the obtained decomposition product was filtered, and the solid component separated by filtration was recovered. Next, the obtained solid component was immersed in 250 parts of acetone for 12 hours. This was filtered to recover acetone-soluble components. Subsequently, 15.5 parts of lignin derivative (A) was obtained by distilling acetone off from the said acetone soluble component, and drying. The number average molecular weight was 420 and the softening point was 107 ° C.
  • Example 12 In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
  • Example 13 In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
  • Example 14 In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
  • Example 15 In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
  • Example 16 In the extraction of the lignin derivative, the solvent and conditions for the decomposition treatment were as shown in Table 3, and the modified prescription was changed in the production of the phenol resin, as in Example 11.
  • the lignin derivative had a number average molecular weight of 670 and a softening point of 123 ° C.
  • Example 17 In the extraction of the lignin derivative, the same as Example 11 except that the raw material was changed to beech instead of cedar wood flour, and the modified prescription was changed in the production of phenol resin.
  • the lignin derivative had a number average molecular weight of 440 and a softening point of 113 ° C.
  • Example 18 In the extraction of the lignin derivative, the same as Example 11 except that the raw material was changed to rice straw instead of cedar wood flour, and the modified prescription was changed in the production of phenol resin.
  • the lignin derivative had a number average molecular weight of 350 and a softening point of 98 ° C.
  • Example 19 The production of the rubber composition was the same as Example 12 except that 280 parts by mass of carbon black and 70 parts by mass of silica were added, and 5 parts of a silica coupling agent was further added.
  • Example 12 A rubber composition was obtained according to Example 11 except that the lignin derivative obtained in the example was used instead of the phenol-modified lignin resin.
  • Comparative Example 13 The same as Comparative Example 11 except that 100 parts by mass of phenol novolac resin was used instead of phenol-modified lignin resin.
  • Natural rubber Tochi made RSS3 Curing agent: Hexamethylenetetramine carbon black: manufactured by Mitsubishi Chemical Corporation, HAF Silica: manufactured by Evonik, Ultrasil VN3 (BET specific surface area: 175 m 2 / g) Silane coupling agent: Si-69, manufactured by Evonik Zinc oxide: Stearic acid manufactured by Sakai Chemical Industry Co., Ltd .: NOF Beads Stearic Acid YR Sulfur: manufactured by Hosoi Chemical Co., Ltd., fine sulfur vulcanization accelerator: manufactured by Ouchi Shinsei Chemical Co., Ltd., MSA-G Novolac type phenolic resin: Sumitomo Bakelite, PR-50731
  • the cured product of the rubber composition obtained in each example is excellent in the reciprocal of the tan ⁇ value at 60 ° C., which indicates the low hysteresis loss of the rubber, and the elastic modulus. While maintaining the elongation at the time of cutting, the decrease in the tensile stress at the time of cutting was suppressed. That is, the rubber composition obtained in each example was excellent in the fuel economy and rubber rigidity of rubber parts and in the balance of mechanical strength. Furthermore, by using the phenol-modified lignin resin according to the present disclosure, the above-described excellent characteristics and a high degree of plant origin can be achieved at a high level, so that the environmental burden can be reduced.
  • the rubber composition of the present disclosure is suitably used for applications requiring excellent low hysteresis loss, excellent elastic modulus, tensile stress at break and elongation at break, particularly tire applications. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

Provided is a phenol-modified lignin resin having improved curing properties and excellent flexural strength, or a phenol-modified lignin resin having a rubber-reinforcing effect. One aspect of the present invention relates to a phenol-modified lignin resin obtained by reacting a lignin, a phenol compound and an aldehyde in the presence of an acid. In one or more embodiments, the number average molecular weight of the lignin is 100-5000 and the molar ratio (F/P) of the aldehyde (F) and the phenol compound (P) in the reaction is 0.4-1.5. In other embodiment(s), the phenol-modified lignin resin is used to reinforce a rubber.

Description

フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物Phenol-modified lignin resin, method for producing the same, resin composition, rubber composition, and cured product
 本開示は、フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物に関する。 The present disclosure relates to a phenol-modified lignin resin and a method for producing the same, and a resin composition, a rubber composition, and a cured product.
 近年、植物又は植物由来の加工品に代表されるバイオマスを利用する技術や、化学品、樹脂製品等に転換する技術の開発が求められている。例えば、樹皮、間伐材、建築廃材等の木質系廃材などは、これまでその多くが廃棄処分されている。しかしながら、地球環境保護が重要課題になりつつあり、その観点から、植物由来バイオマスの利用、木質系廃材の再利用、リサイクルが検討され始めている。例えば特許文献1には木質を酸とフェノールで処理して利用する例が開示されている。 In recent years, there has been a demand for the development of technology that uses biomass typified by plants or plant-derived processed products, and technology that converts them into chemical products, resin products, and the like. For example, many wood-based waste materials such as bark, thinned wood, and building waste have been disposed of so far. However, protection of the global environment is becoming an important issue, and from this point of view, utilization of plant-derived biomass, reuse of wood-based waste materials, and recycling are beginning to be studied. For example, Patent Document 1 discloses an example in which wood is treated with acid and phenol.
 一般的な植物の主要成分は、セルロース誘導体、ヘミセルロース誘導体及びリグニン誘導体である。このうち、約30%の割合で含まれるリグニンは、セルロース誘導体、ヘミセルロース誘導体と異なり、芳香環を豊富に含む構造を有しているため、主にリグニンを取り出して耐熱性や反応性に優れる樹脂原料として樹脂組成物及びタイヤ等に利用する例が開示されている(例えば、特許文献2、3参照。)。 General components of general plants are cellulose derivatives, hemicellulose derivatives and lignin derivatives. Of these, lignin contained at a ratio of about 30% has a structure containing abundant aromatic rings, unlike cellulose derivatives and hemicellulose derivatives. Therefore, it is mainly a resin with excellent heat resistance and reactivity by taking out lignin. Examples of use as a raw material for resin compositions and tires are disclosed (for example, see Patent Documents 2 and 3).
 その利用例の1つとしてリグニン変性フェノール系樹脂がある(特許文献4及び5)。
 特許文献4及び5には、フェノール又はフェノール誘導体と、アルデヒド類と、リグニンとを酸の存在下で反応させることによって、フェノール又はフェノール誘導体の一部がリグニンに置換されたリグニン変性フェノール系樹脂が得られることが開示されている。
One example of its use is lignin-modified phenolic resin (Patent Documents 4 and 5).
Patent Documents 4 and 5 disclose lignin-modified phenolic resins in which phenol or a phenol derivative, an aldehyde, and lignin are reacted in the presence of an acid so that a part of the phenol or phenol derivative is substituted with lignin. It is disclosed that it can be obtained.
 しかしながら、特許文献4及び5のリグニン変性フェノール系樹脂は、成形性、摩擦特性の改善は得られているものの、成形材料の機械的強度に関しての改善はあまり見られず、またフェノール反応率も低いため生産性に難が有った。 However, although the lignin-modified phenolic resins of Patent Documents 4 and 5 have improved moldability and frictional properties, there is not much improvement in the mechanical strength of the molding material, and the phenol reaction rate is low. Therefore, productivity was difficult.
 一方で、リグニン誘導体は、フェノール性水酸基やアルコール性水酸基を豊富に含む極性の高い構造を有しているため、ゴム組成物の補強材としての性能も期待されている。 On the other hand, since the lignin derivative has a highly polar structure rich in phenolic hydroxyl groups and alcoholic hydroxyl groups, performance as a reinforcing material for rubber compositions is also expected.
 しかしながら特許文献2では、リグニン誘導体をフェノール樹脂の代替ではなく、カーボンブラック代替の充填材として用いており、ゴム組成物のゴム弾性が上がるものの、機械的強度が低下している。 However, in Patent Document 2, the lignin derivative is used as a filler instead of a carbon black instead of a phenol resin, and although the rubber elasticity of the rubber composition is increased, the mechanical strength is decreased.
 また特許文献5には、濃硫酸によりフェノールを直接リグニン付加させたフェノール化リグニンを、フェノール樹脂代替としてゴム補強樹脂として用いた例が開示されているが、ゴム弾性等のゴム補強効果は十分でなかった。 Patent Document 5 discloses an example in which phenolic lignin obtained by directly adding lignin to phenol with concentrated sulfuric acid is used as a rubber reinforcing resin as a substitute for the phenol resin, but the rubber reinforcing effect such as rubber elasticity is sufficient. There wasn't.
特開2004-352978号公報JP 2004-352978 A 特表2011-522085号公報Special table 2011-520208 gazette 特開2008-285626号公報JP 2008-285626 A 特開2008-156601号公報JP 2008-156601 A 特開2013-199561号公報JP 2013-199561 A
 上述のように、リグニン誘導体を生産効率良くフェノール変性リグニンとし、成形材料の機械的強度を高めることが出来る手法の開発が期待されており、またリグニン誘導体を使用して高いゴム補強効果を得ること、また必要に応じてゴム物性を変化させる有効な手法の開発が期待されていた。 As mentioned above, it is expected to develop a method that can increase the mechanical strength of molding materials by converting the lignin derivative to phenol-modified lignin with high production efficiency, and to obtain a high rubber reinforcing effect by using the lignin derivative. Also, the development of an effective method for changing the physical properties of rubber as required was expected.
 本開示は、その他の一又は複数の実施形態において、硬化性が向上し、硬化後の樹脂強度に優れるフェノール変性リグニン樹脂を提供する。 In one or more embodiments, the present disclosure provides a phenol-modified lignin resin with improved curability and excellent resin strength after curing.
 本開示は、一又は複数の実施形態において、フェノール類で変性されたゴム補強用のフェノール変性リグニン樹脂を提供する。本開示は、一又は複数の実施形態において、高いゴム補強効果を有するフェノール変性リグニン樹脂を提供する。本開示は、一又は複数の実施形態において、優れた弾性率、低ヒステリシスロス性、引張特性を示し、又はそれらの特性のバランスに優れたゴム組成物を提供する。 In one or a plurality of embodiments, the present disclosure provides a phenol-modified lignin resin for rubber reinforcement modified with phenols. In one or a plurality of embodiments, the present disclosure provides a phenol-modified lignin resin having a high rubber reinforcing effect. In one or a plurality of embodiments, the present disclosure provides a rubber composition that exhibits excellent elastic modulus, low hysteresis loss, tensile properties, or excellent balance of these properties.
 本開示は、一又は複数の実施形態において、リグニン類と、フェノール類と、アルデヒド類とを、酸の存在下で反応させることにより得られるフェノール変性リグニン樹脂であって、前記リグニン類の数平均分子量が、100以上5000以下であり、前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4以上1.5以下である、フェノール変性リグニン樹脂に関する。 In one or a plurality of embodiments, the present disclosure is a phenol-modified lignin resin obtained by reacting lignins, phenols, and aldehydes in the presence of an acid, the number average of the lignins Phenol-modified lignin having a molecular weight of 100 or more and 5000 or less, and a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction of 0.4 or more and 1.5 or less It relates to resin.
 本開示は、一又は複数の実施形態において、リグニン類と、フェノール類と、アルデヒド類とを、酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法であって、前記リグニン類の数平均分子量が、100以上5000以下であり、前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4以上1.5以下である、製造方法に関する。 In one or a plurality of embodiments, the present disclosure is a method for producing a phenol-modified lignin resin, which comprises reacting a lignin, a phenol, and an aldehyde in the presence of an acid. The number average molecular weight is 100 or more and 5000 or less, and the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 or more and 1.5 or less. Regarding the method.
 本開示は、一又は複数の実施形態において、ゴム補強用のフェノール変性リグニン樹脂であって、リグニン類と、フェノール類と、アルデヒド類を含む混合物を反応させて得られることを特徴とする、フェノール変性リグニン樹脂に関する。 In one or a plurality of embodiments, the present disclosure is a phenol-modified lignin resin for rubber reinforcement, which is obtained by reacting a mixture containing lignins, phenols, and aldehydes. It relates to a modified lignin resin.
 本開示は、一又は複数の実施形態において、本開示におけるフェノール変性リグニン樹脂とジエン系ゴムとを含むことを特徴とするゴム組成物に関する。
 本開示は、一又は複数の実施形態において、本開示におけるゴム組成物を硬化して得られる硬化物に関する。
In one or a plurality of embodiments, the present disclosure relates to a rubber composition including the phenol-modified lignin resin according to the present disclosure and a diene rubber.
In one or a plurality of embodiments, the present disclosure relates to a cured product obtained by curing the rubber composition in the present disclosure.
 本開示は、一又は複数の実施形態において、リグニン類と、フェノール類と、アルデヒド類とを、酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法であって、前記リグニン類の数平均分子量が、100以上5000以下であり、前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4以上1.5以下である、製造方法に関する。 In one or a plurality of embodiments, the present disclosure is a method for producing a phenol-modified lignin resin, which comprises reacting a lignin, a phenol, and an aldehyde in the presence of an acid. The number average molecular weight is 100 or more and 5000 or less, and the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 or more and 1.5 or less. Regarding the method.
 本開示は、一又は複数の実施形態において、本開示におけるフェノール変性リグニン樹脂を含む樹脂組成物に関する。 The present disclosure relates to a resin composition containing the phenol-modified lignin resin according to the present disclosure in one or a plurality of embodiments.
 本開示によれば、一又は複数の実施形態において、硬化性が向上し、硬化後の樹脂強度に優れるフェノール変性リグニン樹脂を提供できる。 According to the present disclosure, in one or a plurality of embodiments, it is possible to provide a phenol-modified lignin resin having improved curability and excellent resin strength after curing.
 本開示によれば、一又は複数の実施形態において、フェノール又はフェノール誘導体で変性されたリグニンを開発し、それによって高いゴム補強効果を有するフェノール変性リグニン樹脂を提供することが可能となる。さらには、本開示によれば、一又は複数の実施形態において、弾性率、低ヒステリシスロス性、引張特性に優れるゴム組成物を提供することが可能となる。 According to the present disclosure, in one or a plurality of embodiments, it is possible to develop a lignin modified with phenol or a phenol derivative, thereby providing a phenol-modified lignin resin having a high rubber reinforcing effect. Furthermore, according to the present disclosure, in one or a plurality of embodiments, it is possible to provide a rubber composition that is excellent in elastic modulus, low hysteresis loss, and tensile properties.
 本開示は、フェノール変性リグニン樹脂の合成において、アルデヒド類(F)とフェノール類(P)とのモル比(F/P)を0.4以上1.5以下とすることにより、硬化性に優れるフェノール変性リグニン樹脂が得られるという知見に基づく。また、本開示は、フェノール変性リグニン樹脂の合成において、F/Pを0.4以上1.5以下とすることにより、樹脂強度に優れるフェノール変性リグニン樹脂が得られるという知見に基づく。 The present disclosure is excellent in curability by setting the molar ratio (F / P) of aldehydes (F) and phenols (P) to 0.4 or more and 1.5 or less in the synthesis of phenol-modified lignin resin. Based on the finding that a phenol-modified lignin resin is obtained. Further, the present disclosure is based on the finding that, in the synthesis of a phenol-modified lignin resin, a phenol-modified lignin resin having excellent resin strength can be obtained by setting F / P to be 0.4 or more and 1.5 or less.
 フェノール変性リグニン樹脂の合成において、リグニンとフェノールを反応させることで曲げ強度が向上することが知られている。本発明者らは、リグニンと反応させるフェノールの量を増加すると、得られるフェノール変性リグニン樹脂の架橋点が増加し、その結果樹脂強度に優れると考えた。また、本発明者らは、数平均分子量が100以上5000以下のリグニン類を使用し、かつF/Pを0.4以上1.5以下とすることによって、得られるフェノール変性リグニン樹脂の硬化性が向上し、樹脂強度がさらに高くなることを見出した。その理由は必ずしも明らかではないが、以下のように推定される。F/Pを0.4以上1.5以下とすることにより、リグニン類とフェノール類がより多くの共有結合を持ち、高度に複合した構造をとることで、さらに硬化性、樹脂強度が高くなったと考えられる。但し、本開示はこれらのメカニズムに限定されない。 In the synthesis of phenol-modified lignin resin, it is known that bending strength is improved by reacting lignin and phenol. The present inventors considered that when the amount of phenol reacted with lignin is increased, the crosslinking point of the obtained phenol-modified lignin resin is increased, and as a result, the resin strength is excellent. In addition, the present inventors use lignin having a number average molecular weight of 100 or more and 5000 or less, and by setting F / P to 0.4 or more and 1.5 or less, the curability of the resulting phenol-modified lignin resin. Has been found to improve the resin strength. The reason is not necessarily clear, but is estimated as follows. By setting F / P to be 0.4 or more and 1.5 or less, lignins and phenols have more covalent bonds and have a highly complex structure, which further enhances curability and resin strength. It is thought. However, the present disclosure is not limited to these mechanisms.
 本開示のフェノール変性リグニン樹脂によれば、一又は複数の実施形態において、リグニンと反応するフェノール類及びアルデヒド類の量が同量又はそれ以下であっても、F/Pが上記範囲外の場合(0.4未満又は1.5を超える場合)と比較して、さらに高い硬化性及び樹脂強度を示すという効果を奏しうる。また、本開示のフェノール変性リグニン樹脂によれば、一又は複数の実施形態において、硬化性及び成形性に優れるという効果を奏しうる。本開示において硬化性としては、一又は複数の実施形態において、硬化時間及び硬化度が挙げられる。本開示において樹脂強度としては、一又は複数の実施形態において、曲げ強度が挙げられる。 According to the phenol-modified lignin resin of the present disclosure, in one or a plurality of embodiments, even when the amounts of phenols and aldehydes that react with lignin are the same amount or less, F / P is out of the above range. Compared to (when less than 0.4 or exceeding 1.5), it is possible to achieve an effect of exhibiting higher curability and resin strength. Moreover, according to the phenol modified lignin resin of this indication, in one or some embodiment, there can exist an effect that it is excellent in sclerosis | hardenability and a moldability. In the present disclosure, the curability includes a curing time and a curing degree in one or a plurality of embodiments. In one or more embodiments, the resin strength in the present disclosure includes bending strength.
 本開示において「フェノール変性リグニン樹脂」とは、リグニン及び/又はリグニン誘導体(本開示において「リグニン類」ともいう)とフェノール類とアルデヒド類とを酸の存在下で反応させることにより得られるものをいう。本開示においてフェノール変性リグニン樹脂は、一又は複数の実施形態において、リグニン類に、アルデヒド類及びフェノール類を反応させて、さらに変性させたものを含んでもよい。 In the present disclosure, the “phenol-modified lignin resin” means a product obtained by reacting lignin and / or a lignin derivative (also referred to as “lignins” in the present disclosure), a phenol and an aldehyde in the presence of an acid. Say. In one or a plurality of embodiments, the phenol-modified lignin resin in the present disclosure may include a product obtained by further modifying a lignin by reacting an aldehyde and a phenol.
 本開示は、一又は複数の実施形態において、リグニン類とフェノール類とアルデヒド類とを酸の存在下で反応させることにより得られるフェノール変性リグニン樹脂であって、前記リグニン類の数平均分子量が100以上5000以下であり、前記反応におけるアルデヒド類(F)とフェノール類(P)とのモル比(F/P)が0.4~1.5であるフェノール変性リグニン樹脂(以下、「本開示のフェノール変性リグニン樹脂」ともいう)に関する。本開示のフェノール変性リグニン樹脂は、一又は複数の実施形態において、酸の存在下で、数平均分子量が100以上5000以下であるリグニン類とフェノール類とアルデヒド類とを、アルデヒド類(F)とフェノール類(P)とのモル比(F/P)が0.4以上1.5以下で反応させることによって製造することができる。 In one or a plurality of embodiments, the present disclosure is a phenol-modified lignin resin obtained by reacting a lignin, a phenol, and an aldehyde in the presence of an acid, and the number average molecular weight of the lignin is 100. A phenol-modified lignin resin (hereinafter referred to as “this disclosure”) having a molar ratio (F / P) of aldehydes (F) to phenols (P) in the reaction of 0.4 to 1.5. Also referred to as “phenol-modified lignin resin”. In one or a plurality of embodiments, the phenol-modified lignin resin of the present disclosure includes, in the presence of an acid, a lignin having a number average molecular weight of 100 or more and 5000 or less, a phenol and an aldehyde, and an aldehyde (F). It can manufacture by making it react with the molar ratio (F / P) with phenols (P) 0.4-1.5.
 <リグニン及びリグニン誘導体(リグニン類)>
 本開示において、リグニン類とは、リグニン及びリグニン誘導体並びにこれらの組み合わせからなる群から選択されるものをいう。
 リグニンは、セルロース及びヘミセルロースとともに、植物体の骨格を形成する主要成分であり、また、自然界に最も豊富に存在する物質の1つである。本開示においてリグニンとしては、一又は複数の実施形態において、クラフトリグニン、リグニンスルホン酸、オルガノソルブリグニン等のパルプリグニン;爆砕リグニン;リグノフェノール;フェノール化リグニン等が挙げられる。リグニンの由来は特に限定されず、一又は複数の実施形態において、リグニンを含み木質部が形成される木材や草本類等が挙げられ、スギ、マツ及びヒノキ等の針葉樹、ブナ、白樺、ナラ及びケヤキ等の広葉樹、イネ、ムギ、トウモロコシ及びタケ等のイネ科植物(草本類)が挙げられる。
<Lignin and lignin derivatives (lignins)>
In the present disclosure, lignin refers to one selected from the group consisting of lignin, lignin derivatives, and combinations thereof.
