JP5348113B2 - Method for producing lignin resin composition - Google Patents

Method for producing lignin resin composition Download PDF

Info

Publication number
JP5348113B2
JP5348113B2 JP2010256670A JP2010256670A JP5348113B2 JP 5348113 B2 JP5348113 B2 JP 5348113B2 JP 2010256670 A JP2010256670 A JP 2010256670A JP 2010256670 A JP2010256670 A JP 2010256670A JP 5348113 B2 JP5348113 B2 JP 5348113B2
Authority
JP
Japan
Prior art keywords
lignin
resin composition
weight
parts
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010256670A
Other languages
Japanese (ja)
Other versions
JP2011057997A (en
Inventor
純一 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010256670A priority Critical patent/JP5348113B2/en
Publication of JP2011057997A publication Critical patent/JP2011057997A/en
Application granted granted Critical
Publication of JP5348113B2 publication Critical patent/JP5348113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lignin resin composition excellent in curing property and to provide a molding material using the lignin resin composition. <P>SOLUTION: The lignin resin composition indispensably consists of a lignin compound and a crosslinking agent, wherein the lignin compound has a phenolic hydroxy group and an alcoholic hydroxy group of the molar ratio in the range of 9/1 to 8/2, provided by degrading biomass. Therein, one kind or two kinds selected from lignin derivatives produced by introducing a reactive group into the lignin compound are preferably used. The reactive group in the lignin derivatives has an epoxy group. The molding material including the lignin resin composition and a filler is also provided. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、リグニン樹脂組成物の製造方法に関するものである。   The present invention relates to a method for producing a lignin resin composition.

近年、石油資源代替資源の開発という目的のために、バイオマスを利用する技術の開発が注目されている。バイオマスの一種として、樹木中に存在するリグニンが知られている。リグニンの用途として、主に燃料やセメント用の減水剤が知られている。また、リグニンのフェノール性構造を多く含む構造を活かして、古くからリグニンをベース樹脂として利用したフェノール樹脂やエポキシ樹脂等樹脂原料としての利用が検討されてきた(例えば、特許文献1参照)。前記樹脂原料として、リグニンに、エポキシ基等の架橋用官能基を導入する場合、リグニンにおける反応性の低いアルコール性水酸基が、前記官能基の導入を阻害する。舩岡らの報告では、フェノール性水酸基とアルコール性水酸基のモル比は、およそ0.8:1.0〜1.5:1.0程度である(例えば、非特許文献1参照。)。
また、リグニンにエポキシ基等の架橋用官能基を導入する場合、アルコール性OH基は反応性が劣るため、予めフェノール化合物を導入する必要があった。長谷川らはリグノフェノールのエポキシ化を検討しているが、フェノール性OH基を増加させているにもかかわらず、エポキシ基の導入率が20%前後と低くなる問題があった(例えば、非特許文献2参照。)。そのため、これらのリグノフェノールやそのエポキシ化物は成形材料に適用した場合、硬化性や耐熱性が劣るという問題点があった。
In recent years, the development of technology using biomass has attracted attention for the purpose of developing alternative petroleum resources. As a kind of biomass, lignin existing in trees is known. As applications of lignin, water reducing agents for fuel and cement are mainly known. In addition, taking advantage of a structure containing a large amount of phenolic structure of lignin, the use of lignin as a resin material such as a phenol resin or an epoxy resin has been studied for a long time (see, for example, Patent Document 1). When a functional group for crosslinking such as an epoxy group is introduced into lignin as the resin raw material, an alcoholic hydroxyl group having low reactivity in lignin inhibits the introduction of the functional group. According to the report by Tsujioka et al., The molar ratio of the phenolic hydroxyl group to the alcoholic hydroxyl group is about 0.8: 1.0 to 1.5: 1.0 (see, for example, Non-Patent Document 1).
In addition, when a functional group for crosslinking such as an epoxy group is introduced into lignin, the alcoholic OH group is inferior in reactivity, so that it is necessary to introduce a phenol compound beforehand. Hasegawa et al. Are investigating epoxidation of lignophenol, but despite the increase in phenolic OH groups, there is a problem that the introduction rate of epoxy groups is reduced to around 20% (for example, non-patented). Reference 2). Therefore, these lignophenols and epoxidized products thereof have a problem that they are inferior in curability and heat resistance when applied to molding materials.

特開2004−238539号公報JP 2004-238539 A

K. Mikame, M. Funaoka, Polym. J.,38, 585−591, 2006JK. Mikame, M.M. Funaoka, Polym. J. et al. , 38, 585-591, 2006J . Kadota, K. Hasegawa, M. Funaoka Journal of Network Polymer. Japan, 27, 118−125, 2006. Kadota, K .; Hasegawa, M.M. Funoka Journal of Network Polymer. Japan, 27, 118-125, 2006

上述したように、リグノフェノール誘導体は反応性基の導入率が低いという問題も生じており、リグニン分解物への反応性基の導入率とリグニン樹脂の硬化性の向上が求められている。
本発明はかかる状況に鑑みなされたもので、硬化性に優れたリグニン樹脂組成物を確実に製造する方法を提供するものである。
As described above, the lignophenol derivative also has a problem that the introduction rate of the reactive group is low, and the introduction rate of the reactive group to the lignin decomposition product and the improvement of the curability of the lignin resin are required.
This invention is made | formed in view of this condition, and provides the method of manufacturing a lignin resin composition excellent in sclerosis | hardenability reliably.

本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、フェノール性水酸基又はそれ以外の反応性基を特定の割合で有するリグニン化合物及び架橋剤を用いることにより、優れた硬化性と物性を実現できる樹脂組成物が得られることを見出すとともに、かかる樹脂組成物を確実に製造する方法を見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above problems, the present inventors have achieved excellent curability by using a lignin compound having a specific proportion of a phenolic hydroxyl group or other reactive group and a crosslinking agent. As a result, it was found that a resin composition capable of realizing physical properties was obtained, and a method for reliably producing such a resin composition was found, and the present invention was completed.