Lignin, together with cellulose and hemicellulose, is a major component that forms the skeleton of plants and is one of the most abundant substances in nature. In one or a plurality of embodiments, lignin in the present disclosure includes pulp lignin such as kraft lignin, lignin sulfonic acid, and organosolv lignin; explosive lignin; lignophenol; phenolized lignin and the like. The origin of lignin is not particularly limited, and in one or a plurality of embodiments, examples thereof include wood and herbs that contain lignin and a woody part is formed, and conifers such as cedar, pine and cypress, beech, birch, oak and zelkova. And broad-leaved trees such as rice, wheat, corn and bamboo.
 本開示において「リグニン誘導体」とは、リグニンを構成する単位構造、又はリグニンを構成する単位構造に類似する構造を有する化合物をいう。リグニン誘導体は、一又は複数の実施形態において、フェノール誘導体を単位構造とする。この単位構造は化学的及び生物学的に安定な炭素-炭素結合や炭素-酸素-炭素結合を有するため、化学的な劣化や生物的分解を受け難い。これらのことから、リグニン誘導体は樹脂原料として有用とされる。 In the present disclosure, the “lignin derivative” refers to a compound having a unit structure constituting lignin or a structure similar to the unit structure constituting lignin. In one or a plurality of embodiments, the lignin derivative has a phenol derivative as a unit structure. Since this unit structure has a chemically and biologically stable carbon-carbon bond or carbon-oxygen-carbon bond, it is less susceptible to chemical degradation and biological degradation. For these reasons, the lignin derivative is useful as a resin raw material.
 リグニン誘導体としては、一又は複数の実施形態において、下記式(1)の式(A)で表わされるグアイアシルプロパン(フェルラ酸)、下記式(B)で表わされるシリンギルプロパン(シナピン酸)、及び下記式(C)で表わされる4-ヒドロキシフェニルプロパン(クマル酸)等が挙げられる。リグニン誘導体の組成は、原料となるバイオマスによって異なる。針葉樹類からは主にグアイアシルプロパン構造を含むリグニン誘導体が抽出される。広葉樹類からは主にグアイアシルプロパン構造及びシリンギルプロパン構造を含むリグニン誘導体が抽出される。草本類からは主にグアイアシルプロパン構造、シリンギルプロパン構造及び4-ヒドロキシフェニルプロパン構造を含むリグニン誘導体が抽出される。 As one or a plurality of embodiments, the lignin derivative includes guaiacylpropane (ferulic acid) represented by the formula (A) of the following formula (1), syringylpropane (sinapic acid) represented by the following formula (B), And 4-hydroxyphenylpropane (coumaric acid) represented by the following formula (C). The composition of the lignin derivative varies depending on the biomass as the raw material. A lignin derivative mainly containing a guaiacylpropane structure is extracted from conifers. From hardwoods, lignin derivatives mainly containing guaiacylpropane structure and syringylpropane structure are extracted. From the herbs, lignin derivatives mainly containing a guaiacylpropane structure, a syringylpropane structure and a 4-hydroxyphenylpropane structure are extracted.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 リグニン誘導体としては、一又は複数の実施形態において、バイオマスを分解して得られたものが好ましい。バイオマスは光合成の過程で大気中の二酸化炭素を取り込み固定化したものであることから、バイオマスは大気中の二酸化炭素の増加抑制に寄与しており、バイオマスを工業的に利用することによって、地球温暖化の抑制に寄与することができる。バイオマスとしては、一又は複数の実施形態において、リグノセルロース系バイオマスが挙げられる。リグノセルロース系バイオマスとしては、一又は複数の実施形態において、リグニンを含有する植物の葉、樹皮、枝及び木材、並びにこれらの加工品等が挙げられる。リグニンを含有する植物としては、上述の広葉樹、針葉樹、及びイネ科植物等が挙げられる。分解方法としては、一又は複数の実施形態において、薬品処理する方法、加水分解処理する方法、水蒸気爆砕法、超臨界水処理法、亜臨界水処理法、機械的に処理する方法、硫酸クレゾール法、パルプ製造法等が挙げられる。環境負荷の観点からは、水蒸気爆砕法、亜臨界水処理法、機械的に処理する方法が好ましい。コストの観点からは、パルプ製造法が好ましい。またコストの観点からは、バイオマス利用の副生成物を用いることが好ましい。リグニン誘導体は、一又は複数の実施形態において、バイオマスを、溶媒存在下で150~400℃、1~40MPa、8時間以下で分解処理することにより調製できる。また、リグニン誘導体は、一又は複数の実施形態において、特開2009-084320号公報及び特開2012-201828号公報等に開示された方法で調製できる。 The lignin derivative is preferably one obtained by decomposing biomass in one or a plurality of embodiments. Biomass, which is obtained by capturing and fixing carbon dioxide in the atmosphere during the photosynthesis process, contributes to the suppression of the increase in atmospheric carbon dioxide. This can contribute to the suppression of conversion. Examples of biomass include lignocellulosic biomass in one or more embodiments. Examples of lignocellulosic biomass include, in one or more embodiments, plant leaves, bark, branches and wood containing lignin, and processed products thereof. Examples of plants containing lignin include the aforementioned broad-leaved trees, conifers, and gramineous plants. In one or more embodiments, the decomposition method includes a chemical treatment method, a hydrolysis treatment method, a steam explosion method, a supercritical water treatment method, a subcritical water treatment method, a mechanical treatment method, and a cresol sulfate method. And pulp production methods. From the viewpoint of environmental load, a steam explosion method, a subcritical water treatment method, and a mechanical treatment method are preferable. From the viewpoint of cost, a pulp production method is preferred. From the viewpoint of cost, it is preferable to use a by-product using biomass. In one or more embodiments, the lignin derivative can be prepared by decomposing biomass in the presence of a solvent at 150 to 400 ° C., 1 to 40 MPa, and 8 hours or less. In one or more embodiments, the lignin derivative can be prepared by a method disclosed in JP2009-084320A, JP2012-201828A, or the like.
 リグニン誘導体としては、一又は複数の実施形態において、リグニンとセルロースとヘミセルロースとが結合したリグノセルロースを分解したもの等が挙げられる。リグニン誘導体は、一又は複数の実施形態において、リグニン骨格を有する化合物を主成分とするリグニン分解物、セルロース分解物及びヘミセルロース分解物等を含みうる。 Examples of the lignin derivative include those obtained by decomposing lignocellulose in which lignin, cellulose, and hemicellulose are combined in one or a plurality of embodiments. In one or a plurality of embodiments, the lignin derivative may include a lignin decomposition product, a cellulose decomposition product, a hemicellulose decomposition product, and the like mainly composed of a compound having a lignin skeleton.
 リグニン誘導体は、一又は複数の実施形態において、芳香環への親電子置換反応によって硬化剤が作用する反応サイトを多く有することが好ましく、反応サイト近傍の立体障害が少ない方が反応性に優れる点から、フェノール性水酸基を含む芳香環のオルト位及びパラ位の少なくとも一方が無置換であることが好ましい。リグニン誘導体としては、一又は複数の実施形態において、特開2009-084320号公報及び特開2012-201828号公報等に開示されたものが使用できる。 In one or a plurality of embodiments, the lignin derivative preferably has a large number of reaction sites on which the curing agent acts by an electrophilic substitution reaction on the aromatic ring, and has better reactivity when there are fewer steric hindrances near the reaction site. Therefore, it is preferable that at least one of the ortho-position and para-position of the aromatic ring containing a phenolic hydroxyl group is unsubstituted. As the lignin derivative, those disclosed in JP2009-084320A, JP2012-201828A, etc. can be used in one or a plurality of embodiments.
 また、リグニン誘導体は、上記基本構造の他、リグニン誘導体に官能基を有するもの(リグニン二次誘導体)であってもよい。 In addition to the above basic structure, the lignin derivative may be a lignin derivative having a functional group (lignin secondary derivative).
 リグニン二次誘導体が有する官能基としては、特に限定されないが、例えば2個以上の同じ官能基が互いに反応し得るもの、又は他の官能基と反応し得るものが好適である。具体的には、エポキシ基、メチロール基の他、炭素-炭素不飽和結合を有するビニル基、エチニル基、マレイミド基、シアネート基、イソシアネート基等が挙げられる。このうち、メチロール基を導入した(メチロール化した)リグニン誘導体が好ましく用いられる。このようなリグニン二次誘導体は、メチロール基同士の自己縮合反応により自己架橋が生じるとともに、下記架橋剤中のアルコキシメチル基や水酸基に対してより架橋するものとなる。その結果、特に均質で剛直な骨格を有し、耐溶剤性に優れた硬化物が得られる。 The functional group possessed by the lignin secondary derivative is not particularly limited, but for example, those in which two or more of the same functional groups can react with each other, or those capable of reacting with other functional groups are suitable. Specific examples include an epoxy group, a methylol group, a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, and an isocyanate group. Of these, a lignin derivative having a methylol group introduced (methylolated) is preferably used. Such a lignin secondary derivative is self-cross-linked by a self-condensation reaction between methylol groups and is more cross-linked to an alkoxymethyl group or a hydroxyl group in the following cross-linking agent. As a result, a cured product having a particularly homogeneous and rigid skeleton and excellent in solvent resistance can be obtained.
 リグニン及びリグニン誘導体は、一又は複数の実施形態において、数平均分子量が100以上5000以下である。数平均分子量が上記範囲内のリグニン類を、本開示のF/P比で反応させることで、成形可能であり、また樹脂強度に優れたフェノール変性リグニン樹脂を得ることが出来る。数平均分子量は、一又は複数の実施形態において、100以上5000以下であり、4000以下、3000以下、2000以下、1500以下、1200以下、又は1000以下である。数平均分子量は、一又は複数の実施形態において、200以上、250以上、300以上又は350以上である。数平均分子量は、ゲル浸透クロマトグラフィーにより測定されたポリスチレン換算の数平均分子量であって、実施例の方法により求めることができる。 In one or more embodiments, the lignin and the lignin derivative have a number average molecular weight of 100 or more and 5000 or less. By reacting a lignin having a number average molecular weight within the above range with the F / P ratio of the present disclosure, a phenol-modified lignin resin that can be molded and has excellent resin strength can be obtained. In one or a plurality of embodiments, the number average molecular weight is 100 or more and 5000 or less, and is 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less. In one or more embodiments, the number average molecular weight is 200 or more, 250 or more, 300 or more, or 350 or more. The number average molecular weight is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography, and can be determined by the method of Examples.
 リグニン及びリグニン誘導体の数平均分子量は、一又は複数の実施形態において、通常の変性工程の作業性が良くなることから、ゲル浸透クロマトグラフィーにより測定されたポリスチレン換算の数平均分子量が200以上5000以下であるものが好ましく、300以上3000以下であるものがより好ましい。このような数平均分子量のリグニン誘導体を用いて変性されたフェノール変性リグニン樹脂は、その変性工程での混合時の作業性反応性に優れ、また、ゴム混合時に混合しやすいフェノール変性リグニン樹脂が得られる。 The number average molecular weight of the lignin and the lignin derivative is such that, in one or a plurality of embodiments, the workability of a normal denaturation step is improved. Are preferable, and those of 300 or more and 3000 or less are more preferable. A phenol-modified lignin resin modified with such a number-average molecular weight lignin derivative is excellent in workability reactivity at the time of mixing in the modification step, and a phenol-modified lignin resin easy to mix at the time of rubber mixing is obtained. It is done.
 リグニン及びリグニン誘導体の重量平均分子量は、成形性に優れかつ樹脂強度にさらに優れたフェノール変性リグニン樹脂が得られる点から、一又は複数の実施形態において100以上5000以下である。製造時にリグニン類とフェノールとをより均一に混合させる点から、重量平均分子量は、一又は複数の実施形態において、4000以下、3500以下、3000以下、2500以下、2100以下又は1500以下である。重量平均分子量は、一又は複数の実施形態において、200以上又は400以上である。重量平均分子量は、ゲル浸透クロマトグラフィーにより測定されたポリスチレン換算の数平均分子量であって、実施例の方法により求めることができる。 The weight average molecular weights of lignin and lignin derivatives are 100 or more and 5000 or less in one or more embodiments from the viewpoint that a phenol-modified lignin resin having excellent moldability and resin strength is obtained. In terms of one or more embodiments, the weight average molecular weight is 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2100 or less, or 1500 or less from the viewpoint of more uniformly mixing lignins and phenol during production. The weight average molecular weight is 200 or more or 400 or more in one or more embodiments. The weight average molecular weight is a number average molecular weight in terms of polystyrene measured by gel permeation chromatography, and can be determined by the method of the example.
前記ゲル浸透クロマトグラフィーによって分子量を測定する方法の一例について説明する。 An example of a method for measuring the molecular weight by the gel permeation chromatography will be described.
 本開示におけるリグニン誘導体を溶媒に溶解させ、測定サンプルを調製する。このときに用いられる溶媒は、リグニン誘導体を溶解できるものであれば特に限定されるものではないが、ゲル浸透クロマトグラフィーの測定精度の観点から、例えば、テトラヒドロフランが好ましい。 The lignin derivative in the present disclosure is dissolved in a solvent to prepare a measurement sample. The solvent used at this time is not particularly limited as long as it can dissolve the lignin derivative, but from the viewpoint of measurement accuracy of gel permeation chromatography, for example, tetrahydrofuran is preferable.
 次に、GPCシステム「HLC-8320GPC(東ソー製)」に、スチレン系ポリマー充填剤を充填した有機系汎用カラムである「TSKgelGMHXL(東ソー製)」、及び「G2000HXL(東ソー製)」を直列に接続する。 Next, connect the GPC system “HLC-8320GPC (manufactured by Tosoh)” with “TSKgelGMMHXL (manufactured by Tosoh)” and “G2000HXL (manufactured by Tosoh)”, which are organic general-purpose columns packed with styrene polymer filler. To do.
 このGPCシステムに、前記の測定サンプルを200μL注入し、40℃において、溶離液のテトラヒドロフランを1.0mL/minで展開し、示差屈折率(RI)、及び紫外吸光度(UV)を利用して保持時間を測定する。別途作製しておいた標準ポリスチレンの保持時間と分子量の関係を示した検量線から、前記リグニン誘導体の数平均分子量を算出することができる。 200 μL of the above measurement sample is injected into this GPC system, and the eluent tetrahydrofuran is developed at 1.0 mL / min at 40 ° C., and is retained using differential refractive index (RI) and ultraviolet absorbance (UV). Measure time. The number average molecular weight of the lignin derivative can be calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
 検量線を作成するために使用する標準ポリスチレンの分子量としては、特に限定されるものではないが、例えば、数平均分子量が427,000、190,000、96,400、37,900、18,100、10,200、5,970、2,630、1,050及び500の標準ポリスチレン(東ソー製)のものを用いることができる。 The molecular weight of the standard polystyrene used for preparing the calibration curve is not particularly limited. For example, the number average molecular weight is 427,000, 190,000, 96,400, 37,900, 18,100. Standard polystyrene (manufactured by Tosoh) of 10,200, 5,970, 2,630, 1,050 and 500 can be used.
 さらに、本開示におけるリグニン誘導体は、カルボキシル基を有することがある。前記カルボキシル基を有する場合は、下記に記載する架橋剤と架橋することがあり、架橋点が増加することにより架橋密度を向上させることができるため、耐溶剤性に優れる。また架橋剤の触媒として作用することもあり、リグニン誘導体と架橋剤の架橋反応を促進させることが出来るため、耐溶剤性や硬化速度に優れる。 Furthermore, the lignin derivative in the present disclosure may have a carboxyl group. When it has the said carboxyl group, it may bridge | crosslink with the crosslinking agent described below, and since a crosslinking density can be improved by a crosslinking point increasing, it is excellent in solvent resistance. Moreover, since it may act as a catalyst of a crosslinking agent and the crosslinking reaction of a lignin derivative and a crosslinking agent can be accelerated | stimulated, it is excellent in solvent resistance and a cure rate.
 なお、上述したリグニン誘導体中がカルボキシル基を有する場合は、そのカルボキシル基は、カルボキシル基に帰属する13C-NMR分析に供されたとき、172~174ppmのピークの吸収の有無によって確認することができる。 When the above lignin derivative has a carboxyl group, the carboxyl group can be confirmed by the presence or absence of absorption of a peak at 172 to 174 ppm when subjected to 13 C-NMR analysis belonging to the carboxyl group. it can.
 本開示のリグニン誘導体の軟化点は、特に限定されないが、通常の変性工程の作業性が良くなることから、200℃以下であることが好ましく、さらに下限も併せて規定すると80℃以上、160℃以下であることが好ましく、85℃以上、150℃以下であるものがより好ましく、90℃以上、140℃以下であることがさらに好ましい。軟化点が前記範囲を下回ると、熱溶融性、流動性がありすぎて成形時にバリが多く発生し、また樹脂組成物、及びゴム組成物にする際にハンドリング性が悪いため、製造時のロスが大きい事がある。また、軟化点が前記範囲を上回ると、熱溶融性、流動性が悪く、成形ができない事がある。軟化点は前記揮発成分量を一定範囲に制御することと、バイオマスの分解温度によってリグニン誘導体の平均分子量を制御することと、リグニン誘導体の一部を前記その他の樹脂成分に置き換えることによって変化させることができる。なお、本開示のリグニン誘導体は一部溶媒不溶分が含まれていても、上記の範囲内で同様に樹脂組成物、ゴム組成物にすることが出来る。 Although the softening point of the lignin derivative of the present disclosure is not particularly limited, it is preferably 200 ° C. or lower because the workability of a normal denaturation process is improved. It is preferable that the temperature is 85 ° C. or higher and 150 ° C. or lower, more preferably 90 ° C. or higher and 140 ° C. or lower. If the softening point is less than the above range, there is too much heat melting and fluidity, and many burrs are generated at the time of molding, and the handling property is poor when making the resin composition and rubber composition. There is a big thing. On the other hand, if the softening point exceeds the above range, the heat melting property and fluidity may be poor and molding may not be possible. The softening point is changed by controlling the amount of the volatile component within a certain range, controlling the average molecular weight of the lignin derivative according to the decomposition temperature of the biomass, and replacing a part of the lignin derivative with the other resin component. Can do. Note that the lignin derivative of the present disclosure can be similarly made into a resin composition and a rubber composition within the above-described range even when a part of the solvent-insoluble component is included.
 前記軟化点を測定する方法はJIS K2207に準じて、環球式軟化点試験機(メルテック(株)製ASP-MG2型)を用いた。 The method for measuring the softening point was a ring and ball softening point tester (ASP-MG2 type manufactured by Meltech Co., Ltd.) according to JIS K2207.
 バイオマスを分解して得られたリグニン誘導体を用いる場合は、低分子量の成分が多量に混入することがあり、加熱時の揮発分や臭気、軟化点の低下を引き起こすことがある。これらの成分は、そのまま利用することも出来るし、リグニン誘導体の加熱、乾燥等によって除去し、軟化点や臭気をコントロールすることが出来る。 When using a lignin derivative obtained by decomposing biomass, a large amount of low molecular weight components may be mixed, which may cause a decrease in volatile content, odor, and softening point during heating. These components can be used as they are, or can be removed by heating, drying or the like of the lignin derivative to control the softening point and odor.
 <フェノール類>
 フェノール類としては、一又は複数の実施形態において、フェノール、フェノール誘導体及びこれらの組み合わせが挙げられる。フェノール誘導体としては、一又は複数の実施形態において、フェノール骨格を有していればよく、ベンゼン環上に任意の置換基を有していてもよい。置換基としては、一又は複数の実施形態において、ヒドロキシ基;メチル基、エチル基等の低級アルキル基;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;アミノ基;ニトロ基;カルボキシ基等が挙げられる。フェノール類としては、フェノール、カテコール、レソルシノール、ヒドロキノン、o-クレゾール、m-クレゾール、p-クレゾール、o-フルオロフェノール、m-フルオロフェノール、p-フルオロフェノール、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、o-ブロモフェノール、m-ブロモフェノール、p-ブロモフェノール、o-ヨードフェノール、m-ヨードフェノール、p-ヨードフェノール、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、2,4-ジニトロフェノール、2,4,6-トリニトロフェノール、サリチル酸、p-ヒドロキシ安息香酸及びこれらの組み合わせ等が挙げられる。本開示においては、これらを1種又は2種以上用いることができる。またアルキルフェノール類として炭素数が2~18のものなども挙げられ、上記炭素数以内であればアルキル鎖に分岐鎖を有していても良いし、不飽和結合を有していても良い。またアルキル鎖の置換位はオルト、メタ、パラ置換アルキルフェノールのいずれの化合物でも用いることができる。例えば、エチルフェノール、プロピルフェノール、イソプロピルフェノール、ブチルフェノール、セカンダリーブチルフェノール、ターシャリーブチルフェノール、アミルフェノール、ターシャリーアミノフェノール、ヘキシルフェノール、へプチルフェノール、オクチルフェノール、ターシャリーオクチルフェノール、ノニルフェノール、ターシャリーノニルフェノール、デシルフェノール、ウンデシルフェノール、ドデシルフェノール、トリデシルフェノール、テトラデシルフェノール、ペンタデシルフェノール、カルダノール、カードル、ウルシオール、ヘキサデシルフェノール、メチルカードル、ヘプタデシルフェノール、ラッコール、チチオール、オクタデシルフェノールである。植物油としては、カシューナット殻液(カシューオイル)、ウルシ抽出物などを用いることができる。
<Phenols>
In one or some embodiment, phenol, phenol derivatives, and these combination are mentioned as phenols. As a phenol derivative, in one or some embodiment, what is necessary is just to have a phenol skeleton, and you may have arbitrary substituents on a benzene ring. Examples of the substituent include, in one or more embodiments, a hydroxy group; a lower alkyl group such as a methyl group or an ethyl group; a halogen atom such as fluorine, chlorine, bromine, or iodine; an amino group; a nitro group; It is done. Phenols include phenol, catechol, resorcinol, hydroquinone, o-cresol, m-cresol, p-cresol, o-fluorophenol, m-fluorophenol, p-fluorophenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, o-iodophenol, m-iodophenol, p-iodophenol, o-aminophenol, m-aminophenol, p-aminophenol, o-Nitrophenol, m-nitrophenol, p-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, salicylic acid, p-hydroxybenzoic acid, and combinations thereof. In the present disclosure, one or more of these can be used. Examples of the alkylphenols include those having 2 to 18 carbon atoms, and the alkyl chain may have a branched chain or an unsaturated bond as long as the carbon number is within the above range. The alkyl chain can be substituted at any of ortho, meta and para-substituted alkylphenols. For example, ethylphenol, propylphenol, isopropylphenol, butylphenol, secondary butylphenol, tertiary butylphenol, amylphenol, tertiary aminophenol, hexylphenol, heptylphenol, octylphenol, tertiary octylphenol, nonylphenol, tertiary nonylphenol, decylphenol, Undecylphenol, dodecylphenol, tridecylphenol, tetradecylphenol, pentadecylphenol, cardanol, curdole, urushiol, hexadecylphenol, methyl curdal, heptadecylphenol, raccol, thiol, octadecylphenol. As vegetable oil, cashew nut shell liquid (cashew oil), urushi extract, and the like can be used.