このような目的は、下記(1)〜(3)の本発明により達成される。
(1) バイオマスを分解して得られるリグニン化合物のフェノール性水酸基にエポキシ基を導入してなるリグニン誘導体と架橋剤とを必須成分とするリグニン樹脂組成物の製造方法であって、
バイオマスを水存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記エポキシ基を含む化合物とを混合する反応性基導入工程と、
前記反応性基導入工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするリグニン樹脂組成物の製造方法。
(2) 前記分解工程は、水存在下にあるバイオマスを、処理温度150〜400℃、処理圧力1.0〜40MPa、処理時間480分以下で分解処理するものである上記(1)に記載のリグニン樹脂組成物の製造方法。
(3) 前記リグニン樹脂組成物は、リグニン化合物の含有量が40〜95wt%、架橋剤の含有量が5〜60wt%である上記(1)または(2)に記載のリグニン樹脂組成物の製造方法。
Such an object is achieved by the present inventions (1) to (3) below.
(1) A method for producing a lignin resin composition comprising, as essential components, a lignin derivative formed by introducing an epoxy group into a phenolic hydroxyl group of a lignin compound obtained by decomposing biomass and a crosslinking agent,
A decomposition step of placing biomass in the presence of water and decomposing them under high temperature and high pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introduction step of mixing the treated product obtained by the distillation step and the compound containing the epoxy group ;
A cross-linking agent mixing step of mixing the processed product obtained by the reactive group introducing step and the cross-linking agent,
The said lignin compound is a manufacturing method of the lignin resin composition characterized by including phenolic hydroxyl group and alcoholic hydroxyl group by the ratio of 9: 1 to 8: 2 by molar ratio.
(2) the decomposition step, the biomass in the presence of water, treatment temperature 150 to 400 ° C., process pressure 1.0~40MPa, according to the above (1) is intended to decomposition treatment by the following treatment time 480 min A method for producing a lignin resin composition.
(3) The lignin resin composition according to the above (1) or (2) , wherein the lignin resin composition has a lignin compound content of 40 to 95 wt% and a crosslinking agent content of 5 to 60 wt%. Method.

本発明によれば、硬化性に優れたリグニン樹脂組成物を確実に製造することができる。また、本発明により得られたリグニン樹脂組成物を用いた成形材料は、硬化性に優れるものである。   According to this invention, the lignin resin composition excellent in sclerosis | hardenability can be manufactured reliably. Moreover, the molding material using the lignin resin composition obtained by this invention is excellent in sclerosis | hardenability.

本発明は、リグニン化合物と、架橋剤とを必須成分とする樹脂組成物を製造する方法であって、バイオマスを分解して得られる、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するリグニン化合物(以下、リグニン分解物と称することがある。)、および該リグニン化合物のフェノール性水酸基に反応性基を導入したリグニン誘導体から選ばれる1種または2種を用いることを特徴とするものである。このような本発明によれば、硬化性に優れたリグニン樹脂組成物を確実に製造することができ、このリグニン樹脂組成物を用いた成形材料を提供できる。
上記リグニン化合物におけるフェノール性水酸基を有する構造としては、例えば、フェノール構造、グアヤコール構造および2,6−ジメトキシフェノール構造など挙げることができる。
The present invention is a method for producing a resin composition comprising a lignin compound and a cross-linking agent as essential components, and is obtained by decomposing biomass with a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 1. One or two selected from lignin compounds having a ratio of 8: 2 (hereinafter sometimes referred to as lignin degradation products) and lignin derivatives in which reactive groups are introduced into the phenolic hydroxyl groups of the lignin compounds are used. It is characterized by this. According to such this invention, the lignin resin composition excellent in sclerosis | hardenability can be manufactured reliably, and the molding material using this lignin resin composition can be provided.
Examples of the structure having a phenolic hydroxyl group in the lignin compound include a phenol structure, a guaiacol structure, and a 2,6-dimethoxyphenol structure.

本発明に用いるリグニン化合物におけるリグニン分解物は、バイオマスを分解して得られるものであって、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものである。また、該リグニン化合物にフェノール性水酸基以外の反応性基を有するリグニン誘導体は、後述するエポキシ基、ビニル基、エチニル基、マレイミド基、シアネート基及びイソシアネート基等の反応性基を、前記フェノール性水酸基に導入したものである。前記リグニン誘導体を含めたリグニン化合物は、架橋部位を多数有するため、成形材料などに用いた場合、硬化性及び耐熱性などの特性に優れたものとなる。本発明に用いるリグニン化合物としては、上記の中でも、反応性や取扱いのし易さの上で、リグニン分解物が好ましい。   The lignin degradation product in the lignin compound used in the present invention is obtained by decomposing biomass, and has a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2. Further, the lignin derivative having a reactive group other than the phenolic hydroxyl group in the lignin compound includes a reactive group such as an epoxy group, a vinyl group, an ethynyl group, a maleimide group, a cyanate group and an isocyanate group, which will be described later. Was introduced. Since the lignin compound including the lignin derivative has a number of cross-linked sites, it has excellent properties such as curability and heat resistance when used as a molding material. Among the above, the lignin compound used in the present invention is preferably a lignin degradation product in terms of reactivity and ease of handling.

前記バイオマスとしては、リグニンを含有する植物及び前記植物の加工品などを挙げることができる。前記植物としては、例えば、ブナ、白樺及びナラなどの広葉樹、杉、松及び桧などの針葉樹、竹及び稲わらなどのイネ科植物などが挙げられる。本発明に用いるバイオマスの形状としては、ブロック、チップ、粉末等が挙げられる。   Examples of the biomass include plants containing lignin and processed products of the plants. Examples of the plant include broad-leaved trees such as beech, birch and oak, conifers such as cedar, pine, and oak, and gramineous plants such as bamboo and rice straw. Examples of the shape of biomass used in the present invention include blocks, chips, and powders.

本発明に用いるリグニン化合物におけるリグニン分解物は、前記バイオマスを、溶媒存在下、高温高圧処理により分解することにより得ることができる。
リグニン化合物の製造方法の具体例としては、まず、前記バイオマスを一定の大きさに調整し、次いで、これを、溶媒、任意に触媒、と共に、撹拌機及び加熱装置付の耐圧容器に入れて、加熱及び加圧をしながら、撹拌して、前記バイオマスの分解処理を行う(分解工程)。次いで、耐圧容器の内容物をろ過して、ろ液を除去し、水不溶分を水で洗浄し、分離する。次いで、前記水不溶分を、リグニン化合物が可溶な溶媒、例えば、アセトンなどに浸漬して(浸漬工程)、リグニン化合物をアセトンに抽出して、前記アセトンを留去すること(留去工程)により、リグニン分解物としてリグニン化合物を得ることができる。
The lignin degradation product in the lignin compound used in the present invention can be obtained by decomposing the biomass by high-temperature and high-pressure treatment in the presence of a solvent.
As a specific example of a method for producing a lignin compound, first, the biomass is adjusted to a certain size, and then, together with a solvent, optionally a catalyst, put in a pressure vessel with a stirrer and a heating device, The biomass is decomposed while being heated and pressurized (decomposition step). Next, the content of the pressure vessel is filtered to remove the filtrate, and the water-insoluble matter is washed with water and separated. Next, the water-insoluble matter is immersed in a solvent in which the lignin compound is soluble (for example, acetone) (immersion step), the lignin compound is extracted into acetone, and the acetone is distilled off (distillation step). Thus, a lignin compound can be obtained as a lignin degradation product.

前記分解処理におけるバイオマスの大きさとしては、100μm〜1cm程度が好ましく、200μm〜500μmがより好ましい。このときバイオマスの形状としては、上記のように、ブロック状、チップ状、粉末状等のいずれであってよい。   As a magnitude | size of the biomass in the said decomposition | disassembly process, about 100 micrometers-1 cm are preferable, and 200 micrometers-500 micrometers are more preferable. At this time, the shape of the biomass may be any of a block shape, a chip shape, a powder shape and the like as described above.