 <アルデヒド類>
 アルデヒド類としては、一又は複数の実施形態において、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、パラキシレンジメチルエーテル等が挙げられる。好ましくは、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、ポリオキシメチレン、アセトアルデヒド、パラキシレンジメチルエーテル及びこれらの組み合わせ等が挙げられる。これらを単独又は2種類以上組み合わせて使用することもできる。
<Aldehydes>
Examples of aldehydes include, in one or more embodiments, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde. Benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, paraxylene dimethyl ether and the like. Preferable examples include formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, acetaldehyde, paraxylene dimethyl ether, and combinations thereof. These may be used alone or in combination of two or more.
 <酸>
 酸としては、一又は複数の実施形態において、反応の触媒として使用できるものであればよく、有機酸、無機酸及びこれらの組み合わせを使用することが出来る。有機酸としては、一又は複数の実施形態において、酢酸、ギ酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、安息香酸、サリチル酸、スルホン酸、フェノールスルホン酸、パラトルエンスルホン酸等が挙げられる。無機酸としては、一又は複数の実施形態において、塩酸、硫酸、硫酸エステル、リン酸、リン酸エステル等が挙げられる。
<Acid>
The acid may be any acid as long as it can be used as a reaction catalyst in one or a plurality of embodiments, and organic acids, inorganic acids, and combinations thereof can be used. Examples of the organic acid include, in one or more embodiments, acetic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, salicylic acid, sulfonic acid, phenolsulfonic acid, paratoluenesulfonic acid, and the like. Can be mentioned. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, sulfuric acid ester, phosphoric acid, and phosphoric acid ester in one or more embodiments.
 反応におけるアルデヒド類(F)とフェノール類(P)とのモル比(F/P)は0.4以上1.5以下である。フェノール変性リグニン樹脂の硬化性及び/又は樹脂強度向上の点から、0.40以上、0.45以上又は0.50以上が好ましい。フェノール変性リグニン樹脂の軟化温度の過度の上昇を抑える点から、1.50以下、1.30以下又は1.20以下が好ましい。 The molar ratio (F / P) of aldehydes (F) and phenols (P) in the reaction is 0.4 or more and 1.5 or less. In view of curability of the phenol-modified lignin resin and / or improvement in resin strength, 0.40 or more, 0.45 or more, or 0.50 or more is preferable. From the viewpoint of suppressing an excessive increase in the softening temperature of the phenol-modified lignin resin, it is preferably 1.50 or less, 1.30 or less, or 1.20 or less.
 本開示のフェノール変性リグニン樹脂の重量平均分子量は、一又は複数の実施形態において、1000以上又は1500以上であり、また10000以下であり、精密な射出成形性が可能となる点から、8000以下又は6000以下である。フェノール変性リグニン樹脂の数平均分子量は、一又は複数の実施形態において、300以上、400以上、500以上又は550以上であり、また4000以下、2000以下、1500以下、1200以下、1100以下、又は1000以下である。重量平均分子量及び数平均分子量は、実施例の方法により求めることができる。 In one or a plurality of embodiments, the weight average molecular weight of the phenol-modified lignin resin of the present disclosure is 1000 or more and 1500 or more, and is 10,000 or less. 6000 or less. In one or more embodiments, the number average molecular weight of the phenol-modified lignin resin is 300 or more, 400 or more, 500 or more, or 550 or more, and is 4000 or less, 2000 or less, 1500 or less, 1200 or less, 1100 or less, or 1000. It is as follows. A weight average molecular weight and a number average molecular weight can be calculated | required by the method of an Example.
 フェノール変性リグニン樹脂の軟化点は、一又は複数の実施形態において、65℃以上、75℃以上又は85℃以上であり、また170℃以下、160℃以下又は150℃以下である。 In one or a plurality of embodiments, the softening point of the phenol-modified lignin resin is 65 ° C or higher, 75 ° C or higher, or 85 ° C or higher, and is 170 ° C or lower, 160 ° C or lower, or 150 ° C or lower.
 反応におけるアルデヒド類(F)と、フェノール又はフェノール誘導体(P)及びリグニン誘導体(L)とのモル比(F/(P+L))は特に制限はないが、ゴム補強効果が良くなることから、下限は0.01以上、0.05以上、又は0.1以上が好ましい。また用いるリグニン誘導体によってはゲル化して不融不溶化することがあるため、上限は5.0以下、3.0以下又は1.5以下が好ましい。なお、リグニンはフェノール骨格を複数持つ混合物であるので、本開示におけるモル比計算においては下記式を用いてモル比を計算することが出来る。
単位g当たりのリグニンのモル数=水酸基等量の逆数
The molar ratio (F / (P + L)) of aldehydes (F) and phenol or phenol derivative (P) and lignin derivative (L) in the reaction is not particularly limited, but since the rubber reinforcing effect is improved, the lower limit Is preferably 0.01 or more, 0.05 or more, or 0.1 or more. Depending on the lignin derivative used, it may gel and become infusible and insoluble, so the upper limit is preferably 5.0 or less, 3.0 or less, or 1.5 or less. Since lignin is a mixture having a plurality of phenol skeletons, the molar ratio can be calculated using the following formula in the molar ratio calculation in the present disclosure.
Number of moles of lignin per unit g = reciprocal of hydroxyl equivalent
 なお、本開示におけるリグニン誘導体の水酸基当量は、例えば、以下の方法によって測定することができる。共栓三角フラスコに前記リグニン誘導体(A)試料1.0g、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gと、を入れて溶解させ、この溶液を60℃で3時間保持した後、純水1mlを添加する。このようにして得られた溶液を、pH=10を終点として、0.1mol/LのNaOH水溶液で滴定し、次式によって水酸基当量を求めることができる。
 水酸基当量(g/eq) = 1000*W / (((TB * f * S / SB)-(T * f)) * N)
 式中の各記号の意味は次の通り。
 W :試料重量(g)
 TB:ブランクの滴定量(ml)
 SB:ブランクの無水酢酸-ピリジン混合液の量(g)
 T :試料入りの滴定量(ml)
 S :試料入りで加えた無水酢酸-ピリジン混合液の量(g)
 f :水酸化ナトリウム標準水溶液のファクタ-
 N: 水酸化ナトリウム標準水溶液の規定度
In addition, the hydroxyl equivalent of the lignin derivative in the present disclosure can be measured by the following method, for example. In a stoppered Erlenmeyer flask, 1.0 g of the lignin derivative (A) sample and 4.0 g of acetic anhydride / pyridine (1/3 volume ratio) mixed solution were added and dissolved, and this solution was kept at 60 ° C. for 3 hours. Then, 1 ml of pure water is added. The solution thus obtained is titrated with a 0.1 mol / L NaOH aqueous solution with pH = 10 as the end point, and the hydroxyl equivalent can be determined by the following formula.
Hydroxyl equivalent (g / eq) = 1000 * W / (((TB * f * S / SB)-(T * f)) * N)
The meaning of each symbol in the formula is as follows.
W: Sample weight (g)
TB: Blank titration (ml)
SB: Amount of blank acetic anhydride-pyridine mixture (g)
T: Titration volume with sample (ml)
S: Amount of acetic anhydride-pyridine mixed solution added with sample (g)
f: Factor of sodium hydroxide standard aqueous solution
N: Normality of sodium hydroxide standard aqueous solution
 [フェノール変性リグニン樹脂の製造方法]
 本開示は、一又は複数の実施形態において、リグニン類(リグニン及び/又はリグニン誘導体)とフェノール類とアルデヒド類とを酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法(以下、「本開示の製造方法」ともいう)に関する。本開示の製造方法において、リグニン類の数平均分子量は100以上5000以下であり、前記反応におけるアルデヒド類(F)とフェノール類(P)とのモル比(F/P)は0.4以上1.5以下である。本開示の製造方法によれば、本開示のフェノール変性リグニン樹脂を製造できる。本開示の製造方法において、リグニン類、フェノール類、アルデヒド類及び酸は上述の通りである。
[Method for producing phenol-modified lignin resin]
In one or a plurality of embodiments, the present disclosure provides a method for producing a phenol-modified lignin resin (hereinafter referred to as “lighenic lignin resin”), which comprises reacting a lignin (lignin and / or lignin derivative), a phenol and an aldehyde in the presence of an acid. Also referred to as “production method of the present disclosure”. In the production method of the present disclosure, the number average molecular weight of the lignin is 100 or more and 5000 or less, and the molar ratio (F / P) of the aldehyde (F) and the phenol (P) in the reaction is 0.4 or more and 1 .5 or less. According to the production method of the present disclosure, the phenol-modified lignin resin of the present disclosure can be produced. In the production method of the present disclosure, lignins, phenols, aldehydes and acids are as described above.
 本開示の製造方法は、一又は複数の実施形態において、リグニン類と、フェノール類と、アルデヒド類と、酸とを混合することを含む。本開示の製造方法は、一又は複数の実施形態において、フェノール類とリグニン類とを均一に混合させる点から、フェノール類とリグニン類とを混合すること、フェノール類とリグニン類との混合物に酸を添加すること、及びフェノール類とリグニン類と酸との混合物にアルデヒド類を添加することを含む。 In one or more embodiments, the production method of the present disclosure includes mixing lignins, phenols, aldehydes, and acids. In one or a plurality of embodiments, the production method of the present disclosure includes mixing phenols and lignins, and mixing the phenols and lignins with an acid in the mixture of phenols and lignins. And adding aldehydes to the mixture of phenols, lignins and acids.
 反応におけるアルデヒド類(F)とフェノール類(P)とのモル比(F/P)は0.4~1.5である。F/Pは、硬化性及び/又は樹脂強度向上の点から、0.40以上、0.45以上又は0.50以上が好ましい。F/Pは、軟化温度の過度の上昇を抑える点から、1.50以下、1.30以下又は1.20以下が好ましい。 The molar ratio (F / P) of aldehydes (F) to phenols (P) in the reaction is 0.4 to 1.5. F / P is preferably 0.40 or more, 0.45 or more, or 0.50 or more from the viewpoint of improving curability and / or resin strength. F / P is preferably 1.50 or less, 1.30 or less, or 1.20 or less from the viewpoint of suppressing an excessive increase in the softening temperature.
 フェノール類の添加量は、一又は複数の実施形態において、リグニン類100重量部に対して10重量部以上、20重量部以上、又は30重量部以上であり、また500重量部以下、300重量部以下又は200重量部以下である。 In one or a plurality of embodiments, the addition amount of phenols is 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, and 500 parts by weight or less, 300 parts by weight with respect to 100 parts by weight of lignin. Or 200 parts by weight or less.
 酸の添加量は、一又は複数の実施形態において、リグニン類100重量部に対して0.1重量部以上、0.3重量部以上又は0.5重量部以上であり、10重量部以下、8重量部以下又は5重量部以下である。 In one or more embodiments, the amount of acid added is 0.1 parts by weight or more, 0.3 parts by weight or more, or 0.5 parts by weight or more, and 10 parts by weight or less, based on 100 parts by weight of lignin. 8 parts by weight or less or 5 parts by weight or less.
 フェノール類とリグニン類との混合は、室温で行ってもよいし、加温しながら行ってもよい。フェノール類とリグニン類とをより均一に混合させる点からは、混合の一部又は全部を、リグニン類の軟化点に近い温度又は軟化点よりも高い温度で行うことが好ましい。そのような温度としては、一又は複数の実施形態において、80℃以上180℃以下、100以上160℃以下、110℃以上150℃以下、又は120以上150℃以下である。混合時間としては、一又は複数の実施形態において、5分以上2時間以下が挙げられる。 The mixing of phenols and lignins may be performed at room temperature or while heating. From the viewpoint of more uniformly mixing the phenols and lignins, it is preferable to perform part or all of the mixing at a temperature close to or higher than the softening point of the lignins. As such temperature, in one or some embodiment, they are 80 to 180 degreeC, 100 to 160 degreeC, 110 to 150 degreeC, or 120 to 150 degreeC. As mixing time, in one or some embodiment, 5 minutes or more and 2 hours or less are mentioned.
 酸存在下でのリグニン類とフェノール類とアルデヒド類との反応温度は、一又は複数の実施形態において、70以上130℃以下、又は80以上120℃以下である。反応時間は、一又は複数の実施形態において、10分以上6時間以下、又は30分以上3時間以下である。 In one or a plurality of embodiments, the reaction temperature of lignins, phenols and aldehydes in the presence of an acid is 70 to 130 ° C, or 80 to 120 ° C. In one or more embodiments, the reaction time is 10 minutes or longer and 6 hours or shorter, or 30 minutes or longer and 3 hours or shorter.
 さらに、フェノール変性リグニン樹脂の製造の一例として、一又は複数の実施形態において、得られた反応物を常圧蒸留及び/又は減圧蒸留を行って脱水することも挙げられる。これにより、純度の高いフェノール変性リグニン樹脂が得られる。
 なお、収率は、リグニン、フェノール、及びホルムアルデヒドの添加量(順に、Lg、Ph及びFAとする)より下記の式で計算することが出来る。
 式:(脱水後の反応容器重量-空の反応容器重量)/(Lg+Ph+FA)
Furthermore, as an example of the production of the phenol-modified lignin resin, in one or a plurality of embodiments, the reaction product obtained may be dehydrated by performing atmospheric distillation and / or vacuum distillation. Thereby, a phenol-modified lignin resin with high purity is obtained.
The yield can be calculated by the following formula from the amounts of lignin, phenol, and formaldehyde added (in order, Lg, Ph, and FA).
Formula: (weight of reaction vessel after dehydration−weight of empty reaction vessel) / (Lg + Ph + FA)
 フェノール変性リグニン樹脂を製造する際には、反応溶媒を用いることができる。この反応溶媒としては特に限定されず、水、有機溶媒などを用いることができるが、通常は水又はメタノールが用いられる。また、アルデヒド類としてパラホルムアルデヒドを用いて反応溶媒を用いずに行ってもよい。有機溶媒としては例えば、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル等のグリコールエーテル類、1,4-ジオキサン等のエーテル類、トルエン、キシレン等の芳香族類などが挙げられる。これらを単独又は2種類以上組み合わせて使用することができる。 In producing the phenol-modified lignin resin, a reaction solvent can be used. The reaction solvent is not particularly limited, and water, an organic solvent, and the like can be used. Usually, water or methanol is used. Moreover, you may carry out without using a reaction solvent, using paraformaldehyde as aldehydes. Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, butanol, and amyl alcohol; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and glycerin; ethylene glycol monomethyl ether, ethylene Examples thereof include glycol ethers such as glycol monoethyl ether, diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, ethers such as 1,4-dioxane, and aromatics such as toluene and xylene. These can be used alone or in combination of two or more.
 フェノール変性リグニン樹脂の分子量としては特に限定されないが、数平均分子量で400以上5000以下であることが好ましく、より好ましくは450以上3000以下である。数平均分子量が上記範囲内であると、樹脂の取扱い性が良好である。すなわち、数平均分子量が上記範囲内であると、高粘度な粘凋の物質となることを回避でき、あるいは、夏期貯蔵時に固結する物質になることを回避でき、或いは、溶剤類への溶解性や配合物との相溶性を維持できる。 The molecular weight of the phenol-modified lignin resin is not particularly limited, but the number average molecular weight is preferably 400 or more and 5000 or less, and more preferably 450 or more and 3000 or less. When the number average molecular weight is within the above range, the handleability of the resin is good. That is, when the number average molecular weight is within the above range, it can be avoided that it becomes a highly viscous substance, or it can be prevented from becoming a substance that solidifies during summer storage, or it can be dissolved in solvents. And compatibility with the composition can be maintained.
 なお、上記数平均分子量は、前記リグニン誘導体と同様の方法を用いて分析することが出来る。なお、変性条件によっては、一部が溶剤不溶成分になることがある。その場合は大部分の溶解成分を分析すればよいが、不溶成分が多い場合は適した溶媒に変更することが望ましい。 The number average molecular weight can be analyzed using the same method as for the lignin derivative. Depending on the modification conditions, some of the components may become solvent-insoluble components. In that case, most of the dissolved components may be analyzed, but when there are many insoluble components, it is desirable to change to a suitable solvent.
 本開示におけるフェノール変性リグニン樹脂のリグニンの含有率(リグニン率)は、特に限定されないが、フェノール変性リグニン樹脂全体に対して、リグニン誘導体を15重量%以上95重量%以下用いたものであることが好ましく、より好ましくは25重量%以上85重量%以下である。リグニン率が上記下限値より高いと、リグニン構造によるゴムの引張特性の向上効果が発揮される点で好ましい。一方、上記上限値より低いと、ゴムの弾性率向上効果が発揮される点で好ましい。 The lignin content (lignin ratio) of the phenol-modified lignin resin in the present disclosure is not particularly limited, but the lignin derivative is 15% by weight or more and 95% by weight or less based on the entire phenol-modified lignin resin. Preferably, it is 25 wt% or more and 85 wt% or less. When the lignin ratio is higher than the lower limit, it is preferable in that the effect of improving the tensile properties of rubber due to the lignin structure is exhibited. On the other hand, when it is lower than the above upper limit, it is preferable in that the effect of improving the elastic modulus of rubber is exhibited.
 本開示におけるフェノール変性リグニン樹脂は、一又は複数の実施形態において、反応に用いたフェノール類、又はアルデヒド類、又は酸等が残留してもよいが、残留物の吸入の危険性が少なくなる等の作業環境性が良くなることから、揮発性を有するフェノール又はフェノール誘導体を5%未満にすることが好ましい。なお、フェノール又はフェノール誘導体を1%未満にすることも可能であり、その場合は、より高真空にすること又は250℃を超えない高温にすることで達成される。フェノール類の残存率の測定法としてはいかなる方法を用いても良いが、一例として標準物質を用いてガスクロマトグラフィーで検量線を作成し、調製後のフェノール変性リグニン樹脂を測定することが出来る。 In one or a plurality of embodiments, the phenol-modified lignin resin in the present disclosure may retain phenols, aldehydes, or acids used in the reaction, but the risk of inhalation of the residue is reduced. Therefore, the volatility of phenol or phenol derivative is preferably less than 5%. In addition, it is also possible to make phenol or a phenol derivative less than 1%, and in that case, it is achieved by making a higher vacuum or a high temperature not exceeding 250 ° C. Any method may be used as a method for measuring the residual ratio of phenols. As an example, a calibration curve can be prepared by gas chromatography using a standard substance, and the phenol-modified lignin resin after preparation can be measured.
 本開示におけるフェノール変性リグニン樹脂の形態としては特に限定されないが、微粉末状、もしくは粒状、ペレット状、ワニス状のものが考えられる。ゴムに混練する際のハンドリング性からは、粒状、ペレット状を使うことが好ましい。 The form of the phenol-modified lignin resin in the present disclosure is not particularly limited, but may be fine powder, granular, pellet, or varnish. From the viewpoint of handling properties when kneading into rubber, it is preferable to use granular and pellet forms.
 本開示の製造方法によれば、一又は複数の実施形態において、高い収率でフェノール変性リグニン樹脂を製造できるという効果を奏しうる。本開示の製造方法によれば、一又は複数の実施形態において、60%以上、65%以上、70%以上又は75%以上を超える高い収率でフェノール変性リグニン樹脂を製造できる。また、本開示の製造方法によれば、一又は複数の実施形態において、フェノール類とリグニン類との反応性を向上させることができるという効果を奏しうる。本開示の製造方法によれば、一又は複数の実施形態において、FP反応率が0.43以上、0.45以上、又は0.5以上である。FP反応率は実施例に記載の方法により求めることができる。 According to the production method of the present disclosure, in one or a plurality of embodiments, it is possible to produce an effect that a phenol-modified lignin resin can be produced with a high yield. According to the production method of the present disclosure, in one or a plurality of embodiments, the phenol-modified lignin resin can be produced with a high yield exceeding 60%, 65%, 70%, or 75%. Moreover, according to the manufacturing method of this indication, in one or some embodiment, there can exist an effect that the reactivity of phenols and lignin can be improved. According to the production method of the present disclosure, in one or a plurality of embodiments, the FP reaction rate is 0.43 or more, 0.45 or more, or 0.5 or more. The FP reaction rate can be determined by the method described in the examples.