前記分解処理における溶媒としては、水、メタノール及びエタノールなどのアルコール類、フェノール及びクレゾールなどのフェノール類、ケトン類、エーテル類などを挙げることができ、特に水を使用することが好ましい。溶媒の使用量としては、バイオマスに対して多量に用いるほど好ましいが、バイオマス重量の2重量倍〜10重量倍程度が好ましく、3重量倍〜5重量倍程度がより好ましい。また触媒として炭酸ナトリウムなどの無機塩基類を添加してもよい。   Examples of the solvent in the decomposition treatment include water, alcohols such as methanol and ethanol, phenols such as phenol and cresol, ketones, ethers, and the like, and it is particularly preferable to use water. The amount of the solvent used is preferably as large as possible with respect to the biomass, but is preferably about 2 to 10 times the biomass weight, more preferably about 3 to 5 times the biomass weight. An inorganic base such as sodium carbonate may be added as a catalyst.

前記バイオマスを高温高圧で処理する条件としては、処理温度として通常は150℃〜400℃が好ましく、さらに好ましくは200℃〜380℃である。前記処理温度は、前記範囲外でも使用できるが、リグニン化合物の分子量は処理温度で制御可能であり、高温で処理すると低分子量体に、低温で処理すると高分子量体になる傾向がある。   As conditions for processing the biomass at high temperature and high pressure, the processing temperature is usually preferably from 150 ° C to 400 ° C, more preferably from 200 ° C to 380 ° C. The treatment temperature can be used outside the above range, but the molecular weight of the lignin compound can be controlled by the treatment temperature, and tends to be a low molecular weight body when treated at a high temperature and a high molecular weight body when treated at a low temperature.

前記処理時間としては通常は0分〜480分が好ましく、さらに好ましくは30分〜120分である。前記処理時間は、前記範囲外でも使用できるが、リグニン化合物のフェノール性水酸基当量は処理時間で制御可能であり、短時間処理でフェノール性水酸基当量は大きくなり、長時間処理では小さくなる傾向となる。前記圧力としては1.0MPa〜40MPaが好ましく、さらに好ましくは1.5MPa〜25MPaである。前記圧力は、前記範囲外でも使用できるが、より高圧で処理することで、長時間処理を施した場合と同等の効果が得られる。   The treatment time is usually preferably 0 minute to 480 minutes, and more preferably 30 minutes to 120 minutes. Although the treatment time can be used outside the above range, the phenolic hydroxyl group equivalent of the lignin compound can be controlled by the treatment time, the phenolic hydroxyl group equivalent tends to increase with short-time treatment, and tends to decrease with long-time treatment. . The pressure is preferably 1.0 MPa to 40 MPa, more preferably 1.5 MPa to 25 MPa. The pressure can be used even outside the above range, but by treating at a higher pressure, an effect equivalent to that obtained when the treatment is performed for a long time can be obtained.

上記範囲内の条件でバイオマスを処理することで、300〜2,000程度と好ましい範囲の数平均分子量となると共に、さらには、本発明におけるリグニン化合物として、好ましいフェノール性水酸基当量である100〜200程度のフェノール性水酸基当量に制御しやすくなる。
また、前記製造方法の具体例においては、フェノール性水酸基当量と分子量は独立に制御が可能であり、例えば、処理温度にかかわらず、短時間処理によりフェノール性水酸基当量(主にフェノール性水酸基)が200前後と大きいものが得られ、長時間処理により100前後で飽和して小さなフェノール性水酸基当量が得られる。
By treating the biomass under the conditions within the above range, the number average molecular weight is in the preferred range of about 300 to 2,000, and furthermore, it is a preferred phenolic hydroxyl group equivalent of 100 to 200 as the lignin compound in the present invention. It becomes easy to control to the phenolic hydroxyl group equivalent of a grade.
In the specific example of the production method, the phenolic hydroxyl group equivalent and the molecular weight can be controlled independently. For example, the phenolic hydroxyl group equivalent (mainly phenolic hydroxyl group) is obtained by short-time treatment regardless of the treatment temperature. A large product of about 200 is obtained, and a small phenolic hydroxyl group equivalent is obtained by saturation at about 100 by long-time treatment.

上記に例示した製造方法などで得られたリグニン分解物は、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものであることを特徴とする。
前記リグニン分解物は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の数平均分子量が300〜2,000であることが好ましい。前記範囲外でも使用できるが、300より小さいと、リグニン分解物として、単官能のモノマーやオリゴマーが存在し、硬化物とした場合に架橋密度が低下し、硬化性に劣ることになる場合があり、2,000より大きいと、リグニン分解物の軟化点が高くなりすぎて、成形しにくくなる問題が発生する場合がある。数平均分子量については、リグニン誘導体においても同様である。
The lignin degradation product obtained by the production method exemplified above has a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2.
The lignin degradation product preferably has a polystyrene-equivalent number average molecular weight of 300 to 2,000 as measured by gel permeation chromatography. Although it can be used outside the above range, if it is less than 300, monofunctional monomers and oligomers exist as lignin degradation products, and when cured, the crosslink density may be reduced and curability may be poor. If it is larger than 2,000, the softening point of the lignin decomposition product becomes too high, which may cause the problem of difficulty in molding. The same applies to the number average molecular weight of lignin derivatives.

また、本発明に用いるリグニン化合物におけるリグニン誘導体は、前記リグニン分解物にフェノール性水酸基以外の反応性基を導入したものであり、樹脂原料として有用な反応性を有し、高い架橋密度を得ることができる。   Moreover, the lignin derivative in the lignin compound used in the present invention is obtained by introducing a reactive group other than a phenolic hydroxyl group into the lignin decomposition product, has a useful reactivity as a resin raw material, and obtains a high crosslinking density. Can do.

前記リグニン誘導体が有する反応性基は、反応性を有する基であり、その反応性基が自己反応性を有し、2個以上の同じ反応性基が互いに反応し得るもの、または他の官能基との間で反応し得るものであればよく、例えば、エポキシ基、ビニル基及びエチニル基などの炭素−炭素不飽和結合基、マレイミド基、シアネート基、イソシアネート基などを挙げることができるが、これらに限定されるものではない。これらの中でも、硬化物の寸法安定性や耐水性、耐薬品性および電気絶縁性が高いことからエポキシ基が好ましい。   The reactive group of the lignin derivative is a reactive group, the reactive group is self-reactive, and two or more identical reactive groups can react with each other, or other functional group As long as they can react with each other, and examples thereof include carbon-carbon unsaturated bond groups such as epoxy groups, vinyl groups, and ethynyl groups, maleimide groups, cyanate groups, and isocyanate groups. It is not limited to. Among these, an epoxy group is preferable because the cured product has high dimensional stability, water resistance, chemical resistance, and electrical insulation.