 本開示の製造方法により得られるフェノール変性リグニン樹脂は、一又は複数の実施形態において、硬化性が向上し、硬化後の樹脂強度に優れるという効果を奏する。 In one or a plurality of embodiments, the phenol-modified lignin resin obtained by the production method of the present disclosure has an effect that the curability is improved and the resin strength after curing is excellent.
 本開示のフェノール変性リグニン樹脂によれば、一又は複数の実施形態において、樹脂強度の一例として、曲げ強度が70MPa以上、又は90MPa以上の樹脂成形体を得ることができる。曲げ強度は、JIS K6911に基づいて測定される。 According to the phenol-modified lignin resin of the present disclosure, in one or a plurality of embodiments, as an example of the resin strength, a resin molded body having a bending strength of 70 MPa or more, or 90 MPa or more can be obtained. The bending strength is measured based on JIS K6911.
 本開示のフェノール変性リグニン樹脂は、一又は複数の実施形態において、必要に応じて、架橋剤、硬化助剤、木粉類、繊維類、着色剤、離型剤、可塑剤及び/又は安定剤等を配合し、所定の温度で混練した後、射出成形機で射出成形して樹脂成形体を製造することができる。樹脂としてリグニン変性フェノール系樹脂を単独で用いて硬化させてもよいが、さらに硬化性を高めて成形サイクルを短くする点からは、一又は複数の実施形態において、ノボラック型フェノール系樹脂、エポキシ樹脂、及びイソシアネート、並びにこれらの組み合わせから選ばれるものを混合してもよい。 In one or a plurality of embodiments, the phenol-modified lignin resin of the present disclosure includes a crosslinking agent, a curing aid, a wood powder, fibers, a colorant, a release agent, a plasticizer, and / or a stabilizer as necessary. Etc., kneaded at a predetermined temperature, and then injection molded with an injection molding machine to produce a resin molded body. A lignin-modified phenolic resin may be used alone as a resin and cured, but in terms of further improving curability and shortening the molding cycle, in one or a plurality of embodiments, a novolac phenolic resin or an epoxy resin is used. , And isocyanates, and combinations thereof may be mixed.
 架橋剤としては例えばヘキサメチレンテトラミン等が挙げられる。硬化助剤としては例えば消石灰等が挙げられる。木粉は、木材等を破砕し、粉砕し、さらに微粉砕したものであり、その平均粒径は、80メッシュ全通であることが好ましい。繊維類は、木材等から得られるセルロース等が挙げられる。可塑剤としては、例えば脂肪族二塩基酸エステル、ヒドロキシ多価カルボン酸エステル、脂肪酸エステル、ポリエステル系化合物、リン酸エステル等が挙げられる。安定剤としては、例えば金属セッケン、リン化合物、硫黄化合物、フェノール系化合物、L-アスコルビン酸類、エポキシ化合物等が挙げられる。 Examples of the crosslinking agent include hexamethylenetetramine. Examples of the curing aid include slaked lime. Wood flour is obtained by crushing, crushing, and finely crushing wood and the like, and the average particle size is preferably 80 mesh. Examples of the fibers include cellulose obtained from wood and the like. Examples of the plasticizer include aliphatic dibasic acid esters, hydroxy polyvalent carboxylic acid esters, fatty acid esters, polyester compounds, and phosphoric acid esters. Examples of the stabilizer include metal soaps, phosphorus compounds, sulfur compounds, phenolic compounds, L-ascorbic acids, and epoxy compounds.
 [樹脂組成物]
 本開示は、その他の態様において、本開示に係るフェノール変性リグニン樹脂を含む樹脂組成物に関する。本開示の樹脂組成物は、前記フェノール変性リグニン樹脂、これ以外に、フェノール系樹脂、ノボラック型フェノール系樹脂、エポキシ樹脂、イソシアネート、及びこれらの組み合わせから選ばれるもの、並びに、後述する充填剤、架橋剤等を含んでも良い。本開示の樹脂組成物の製造方法は、フェノール変性リグニン樹脂とフェノール系樹脂を混練する工程を含んでもよい。なお、必要に応じて、任意成分を予備混合した後に混練してもよい。また、充填剤、架橋剤、老化防止剤、及びその他の添加剤を含む場合も、その混練の順番は、特に限定されるものではない。混練機としては、バンバリーミキサー、ニーダー、ロール、二軸混練機類などを挙げることができる。
[Resin composition]
In another aspect, the present disclosure relates to a resin composition including the phenol-modified lignin resin according to the present disclosure. The resin composition of the present disclosure includes the phenol-modified lignin resin, besides this, a phenolic resin, a novolak-type phenolic resin, an epoxy resin, an isocyanate, and a combination thereof, as well as a filler and a crosslinking agent described later An agent or the like may be included. The method for producing a resin composition of the present disclosure may include a step of kneading a phenol-modified lignin resin and a phenolic resin. In addition, you may knead | mix, after mixing arbitrary components as needed. Moreover, the order of kneading | mixing is not specifically limited also when a filler, a crosslinking agent, anti-aging agent, and another additive are included. Examples of the kneader include a Banbury mixer, a kneader, a roll, and a biaxial kneader.
 フェノール変性リグニン樹脂とフェノール系樹脂を用いる場合は、上記の通り混練しても良いが、加熱溶融して混合することや、溶剤等を用いてフェノール変性リグニン樹脂とフェノール系樹脂を含むものとを均一に溶解させた後に脱溶剤することで得ても良い。また、フェノール系樹脂を反応して得た後の反応器等にフェノール変性リグニン樹脂を投入し、溶融混合しても良く、またフェノール変性リグニン樹脂を反応させて得た後、反応器等にフェノール系樹脂を投入して溶融混合させてもよい。なお、その他添加物に関しても同様に予め混合することが出来る。 When using a phenol-modified lignin resin and a phenol-based resin, they may be kneaded as described above, but mixed by heating and melting, or containing a phenol-modified lignin resin and a phenol-based resin using a solvent or the like. You may obtain by removing after making it melt | dissolve uniformly. Alternatively, the phenol-modified lignin resin may be charged into a reactor after reaction with the phenol-based resin and melt-mixed. Alternatively, the phenol-modified lignin resin may be reacted to obtain a phenol after the reaction. A resin may be added and melt mixed. Other additives can be mixed in advance in the same manner.
 また、前述の通り、混練や溶融混合するときには、必要に応じて、有機溶媒を用いてもよい。有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、テトラヒドロフラン、シクロヘキサン、ベンゼン、トルエン、キシレン、クレゾール、ジクロロメタン、クロロホルム等が挙げられ、これらのうちの1種又は2種以上の混合物が用いられる。また、樹脂組成物中の固形分濃度は、特に制限されないが、一例として60~98質量%程度とされ、好ましくは70~95質量%程度とされる。 As described above, when kneading or melt mixing, an organic solvent may be used as necessary. The organic solvent is not particularly limited. For example, methanol, ethanol, propanol, butanol, methyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- Examples include 2-pyrrolidone, quinoline, cyclopentanone, tetrahydrofuran, cyclohexane, benzene, toluene, xylene, cresol, dichloromethane, chloroform, and the like, and one or a mixture of two or more of these is used. Further, the solid content concentration in the resin composition is not particularly limited, but is, for example, about 60 to 98% by mass, preferably about 70 to 95% by mass.
 [ゴム組成物]
 本開示に記載した、フェノール変性リグニン樹脂は、ゴム組成物として使用することが可能である。この場合、ゴム組成物に関しては、前記のフェノール変性リグニン樹脂、原料ゴムとしてジエン系ゴムを含むことを特徴とする。さらに、上記組成物にフェノール系樹脂を含んでもよい。
[Rubber composition]
The phenol-modified lignin resin described in the present disclosure can be used as a rubber composition. In this case, the rubber composition is characterized in that the phenol-modified lignin resin and diene rubber are included as raw rubber. Furthermore, the composition may contain a phenolic resin.
 <ゴム組成物の製造方法>
 ゴム組成物の製造方法としては、原料ゴムと、フェノール変性リグニン樹脂を混練する工程を含む。なお、必要に応じて、原料ゴム及び任意成分を予備混合した後に混練してもよい。また、例えば、フェノール系樹脂、充填剤、架橋剤、加硫剤、加硫促進剤、老化防止剤、及びその他の添加剤を含む場合も、その混練の順番は、特に限定されるものではない。混練機としては、バンバリーミキサー、ニーダー、ロール類などを挙げることができる。
<Method for producing rubber composition>
As a manufacturing method of a rubber composition, the process of kneading | mixing raw material rubber and a phenol modified lignin resin is included. If necessary, the raw rubber and optional components may be premixed and then kneaded. Also, for example, the order of kneading is not particularly limited when a phenolic resin, a filler, a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, and other additives are included. . Examples of the kneader include a Banbury mixer, a kneader, and rolls.
 また、混練するときには、必要に応じて、有機溶媒を用いてもよい。有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、クレゾール、軽油、灯油、ケロシン、ナフサ、ベンジン、ガソリン、工業用ガソリン、ヘキサン、シクロヘキサン、ジクロロメタン、クロロホルム等が挙げられ、これらのうちの1種又は2種以上の混合物が用いられる。また、ゴム組成物中の固形分濃度は、特に制限されないが、一例として60~98質量%程度とされ、好ましくは70~95質量%程度とされる。 Further, when kneading, an organic solvent may be used as necessary. The organic solvent is not particularly limited. For example, methanol, ethanol, propanol, butanol, methyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- 2-pyrrolidone, quinoline, cyclopentanone, tetrahydrofuran, benzene, toluene, xylene, cresol, light oil, kerosene, kerosene, naphtha, benzine, gasoline, industrial gasoline, hexane, cyclohexane, dichloromethane, chloroform, etc. Among them, one kind or a mixture of two or more kinds is used. Further, the solid content concentration in the rubber composition is not particularly limited, but is, for example, about 60 to 98% by mass, preferably about 70 to 95% by mass.
 <原料ゴム>
 本開示において使用できるジエン系ゴムとしては、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、エチレンプロピレンジエンゴム(EPDM)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)等を例示でき、これらは単独で用いても2種以上を混合して用いてもよい。特に、耐外傷性、耐摩耗性、耐疲労特性及び耐屈曲亀裂成長性等の特性に優れることから、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)及びブタジエンゴム(BR)のうち1種以上のゴムが好ましく、さらに好ましくは、天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)のうち1種以上のゴムである。
<Raw rubber>
Examples of diene rubber that can be used in the present disclosure include natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), and ethylene propylene diene rubber. (EPDM), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR) and the like can be exemplified, and these may be used alone or in admixture of two or more. In particular, natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) are excellent in properties such as trauma resistance, wear resistance, fatigue resistance, and flex crack growth resistance. Of these, one or more rubbers are preferable, and one or more rubbers among natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) are more preferable.
 本開示のゴム組成物は、ゴム成分中の含有量が50~100質量%の範囲内となるように天然ゴム及び/又は改質天然ゴム、又はスチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)のうち1種以上を含むことが好ましい。上記の含有量が50質量%以上である場合、E’(貯蔵弾性率)の向上効果及び60℃付近のtanδの低減効果が特に顕著に発現する。 The rubber composition of the present disclosure includes natural rubber and / or modified natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) so that the content in the rubber component is in the range of 50 to 100% by mass. It is preferable that 1 or more types are included. When the content is 50% by mass or more, the effect of improving E ′ (storage modulus) and the effect of reducing tan δ around 60 ° C. are particularly prominent.
 前記ジエン系ゴムの含有量は、特に限定されるものではないが、フェノール変性リグニン樹脂100質量部に対して、100重量部以上、10000質量部以下であるのが好ましく、200重量部以上、5000質量部以下であるのがより好ましく、300重量部以上、2000質量部以下であるのがさらに好ましい。前記ジエン系ゴムの含有量が少なすぎる場合は、硬度が高くなりすぎて切断時の伸びが少なくなることがあり、多すぎる場合は、補強効果が低下することがある。 The content of the diene rubber is not particularly limited, but is preferably 100 parts by weight or more and 10,000 parts by weight or less, and 200 parts by weight or more and 5000 parts by weight with respect to 100 parts by weight of the phenol-modified lignin resin. More preferably, it is 300 parts by weight or more and 2000 parts by weight or less. When the content of the diene rubber is too small, the hardness becomes too high and the elongation at the time of cutting may be reduced. When the content is too large, the reinforcing effect may be lowered.
 本開示におけるジエン系ゴムは、アルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基を含む官能基含有天然ゴム(改質天然ゴム)及び/又は官能基含有ジエン系ゴムを含むことが出来る。天然ゴム及び/又はジエン系ゴムがこれらの官能基を含む場合、シリカやカーボンブラック等の充填剤の表面と反応又は相互作用してこれらの充填剤の分散性が良好となり、転がり抵抗が改善するという効果が得られる。 The diene rubber in the present disclosure is a functional group-containing natural product containing at least one functional group selected from an alkoxyl group, an alkoxysilyl group, an epoxy group, a glycidyl group, a carbonyl group, an ester group, a hydroxy group, an amino group, and a silanol group. A rubber (modified natural rubber) and / or a functional group-containing diene rubber can be included. When natural rubber and / or diene rubber contains these functional groups, it reacts with or interacts with the surface of fillers such as silica and carbon black to improve the dispersibility of these fillers and improve rolling resistance. The effect is obtained.
 官能基含有天然ゴム(改質天然ゴム)及び/又は官能基含有ジエン系ゴムを含む場合は、アルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基は、官能基含有天然ゴム中又は官能基含有ジエン系ゴム中に0.001~80モル%の範囲内で含まれることが好ましい。官能基の含有量が0.001モル%以上であれば、上記のシリカやカーボンブラックの表面と反応又は相互作用する効果が良好に得られ、80モル%以下であれば未加硫ゴム組成物の製造時の粘度上昇が抑えられ、加工性が良好となる。かかる官能基の含有量は、0.01~50モル%の範囲内、さらに0.02~25モル%の範囲内であることがより好ましい。 When functional group-containing natural rubber (modified natural rubber) and / or functional group-containing diene rubber is included, alkoxyl group, alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group, At least one functional group selected from silanol groups is preferably contained in the functional group-containing natural rubber or the functional group-containing diene rubber in the range of 0.001 to 80 mol%. If the content of the functional group is 0.001 mol% or more, the effect of reacting or interacting with the surface of the silica or carbon black can be obtained satisfactorily, and if it is 80 mol% or less, the unvulcanized rubber composition An increase in viscosity at the time of production is suppressed, and workability is improved. The content of such a functional group is more preferably in the range of 0.01 to 50 mol%, and further preferably in the range of 0.02 to 25 mol%.
 天然ゴム及び/又はジエン系ゴムにアルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、シラノール基から選ばれる少なくとも1種の官能基を含有させる方法としては、たとえば、炭化水素溶媒中で、有機リチウム開始剤を用いて重合されたスチレン-ブタジエン共重合体の重合末端に官能基を導入する方法や、天然ゴムあるいはジエン系ゴムをクロルヒドリン法、直接酸化法、過酸化水素法、アルキルヒドロペルオキシド法、過酸法等の方法によりエポキシ化する方法等が挙げられる。 As a method of incorporating natural rubber and / or diene rubber with at least one functional group selected from alkoxyl group, alkoxysilyl group, epoxy group, glycidyl group, carbonyl group, ester group, hydroxy group, amino group, silanol group For example, a method of introducing a functional group into a polymerization terminal of a styrene-butadiene copolymer polymerized with an organolithium initiator in a hydrocarbon solvent, a natural rubber or a diene rubber by the chlorohydrin method, direct oxidation And a method of epoxidation by a method such as a hydrogen peroxide method, an alkyl hydroperoxide method, and a peracid method.
 (充填剤)
 次に、充填剤について説明する。
 本開示においては、さらに充填剤を用いても良い。
 充填剤としては、樹脂組成物又はゴム組成物において通常用いられるものを採用できる。充填剤としては、少なくともカーボンブラック、シリカ、アルミナ、及びセルロースファイバーよりなる群から選択される1種以上を含有するものを使用することが好ましく、特に無機充填剤が好ましい。特に、シリカ及びカーボンブラックから選択される少なくとも1種を含むことが好ましい。カーボンブラックを用いると良好な補強効果を得ることができ、またシリカを用いるとtanδの低減効果が良好に得られるが、本開示の樹脂組成物とシリカとを組合せて用いる場合、E’(貯蔵弾性率)の向上効果と60℃付近でのtanδの低減効果とが特に良好となる。
(filler)
Next, the filler will be described.
In the present disclosure, a filler may be further used.
As a filler, what is normally used in a resin composition or a rubber composition is employable. As the filler, it is preferable to use one containing at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber, and an inorganic filler is particularly preferable. In particular, it is preferable to include at least one selected from silica and carbon black. When carbon black is used, a good reinforcing effect can be obtained, and when silica is used, a tan δ reduction effect can be obtained well. However, when the resin composition of the present disclosure and silica are used in combination, E ′ (storage The effect of improving the elastic modulus) and the effect of reducing tan δ around 60 ° C. are particularly good.
 充填剤の含有量は、ゴム成分100質量部に対して、10~150質量部の範囲内であることが好ましい。充填剤の該含有量が10質量部以上である場合、タイヤ用ゴム組成物のE’(貯蔵弾性率)の向上効果が良好であり、該含有量が150質量部以下である場合、E’(貯蔵弾性率)が過度に上昇するおそれが少なく、ゴム組成物の調製時の加工性が良好であるとともに、ゴム組成物中の充填剤の分散性が悪化することによる耐摩耗性や破断伸び等の低下、及び60℃付近でのtanδの不必要な増大とそれによる燃費の悪化、を招くおそれが少ない。 The content of the filler is preferably in the range of 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component. When the content of the filler is 10 parts by mass or more, the effect of improving E ′ (storage elastic modulus) of the rubber composition for tires is good, and when the content is 150 parts by mass or less, E ′ (Storage modulus) is less likely to increase excessively, the processability during preparation of the rubber composition is good, and the wear resistance and elongation at break due to the deterioration of the dispersibility of the filler in the rubber composition Etc., and an unnecessary increase in tan δ around 60 ° C. and the resulting deterioration in fuel consumption are less likely to occur.
 充填剤としてシリカが配合される場合、ゴム成分の100質量部に対して、シリカを10~150質量部の範囲内、及びシランカップリング剤を該シリカの含有量に対して1~20質量%の範囲内となるようにそれぞれ配合することが好ましい。タイヤ用ゴム組成物において、ゴム成分100質量部に対するシリカの含有量が10質量部以上である場合、タイヤ用ゴム組成物のE’(貯蔵弾性率)の向上効果が良好であり、150質量部以下である場合、E’(貯蔵弾性率)が過度に上昇するおそれが少なく、タイヤ用ゴム組成物の調製時の加工性が良好である。また、ゴム組成物中のシリカの分散性が悪化することによる耐摩耗性や破断伸びの低下、及び60℃付近でのtanδの不必要な増大とそれによる燃費の悪化、を招くおそれを少なくできる。シリカの該含有量は、さらに20質量部以上、さらに30質量部以上であることがより好ましく、また、さらに100質量部以下、さらに80質量部以下であることが好ましい。 When silica is blended as a filler, the silica is in the range of 10 to 150 parts by mass and the silane coupling agent is 1 to 20% by mass with respect to the silica content with respect to 100 parts by mass of the rubber component. It is preferable to mix each so that it may become in the range. In the tire rubber composition, when the silica content is 10 parts by mass or more with respect to 100 parts by mass of the rubber component, the effect of improving the E ′ (storage elastic modulus) of the tire rubber composition is good, and 150 parts by mass. When it is below, there is little possibility that E '(storage elastic modulus) will rise too much, and the workability at the time of preparation of the rubber composition for tires is good. Further, it is possible to reduce the possibility of incurring wear resistance and elongation at break due to deterioration of the dispersibility of silica in the rubber composition, and unnecessary increase of tan δ around 60 ° C. and resulting deterioration of fuel consumption. . The content of silica is further preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 100 parts by mass or less, and further preferably 80 parts by mass or less.
 シリカとしては、従来ゴム補強用として慣用されているものが使用でき、たとえば乾式法シリカ、湿式法シリカ、コロイダルシリカ等の中から適宜選択して用いることができる。特に、窒素吸着比表面積(N2SA)が20~600m2/gの範囲内、さらに40~500m2/gの範囲内、さらに50~450m2/gの範囲内であるものを用いることが好ましい。シリカのN2SAが20m2/g以上である場合タイヤ用ゴム組成物に対する補強効果が大きい点で好ましく、600m2/g以下である場合タイヤ用ゴム組成物中での該シリカの分散性が良好で、該ゴム組成物を用いた空気入りタイヤの使用時における発熱性の増大を防止できる点で好ましい。 As the silica, those conventionally used for reinforcing rubber can be used. For example, the silica can be appropriately selected from dry silica, wet silica, colloidal silica, and the like. In particular, it is preferable to use those having a nitrogen adsorption specific surface area (N2SA) in the range of 20 to 600 m 2 / g, further in the range of 40 to 500 m 2 / g, and further in the range of 50 to 450 m 2 / g. When N2SA of silica is 20 m 2 / g or more, it is preferable in terms of a large reinforcing effect on the tire rubber composition, and when it is 600 m 2 / g or less, the dispersibility of the silica in the tire rubber composition is good. It is preferable in that it can prevent an increase in heat generation during use of a pneumatic tire using the rubber composition.
 本開示のゴム組成物は、用途により、前記以外の充填剤を含むことが出来る。充填剤を添加する場合は、その充填剤としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスのようなケイ酸塩、酸化チタン、アルミナのような酸化物、ケイ酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトのような炭酸塩、酸化亜鉛、酸化マグネシウムのような酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化バリウム、水酸化カルシウムのような水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムのような硫酸塩又は亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムのようなホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素のような窒化物等の粉末、ガラス繊維、炭素繊維等の繊維片といった無機充填剤の他、木粉、パルプ粉砕粉、セルロースファイバー、布粉砕粉、熱硬化性樹脂硬化物粉、アラミド繊維、タルクのような有機充填剤等が挙げられる。 The rubber composition of the present disclosure can contain a filler other than the above depending on the application. When a filler is added, examples of the filler include talc, calcined clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide and alumina, magnesium silicate, and carbonic acid. Carbonates like calcium, magnesium carbonate, hydrotalcite, oxides like zinc oxide, magnesium oxide, hydroxides like aluminum hydroxide, magnesium hydroxide, barium hydroxide, calcium hydroxide, barium sulfate, Sulfate or sulfite such as calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, borate such as calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride Of inorganic fillers such as fine nitride powder, glass fiber, carbon fiber, etc. , Wood flour, pulp pulverized powder, cellulose fibers, cloth pulverized powder, cured thermosetting resin powder, aramid fibers, organic fillers, and the like, such as talc.
 本開示の樹脂組成物及びゴム組成物には、必要に応じてフェノール変性リグニン樹脂、又はフェノール系樹脂を架橋させる架橋剤を添加することができる。架橋剤を添加する場合は、その架橋剤は、フェノール変性リグニン樹脂又は、フェノール系樹脂と架橋しうるものであれば、特に限定されず、さらにゴム成分と架橋するものであってもよいが、下記式(2)で表される化合物を含むものが好ましい。 A cross-linking agent that cross-links the phenol-modified lignin resin or the phenol-based resin can be added to the resin composition and the rubber composition of the present disclosure as necessary. When a crosslinking agent is added, the crosslinking agent is not particularly limited as long as it can crosslink with a phenol-modified lignin resin or a phenolic resin, and may further crosslink with a rubber component. What contains the compound represented by following formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000002
[式(2)中のZはメラミン残基、尿素残基、グリコリル残基、イミダゾリジノン残基及び芳香環残基のうちのいずれか1種である。また、mは2~14の整数を表す。また、Rは独立して炭素数1~4のアルキル基又は水素原子である。ただし、-CH2ORは、メラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子及び芳香環残基の芳香環の炭素原子のいずれかに直接結合している。]
Figure JPOXMLDOC01-appb-C000002
[Z in Formula (2) is any one of a melamine residue, a urea residue, a glycolyl residue, an imidazolidinone residue, and an aromatic ring residue. M represents an integer of 2 to 14. R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. However, —CH 2 OR represents the nitrogen atom of the melamine residue, the nitrogen atom of the primary amino group of the urea residue, the nitrogen atom of the secondary amino group of glycolyl residue, or the secondary amino group of the imidazolidinone residue. It is directly bonded to either the nitrogen atom or the carbon atom of the aromatic ring residue. ]
 このような化合物を含む樹脂組成物及びゴム組成物は、硬化後の機械的特性に優れるとともに、硬化物の耐久性及び外観の向上に寄与する。これは、架橋剤中に含まれる上記式(2)で表される化合物が、多官能性の架橋点を形成し得るため、フェノール変性リグニン樹脂を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。剛直な骨格によって硬化物の機械的特性及び耐久性(耐煮沸性等)が向上すること、又はゴム補強効果が向上することとなる。 The resin composition and rubber composition containing such a compound are excellent in mechanical properties after curing, and contribute to improving the durability and appearance of the cured product. This is because the compound represented by the above formula (2) contained in the cross-linking agent can form a polyfunctional cross-linking point, so that the phenol-modified lignin resin is uniformly and rigidly cross-linked. This is because a skeleton is formed. The rigid skeleton will improve the mechanical properties and durability (boiling resistance, etc.) of the cured product, or improve the rubber reinforcing effect.
 -CH2ORは、前述したようにメラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子及び芳香環残基の芳香環の炭素原子のうちのいずれかに直接結合しているが、同一の窒素原子又は炭素原子に2つ以上の「-CH2OR」が結合している場合、そのうちの少なくとも1つの「-CH2OR」が含む「R」はアルキル基であるのが好ましい。これにより、フェノール変性リグニン樹脂を確実に架橋させることができる。 As described above, —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or a secondary amino group of an imidazolidinone residue. It is directly bonded to any one of the nitrogen atom of the group and the aromatic ring carbon atom of the aromatic ring residue, but two or more “—CH 2 OR” are bonded to the same nitrogen atom or carbon atom. In such a case, it is preferable that “R” contained in at least one of “—CH 2 OR” is an alkyl group. Thereby, a phenol modified lignin resin can be bridge | crosslinked reliably.
 本明細書においてメラミン残基とは、下記式(3)で表されるメラミン骨格を有する基のことをいう。 In the present specification, the melamine residue refers to a group having a melamine skeleton represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本明細書において尿素残基とは、下記式(4)で表される尿素骨格を有する基のことをいう。 In this specification, the urea residue refers to a group having a urea skeleton represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本明細書においてグリコリル残基とは、下記式(5)で表されるグリコリル骨格を有する基のことをいう。 In this specification, the glycolyl residue refers to a group having a glycolyl skeleton represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本明細書においてイミダゾリジノン残基とは、下記式(6)で表されるイミダゾリジノン骨格を有する基のことをいう。 In the present specification, the imidazolidinone residue means a group having an imidazolidinone skeleton represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本明細書において芳香環残基とは、芳香環(ベンゼン環)を有する基のことをいう。 In the present specification, the aromatic ring residue means a group having an aromatic ring (benzene ring).
 上記式(2)で表される化合物としては、特に、下記式(7)~(10)のうちのいずれかで表される化合物が好ましく用いられる。これらは、フェノール変性リグニン樹脂中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応しフェノール変性リグニン樹脂を確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、特に均質で剛直な骨格を有し、機械的特性、耐久性及び外観に優れた硬化物が得られ、また、弾性率、又は低ヒステリシスロス性に優れたゴム硬化物が得られる。 As the compound represented by the above formula (2), a compound represented by any one of the following formulas (7) to (10) is particularly preferably used. These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the phenol-modified lignin resin to surely crosslink the phenol-modified lignin resin and cause self-crosslinking by a self-condensation reaction between functional groups. As a result, a cured product having a particularly homogeneous and rigid skeleton and excellent in mechanical properties, durability and appearance can be obtained, and a rubber cured product excellent in elastic modulus or low hysteresis loss can be obtained.
Figure JPOXMLDOC01-appb-C000007
[式(7)中、XはCH2OR又は水素原子であり、Rは独立して炭素数1~4のアルキル基又は水素原子である。また、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000007
[In Formula (7), X is CH 2 OR or a hydrogen atom, and R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. N represents an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-C000008
[式(8)中、Rは独立して炭素数1~4のアルキル基又は水素原子である。]
Figure JPOXMLDOC01-appb-C000008
[In formula (8), R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. ]
Figure JPOXMLDOC01-appb-C000009
[式(9)中、Rは独立して炭素数1~4のアルキル基又は水素原子である。]
Figure JPOXMLDOC01-appb-C000009
[In Formula (9), R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. ]
Figure JPOXMLDOC01-appb-C000010
[式(10)中、Rは独立して炭素数1~4のアルキル基又は水素原子である。]
Figure JPOXMLDOC01-appb-C000010
[In the formula (10), R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. ]
 上記式(7)で表される化合物としては、特に、下記式(11)又は(12)で表される化合物が好ましく用いられる。これらは、フェノール変性リグニン樹脂中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応しフェノール変性リグニン樹脂を特に確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、とりわけ均質で剛直な骨格を有し、機械的特性、耐久性及び外観に優れた硬化物が得られ、また、弾性率、又は低ヒステリシスロス性に優れたゴム硬化物が得られる。 As the compound represented by the above formula (7), a compound represented by the following formula (11) or (12) is particularly preferably used. These react with the cross-linking reaction points on the aromatic ring contained in the phenol skeleton in the phenol-modified lignin resin to specifically cross-link the phenol-modified lignin resin and cause self-crosslinking by self-condensation reaction between functional groups. . As a result, a cured product having a homogeneous and rigid skeleton, excellent mechanical properties, durability and appearance, and a rubber cured product excellent in elastic modulus or low hysteresis loss can be obtained.
Figure JPOXMLDOC01-appb-C000011
[式(11)中、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula (11), n represents an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-C000012
[式(12)中、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000012
[In the formula (12), n represents an integer of 1 to 3. ]
 また、上記架橋剤は、上記式(2)で表される化合物に代えて、又はこの化合物とともに、ヘミサメチレンテトラミン、キヌクリジン及びピジンのうちの少なくとも1種の化合物を含むものであってもよい。このような架橋剤を含む硬化物は、機械的強度に優れるとともに、耐久性及び外観の高いものとなり、また、弾性率、又は低ヒステリシスロス性に優れたゴム硬化物が得られる。これは、ヘキサメチレンテトラミン、キヌクリジン及びピジンがフェノール変性リグニン樹脂を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。 Further, the crosslinking agent may contain at least one compound of hemisamethylenetetramine, quinuclidine and pyridine instead of or together with the compound represented by the formula (2). . A cured product containing such a cross-linking agent has excellent mechanical strength, high durability and appearance, and a cured rubber product having excellent elastic modulus or low hysteresis loss is obtained. This is because hexamethylenetetramine, quinuclidine, and pididine cross-link the phenol-modified lignin resin at high density and uniformly to form a homogeneous and rigid skeleton.
 また、架橋剤には、上記化合物以外の架橋剤成分を用いてもよい。上記化合物以外の架橋剤成分としては、例えば、オルソクレゾールノボラックエポキシ樹脂、ビスフェノールA型エポキシ樹脂、エポキシ化グリセリン、エポキシ化亜麻仁油、エポキシ化大豆油のようなエポキシ樹脂、ヘキサメチレンジイソシアネート、トルエンジイソシアネートのようなイソシアネート化合物、フェノール変性リグニン樹脂の芳香環に対し親電子置換反応して架橋し得る化合物として、ホルムアルデヒド、アセトアルデヒド、パラホルムアルデヒド、フルフラールのようなアルデヒド類、ポリオキシメチレンのようなアルデヒド源、ヘキサメチレンテトラミンの他、レゾール型フェノール樹脂等の通常のフェノール樹脂で公知の架橋剤、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物等を挙げることができる。また、フェノール変性リグニン樹脂100質量部に対して上記化合物は5~150質量部であるのが好ましく、7.5~50質量部であるのがより好ましい。 Further, as the cross-linking agent, cross-linking agent components other than the above compounds may be used. Examples of the cross-linking agent component other than the above compound include, for example, orthocresol novolac epoxy resin, bisphenol A type epoxy resin, epoxidized glycerin, epoxidized linseed oil, epoxy resin such as epoxidized soybean oil, hexamethylene diisocyanate, toluene diisocyanate. As an isocyanate compound, a compound capable of crosslinking by electrophilic substitution reaction on the aromatic ring of a phenol-modified lignin resin, aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural, aldehyde sources such as polyoxymethylene, hexa In addition to methylenetetramine, mention may be made of known phenolic resins such as resol type phenolic resins, known crosslinking agents, compounds capable of crosslinking by electrophilic substitution reaction on aromatic rings of lignin derivatives, etc. It can be. Further, the amount of the compound is preferably 5 to 150 parts by mass, more preferably 7.5 to 50 parts by mass with respect to 100 parts by mass of the phenol-modified lignin resin.
 <その他の成分>
 本開示のゴム組成物は、ゴム成分、フェノール変性リグニン樹脂及び充填剤に加え、ゴムを加硫させる硫黄、又はその他の加硫剤、軟化剤、粘着付与剤、酸化防止剤、オゾン劣化防止剤、老化防止剤、加硫促進剤、加硫促進助剤、加工助剤、シャク解剤、粘着付与剤、過酸化物、酸化亜鉛、ステアリン酸、ファクチス、プロセスオイル、アロマオイル、ワックス等、必要に応じた添加剤が適宜配合され得る。
 加硫剤としては、有機過酸化物もしくは硫黄系加硫剤を使用できる。有機過酸化物としては、たとえば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3あるいは1,3-ビス(t-ブチルパーオキシプロピル)ベンゼン等を使用することができる。また、硫黄系加硫剤としては、たとえば、硫黄、塩化硫黄、モルホリンジスルフィド、アルキルフェノール・ジスルフィド、高分子多硫化物、ポリスルフィド類などを使用することができる。
<Other ingredients>
The rubber composition of the present disclosure includes, in addition to a rubber component, a phenol-modified lignin resin, and a filler, sulfur for vulcanizing the rubber, or other vulcanizing agent, softening agent, tackifier, antioxidant, and ozone deterioration preventing agent. Anti-aging agent, Vulcanization accelerator, Vulcanization accelerator, Processing aid, Peeling agent, Tackifier, Peroxide, Zinc oxide, Stearic acid, Factis, Process oil, Aroma oil, Wax, etc. are necessary Additives corresponding to the above can be appropriately blended.
As the vulcanizing agent, an organic peroxide or a sulfur vulcanizing agent can be used. Examples of the organic peroxide include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, 2,5-dimethyl-2, 5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne 3 or 1,3-bis (t-butylperoxypropyl) benzene or the like can be used. As the sulfur vulcanizing agent, for example, sulfur, sulfur chloride, morpholine disulfide, alkylphenol disulfide, polymer polysulfide, polysulfides and the like can be used.
 加硫促進剤としては、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系又はアルデヒド-アンモニア系、イミダゾリン系、もしくは、キサンテート系加硫促進剤のうち少なくとも一つを含むものを使用することが可能である。 Vulcanization accelerators include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine, aldehyde-ammonia, imidazoline, or xanthate vulcanization accelerators. Those containing at least one of them can be used.
 老化防止剤としては、アミン系、フェノール系、イミダゾール系の各化合物や、カルバミン酸金属塩、ワックスなどを適宜選択して使用することが可能である。 As the anti-aging agent, amine-based, phenol-based and imidazole-based compounds, carbamic acid metal salts, waxes and the like can be appropriately selected and used.
 製造方法の一例を下記に示す。
(1)原料ゴムと、フェノール変性リグニン樹脂と、任意成分(加硫剤及び加硫促進剤を除く)とを、バンバリーミキサーなどの密閉式混練機により混練して、加硫系を含有していないゴム組成物を得る。ここに、混練条件(温度・時間)は混練機により異なる。
(2)上記(1)により得られたゴム組成物に、オープンロールなどのロール類や前記混練機を用いて加硫剤及び加硫促進剤及び任意成分を添加し、再度混練して、加硫系を含有するゴム組成物を得る。
An example of the manufacturing method is shown below.
(1) A raw rubber, a phenol-modified lignin resin, and optional components (excluding a vulcanizing agent and a vulcanization accelerator) are kneaded by a closed kneader such as a Banbury mixer, and contain a vulcanization system. No rubber composition is obtained. Here, the kneading conditions (temperature and time) vary depending on the kneader.
(2) A vulcanizing agent, a vulcanization accelerator and an optional component are added to the rubber composition obtained by the above (1) using rolls such as an open roll or the kneader, kneaded again, and added. A rubber composition containing a sulfur system is obtained.
 <ゴム組成物の硬化物及びタイヤの製造方法>
 次に、ゴム組成物の硬化物及びタイヤを得る工程について説明する。ゴム組成物の硬化物及びタイヤは、ゴム組成物を成形することによって得ることができる。成形方法としては用途によって異なるため、特に限定されるものではないが、金型を用いて成形する場合は、作製したゴム組成物を、油圧プレスを備えた金型を用いて成形し、ゴム組成物の硬化物を得る。
<Hardened product of rubber composition and method for producing tire>
Next, a process for obtaining a cured product of a rubber composition and a tire will be described. The cured product and tire of the rubber composition can be obtained by molding the rubber composition. The molding method varies depending on the application and is not particularly limited. However, when molding using a mold, the produced rubber composition is molded using a mold equipped with a hydraulic press, and the rubber composition A cured product is obtained.
 一例として、本開示のゴム組成物をタイヤの部材に用いる場合は、通常の方法により製造される。すなわち、前記ゴム組成物を未加硫の段階でタイヤの部材の形状に押出し加工し、タイヤ成形機上で通常の方法により貼り合わせて未加硫タイヤを成形する。該未加硫タイヤを加硫機中で加熱・加圧してタイヤを得ることができる。 As an example, when the rubber composition of the present disclosure is used for a tire member, it is manufactured by a normal method. That is, the rubber composition is extruded into the shape of a tire member at an unvulcanized stage, and bonded together by a normal method on a tire molding machine to form an unvulcanized tire. The unvulcanized tire can be heated and pressurized in a vulcanizer to obtain a tire.
 成形の温度は、100~280℃程度であるのが好ましく、120~250℃程度であるのがより好ましく、130~230℃程度であるのがさらに好ましい。成形の温度が230℃を超えるである場合、ゴムの劣化の恐れがあり、また100℃未満の場合は成形が出来ない恐れがある。 The molding temperature is preferably about 100 to 280 ° C., more preferably about 120 to 250 ° C., and further preferably about 130 to 230 ° C. If the molding temperature exceeds 230 ° C, the rubber may be deteriorated. If it is less than 100 ° C, molding may not be possible.