前記リグニン誘導体の製造方法は、当業者において、一般的に、フェノール性水酸基に、反応性基を、共有結合を介して結合させる公知の方法を用いることができ、適宜、反応性基の導入方法は選択することができる。具体例としては、上記で得られたリグニン分解物のフェノール性水酸基に、前記反応性基を導入して得ることができる。   As a method for producing the lignin derivative, a person skilled in the art can generally use a known method in which a reactive group is bonded to a phenolic hydroxyl group via a covalent bond. Can be selected. As a specific example, it can be obtained by introducing the reactive group into the phenolic hydroxyl group of the lignin degradation product obtained above.

以下に、反応性基の導入方法(反応性基導入工程)の具体例を示すが、これらに限定されるものではない。
反応性基としてエポキシ基を導入する場合、例えば、上記で得たリグニン分解物を、エピクロロヒドリンに溶解し、減圧還流下、水酸化ナトリウムなどの塩基触媒を用いて反応させることで得られる。
Although the specific example of the introduction method (reactive group introduction | transduction process) of a reactive group is shown below, it is not limited to these.
When an epoxy group is introduced as a reactive group, for example, the lignin decomposition product obtained above is obtained by dissolving in epichlorohydrin and reacting with a base catalyst such as sodium hydroxide under reflux under reduced pressure. .

また、反応性基としてビニル基を導入する場合、例えば、ハロゲン化アリル及びハロゲン化ビニルベンジル等のビニル基を含むハロゲン化合物と、上記で得たリグニン分解物を、溶剤に溶解し、加熱して、水酸化ナトリウムなどの塩基触媒を用いて反応させることで得られる。   When a vinyl group is introduced as a reactive group, for example, a halogen compound containing a vinyl group such as allyl halide and vinylbenzyl halide and the lignin decomposition product obtained above are dissolved in a solvent and heated. It can be obtained by reacting using a base catalyst such as sodium hydroxide.

本発明では、上記で得られたリグニン分解物と、架橋剤とを混合する(架橋剤混合工程)。
本発明に用いる架橋剤としては、リグニン化合物のフェノール性水酸基又は反応性基を有するリグニン化合物(リグニン誘導体)の反応性基と反応する官能基を有するものであれば、特に限定されるものではない。
In the present invention, the lignin degradation product obtained above is mixed with a crosslinking agent (crosslinking agent mixing step).
The crosslinking agent used in the present invention is not particularly limited as long as it has a functional group that reacts with the reactive group of the lignin compound (lignin derivative) having a phenolic hydroxyl group or a reactive group of the lignin compound. .

リグニン化合物としてリグニン分解物を用いる場合の架橋剤としては、リグニン化合物に含まれるフェノール性水酸基に対しては、オルソクレゾールノボラックエポキシ樹脂及びビスフェノールA型エポキシ樹脂等のエポキシ樹脂、ヘキサメチレンジイソシアネート及びトルエンジイソシアネート等のウレタン樹脂、ホルムアルデヒド、アセトアルデヒド及びパラホルムアルデヒド等のアルデヒド類、ポリオキシメチレンなどのアルデヒド源、ヘキサメチレンテトラミン、並びにレゾール型フェノール樹脂等の通常のフェノール樹脂で当業者が公知の架橋剤や、リグニン分解物の芳香環に対し親電子置換反応して架橋し得る化合物を挙げることができる。反応性、入手の容易さからヘキサメチレンテトラミンが好ましい。   As a crosslinking agent in the case of using a lignin decomposition product as a lignin compound, for phenolic hydroxyl groups contained in the lignin compound, epoxy resins such as orthocresol novolac epoxy resin and bisphenol A type epoxy resin, hexamethylene diisocyanate and toluene diisocyanate Such as urethane resins, aldehydes such as formaldehyde, acetaldehyde and paraformaldehyde, aldehyde sources such as polyoxymethylene, hexamethylenetetramine, and ordinary phenol resins such as resol-type phenolic resins. Examples thereof include compounds capable of crosslinking by electrophilic substitution reaction on the aromatic ring of the decomposition product. Hexamethylenetetramine is preferred because of its reactivity and availability.

また、反応性基を有するリグニン化合物(リグニン誘導体)を用いる場合の架橋剤としては、該反応性基と反応する架橋剤又は自己架橋性の反応性基を有する架橋剤であれば良い。
リグニン誘導体として、エポキシ基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なエポキシ樹脂用硬化剤であればよく、例えば、ノボラック型フェノール樹脂などのフェノール樹脂;フェノール性水酸基を有するリグニン化合物;ジエチレントリアミン、m−キシリレンジアミン及びN−アミノエチルピペラジン等のアミン系化合物;無水フタル酸、無水コハク酸及び無水マレイン酸等の酸無水物;ジシアンジアミド、グアニジン類、2−メチルイミダゾール;2−エチル−4−メチルイミダゾール等のエポキシ樹脂のアニオン系硬化剤などが挙げられる。エポキシ基の自己架橋においては、例えば、2−メチルイミダゾール及び2−エチル−4−メチルイミダゾール等のイミダゾール類;1,8−ジアザビシクロ(5,4,0)ウンデセン−7などのアニオン系重合開始剤;トリフェニルスルホニウムヘキサフルオロポスフェート及びジフェニルスルホニウムテトラフルオロボレート等のスルホニウム塩、並びにフェニルジアゾニウムヘキサフルオロポスフェート及びフェニルジアゾニウムテトラフルオロボレート等のジアゾニウム塩などのカチオン系重合開始剤;などが挙げられる。これらの中でも、反応性などの上で、リグニン化合物が好ましい。
Moreover, as a crosslinking agent in the case of using the lignin compound (lignin derivative) which has a reactive group, what is necessary is just a crosslinking agent which reacts with this reactive group, or has a self-crosslinking reactive group.
As a crosslinking agent in the case of using a lignin compound having an epoxy group as a lignin derivative, a general curing agent for an epoxy resin may be used. For example, a phenol resin such as a novolac-type phenol resin; a lignin having a phenolic hydroxyl group Compounds; amine compounds such as diethylenetriamine, m-xylylenediamine and N-aminoethylpiperazine; acid anhydrides such as phthalic anhydride, succinic anhydride and maleic anhydride; dicyandiamide, guanidines, 2-methylimidazole; An anionic curing agent of epoxy resin such as ethyl-4-methylimidazole can be used. In the self-crosslinking of the epoxy group, for example, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; anionic polymerization initiators such as 1,8-diazabicyclo (5,4,0) undecene-7 And cationic polymerization initiators such as sulfonium salts such as triphenylsulfonium hexafluorophosphate and diphenylsulfonium tetrafluoroborate, and diazonium salts such as phenyldiazonium hexafluorophosphate and phenyldiazonium tetrafluoroborate; Among these, a lignin compound is preferable in terms of reactivity.

リグニン誘導体として、イソシアネート基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なイソシアネート樹脂用硬化剤であればよく、例えば、フェノール樹脂、リグニン分解物、ポリビニルアルコール及びポリアミン系化合物などを挙げることができる。   As a crosslinking agent in the case of using a lignin compound having an isocyanate group as a lignin derivative, a general curing agent for isocyanate resin may be used, for example, phenol resin, lignin decomposition product, polyvinyl alcohol, polyamine compound, and the like. Can be mentioned.

リグニン誘導体として、ビニル基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なビニル基含有化合物の重合開始剤であればよく、例えば、ブチルリチウム及びナトリウムエトキシド等のアニオン重合開始剤;アゾビスイソブチロニトリル(AIBN)及び過酸化ベンゾイル(BPO)等のラジカル重合開始剤などを挙げることができる。   As a crosslinking agent when a lignin compound having a vinyl group is used as the lignin derivative, a general vinyl group-containing compound polymerization initiator may be used. For example, anionic polymerization initiators such as butyl lithium and sodium ethoxide And radical polymerization initiators such as azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO).

リグニン誘導体として、エチニル基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なエチニル基含有化合物の重合触媒であればよく、例えば、5塩化モリブデン、5塩化タングステン及びノルボルナジエンロジウムクロリドダイマーなどを挙げることができる。   As a lignin derivative, a crosslinking agent in the case of using a lignin compound having an ethynyl group may be a polymerization catalyst of a general ethynyl group-containing compound, such as molybdenum pentachloride, tungsten pentachloride and norbornadiene rhodium chloride dimer. Can be mentioned.

リグニン誘導体として、マレイミド基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なマレイミド基含有化合物の重合開始剤であればよく、例えば、BPO等のパーオキサイド及び前記アニオン系重合開始剤などを挙げることができる。   As a lignin derivative, the crosslinking agent in the case of using a lignin compound having a maleimide group may be a general polymerization initiator of a maleimide group-containing compound, such as a peroxide such as BPO and the anionic polymerization initiator. And so on.

リグニン誘導体として、シアネート基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なシアネート基含有化合物の重合触媒であればよく、例えば、ナフテン酸コバルトなどの金属触媒などを挙げることができる。   As the lignin derivative, the crosslinking agent in the case of using a lignin compound having a cyanate group may be a general polymerization catalyst of a cyanate group-containing compound, and examples thereof include metal catalysts such as cobalt naphthenate. .

本発明により得られるリグニン樹脂組成物には、リグニン化合物を40〜95重量部用いることが好ましく、50〜90重量部用いることがより好ましい。また架橋剤は5〜60重量部用いることが好ましく、10〜50重量部用いることがより好ましい。   The lignin resin composition obtained by the present invention preferably uses 40 to 95 parts by weight of lignin compound, and more preferably 50 to 90 parts by weight. The crosslinking agent is preferably used in an amount of 5 to 60 parts by weight, and more preferably 10 to 50 parts by weight.

本発明により得られるリグニン樹脂組成物には、上記成分以外に、任意に、硬化促進剤として、メトキシナトリウム及びt−ブトキシカリウムなどのアルカリ金属塩;酢酸カルシウムなどのアルカリ土類金属塩;Na2O及びK32などのアルカリ金属酸化物;CaO及びBaOなどのアルカリ土類金属酸化物;などを用いることができる。また、リグニン誘導体としてエポキシ基を有するリグニン化合物では、2−メチルイミダゾール及び2−エチル−4−メチルイミダゾール等のイミダゾール類;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリス(ジメチルアミノメチル)フェノール及びベンジルジメチルアミン等の3級アミン類;トリフェニルホスフィン、テトラ−n−ブチルホスホニウムテトラフェニルボレートなどを用いることができる。また、反応性基として、ビニル基、エチニル基、マレイミド基及びシアネ−ト基などを有するリグニン誘導体の場合、前記重合開始剤を用いることができる。
更には、その他の成分として、後述する添加剤を用いることができる。
In addition to the above components, the lignin resin composition obtained according to the present invention optionally includes, as a curing accelerator, an alkali metal salt such as methoxy sodium and t-butoxy potassium; an alkaline earth metal salt such as calcium acetate; Na 2 Alkali metal oxides such as O and K 3 O 2 ; Alkaline earth metal oxides such as CaO and BaO; and the like can be used. In the case of a lignin compound having an epoxy group as a lignin derivative, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; 1,8-diazabicyclo (5,4,0) undecene-7, tris (dimethyl Tertiary amines such as aminomethyl) phenol and benzyldimethylamine; triphenylphosphine, tetra-n-butylphosphonium tetraphenylborate and the like can be used. In the case of a lignin derivative having a vinyl group, an ethynyl group, a maleimide group, a cyanate group, or the like as a reactive group, the polymerization initiator can be used.
Furthermore, the additive mentioned later can be used as another component.

本発明のリグニン樹脂組成物の製造方法としては、リグニン化合物、硬化剤、及び任意に、硬化促進剤を、所定の量で、混合機を用いて、均一に混合して得ることができる。これらの混合物を、必要に応じて、熱板や、加圧ニーダー、ロール、コニーダーおよび二軸押し出し機等の混練機等を用いて、樹脂組成物が硬化する温度未満で、例えば、選択する原料により異なるが、50〜100℃程度で、加熱溶融混合しても良い。   As a manufacturing method of the lignin resin composition of this invention, a lignin compound, a hardening | curing agent, and the hardening accelerator can be obtained by mixing uniformly using a mixer in a predetermined amount. If necessary, these mixtures can be used at a temperature lower than the temperature at which the resin composition is cured, for example, using a hot plate, a kneader such as a pressure kneader, a roll, a kneader, and a twin screw extruder, or the like. Depending on the temperature, it may be heated, melted and mixed at about 50 to 100 ° C.

本発明により得られるリグニン樹脂組成物から製造される成形材料は、上記リグニン樹脂組成物と充填剤を含むものである。
前記充填剤としては、例えば、溶融シリカ、結晶シリカ、クレー、アルミナ、マイカ及びガラス繊維などの無機充填剤、木粉、パルプ、粉砕布及び熱硬化性樹脂硬化物粉などの有機充填剤等が挙げられ、これらの1種類以上を使用することができるが、これらに限定されるものではない。
The molding material manufactured from the lignin resin composition obtained by this invention contains the said lignin resin composition and a filler.
Examples of the filler include inorganic fillers such as fused silica, crystalline silica, clay, alumina, mica, and glass fiber, and organic fillers such as wood powder, pulp, crushed cloth, and thermosetting resin cured powder. One or more of these can be used, but is not limited thereto.

本発明より得られる成形材料において、上記リグニン樹脂組成物と充填剤の含有量としては、リグニン樹脂組成物100重量部に対して、10〜900重量部が好ましく、20〜500重量部がより好ましい。   In the molding material obtained from the present invention, the content of the lignin resin composition and the filler is preferably 10 to 900 parts by weight, more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the lignin resin composition. .