 本開示は、さらに以下の一又は複数の実施形態に関する。
[A1] リグニン及び/又はリグニン誘導体と、フェノール類と、アルデヒド類とを酸の存在下で反応させることにより得られるフェノール変性リグニン樹脂であって、
 前記リグニン及びリグニン誘導体の数平均分子量が、100~5000であり、
 前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4~1.5である、フェノール変性リグニン樹脂。
[A2] リグニン及び/又はリグニン誘導体と、フェノール類と、アルデヒド類とを酸の存在下で反応させることにより得られるフェノール変性リグニン樹脂であって、
 前記リグニン及びリグニン誘導体の重量平均分子量が、100~5000であり、
 前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4~1.5である、フェノール変性リグニン樹脂。
[A3] 前記リグニン誘導体は、バイオマスを分解して得られたリグニン誘導体である、[A1]又は[A2]に記載のフェノール変性リグニン樹脂。
[A4] 前記リグニン及び/又はリグニン誘導体の数平均分子量は、100~5000であり、4000以下、3000以下、2000以下、1500以下、1200以下、又は1000以下であり、及び/又は、200以上、250以上、300以上又は350以上である、[A1]から[A3]のいずれかに記載のフェノール変性リグニン樹脂。
[A5] 前記モル比は、0.40以上、0.45以上又は0.50以上であり、又は1.50以下、1.30以下又は1.20以下である[A1]から[A4]のいずれかに記載のフェノール変性リグニン樹脂。
[A6] 前記リグニン及び/又はリグニン誘導体の重量平均分子量は、5000以下、4000以下、3500以下、3000以下、2500以下、2000以下又は1500以下であり、及び/又は、100以上、200以上又は400以上である[A1]から[A5]のいずれかに記載のフェノール変性リグニン樹脂。
[A7] 前記バイオマスは、リグノセルロース系バイオマスである、[A3]から[A6]のいずれかに記載のフェノール変性リグニン樹脂。
[A8] 前記リグニン誘導体は、溶媒存在下で、バイオマスを150~400℃、1~40MPa及び処理時間8時間以下で分解処理することにより得られたリグニン誘導体である[A1]から[A7]のいずれかに記載のフェノール変性リグニン樹脂。
[A9] 前記リグニン誘導体は、グアイアシルプロパン(フェルラ酸)、シリンギルプロパン(シナピン酸)、及び表わされる4-ヒドロキシフェニルプロパン(クマル酸)からなる群から選択される少なくとも一つを含む[A1]から[A8]のいずれかに記載のフェノール変性リグニン樹脂。
[A10] 軟化点が、85℃以上、90℃以上又は95℃以上であり、また65℃以上、75℃以上又は85℃以上であり、また170℃以下、160℃以下又は150℃以下である[A1]から[A9]のいずれかに記載のフェノール変性リグニン樹脂。
[A11]重量平均分子量が、1000以上又は1500以上であり、及び/又は、10000以下、8000以下又は6000以下である[A1]から[A10]のいずれかに記載のフェノール変性リグニン樹脂。
[A12]数平均分子量が、300以上、400以上、500以上又は550以上であり、及び/又は、4000以下、2000以下、1500以下、1200以下、1100以下、又は1000以下である[A1]から[A11]のいずれかに記載のフェノール変性リグニン樹脂。
[B1] リグニン及び/又はリグニン誘導体と、フェノール類と、アルデヒド類とを酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法であって、
 前記リグニン及びリグニン誘導体の数平均分子量が、100~5000であり、
 前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4~1.5である製造方法。
[B2] リグニン及び/又はリグニン誘導体と、フェノール類と、アルデヒド類とを酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法であって、
 前記リグニン及びリグニン誘導体の重量平均分子量が、100~5000であり、
 前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4~1.5である製造方法。
[B3] 前記リグニン誘導体は、バイオマスを分解して得られたリグニン誘導体である[B1]又は[B2]に記載の製造方法。
[B4] 前記リグニン及び/又はリグニン誘導体の数平均分子量は、100~5000であり、4000以下、3000以下、2000以下、1500以下、1200以下、又は1000以下であり、及び/又は、200以上、250以上、300以上又は350以上である[B1]から[B3]のいずれかに記載の製造方法。
[B5] 前記モル比は、0.40以上、0.45以上又は0.50以上であり、又は1.50以下、1.30以下又は1.20以下である[B1]から[B4]のいずれかに記載の製造方法。
[B6] 前記リグニン及び/又はリグニン誘導体の重量平均分子量は、5000以下、4000以下、3500以下、3000以下、2500以下、2000以下又は1500以下であり、及び/又は、100以上、200以上又は400以上である[B1]から[B5]のいずれかに記載の製造方法。
[B7] 前記バイオマスは、リグノセルロース系バイオマスである[B3]から[B6]のいずれかに記載の製造方法。
[B8] 前記リグニン誘導体は、溶媒存在下で、バイオマスを150~400℃、1~40MPa及び処理時間8時間以下で分解処理することにより得られたリグニン誘導体である[B1]から[B7]のいずれかに記載の製造方法。
[B9] 前記リグニン誘導体は、グアイアシルプロパン(フェルラ酸)、シリンギルプロパン(シナピン酸)、及び表わされる4-ヒドロキシフェニルプロパン(クマル酸)からなる群から選択される少なくとも一つを含む[B1]から[B8]のいずれかに記載の製造方法。
[B10] 前記フェノール類の添加量が、リグニン類100重量部に対して10重量部以上、20重量部以上、又は30重量部以上であり、また500重量部以下、300重量部以下又は200重量部以下である[B1]から[B9]のいずれかに記載の製造方法。
[B11] 前記酸は、有機酸又は無機酸であり、前記有機酸は、酢酸、ギ酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、安息香酸、サリチル酸、スルホン酸、フェノールスルホン酸、及びパラトルエンスルホン酸からなる群から選択され、前記無機酸は、塩酸、硫酸、硫酸エステル、リン酸及びリン酸エステル等からなる群から選択される[B1]から[B10]のいずれかに記載の製造方法。
[B12] [A1]から[A12]のいずれかに記載のフェノール変性リグニン樹脂を製造する[B1]から[B11]のいずれかに記載の製造方法。
[C1] [A1]から[A12]のいずれかに記載のフェノール変性リグニン樹脂を含む樹脂組成物。
[D1] ゴム補強用のフェノール変性リグニン樹脂であって、リグニン誘導体と、フェノール又はフェノール誘導体と、アルデヒド類を含む混合物を反応させて得られることを特徴とするフェノール変性リグニン樹脂。
[D2] 前記フェノール変性リグニン樹脂が、リグニン誘導体と、フェノール類と、アルデヒド類を含む混合物を酸存在下の反応により得られることを特徴とする、[D1]記載のフェノール変性リグニン樹脂。
[D3] 前記酸が有機酸を含む、[D2]記載のフェノール変性リグニン樹脂。
[D4] 前記フェノール変性リグニン樹脂の数平均分子量が、200以上、5000以下である、[D1]ないし[D5]のいずれかに記載のフェノール変性リグニン樹脂。
[D5] 前記フェノール変性リグニン樹脂の軟化点が、60℃以上、160℃以下である、[D1]ないし[D4]のいずれかに記載のフェノール変性リグニン樹脂。
[D6] 前記リグニン誘導体の数平均分子量が、200以上、5000以下である、[D1]ないし[D5]のいずれかに記載のフェノール変性リグニン樹脂。
[D7] 前記樹脂におけるアルデヒド類(F)とフェノール又はフェノール誘導体(P)及びリグニン誘導体(L)とのモル比(F/(P+L))が、0.01以上、5.0以下である、[D1]ないし[D6]のいずれかに記載のフェノール変性リグニン樹脂。
[E1] [D1]ないし[D7]のいずれかに記載のフェノール変性リグニン樹脂を含むことを特徴とする樹脂組成物。
[F1] [D1]ないし[D7]のいずれかに記載のフェノール変性リグニン樹脂とジエン系ゴムを含むことを特徴とするゴム組成物。
[F2] 前記ゴム組成物が、充填剤を含有する、[F1]に記載のゴム組成物。
[F3] 前記充填剤が、カーボンブラック、シリカ、アルミナ、及びセルロースファイバーよりなる群から選択される少なくとも1種以上を含有する、[F1]又は[F2]に記載のゴム組成物。
[G1] [F1]ないし[F3]のいずれか1項に記載のゴム組成物を硬化して得られることを特徴とする硬化物。
The present disclosure further relates to one or more of the following embodiments.
[A1] A phenol-modified lignin resin obtained by reacting lignin and / or a lignin derivative, a phenol, and an aldehyde in the presence of an acid,
The lignin and lignin derivative have a number average molecular weight of 100 to 5,000,
A phenol-modified lignin resin, wherein a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
[A2] A phenol-modified lignin resin obtained by reacting lignin and / or a lignin derivative, a phenol, and an aldehyde in the presence of an acid,
The lignin and lignin derivative have a weight average molecular weight of 100 to 5,000,
A phenol-modified lignin resin, wherein a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
[A3] The phenol-modified lignin resin according to [A1] or [A2], wherein the lignin derivative is a lignin derivative obtained by decomposing biomass.
[A4] The number average molecular weight of the lignin and / or lignin derivative is 100 to 5000, 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less, and / or 200 or more. The phenol-modified lignin resin according to any one of [A1] to [A3], which is 250 or more, 300 or more, or 350 or more.
[A5] The molar ratio is 0.40 or more, 0.45 or more, or 0.50 or more, or 1.50 or less, 1.30 or less, or 1.20 or less from [A1] to [A4]. The phenol-modified lignin resin according to any one of the above.
[A6] The weight average molecular weight of the lignin and / or lignin derivative is 5000 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, or 1500 or less, and / or 100 or more, 200 or more, or 400. The phenol-modified lignin resin according to any one of [A1] to [A5].
[A7] The phenol-modified lignin resin according to any one of [A3] to [A6], wherein the biomass is lignocellulosic biomass.
[A8] The lignin derivative is a lignin derivative obtained by decomposing biomass at 150 to 400 ° C., 1 to 40 MPa and a treatment time of 8 hours or less in the presence of a solvent, from [A1] to [A7]. The phenol-modified lignin resin according to any one of the above.
[A9] The lignin derivative includes at least one selected from the group consisting of guaiacylpropane (ferulic acid), syringylpropane (sinapic acid), and 4-hydroxyphenylpropane (coumaric acid) represented by [A1 ] To the phenol-modified lignin resin according to any one of [A8].
[A10] The softening point is 85 ° C or higher, 90 ° C or higher, or 95 ° C or higher, 65 ° C or higher, 75 ° C or higher, or 85 ° C or higher, and 170 ° C or lower, 160 ° C or lower, or 150 ° C or lower. The phenol-modified lignin resin according to any one of [A1] to [A9].
[A11] The phenol-modified lignin resin according to any one of [A1] to [A10], which has a weight average molecular weight of 1000 or more and 1500 or more and / or 10,000 or less, 8000 or less or 6000 or less.
[A12] The number average molecular weight is 300 or more, 400 or more, 500 or more, or 550 or more, and / or 4000 or less, 2000 or less, 1500 or less, 1200 or less, 1100 or less, or 1000 or less. The phenol-modified lignin resin according to any one of [A11].
[B1] A method for producing a phenol-modified lignin resin comprising reacting lignin and / or a lignin derivative, a phenol and an aldehyde in the presence of an acid,
The lignin and lignin derivative have a number average molecular weight of 100 to 5,000,
The production method wherein the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
[B2] A method for producing a phenol-modified lignin resin comprising reacting lignin and / or a lignin derivative, a phenol and an aldehyde in the presence of an acid,
The lignin and lignin derivative have a weight average molecular weight of 100 to 5,000,
The production method wherein the molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction is 0.4 to 1.5.
[B3] The production method according to [B1] or [B2], wherein the lignin derivative is a lignin derivative obtained by decomposing biomass.
[B4] The number average molecular weight of the lignin and / or lignin derivative is 100 to 5000, 4000 or less, 3000 or less, 2000 or less, 1500 or less, 1200 or less, or 1000 or less, and / or 200 or more. The production method according to any one of [B1] to [B3], which is 250 or more, 300 or more, or 350 or more.
[B5] The molar ratio is 0.40 or more, 0.45 or more, or 0.50 or more, or 1.50 or less, 1.30 or less, or 1.20 or less from [B1] to [B4]. The manufacturing method in any one.
[B6] The weight average molecular weight of the lignin and / or lignin derivative is 5000 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less or 1500 or less, and / or 100 or more, 200 or more, or 400. The production method according to any one of [B1] to [B5].
[B7] The method according to any one of [B3] to [B6], wherein the biomass is lignocellulosic biomass.
[B8] The lignin derivative is a lignin derivative obtained by decomposing biomass at 150 to 400 ° C., 1 to 40 MPa, and a treatment time of 8 hours or less in the presence of a solvent, from [B1] to [B7]. The manufacturing method in any one.
[B9] The lignin derivative includes at least one selected from the group consisting of guaiacylpropane (ferulic acid), syringylpropane (sinapic acid), and 4-hydroxyphenylpropane (coumaric acid) represented by [B1 ] To [B8].
[B10] The addition amount of the phenols is 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, and 500 parts by weight or less, 300 parts by weight or less or 200 parts by weight with respect to 100 parts by weight of lignins. The production method according to any one of [B1] to [B9], which is not more than part.
[B11] The acid is an organic acid or an inorganic acid, and the organic acid is acetic acid, formic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, salicylic acid, sulfonic acid, phenolsulfonic acid. And the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, sulfuric acid ester, phosphoric acid, phosphoric acid ester, etc., and any one of [B1] to [B10] The manufacturing method as described.
[B12] The production method according to any one of [B1] to [B11], wherein the phenol-modified lignin resin according to any one of [A1] to [A12] is produced.
[C1] A resin composition comprising the phenol-modified lignin resin according to any one of [A1] to [A12].
[D1] A phenol-modified lignin resin for rubber reinforcement, which is obtained by reacting a lignin derivative, a phenol or a phenol derivative, and a mixture containing aldehydes.
[D2] The phenol-modified lignin resin according to [D1], wherein the phenol-modified lignin resin is obtained by a reaction containing a lignin derivative, a phenol, and an aldehyde in the presence of an acid.
[D3] The phenol-modified lignin resin according to [D2], wherein the acid includes an organic acid.
[D4] The phenol-modified lignin resin according to any one of [D1] to [D5], wherein the phenol-modified lignin resin has a number average molecular weight of 200 or more and 5000 or less.
[D5] The phenol-modified lignin resin according to any one of [D1] to [D4], wherein a softening point of the phenol-modified lignin resin is 60 ° C or higher and 160 ° C or lower.
[D6] The phenol-modified lignin resin according to any one of [D1] to [D5], wherein the number average molecular weight of the lignin derivative is 200 or more and 5000 or less.
[D7] The molar ratio (F / (P + L)) of the aldehydes (F) and the phenol or the phenol derivative (P) and the lignin derivative (L) in the resin is 0.01 or more and 5.0 or less. The phenol-modified lignin resin according to any one of [D1] to [D6].
[E1] A resin composition comprising the phenol-modified lignin resin according to any one of [D1] to [D7].
[F1] A rubber composition comprising the phenol-modified lignin resin according to any one of [D1] to [D7] and a diene rubber.
[F2] The rubber composition according to [F1], wherein the rubber composition contains a filler.
[F3] The rubber composition according to [F1] or [F2], wherein the filler contains at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber.
[G1] A cured product obtained by curing the rubber composition according to any one of [F1] to [F3].
 以下、本開示を以下の実施例及び比較例に基づいて説明するが、本開示はこれに限定されるものではない。また、ここに記載されている「部」は「重量部」を、「%」は「重量%」を示す。 Hereinafter, the present disclosure will be described based on the following examples and comparative examples, but the present disclosure is not limited thereto. Further, “parts” described herein indicate “parts by weight”, and “%” indicates “% by weight”.
 [リグニン誘導体の調製]
 (リグニン誘導体1)
 以下の手順でスギからリグニン誘導体を調製した。
 まず、スギ木粉(60メッシュアンダー)100重量部と、純水からなる溶媒567重量部とを混合し、これを1Lオートクレーブに導入した。そして内容物を300rpmで攪拌しながら、前処理として室温で15分間撹拌を行い、スギ木粉と溶媒とを十分になじませた後、300℃、9MPaで60分間処理してスギ木粉を分解した。
 次いで、得られた分解物を濾過し、濾別された固形成分を回収した。
 次いで、得られた固形成分をアセトン250部に12時間浸漬した。これを濾過し、アセトン可溶成分を回収した。
 次いで、前記アセトン可溶成分からアセトンを留去し、乾燥することで、リグニン誘導体15.2重量部を得た。
 得られたリグニン誘導体の物性を以下の方法で測定し、得られた結果を表1に示す。
[Preparation of lignin derivatives]
(Lignin derivative 1)
A lignin derivative was prepared from cedar by the following procedure.
First, 100 parts by weight of cedar wood flour (60 mesh under) and 567 parts by weight of a solvent made of pure water were mixed and introduced into a 1 L autoclave. Then, while stirring the contents at 300 rpm, as a pretreatment, the mixture was stirred for 15 minutes at room temperature, and after thoroughly blending the cedar wood flour and the solvent, it was treated at 300 ° C. and 9 MPa for 60 minutes to decompose the cedar wood flour. did.
Subsequently, the obtained decomposition product was filtered, and the solid component separated by filtration was recovered.
Next, the obtained solid component was immersed in 250 parts of acetone for 12 hours. This was filtered to recover acetone-soluble components.
Next, acetone was distilled off from the acetone-soluble component and dried to obtain 15.2 parts by weight of a lignin derivative.
The physical properties of the obtained lignin derivative were measured by the following methods, and the obtained results are shown in Table 1.
 (リグニン誘導体2)
 処理温度を230℃、処理圧力を3MPaとした以外は、リグニン誘導体1と同様にしてリグニン誘導体を調製した。
(Lignin derivative 2)
A lignin derivative was prepared in the same manner as the lignin derivative 1 except that the treatment temperature was 230 ° C. and the treatment pressure was 3 MPa.
 (リグニン誘導体3)
 溶媒として重量部283重量部及びアセトン283重量部を用い、処理温度を230℃、処理圧力を5MPaとした以外は、リグニン誘導体1と同様にしてリグニン誘導体を調製した。
(Lignin derivative 3)
A lignin derivative was prepared in the same manner as lignin derivative 1 except that 283 parts by weight of solvent and 283 parts by weight of acetone were used as the solvent, the processing temperature was 230 ° C., and the processing pressure was 5 MPa.
 (リグニン誘導体4)
 原料としてスギに替えてブナを使用した以外は、リグニン誘導体1と同様にしてリグニン誘導体を調製した。
(Lignin derivative 4)
A lignin derivative was prepared in the same manner as the lignin derivative 1 except that beech was used instead of cedar as a raw material.
 (リグニン誘導体5)
 原料として稲わらに替えてブナを使用した以外は、リグニン誘導体1と同様にしてリグニン誘導体を調製した。
(Lignin derivative 5)
A lignin derivative was prepared in the same manner as the lignin derivative 1 except that beech was used instead of rice straw as a raw material.
 (実施例1)
 リグニン誘導体1を三ツ口フラスコに加えた後、フェノール(和光純薬社製)を下記表2に示す割合で加え、昇温の後に約120℃で20分間攪拌した。その後、シュウ酸をリグニンに対して1.8重量部の割合で添加して攪拌した。次に37%ホルムアルデヒドを下記表2に示す割合となるように逐添し、逐添終了後は100℃で1時間攪拌した。次に、昇温させながら減圧蒸留を行い、水及び未反応フェノールを留去し、残留フェノールが5%以下になったところで生成物を取りだし、フェノール変性リグニン樹脂を得た(収率:62%、FP反応率:0.45)。
 得られたフェノール変性リグニン樹脂における硫酸含有量、リグニン率、数平均分子量、重量平均分子量、及び軟化点を以下の方法で測定し、その結果を下記表2に示す。
Example 1
After adding the lignin derivative 1 to the three-necked flask, phenol (manufactured by Wako Pure Chemical Industries, Ltd.) was added at the ratio shown in Table 2 below, and the mixture was stirred at about 120 ° C. for 20 minutes after the temperature was raised. Thereafter, oxalic acid was added at a ratio of 1.8 parts by weight to lignin and stirred. Next, 37% formaldehyde was added successively so as to have the ratio shown in Table 2 below, and after completion of the sequential addition, the mixture was stirred at 100 ° C. for 1 hour. Next, vacuum distillation was performed while raising the temperature, water and unreacted phenol were distilled off, and when the residual phenol was 5% or less, the product was taken out to obtain a phenol-modified lignin resin (yield: 62% FP reaction rate: 0.45).
The sulfuric acid content, lignin ratio, number average molecular weight, weight average molecular weight, and softening point in the obtained phenol-modified lignin resin were measured by the following methods, and the results are shown in Table 2 below.
 (実施例2)
 ホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
(Example 2)
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the formaldehyde was changed to the ratio shown in Table 2 below.
 (実施例3)
 フェノール及びホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
Example 3
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
 (実施例4)
 フェノール及びホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
Example 4
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
 (実施例5)
 フェノール及びホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
(Example 5)
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the ratio of phenol and formaldehyde was changed to those shown in Table 2 below.
 (実施例6)
 リグニン誘導体2を用い、フェノール及びホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
(Example 6)
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the lignin derivative 2 was used and the ratios of phenol and formaldehyde were as shown in Table 2 below.
 (実施例7)
 リグニン誘導体3を用い、フェノール及びホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
(Example 7)
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the lignin derivative 3 was used and the ratio of phenol and formaldehyde was as shown in Table 2 below.
 (実施例8)
 リグニン誘導体4を用い、実施例4と同様にフェノール変性リグニン樹脂を得た。
(Example 8)
Using lignin derivative 4, a phenol-modified lignin resin was obtained in the same manner as in Example 4.
 (実施例9)
 リグニン誘導体5を用い、実施例4と同様にフェノール変性リグニン樹脂を得た。
Example 9
Using lignin derivative 5, a phenol-modified lignin resin was obtained in the same manner as in Example 4.
 (比較例1)
 ホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂を得た。
(Comparative Example 1)
A phenol-modified lignin resin was obtained in the same manner as in Example 1 except that the formaldehyde was changed to the ratio shown in Table 2 below.
 (比較例2)
 高分子量リグニン(重量平均分子量:7700、数平均分子量:1600、硫酸含有量:7.1、軟化点:175℃)を使用し、かつホルムアルデヒドを下記表2に示す割合とした以外は、実施例1と同様にフェノール変性リグニン樹脂の調製を行った。しかしながら、調製途中で、ゲル化したため樹脂として使用できず、また正確な分子量も測定できなかった。
(Comparative Example 2)
Example 1 except that high molecular weight lignin (weight average molecular weight: 7700, number average molecular weight: 1600, sulfuric acid content: 7.1, softening point: 175 ° C.) was used, and the ratio of formaldehyde was as shown in Table 2 below. Similarly, a phenol-modified lignin resin was prepared. However, since it gelled during preparation, it could not be used as a resin, and an accurate molecular weight could not be measured.
 [物性の測定方法]
<硫酸含有量>
 原料のリグニン誘導体1~5又は高分子量リグニン1.0gと、超純水とを抽出容器に入れて密閉し、125℃20時間の熱水抽出し、遠心分離後に上澄み液を取って検液とした。イオンクロマト分析装置(ダイオネクスICS-2000型、DX-320イオンクロマトグラフ)に検液及び標準液を導入し、検量線法により各イオン濃度を求め、試料中濃度に換算した。
<数平均分子量及び重量平均分子量>
 数平均分子量及び重量平均分子量は、ゲル浸透クロマトグラフィーを用いて測定した。リグニン誘導体又はフェノール変性リグニンをテトラヒドロフランに溶解させて測定サンプルを調製した。スチレン系ポリマー充填剤を充填した有機系汎用カラムである「TSKgelGMHXL(東ソー製)」と「G2000HXL(東ソー製)」とを直列に接続したGPCシステム「HLC-8320GPC(東ソー製)」に、測定サンプル200μLを注入した、40℃で溶離液のテトラヒドロフランを1.0mL/minで展開し、示差屈折率(RI)及び紫外吸光度(UV)を利用して保持時間を測定した。別途作製しておいた標準ポリスチレンの保持時間と分子量の関係を示した検量線から、リグニン誘導体又はフェノール変性リグニンの数平均分子量及び重量平均分子量を算出した。
<軟化点>
 軟化点は、JIS K2207に準じて、環球式軟化点試験機(メルテック(株)製ASP-MG2型)を用いて測定した。
<収率>
 フェノール変性リグニン樹脂の収量と、原料の仕込み量(溶媒を除く)から以下の式により算出した。なお、フェノール変性リグニン樹脂の収量は、原料を反応容器に充填する前の反応容器の重さを、原料を充填した後に重合を実施した後の反応容器の重さから除することにより算出した。
収率(%)=(フェノール変性リグニン樹脂の収量)/(原料の仕込み量(溶媒を除く))×100
<FP反応率>
 フェノール変性リグニン樹脂の収量、リグニン類の仕込み量(WL)及び、フェノール類の仕込み量(WP)及びホルマリンの仕込み量(Wf)から以下の式により算出した。FP反応率(%)=(収量-WL)/(WP+Wf)×100
<リグニン率>
 リグニンの質量が変性前後で変化しないと仮定し、以下の式により算出した。
リグニン率(%)=(リグニン仕込み量)/(フェノール変性リグニン樹脂の収量)×100
[Measurement method of physical properties]
<Sulfuric acid content>
Raw material lignin derivative 1-5 or 1.0 g of high molecular weight lignin and ultrapure water are placed in an extraction container and sealed, extracted with hot water at 125 ° C. for 20 hours, and after centrifugation, the supernatant is taken and did. The test solution and standard solution were introduced into an ion chromatograph (Dionex ICS-2000 type, DX-320 ion chromatograph), and the concentration of each ion was determined by the calibration curve method and converted to the concentration in the sample.