本発明より得られる成形材料には、上記成分の他に任意に、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン及びビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤;カーボンブラック及びベンガラ等の着色剤;ポリエチレンワックス、高級脂肪酸エステル、脂肪酸アミド、ケトン・アミン類及び水素硬化油等の合成ワックス、パラフィンワックス、モンタンワックス及びステアリン酸等の天然ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類又はパラフィン等の離型剤;シリコーンオイル及びシリコーンゴム等の低応力化成分;三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛及びフォスファゼン等の難燃剤;酸化ビスマス水和物等の無機イオン交換体;等、種々の添加剤を適宜配合しても差し支えない。   In addition to the above components, the molding material obtained from the present invention optionally includes silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanate coupling agents, and aluminum coupling agents. Coupling agents such as aluminum / zirconium coupling agents; Colorants such as carbon black and bengara; Synthetic waxes such as polyethylene wax, higher fatty acid esters, fatty acid amides, ketones / amines and hydrogenated oil, paraffin wax, montan wax And natural waxes such as stearic acid, higher fatty acids such as stearic acid and zinc stearate and release agents such as metal salts thereof or paraffin; silicone oil and components for reducing stress such as silicone rubber; antimony trioxide, hydroxylated Inorganic ion exchangers, such as bismuth oxide hydrate; aluminum, magnesium hydroxide, zinc borate, flame retardants such as zinc molybdate and phosphazene, etc., be suitably blended a variety of additives no problem.

本発明において、離型剤を用いる場合、リグニン化合物100重量部に対して0.01〜10重量部用いることが好ましく、0.1〜5重量部用いることがより好ましい。前記範囲外でも使用できるが、0.01重量部未満では離型性が不十分となるおそれがあり、10重量部を超えると硬化性が低下するおそれがある。   In this invention, when using a mold release agent, it is preferable to use 0.01-10 weight part with respect to 100 weight part of lignin compounds, and it is more preferable to use 0.1-5 weight part. Although it can be used outside the above range, if it is less than 0.01 parts by weight, the releasability may be insufficient, and if it exceeds 10 parts by weight, the curability may be lowered.

本発明より得られる成形材料の製造方法としては、例えば、上記リグニン樹脂組成物、充填剤、及び任意にその他の成分を、所定の量で、混合機を用いて、均一に混合して得ることができる。前記樹脂組成物と同様の方法により、必要に応じて加熱混合、混連等を行い、冷却後に粉砕して得られる。   As a method for producing the molding material obtained from the present invention, for example, the above lignin resin composition, filler, and optionally other components can be uniformly mixed in a predetermined amount using a mixer. Can do. By the same method as that for the resin composition, it is obtained by heating and mixing, mixing, etc., if necessary, and pulverizing after cooling.

本発明では、これまでに述べてきた樹脂組成物および樹脂成形材料を、トランスファー成形、インジェクション成形及び圧縮成形などの成形方法により、150〜220℃程度の温度で、1〜5分間程度時間で、加熱成形して成形品とすることができる。これらの成形温度や時間は、目的に応じて適宜調整される。
前記成形品としては、例えば、半導体用途、航空機用途、自動車用途及び産業用機械用途等の、電子部品、電気部品及び機構部品等が挙げられる。
In the present invention, the resin composition and the resin molding material which have been described so far are subjected to a molding method such as transfer molding, injection molding and compression molding at a temperature of about 150 to 220 ° C. for about 1 to 5 minutes, It can be molded by heating to form a molded product. These molding temperatures and times are appropriately adjusted according to the purpose.
Examples of the molded article include electronic parts, electric parts, mechanical parts, and the like for semiconductor use, aircraft use, automobile use, industrial machine use, and the like.

以下、本発明について実施例を挙げて詳細に説明するが、本発明はなんらこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these at all.

(リグニン分解物の製造)
<実施例1>
300ml耐圧容器中へ、孟宗竹粉(60メッシュアンダー)15gと純水80gを導入し、内容物を300rpmで攪拌しながら、圧力1.6MPa、200℃で120分間処理して、孟宗竹を分解した。次いで、分解物をろ過し、純水で洗浄することで、水不溶部10.0gを分離した。この水不溶部をアセトン200mlに12時間浸漬し、ろ過することでアセトン可溶部を回収した。次いで、前記アセトン可溶部より、アセトンを留去後、乾燥することで、リグニン分解物3.2gを得た。1H−NMRにより測定した結果から、7〜8ppmに芳香環、3.5〜4ppm付近にメトキシ基、0.5〜3ppmにかけてアルキル基のピークが見られ、リグニン分解物であることを確認した。
(Manufacture of lignin degradation products)
<Example 1>
Into a 300 ml pressure vessel, 15 g of Somune bamboo powder (60 mesh under) and 80 g of pure water were introduced, and the contents were stirred at 300 rpm and treated at a pressure of 1.6 MPa and 200 ° C. for 120 minutes to decompose Somune bamboo. Subsequently, 10.0 g of water-insoluble parts were separated by filtering the decomposition product and washing with pure water. This water-insoluble part was immersed in 200 ml of acetone for 12 hours and filtered to recover the acetone-soluble part. Subsequently, acetone was distilled off from the acetone-soluble part, followed by drying to obtain 3.2 g of a lignin decomposition product. From the results measured by 1 H-NMR, an aromatic ring was observed at 7 to 8 ppm, a methoxy group was observed at around 3.5 to 4 ppm, and an alkyl group peak was observed at 0.5 to 3 ppm, confirming that the product was a lignin decomposition product. .

上記で得られたリグニン分解物の水酸基当量は、以下の方法で決定した。共栓三角フラスコに、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gと、上記で得たリグニン分解物1.0gを入れて溶解させた。この溶液を60℃で3時間保持した後、純水1mlを添加した。このようにして得られた溶液を、pH=10を終点として、0.1mol/LのNaOH水溶液で滴定したところ、リグニン分解物の水酸基当量は118であった。   The hydroxyl equivalent of the lignin degradation product obtained above was determined by the following method. In a stoppered Erlenmeyer flask, 4.0 g of a mixed solution of acetic anhydride / pyridine (1/3 volume ratio) and 1.0 g of the lignin decomposition product obtained above were dissolved. After maintaining this solution at 60 ° C. for 3 hours, 1 ml of pure water was added. When the solution thus obtained was titrated with a 0.1 mol / L NaOH aqueous solution with pH = 10 as an end point, the hydroxyl equivalent of the lignin decomposition product was 118.

また、上記で得られたリグニン分解物中のフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)は以下の方法で決定した。上記で得られたリグニン分解物1.0gを、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gを用いて、前記リグニン分解物をアセチル化した。この反応溶液より、未反応の無水酢酸およびピリジンを留去し、乾燥して得られたアセチル化したリグニン分解物を用いて、1H−NMRにより測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜2.6ppm、アルコール性水酸基に結合したアセチル基由来:1.6〜2.2ppm)から、モル比を決定したところ、前記P/A比は8.9:1.1であった。 Moreover, the molar ratio (hereinafter referred to as P / A ratio) between the phenolic hydroxyl group and the alcoholic hydroxyl group in the lignin decomposition product obtained above was determined by the following method. 1.0 g of the lignin degradation product obtained above was acetylated using 4.0 g of a mixed solution of acetic anhydride / pyridine (1/3 volume ratio). From this reaction solution, unreacted acetic anhydride and pyridine were distilled off, followed by measurement by 1 H-NMR using an acetylated lignin decomposition product obtained by drying. From the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 2.6 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.6 to 2.2 ppm), the molar ratio is determined. When determined, the P / A ratio was 8.9: 1.1.

また、上記で得られたリグニン分解物の軟化点は、JIS K2207に準じて、環球式軟化点試験機(メルテック(株)製ASP−MG2型)を用いて測定したところ、95℃であった。   The softening point of the lignin degradation product obtained above was 95 ° C. when measured using a ring-and-ball softening point tester (ASP-MG2 manufactured by Meltech Co., Ltd.) according to JIS K2207. .

また、上記で得られたリグニン分解物の分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=1000、分子量分布(Mw/Mn)=2.02であった。   The molecular weight of the lignin degradation product obtained above was measured by polystyrene-permeated gel permeation chromatography using tetrahydrofuran as an eluent. The number average molecular weight (Mn) = 1000 and the molecular weight distribution (Mw / Mn) = 2. .02.

(樹脂組成物の製造)
上記リグニン分解物の製造を繰り返して得られたリグニン分解物91重量部に、ヘキサメチレンテトラミン9重量部を常温で混合し、リグニン樹脂組成物を得た。
(Manufacture of resin composition)
9 parts by weight of hexamethylenetetramine was mixed at room temperature with 91 parts by weight of the lignin decomposition product obtained by repeating the production of the lignin decomposition product to obtain a lignin resin composition.

<実施例2>
実施例1におけるリグニン分解物の製造と同様の操作により得られたリグニン分解物49重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)42重量部、ヘキサメチレンテトラミン9重量部を常温で混合し、リグニン樹脂組成物を得た。
<Example 2>
49 parts by weight of a lignin degradation product obtained by the same operation as in the production of the lignin degradation product in Example 1, 42 parts by weight of a novolak type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104), 9 parts by weight of hexamethylenetetramine The parts were mixed at room temperature to obtain a lignin resin composition.

<実施例3>
実施例1において、リグニン分解物の製造における処理温度200℃を300℃に変更した以外は、実施例1と同様に行い、リグニン分解物3.6gを得た。ここで得られたリグニン分解物を、実施例1と同様にして評価のところ、水酸基当量=171、P/A比=8.5:1.5、軟化点88℃、Mn=570、Mw/Mn=1.24であった。
上記リグニン分解物の製造を繰り返して得られたリグニン分解物91重量部に、ヘキサメチレンテトラミン9重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 3>
In Example 1, it carried out like Example 1 except having changed processing temperature 200 ° C in manufacture of a lignin decomposition product into 300 ° C, and obtained 3.6 g of lignin decomposition products. The lignin degradation product obtained here was evaluated in the same manner as in Example 1. As a result, hydroxyl equivalent = 171, P / A ratio = 8.5: 1.5, softening point 88 ° C., Mn = 570, Mw / Mn = 1.24.
9 parts by weight of hexamethylenetetramine was mixed at room temperature with 91 parts by weight of the lignin decomposition product obtained by repeating the production of the lignin decomposition product to obtain a lignin resin composition.

<実施例4>
実施例3と同様に、実施例1において、リグニン分解物の製造における処理温度200℃を300℃に変更した以外は実施例1と同様にして、リグニン分解物を得た。これを繰り返して得られたリグニン分解物49重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)42重量部、ヘキサメチレンテトラミン9重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 4>
Similar to Example 3, a lignin degradation product was obtained in the same manner as in Example 1 except that the treatment temperature 200 ° C. in the production of the lignin degradation product was changed to 300 ° C. 49 parts by weight of a lignin decomposition product obtained by repeating this process, 42 parts by weight of a novolac-type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104) and 9 parts by weight of hexamethylenetetramine were mixed at room temperature to obtain a lignin resin. A composition was obtained.

<実施例5>
実施例1において、リグニン分解物の製造における処理温度200℃を150℃に変更した以外は、実施例1と同様に行い、リグニン分解物3.5gを得た。ここで得られたリグニン分解物を、実施例1と同様にして評価のところ、水酸基当量=122、P/A比=8.1:1.9、軟化点121℃、Mn=1800、Mw/Mn=1.82であった。
上記リグニン分解物の製造を繰り返して得られたリグニン分解物91重量部に、ヘキサメチレンテトラミン9重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 5>
In Example 1, it carried out like Example 1 except having changed processing temperature 200 ° C in manufacture of a lignin decomposition product into 150 ° C, and obtained 3.5 g of lignin decomposition products. The lignin degradation product obtained here was evaluated in the same manner as in Example 1. As a result, hydroxyl equivalent = 122, P / A ratio = 8.1: 1.9, softening point 121 ° C, Mn = 1800, Mw / Mn = 1.82.
9 parts by weight of hexamethylenetetramine was mixed at room temperature with 91 parts by weight of the lignin decomposition product obtained by repeating the production of the lignin decomposition product to obtain a lignin resin composition.

<実施例6>
実施例5と同様に、実施例1において、リグニン分解物の製造における処理温度200℃を150℃に変更した以外は実施例1と同様にして、リグニン分解物を得た。これを繰り返して得られたリグニン分解物49重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)42重量部、ヘキサメチレンテトラミン9重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 6>
Similar to Example 5, a lignin degradation product was obtained in the same manner as in Example 1 except that the treatment temperature 200 ° C. in the production of the lignin degradation product was changed to 150 ° C. 49 parts by weight of a lignin decomposition product obtained by repeating this process, 42 parts by weight of a novolac-type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104) and 9 parts by weight of hexamethylenetetramine were mixed at room temperature to obtain a lignin resin. A composition was obtained.