<Number average molecular weight and weight average molecular weight>
The number average molecular weight and the weight average molecular weight were measured using gel permeation chromatography. A measurement sample was prepared by dissolving a lignin derivative or a phenol-modified lignin in tetrahydrofuran. Measurement sample in GPC system “HLC-8320GPC (manufactured by Tosoh)”, which is an organic general-purpose column packed with styrene polymer filler, “TSKgelGMHXL (manufactured by Tosoh)” and “G2000HXL (manufactured by Tosoh)” Tetrahydrofuran as an eluent was developed at 1.0 mL / min at 40 ° C. into which 200 μL had been injected, and the retention time was measured using differential refractive index (RI) and ultraviolet absorbance (UV). The number average molecular weight and weight average molecular weight of the lignin derivative or phenol-modified lignin were calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
<Softening point>
The softening point was measured according to JIS K2207 using a ring and ball softening point tester (ASP-MG2 type manufactured by Meltech Co., Ltd.).
<Yield>
It was calculated by the following formula from the yield of the phenol-modified lignin resin and the charged amount of raw material (excluding the solvent). The yield of the phenol-modified lignin resin was calculated by dividing the weight of the reaction vessel before filling the raw material into the reaction vessel from the weight of the reaction vessel after carrying out the polymerization after filling the raw material.
Yield (%) = (Yield of phenol-modified lignin resin) / (Feed amount of raw material (excluding solvent)) × 100
<FP reaction rate>
The yield was calculated from the following formula from the yield of the phenol-modified lignin resin, the charged amount of lignin (W L ), the charged amount of phenol (W P ), and the charged amount of formalin (W f ). FP reaction rate (%) = (yield−W L ) / (W P + W f ) × 100
<Lignin rate>
Assuming that the mass of lignin did not change before and after denaturation, it was calculated by the following formula.
Lignin rate (%) = (Lignin charge) / (Yield of phenol-modified lignin resin) × 100
 [樹脂の評価]
 実施例1~9及び比較例1のフェノール変性リグニン樹脂について以下の評価を行った。また、比較例3として、フェノール変性リグニン樹脂に替えて実施例1で調製したリグニン誘導体を用い同様の評価を行った。その結果を表2に示す。
<硬化時間>
 フェノール変性リグニン樹脂又はリグニン誘導体100質量部にヘキサメチレンテトラミン15質量部を常温で添加して粉砕混合して樹脂組成物を作製し、粘弾性装置(アントンパール社製 レオメーターMCR301)を用いて、錠剤成形した樹脂組成物を歪み1%、振動数1Hz、175℃の条件にて、時間依存のずり方向粘弾性測定を行った。測定30分後の貯蔵弾性率の90%の貯蔵弾性率に達するまでの時間を硬化時間(T90)とした。
<硬化度>
 フェノール変性リグニン樹脂又はリグニン誘導体100質量部にヘキサメチレンテトラミン15質量部を常温で添加し、粉砕混合した後、熱オーブンに入れ175℃10分加熱して硬化物を得た。得られた硬化物を粉砕し、迅速溶媒抽出装置「ソクテストSER148/6(アクタック社製)」を用いて、円筒ろ紙に入れた粉砕硬化物を沸騰したアセトン溶媒に浸漬し、1時間煮沸した。次いで、円筒ろ紙をアセトン溶媒から引き上げ、機器上部で冷えて液化したアセトンが円筒ろ紙中のサンプルに滴下させて、1時間リンスを行った。得られたアセトン抽出液を12時間風乾し、さらに50℃2時間減圧下で乾燥させた。乾燥して得られた抽出固形分の重量をアセトン溶出分重量とした。得られたアセトン溶出分重量を用いて、以下の式によって硬化度を算出した。
 硬化度(%)=(硬化物重量-アセトン溶出分重量)/硬化物重量×100
[Evaluation of resin]
The phenol-modified lignin resins of Examples 1 to 9 and Comparative Example 1 were evaluated as follows. As Comparative Example 3, the same evaluation was performed using the lignin derivative prepared in Example 1 instead of the phenol-modified lignin resin. The results are shown in Table 2.
<Curing time>
A resin composition was prepared by adding 15 parts by mass of hexamethylenetetramine to 100 parts by mass of a phenol-modified lignin resin or lignin derivative at room temperature, and pulverizing and mixing. Using a viscoelastic device (Rheometer MCR301 manufactured by Anton Paar), The resin composition thus formed into tablets was subjected to time-dependent shear direction viscoelasticity measurement under the conditions of 1% strain, vibration frequency 1 Hz, and 175 ° C. The time required to reach a storage elastic modulus of 90% of the storage elastic modulus after 30 minutes of measurement was defined as a curing time (T90).
<Curing degree>
15 parts by mass of hexamethylenetetramine was added at room temperature to 100 parts by mass of a phenol-modified lignin resin or lignin derivative, mixed by pulverization, and then placed in a heat oven and heated at 175 ° C. for 10 minutes to obtain a cured product. The obtained cured product was pulverized, and the pulverized cured product placed in a cylindrical filter paper was immersed in boiling acetone solvent and boiled for 1 hour using a rapid solvent extraction device “Soctest SER148 / 6 (manufactured by Actac)”. Next, the cylindrical filter paper was pulled up from the acetone solvent, and acetone cooled down and liquefied at the upper part of the apparatus was dropped onto the sample in the cylindrical filter paper, and rinsed for 1 hour. The obtained acetone extract was air-dried for 12 hours and further dried under reduced pressure at 50 ° C. for 2 hours. The weight of the extracted solid obtained by drying was defined as the weight of acetone eluted. Using the obtained acetone elution weight, the degree of cure was calculated by the following formula.
Curing degree (%) = (cured material weight−acetone elution weight) / cured material weight × 100
 [樹脂成形体の評価]
 実施例1~9、比較例1及び2のフェノール変性リグニン樹脂並び、リグニン誘導体1(比較例3)を用いて樹脂成形体を調製し、以下の方法により外観及び曲げ強度の評価を行った。その結果を表2に示す。なお、比較例2のフェノール変性リグニン樹脂は成形体を成形することができなかった。
<樹脂組成物の調製>
 フェノール変性リグニン樹脂又はリグニン100質量部にヘキサメチレンテトラミン15質量部を常温で添加し、粉砕混合してリグニン樹脂組成物を調製した。
<樹脂成形体の調製>
 リグニン樹脂組成物に対し、ガラス繊維(ガラスミルドファイバー、日東紡績(株)製、基準繊維径10±1.5μm、平均繊維長90μm)を、リグニン樹脂組成物との混合比率で50.5重量%となるように添加した。ラボプラストミルにて90℃50rpmにて混練し、混練したものを175℃3minの条件にて圧縮成形を行い、幅10mm、長さ100mm、高さ4mmの樹脂成形体を得た。
<外観>
得られた樹脂成形体について、外観を目視で確認し、評価した。なお、外観の評価基準は以下のとおりである。
 評価基準
 ○:成形品の表面が平滑で、成形品の表面に肉眼で分かる凹凸が認められない、又は、ひずみ、しわ、斑点が1~2個である。
 △:成形品の表面に肉眼で分かる凹凸が認められる、又は、ひずみ、しわ、斑点が3~5個である。
 ×:成形品の表面に肉眼で分かる著しい凹凸が認められる、又は、ひずみ、しわ、斑点が6個以上である。
<曲げ強度>
 樹脂成形体を用いて、JIS K6911に準拠して曲げ強度を求めた。樹脂成形体を用いて、JIS K6911に準拠して曲げ強度を求めた。具体的には、精密万能試験機(島津製作所社製 オートグラフAG-Xplus)にて、2mm/minの速度で荷重をかけて三点曲げ試験を行った。
[Evaluation of molded resin]
Resin molded bodies were prepared using the phenol-modified lignin resins of Examples 1 to 9, Comparative Examples 1 and 2, and the lignin derivative 1 (Comparative Example 3), and the appearance and bending strength were evaluated by the following methods. The results are shown in Table 2. The phenol-modified lignin resin of Comparative Example 2 could not be molded into a molded product.
<Preparation of resin composition>
15 parts by mass of hexamethylenetetramine was added to phenol-modified lignin resin or 100 parts by mass of lignin at room temperature, and pulverized and mixed to prepare a lignin resin composition.
<Preparation of resin molding>
The glass fiber (glass milled fiber, manufactured by Nitto Boseki Co., Ltd., standard fiber diameter 10 ± 1.5 μm, average fiber length 90 μm) is mixed with the lignin resin composition in a mixing ratio of 50.5 wt. % Was added. The mixture was kneaded at 90 ° C. and 50 rpm in a lab plast mill, and the kneaded product was compression molded at 175 ° C. for 3 minutes to obtain a resin molded body having a width of 10 mm, a length of 100 mm, and a height of 4 mm.
<Appearance>
About the obtained resin molding, the external appearance was confirmed visually and evaluated. The appearance evaluation criteria are as follows.
Evaluation criteria ○: The surface of the molded product is smooth, and the surface of the molded product has no irregularities that can be seen with the naked eye, or has 1 to 2 strains, wrinkles, and spots.
Δ: Unevenness that can be seen with the naked eye is observed on the surface of the molded product, or there are 3 to 5 strains, wrinkles, and spots.
X: Remarkable unevenness | corrugation which can be recognized with the naked eye is recognized on the surface of a molded article, or there are six or more distortions, wrinkles, and spots.
<Bending strength>
The bending strength was calculated | required based on JISK6911 using the resin molding. The bending strength was calculated | required based on JISK6911 using the resin molding. Specifically, a three-point bending test was performed using a precision universal testing machine (Autograph AG-Xplus, manufactured by Shimadzu Corporation) with a load of 2 mm / min.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2に示すように、実施例1~9は、比較例1と比較して収率が高かった。また、実施例1~9のフェノール変性リグニン樹脂は、比較例1のそれと比較して軟化点も高かった。 As shown in Table 2, Examples 1 to 9 had higher yields than Comparative Example 1. In addition, the phenol-modified lignin resins of Examples 1 to 9 had a higher softening point than that of Comparative Example 1.
 175℃での硬化時間が短いほど硬化性が高いと評価できる。表2に示すように、実施例1~9のフェノール変性リグニン樹脂はいずれも硬化時間が1150秒以下であり、中でも実施例2~9は900秒以下であり、さらに実施例4、7及び8は500秒程度又はそれ以下と比較例と比べていずれも短時間で硬化可能であった。また、硬化度が高いことは、一定条件の加熱によって架橋がさらに進行してアセトンに不溶な架橋体になったことを示しているといえることから、硬化度が高いほど硬化性が高いと評価できる。表2に示すように、実施例1~9のフェノール変性リグニン樹脂はいずれも硬化度が85%を超え、中でも実施例1、4及び6は95%以上と比較例と比べて高かった。したがって、実施例1~9のフェノール変性リグニン樹脂は比較例と比べて硬化性が高いと評価できる。
 また、実施例1~9のフェノール変性リグニン樹脂を用いて調製した樹脂成形体は、比較例1の成形体と比較していずれも曲げ強度が高かった。特に実施例4~9は、比較例1よりもリグニン率が高いにもかかわらず、すなわち比較例1よりリグニンと反応したフェノール類及びアルデヒド類の量が少ないにもかかわらず、比較例1よりも高い曲げ強度が得られた。また、実施例1~9のフェノール変性リグニン樹脂を用いて調製した樹脂成形体は、比較例1の成形体と比較していずれも成形性に優れ、良好な外観を示した。
It can be evaluated that the shorter the curing time at 175 ° C., the higher the curability. As shown in Table 2, all of the phenol-modified lignin resins of Examples 1 to 9 have a curing time of 1150 seconds or less, of which Examples 2 to 9 are 900 seconds or less, and Examples 4, 7 and 8 Was about 500 seconds or less, and both were curable in a short time as compared with the comparative example. Moreover, since it can be said that the high degree of curing indicates that the crosslinking further progressed by heating under certain conditions to form a crosslinked body insoluble in acetone, the higher the degree of curing, the higher the curability. it can. As shown in Table 2, the phenol-modified lignin resins of Examples 1 to 9 all had a degree of cure exceeding 85%, and in particular, Examples 1, 4 and 6 were 95% or more, which was higher than the comparative example. Therefore, it can be evaluated that the phenol-modified lignin resins of Examples 1 to 9 have higher curability than the comparative examples.
In addition, the resin moldings prepared using the phenol-modified lignin resins of Examples 1 to 9 all had higher bending strength than the molding of Comparative Example 1. In particular, Examples 4 to 9 have a higher lignin ratio than Comparative Example 1, that is, they have a lower amount of phenols and aldehydes reacted with lignin than Comparative Example 1, but are less than Comparative Example 1. High bending strength was obtained. In addition, the resin moldings prepared using the phenol-modified lignin resins of Examples 1 to 9 were all excellent in moldability and showed a good appearance as compared with the moldings of Comparative Example 1.
 (実施例11)
(1)リグニン誘導体の抽出
 スギ木粉(60メッシュアンダー)100部と、純水からなる溶媒400部と、を混合し、これを1Lオートクレーブに導入した。そして内容物を300rpmで攪拌しながら、前処理として室温で15分間撹拌を行い、スギ木粉と溶媒とを十分になじませた後、300℃、10MPaで60分間処理して、スギ木粉を分解した。
 次いで、得られた分解物を濾過し、濾別された固形成分を回収した。
 次いで、得られた固形成分をアセトン250部に12時間浸漬した。これを濾過し、アセトン可溶成分を回収した。
 次いで、前記アセトン可溶成分からアセトンを留去し、乾燥することで、リグニン誘導体(A)15.5部を得た。数平均分子量は420、軟化点は107℃であった。
(Example 11)
(1) Extraction of lignin derivative 100 parts of cedar wood flour (60 mesh under) and 400 parts of a solvent consisting of pure water were mixed and introduced into a 1 L autoclave. Then, while stirring the contents at 300 rpm, as a pretreatment, the mixture was stirred for 15 minutes at room temperature. After sufficiently blending the cedar wood flour and the solvent, it was treated at 300 ° C. and 10 MPa for 60 minutes to obtain cedar wood flour. Disassembled.
Subsequently, the obtained decomposition product was filtered, and the solid component separated by filtration was recovered.
Next, the obtained solid component was immersed in 250 parts of acetone for 12 hours. This was filtered to recover acetone-soluble components.
Subsequently, 15.5 parts of lignin derivative (A) was obtained by distilling acetone off from the said acetone soluble component, and drying. The number average molecular weight was 420 and the softening point was 107 ° C.
 (2)フェノール変性リグニン樹脂の調製
 調製したリグニン誘導体を三ツ口フラスコに加えた後、フェノール(和光純薬社製)を下記表3に示す割合で加え、昇温の後に約120℃で20分間攪拌した。その後、シュウ酸をリグニンに対して1.8重量部の割合で添加して攪拌した。次に37%ホルムアルデヒドを下記表1に示す割合となるように逐添し、逐添終了後は100℃で1時間攪拌した。次に、昇温させながら減圧蒸留を行い、水及び未反応フェノールを留去し、残留フェノールが5%以下になったところで生成物を取りだし、フェノール変性リグニン樹脂を得た(収率:62%)。得られたフェノール変性リグニン樹脂におけるリグニン率、数平均分子量、重量平均分子量、及び軟化点を以下の方法で測定し、その結果を下記表3に示す。
(2) Preparation of phenol-modified lignin resin After the prepared lignin derivative was added to a three-necked flask, phenol (manufactured by Wako Pure Chemical Industries, Ltd.) was added at the rate shown in Table 3 below, followed by stirring at about 120 ° C for 20 minutes. did. Thereafter, oxalic acid was added at a ratio of 1.8 parts by weight to lignin and stirred. Next, 37% formaldehyde was added successively so as to have the ratio shown in Table 1 below, and stirred at 100 ° C. for 1 hour after the addition. Next, vacuum distillation was performed while raising the temperature, water and unreacted phenol were distilled off, and when the residual phenol was 5% or less, the product was taken out to obtain a phenol-modified lignin resin (yield: 62% ). The lignin ratio, number average molecular weight, weight average molecular weight, and softening point of the obtained phenol-modified lignin resin were measured by the following methods, and the results are shown in Table 3 below.
 (3)ゴム組成物の作製
 フェノール変性リグニン樹脂100部と天然ゴム化合物500部、カーボンブラック350部、樹脂架橋剤としてヘキサメチレンテトラミン10部、加硫剤として硫黄15部、加硫促進剤としてMSA-Gを7.5部、加硫促進助剤として酸化亜鉛を25部、離型剤としてステアリン酸10部を、バンバリーミキサーを100℃加熱して混練し、ゴム組成物を得た。
(3) Preparation of rubber composition 100 parts of phenol-modified lignin resin, 500 parts of natural rubber compound, 350 parts of carbon black, 10 parts of hexamethylenetetramine as a resin crosslinking agent, 15 parts of sulfur as a vulcanizing agent, MSA as a vulcanization accelerator A rubber composition was obtained by kneading 7.5 parts of -G, 25 parts of zinc oxide as a vulcanization accelerator, 10 parts of stearic acid as a release agent, and heating a Banbury mixer at 100 ° C.
 (実施例12)
 フェノール変性リグニン樹脂の製造において、変性処方を表3の通りに変更した以外は実施例11と同じ。
Example 12
In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
 (実施例13)
 フェノール変性リグニン樹脂の製造において、変性処方を表3の通りに変更した以外は実施例11と同じ。
(Example 13)
In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
 (実施例14)
 フェノール変性リグニン樹脂の製造において、変性処方を表3の通りに変更した以外は実施例11と同じ。
(Example 14)
In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
 (実施例15)
 フェノール変性リグニン樹脂の製造において、変性処方を表3の通りに変更した以外は実施例11と同じ。
(Example 15)
In the production of the phenol-modified lignin resin, the same as Example 11 except that the modified formulation was changed as shown in Table 3.
 (実施例16)
 リグニン誘導体の抽出において、分解処理の溶媒及び条件を表3の通りに、さらにフェノール樹脂の製造において変性処方を変更した以外は実施例11と同じ。なお、リグニン誘導体は、数平均分子量は670、軟化点は123℃であった。
(Example 16)
In the extraction of the lignin derivative, the solvent and conditions for the decomposition treatment were as shown in Table 3, and the modified prescription was changed in the production of the phenol resin, as in Example 11. The lignin derivative had a number average molecular weight of 670 and a softening point of 123 ° C.
 (実施例17)
 リグニン誘導体の抽出において、原料をスギ木粉の代わりにブナに変更し、さらにフェノール樹脂の製造において変性処方を変更した以外は実施例11と同じ。なお、リグニン誘導体は、数平均分子量は440、軟化点は113℃であった。
(Example 17)
In the extraction of the lignin derivative, the same as Example 11 except that the raw material was changed to beech instead of cedar wood flour, and the modified prescription was changed in the production of phenol resin. The lignin derivative had a number average molecular weight of 440 and a softening point of 113 ° C.
 (実施例18)
 リグニン誘導体の抽出において、原料をスギ木粉の代わりに稲わらに変更し、さらにフェノール樹脂の製造において変性処方を変更した以外は実施例11と同じ。なお、リグニン誘導体は、数平均分子量は350、軟化点は98℃であった。
(Example 18)
In the extraction of the lignin derivative, the same as Example 11 except that the raw material was changed to rice straw instead of cedar wood flour, and the modified prescription was changed in the production of phenol resin. The lignin derivative had a number average molecular weight of 350 and a softening point of 98 ° C.
 (実施例19)
 ゴム組成物の作製において、カーボンブラック280質量部とシリカ70質量部を用いて、さらにシリカカップリング剤を5部加えた以外は実施例12と同じ。
(Example 19)
The production of the rubber composition was the same as Example 12 except that 280 parts by mass of carbon black and 70 parts by mass of silica were added, and 5 parts of a silica coupling agent was further added.
 (比較例11)
 フェノール変性リグニン樹脂を用いず、実施例11に従ってゴム組成物を得た。
(Comparative Example 11)
A rubber composition was obtained according to Example 11 without using a phenol-modified lignin resin.
 (比較例12)
 フェノール変性リグニン樹脂の代わりに実施例で得られたリグニン誘導体を用いた以外は、実施例11に従ってゴム組成物を得た。
(Comparative Example 12)
A rubber composition was obtained according to Example 11 except that the lignin derivative obtained in the example was used instead of the phenol-modified lignin resin.
 (比較例13)
 フェノール変性リグニン樹脂の代わりにフェノールノボラック樹脂を100質量部用いた以外は、比較例11に同じ。
(Comparative Example 13)
The same as Comparative Example 11 except that 100 parts by mass of phenol novolac resin was used instead of phenol-modified lignin resin.
 上記実施例及び、比較例で得られたゴム組成物を用い、表3に示す配合(部)で加熱混練した各種ゴム配合組成物を、油圧プレスにて160℃20分間加硫して、厚さ2mmの加硫ゴムシートを作製した。評価結果を表1に示す。 Using the rubber compositions obtained in the above examples and comparative examples, various rubber compounding compositions heated and kneaded in the compounding (parts) shown in Table 3 were vulcanized with a hydraulic press at 160 ° C. for 20 minutes, and then thickened. A vulcanized rubber sheet having a thickness of 2 mm was produced. The evaluation results are shown in Table 1.
 以下に、実施例及び比較例において用いた各種原料について説明する。
天然ゴム:東知製RSS3
硬化剤:ヘキサメチレンテトラミン
カーボンブラック:三菱化学社製、HAF
シリカ:エボニック社製、Ultrasil VN3(BET比表面積:175m2/g)
シランカップリング剤:エボニック社製、Si-69
酸化亜鉛:堺化学工業社製
ステアリン酸:日油社製ビーズステアリン酸YR
硫黄:細井化学工業社製、微粉硫黄
加硫促進剤:大内新興化学工業社製、MSA-G
ノボラック型フェノール樹脂:住友ベークライト社製、PR-50731
Below, the various raw materials used in the Example and the comparative example are demonstrated.
Natural rubber: Tochi made RSS3
Curing agent: Hexamethylenetetramine carbon black: manufactured by Mitsubishi Chemical Corporation, HAF
Silica: manufactured by Evonik, Ultrasil VN3 (BET specific surface area: 175 m 2 / g)
Silane coupling agent: Si-69, manufactured by Evonik
Zinc oxide: Stearic acid manufactured by Sakai Chemical Industry Co., Ltd .: NOF Beads Stearic Acid YR
Sulfur: manufactured by Hosoi Chemical Co., Ltd., fine sulfur vulcanization accelerator: manufactured by Ouchi Shinsei Chemical Co., Ltd., MSA-G
Novolac type phenolic resin: Sumitomo Bakelite, PR-50731
 [樹脂物性の測定方法]
<数平均分子量及び重量平均分子量>
 上述と同様に測定した。
<軟化点>
 上述と同様に測定した。
<リグニン率>
 上述と同様に測定した。
[Measurement method of resin properties]
<Number average molecular weight and weight average molecular weight>
Measurements were made as described above.
<Softening point>
Measurements were made as described above.
<Lignin rate>
Measurements were made as described above.
 [ゴム物性の測定方法]
(a)切断時引張応力・切断時伸び
 JIS K6251に準拠して、東洋精機社製ストログラフを用い、引張速度50mm/分で測定した。
(b)貯蔵弾性率、tanδ
 TAインスツルメント社製動的粘弾性測定装置を用い、動的歪2%の条件下で、30℃における貯蔵弾性率と60℃におけるtanδを測定した。
 60℃のtanδの逆数の値が大きいことは、粘弾性特性のtanδが小さいことを意味し、繰返し変形で発生する熱エネルギーを抑えることができ、ヒステリシスロスが小さいことを意味する。ヒステリシスロスが小さいことは、タイヤの場合は、燃費性能を高めることができるものとなる。
 結果は比較例11を100として、他の実施例及び比較例の値を比率で表した指数で表3に記載した。
[Measurement method of rubber properties]
(A) Tensile stress at break / elongation at break In accordance with JIS K6251, a tensile rate of 50 mm / min was measured using a strograph manufactured by Toyo Seiki Co., Ltd.
(B) Storage elastic modulus, tan δ
The storage elastic modulus at 30 ° C. and tan δ at 60 ° C. were measured using a dynamic viscoelasticity measuring device manufactured by TA Instruments under the condition of 2% dynamic strain.
A large value of the reciprocal of tan δ at 60 ° C. means that tan δ of the viscoelastic characteristics is small, which means that thermal energy generated by repeated deformation can be suppressed and hysteresis loss is small. A small hysteresis loss means that fuel efficiency can be improved in the case of a tire.
The results are shown in Table 3 as an index representing the values of other Examples and Comparative Examples as ratios, with Comparative Example 11 being 100.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3から明らかなように、各実施例で得られたゴム組成物の硬化物は、ゴムの低ヒステリシスロス性を示す60℃のtanδ値の逆数、及び、弾性率に優れており、さらに、切断時伸びを維持しつつ、切断時引張応力の低下が抑えられていた。すなわち、各実施例で得られたゴム組成物は、ゴム部品の低燃費性、ゴム剛性に優れ、かつ機械的強度のバランスに優れたものであった。さらに、本開示によるフェノール変性リグニン樹脂を用いることで、上記の優れた特性と高い植物由来度を高度に両立することが出来るため、環境負荷が低減することが出来る。 As is clear from Table 3, the cured product of the rubber composition obtained in each example is excellent in the reciprocal of the tan δ value at 60 ° C., which indicates the low hysteresis loss of the rubber, and the elastic modulus. While maintaining the elongation at the time of cutting, the decrease in the tensile stress at the time of cutting was suppressed. That is, the rubber composition obtained in each example was excellent in the fuel economy and rubber rigidity of rubber parts and in the balance of mechanical strength. Furthermore, by using the phenol-modified lignin resin according to the present disclosure, the above-described excellent characteristics and a high degree of plant origin can be achieved at a high level, so that the environmental burden can be reduced.
本開示のゴム組成物は、一又は複数の実施形態において、優れた低ヒステリシスロス性、優れた弾性率、切断時引張り応力及び切断時伸びが要求される用途、特にタイヤ用途に好適に用いることができる。 In one or a plurality of embodiments, the rubber composition of the present disclosure is suitably used for applications requiring excellent low hysteresis loss, excellent elastic modulus, tensile stress at break and elongation at break, particularly tire applications. Can do.

Claims (17)

  1.  リグニン類と、フェノール類と、アルデヒド類とを、酸の存在下で反応させることにより得られるフェノール変性リグニン樹脂であって、
     前記リグニン類の数平均分子量が、100以上5000以下であり、
     前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4以上1.5以下である、フェノール変性リグニン樹脂。
    A phenol-modified lignin resin obtained by reacting lignins, phenols, and aldehydes in the presence of an acid,
    The number average molecular weight of the lignin is 100 or more and 5000 or less,
    A phenol-modified lignin resin having a molar ratio (F / P) of aldehydes (F), phenols and (P) in the reaction of 0.4 to 1.5.
  2.  前記リグニン類は、バイオマスを分解して得られたリグニン誘導体である、請求項1に記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to claim 1, wherein the lignin is a lignin derivative obtained by decomposing biomass.
  3.  前記リグニン類の重量平均分子量は、100以上5000以下である、請求項1又は2に記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to claim 1 or 2, wherein the lignin has a weight average molecular weight of 100 or more and 5000 or less.
  4.  ゴム補強用のフェノール変性リグニン樹脂であって、
     リグニン類と、フェノール類と、アルデヒド類を含む混合物を反応させて得られることを特徴とする、フェノール変性リグニン樹脂。
    A phenol-modified lignin resin for rubber reinforcement,
    A phenol-modified lignin resin obtained by reacting a mixture containing lignins, phenols and aldehydes.
  5.  リグニン類と、フェノール類と、アルデヒド類を含む混合物を、酸存在下の反応により得られる、請求項4に記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to claim 4, wherein a mixture containing lignins, phenols and aldehydes is obtained by a reaction in the presence of an acid.
  6.  前記酸が有機酸を含む、請求項1ないし3及び5のいずれかに記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to any one of claims 1 to 3, wherein the acid contains an organic acid.
  7.  前記フェノール変性リグニン樹脂の数平均分子量が、200以上5000以下である、請求項1ないし6のいずれかに記載のフェノール変性リグニン樹脂 The phenol-modified lignin resin according to any one of claims 1 to 6, wherein the phenol-modified lignin resin has a number average molecular weight of 200 or more and 5000 or less.
  8.  前記フェノール変性リグニン樹脂の軟化点が、60℃以上160℃以下である、請求項1ないし7のいずれかに記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to any one of claims 1 to 7, wherein a softening point of the phenol-modified lignin resin is 60 ° C or higher and 160 ° C or lower.
  9.  前記リグニン類の数平均分子量が、200以上5000以下である、請求項1ないし8のいずれかに記載のフェノール変性リグニン樹脂。 The phenol-modified lignin resin according to any one of claims 1 to 8, wherein the lignin has a number average molecular weight of 200 or more and 5000 or less.
  10.  前記樹脂におけるアルデヒド類(F)とフェノール類(P)及びリグニン類(L)とのモル比(F/(P+L))が、0.01以上5.0以下である請求項4ないし9のいずれかに記載のフェノール変性リグニン樹脂。 The molar ratio (F / (P + L)) of aldehydes (F), phenols (P) and lignins (L) in the resin is 0.01 or more and 5.0 or less. The phenol-modified lignin resin according to claim 1.
  11.  請求項1ないし10のいずれかに記載のフェノール変性リグニン樹脂を含む樹脂組成物。 A resin composition comprising the phenol-modified lignin resin according to any one of claims 1 to 10.
  12.  請求項1ないし10のいずれかに記載のフェノール変性リグニン樹脂とジエン系ゴムとを含むことを特徴とするゴム組成物。 A rubber composition comprising the phenol-modified lignin resin according to any one of claims 1 to 10 and a diene rubber.
  13.  前記ゴム組成物が、充填剤を含有する請求項12に記載のゴム組成物。 The rubber composition according to claim 12, wherein the rubber composition contains a filler.
  14.  前記充填剤が、カーボンブラック、シリカ、アルミナ、及びセルロースファイバーよりなる群から選択される少なくとも1種以上を含有する請求項12又は13に記載のゴム組成物。 The rubber composition according to claim 12 or 13, wherein the filler contains at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber.
  15.  請求項12ないし14のいずれかに記載のゴム組成物を硬化して得られる硬化物。 A cured product obtained by curing the rubber composition according to claim 12.
  16.  リグニン類と、フェノール類と、アルデヒド類とを、酸の存在下で反応させることを含むフェノール変性リグニン樹脂の製造方法であって、
     前記リグニン類の数平均分子量が、100以上5000以下であり、
     前記反応におけるアルデヒド類(F)とフェノール類と(P)とのモル比(F/P)が、0.4以上1.5以下である、製造方法。
    A process for producing a phenol-modified lignin resin comprising reacting lignins, phenols and aldehydes in the presence of an acid,
    The number average molecular weight of the lignin is 100 or more and 5000 or less,
    The manufacturing method whose molar ratio (F / P) of aldehydes (F), phenols, and (P) in the said reaction is 0.4-1.5.
  17.  前記フェノール類の添加量が、前記リグニン及びリグニン誘導体100重量部に対して10重量以上200重量部以下である、請求項16記載の製造方法。 The production method according to claim 16, wherein the amount of the phenol added is 10 to 200 parts by weight with respect to 100 parts by weight of the lignin and lignin derivative.
PCT/JP2015/059372 2014-03-28 2015-03-26 Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product WO2015147165A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016510485A JP6541007B2 (en) 2014-03-28 2015-03-26 Phenol-modified lignin resin, method for producing the same, and resin composition, rubber composition, and cured product
CN201580003489.0A CN105873970B (en) 2014-03-28 2015-03-26 Phenol modified lignin resin resin and its manufacturing method and resin combination, rubber composition and solidfied material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-067327 2014-03-28
JP2014067327 2014-03-28
JP2014-104583 2014-05-20
JP2014104583 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015147165A1 true WO2015147165A1 (en) 2015-10-01

Family

ID=54195671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059372 WO2015147165A1 (en) 2014-03-28 2015-03-26 Phenol-modified lignin resin, method for producing same, resin composition, rubber composition, and cured product

Country Status (3)

Country Link
JP (1) JP6541007B2 (en)
CN (1) CN105873970B (en)
WO (1) WO2015147165A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183611A1 (en) * 2016-04-19 2017-10-26 富士電機株式会社 Lignin-skeleton-containing resin composition and mold-molded article in which same is used
IT201700007087A1 (en) * 2017-01-24 2018-07-24 Bridgestone Corp RUBBER COMPOUNDS FOR TIRE PARTS INCLUDING LIGNINA AS A DISPERSANT AGENT
WO2018139074A1 (en) * 2017-01-24 2018-08-02 ハリマ化成株式会社 Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
WO2018179820A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
WO2018179821A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
WO2019031609A1 (en) 2017-08-10 2019-02-14 出光興産株式会社 Manufacturing method for modified lignin and modified polyphenol, and modified lignin-including resin composition material
WO2019031610A1 (en) 2017-08-10 2019-02-14 出光興産株式会社 Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material
JP2020050814A (en) * 2018-09-28 2020-04-02 住友ベークライト株式会社 Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JP2020533436A (en) * 2017-09-07 2020-11-19 レンマティックス, インコーポレイテッドRenmatix, Inc. Polymer antioxidant stabilizer
JP2021522386A (en) * 2018-04-26 2021-08-30 ポルシェ アンデュストリ Adhesive Improvement Compositions for Textile Materials and Related Reinforced Textile Materials
CN113929976A (en) * 2021-10-26 2022-01-14 温州市金誉萱鞋业有限公司 Leisure shoes and preparation method thereof
EP3904459A4 (en) * 2018-12-27 2022-09-07 Suzano S.A. Novolac phenolic resins, process of synthesis of said phenolic resins and use thereof
WO2022215554A1 (en) * 2021-04-06 2022-10-13 住友ベークライト株式会社 Heat-curable resin composition for friction material, and friction material
JPWO2022215553A1 (en) * 2021-04-06 2022-10-13
CN115490880A (en) * 2022-10-10 2022-12-20 上海昶法新材料有限公司 Preparation method and application of modified lignin
KR102673091B1 (en) * 2018-04-26 2024-06-05 포르쉐 엥뒤스트리 Adhesion-improving compositions for textile materials and related reinforced textile materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047772A1 (en) * 2016-09-09 2018-03-15 出光興産株式会社 Method for producing lignin-containing resin composition and lignin-containing resin molded article
CN106633622B (en) * 2016-09-21 2018-10-12 沈阳化工大学 A kind of phenolic resin and preparation method thereof containing zeatin group
CN111763358B (en) * 2019-04-02 2022-12-09 中国石油化工股份有限公司 Rubber composition containing rubber modifier, vulcanized rubber, and preparation method and application thereof
CN110776696A (en) * 2019-12-07 2020-02-11 界首市鑫豪塑胶有限公司 Method for improving vulcanization characteristic of ethylene propylene diene monomer rubber by using composite lignin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156601A (en) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd Lignin-modified novolac type phenolic resin, method of producing the same, and phenolic resin molding material
JP2013199561A (en) * 2012-03-23 2013-10-03 Akebono Brake Ind Co Ltd Friction material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619312B2 (en) * 1974-12-11 1981-05-07
CN1244638C (en) * 2003-05-03 2006-03-08 福州大学 High-boiling alcohol lignin rubber modified additive preparing method
US7276591B2 (en) * 2003-05-06 2007-10-02 Fuji Carbon Co., Ltd. Biomass resin composition, process for preparing the same and molding material using the biomass composition
JP4989897B2 (en) * 2006-01-25 2012-08-01 株式会社ブリヂストン Rubber composition and hose using the rubber composition
US9534650B2 (en) * 2012-03-23 2017-01-03 Akebono Brake Industry Co., Ltd. Friction material
CN103319672B (en) * 2013-06-27 2015-09-23 山东圣泉化工股份有限公司 A kind of Tear resistant phenolic resin and preparation method thereof
CN103509164B (en) * 2013-07-23 2015-07-01 山东圣泉化工股份有限公司 Lignin base reinforcing resin and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156601A (en) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd Lignin-modified novolac type phenolic resin, method of producing the same, and phenolic resin molding material
JP2013199561A (en) * 2012-03-23 2013-10-03 Akebono Brake Ind Co Ltd Friction material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183611A1 (en) * 2016-04-19 2017-10-26 富士電機株式会社 Lignin-skeleton-containing resin composition and mold-molded article in which same is used
JP2020506262A (en) * 2017-01-24 2020-02-27 株式会社ブリヂストン Rubber compound for pneumatic tire parts containing lignin as dispersant
IT201700007087A1 (en) * 2017-01-24 2018-07-24 Bridgestone Corp RUBBER COMPOUNDS FOR TIRE PARTS INCLUDING LIGNINA AS A DISPERSANT AGENT
WO2018138071A1 (en) * 2017-01-24 2018-08-02 Bridgestone Corporation Rubber compounds for pneumatic tyre parts comprising lignin as dispersing agent
WO2018139074A1 (en) * 2017-01-24 2018-08-02 ハリマ化成株式会社 Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
US11053377B2 (en) 2017-01-24 2021-07-06 Bridgestone Corporation Rubber compounds for pneumatic tyre parts comprising lignin as dispersing agent
WO2018179820A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
WO2018179821A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
WO2019031610A1 (en) 2017-08-10 2019-02-14 出光興産株式会社 Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material
AU2018313534B2 (en) * 2017-08-10 2022-08-25 Idemitsu Kosan Co.,Ltd. Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material
US11505655B2 (en) 2017-08-10 2022-11-22 Idemitsu Kosan Co., Ltd. Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material
JPWO2019031610A1 (en) * 2017-08-10 2020-07-09 出光興産株式会社 Process for producing modified lignin, modified lignin, and modified lignin-containing resin composition material
JPWO2019031609A1 (en) * 2017-08-10 2020-07-16 出光興産株式会社 Method for producing modified lignin and modified polyphenol, and resin composition material using modified lignin
WO2019031609A1 (en) 2017-08-10 2019-02-14 出光興産株式会社 Manufacturing method for modified lignin and modified polyphenol, and modified lignin-including resin composition material
US11518886B2 (en) 2017-08-10 2022-12-06 Idemitsu Kosan Co., Ltd. Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
CN110891960A (en) * 2017-08-10 2020-03-17 出光兴产株式会社 Method for producing modified lignin and modified polyphenol, and resin composition material using modified lignin
JP2020533436A (en) * 2017-09-07 2020-11-19 レンマティックス, インコーポレイテッドRenmatix, Inc. Polymer antioxidant stabilizer
JP2021522386A (en) * 2018-04-26 2021-08-30 ポルシェ アンデュストリ Adhesive Improvement Compositions for Textile Materials and Related Reinforced Textile Materials
KR102673091B1 (en) * 2018-04-26 2024-06-05 포르쉐 엥뒤스트리 Adhesion-improving compositions for textile materials and related reinforced textile materials
JP7393346B2 (en) 2018-04-26 2023-12-06 ポルシェ アンデュストリ Adhesion improving compositions for textile materials and related reinforced textile materials
JP2020050814A (en) * 2018-09-28 2020-04-02 住友ベークライト株式会社 Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
EP3904459A4 (en) * 2018-12-27 2022-09-07 Suzano S.A. Novolac phenolic resins, process of synthesis of said phenolic resins and use thereof
WO2022215554A1 (en) * 2021-04-06 2022-10-13 住友ベークライト株式会社 Heat-curable resin composition for friction material, and friction material
JP7197064B1 (en) * 2021-04-06 2022-12-27 住友ベークライト株式会社 Thermosetting resin composition for friction material and friction material
JP7279865B2 (en) 2021-04-06 2023-05-23 住友ベークライト株式会社 Method for producing lignin-modified novolac-type phenolic resin
JPWO2022215553A1 (en) * 2021-04-06 2022-10-13
CN113929976A (en) * 2021-10-26 2022-01-14 温州市金誉萱鞋业有限公司 Leisure shoes and preparation method thereof
CN115490880A (en) * 2022-10-10 2022-12-20 上海昶法新材料有限公司 Preparation method and application of modified lignin
CN115490880B (en) * 2022-10-10 2023-11-21 上海昶法新材料有限公司 Preparation method and application of modified lignin

Also Published As

Publication number Publication date
JPWO2015147165A1 (en) 2017-04-13
JP6541007B2 (en) 2019-07-10
CN105873970B (en) 2019-09-10
CN105873970A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6541007B2 (en) Phenol-modified lignin resin, method for producing the same, and resin composition, rubber composition, and cured product
JP6555531B2 (en) Resin composition and rubber composition
JP6733546B2 (en) Rubber composition and method for producing lignin derivative
JPWO2015056757A1 (en) Resin composition, rubber composition, and cured product
JP6406948B2 (en) Lignin derivative for rubber reinforcement, method for producing lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP6422708B2 (en) Method for producing lignin derivative for rubber reinforcement, method for producing lignin resin composition, and method for producing rubber composition
JP2023024830A (en) Methods for producing modified lignin and modified polyphenol, and resin composition material using modified lignin
JP7215046B2 (en) Method for producing resin material containing phenol-modified lignin resin, and method for producing structure using the same
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JP6645440B2 (en) Lignin resin composition, cured product and molded product
JP2010229364A (en) Modified phenol resin, method of producing the same, modified phenol resin composition, and rubber compounded composition
JP2021138806A (en) Method for producing lignin-modified novolac phenolic resin, and method for producing crosslinked body
JP7197064B1 (en) Thermosetting resin composition for friction material and friction material
JP7279865B2 (en) Method for producing lignin-modified novolac-type phenolic resin
JP2014051573A (en) Rubber composition, cured material and tire
JP2012180438A (en) Modified phenol resin composition for rubber compounding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769297

Country of ref document: EP

Kind code of ref document: A1