(リグニン誘導体の製造)
<実施例7>
攪拌装置、冷却器及び滴下ロートの付いた100mlの三つ口フラスコに、実施例1と同様にして得たリグニン分解物1.2gと、エピクロロヒドリン100.0gを加え、133hPaの圧力下で、減圧還流しながら、20%濃度のNaOH水溶液2.0gを、30分かけて滴下した。その後、90分間減圧還流状態を保持して、反応混合物を得た。反応混合物は、不溶部を濾過して取り除き、エピクロロヒドリン可溶部を単離した。このエピクロロヒドリン可溶部からエピクロロヒドリンを留去し、乾燥することで、エポキシ基を有するリグニン誘導体0.8gを得た。
上記で得られたエポキシ基を有するリグニン誘導体の構造を1H−NMRで確認したところ、リグニン分解物のピークに加えて2.7、2.9、3.3、3.5、3.9ppmにエポキシ基由来のピークが観測された。
エポキシ基を有するリグニン誘導体の分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=950、Mw/Mn=3.67であった。
エポキシ基を有するリグニン誘導体のエポキシ当量は、1H−NMRで測定のところ、390であった。
(Production of lignin derivatives)
<Example 7>
To a 100 ml three-necked flask equipped with a stirrer, a condenser and a dropping funnel, 1.2 g of the lignin decomposition product obtained in the same manner as in Example 1 and 100.0 g of epichlorohydrin were added, and the pressure was 133 hPa. Then, 2.0 g of a 20% strength aqueous NaOH solution was added dropwise over 30 minutes while refluxing under reduced pressure. Thereafter, the vacuum reflux state was maintained for 90 minutes to obtain a reaction mixture. In the reaction mixture, the insoluble part was removed by filtration, and the epichlorohydrin soluble part was isolated. Epichlorohydrin was distilled off from this epichlorohydrin soluble portion and dried to obtain 0.8 g of a lignin derivative having an epoxy group.
When the structure of the lignin derivative having an epoxy group obtained above was confirmed by 1 H-NMR, it was found to be 2.7, 2.9, 3.3, 3.5, 3.9 ppm in addition to the peak of the lignin decomposition product. An epoxy group-derived peak was observed.
The molecular weight of the lignin derivative having an epoxy group was Mn = 950 and Mw / Mn = 3.67 as measured by gel permeation chromatography in terms of polystyrene.
The epoxy equivalent of the lignin derivative having an epoxy group was 390 as measured by 1 H-NMR.

(樹脂組成物の製造)
上記リグニン誘導体の製造の操作を繰り返して得たエポキシ基を有するリグニン誘導体79重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)21重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
(Manufacture of resin composition)
To 79 parts by weight of the lignin derivative having an epoxy group obtained by repeating the above-described production process of the lignin derivative, 21 parts by weight of a novolak type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104) and 1 part by weight of triphenylphosphine were added. The mixture was mixed at room temperature to obtain a lignin resin composition.

<実施例8>
実施例7におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体50重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)25重量部、オルソクレゾールノボラックエポキシ樹脂(軟化点:65℃、エポキシ当量:210)25重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 8>
50 parts by weight of a lignin derivative having an epoxy group obtained by repeating the same operation as in the production of the lignin derivative in Example 7, 25 parts by weight of a novolac type phenol resin (softening point: 105 ° C., hydroxyl group equivalent: 104), orthocresol 25 parts by weight of a novolac epoxy resin (softening point: 65 ° C., epoxy equivalent: 210) and 1 part by weight of triphenylphosphine were mixed at room temperature to obtain a lignin resin composition.

<実施例9>
実施例7におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体23重量部と実施例1におけるリグニン分解物の製造と同様の操作を繰り返して得たリグニン誘導体77重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 9>
23 parts by weight of a lignin derivative having an epoxy group obtained by repeating the same operation as the production of the lignin derivative in Example 7 and 77 parts by weight of the lignin derivative obtained by repeating the same operation as the production of the lignin degradation product in Example 1 1 part by weight of triphenylphosphine was mixed at room temperature to obtain a lignin resin composition.

<実施例10>
実施例7におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体100重量部と、2−メチルイミダゾール2重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 10>
100 parts by weight of an lignin derivative having an epoxy group obtained by repeating the same operations as in the production of the lignin derivative in Example 7 and 2 parts by weight of 2-methylimidazole were mixed at room temperature to obtain a lignin resin composition.

<実施例11>
実施例7において、リグニン分解物を、実施例3で得たものに変更した他は、実施例7と同様に行い、エポキシ基を有するリグニン誘導体0.9gを得た。ここで得られたエポキシ基を有するリグニン誘導体を、実施例7と同様にして評価のところ、分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=750、Mw/Mn=2.89であった。
エポキシ基を有するリグニン誘導体のエポキシ当量は、1H−NMRで測定のところ、540であった。
<Example 11>
In Example 7, except that the lignin degradation product was changed to that obtained in Example 3, the same procedure as in Example 7 was performed to obtain 0.9 g of a lignin derivative having an epoxy group. The lignin derivative having an epoxy group obtained here was evaluated in the same manner as in Example 7. As a result, the molecular weight was measured by gel permeation chromatography in terms of polystyrene, and Mn = 750 and Mw / Mn = 2.89. Met.
The epoxy equivalent of the lignin derivative having an epoxy group was 540 as measured by 1 H-NMR.

(樹脂組成物の製造)
上記リグニン誘導体の製造の操作を繰り返して得たエポキシ基を有するリグニン誘導体84重量部に、軟化点が105℃で水酸基当量104のフェノールノボラック16重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
(Manufacture of resin composition)
To 84 parts by weight of an lignin derivative having an epoxy group obtained by repeating the above-described production process of lignin derivative, 16 parts by weight of phenol novolak having a hydroxyl equivalent weight of 104 at 105 ° C. and 1 part by weight of triphenylphosphine are mixed at room temperature. Thus, a lignin resin composition was obtained.

<実施例12>
実施例11におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体60重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)20重量部、オルソクレゾールノボラックエポキシ樹脂(軟化点:65℃、エポキシ当量:210)20重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 12>
60 parts by weight of a lignin derivative having an epoxy group obtained by repeating the same operations as in the production of the lignin derivative in Example 11, 20 parts by weight of a novolac type phenol resin (softening point: 105 ° C., hydroxyl group equivalent: 104), orthocresol 20 parts by weight of a novolac epoxy resin (softening point: 65 ° C., epoxy equivalent: 210) and 1 part by weight of triphenylphosphine were mixed at room temperature to obtain a lignin resin composition.

<実施例13>
実施例11におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体24重量部と実施例3におけるリグニン分解物の製造と同様の操作を繰り返して得たリグニン誘導体76重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 13>
24 parts by weight of a lignin derivative having an epoxy group obtained by repeating the same operation as the production of the lignin derivative in Example 11 and 76 parts by weight of the lignin derivative obtained by repeating the same operation as the production of the lignin degradation product in Example 3 1 part by weight of triphenylphosphine was mixed at room temperature to obtain a lignin resin composition.

<実施例14>
実施例11におけるリグニン誘導体の製造と同様の操作により得たエポキシ基を有するリグニン誘導体100重量部と、2−メチルイミダゾール2重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 14>
100 parts by weight of a lignin derivative having an epoxy group obtained by the same operation as in the production of a lignin derivative in Example 11 and 2 parts by weight of 2-methylimidazole were mixed at room temperature to obtain a lignin resin composition.

<実施例15>
実施例7において、リグニン分解物を、実施例5で得られたものに変更した以外は、実施例7と同様に行い、エポキシ基を有するリグニン誘導体0.7gを得た。ここで得られたエポキシ基を有するリグニン誘導体を、実施例7と同様にして評価のところ、分子量は、Mn=2000、Mw/Mn=3.47であった。
エポキシ基を有するリグニン誘導体のエポキシ当量は、1H−NMRで測定のところ、620であった。
<Example 15>
In Example 7, except having changed the lignin decomposition product into what was obtained in Example 5, it carried out similarly to Example 7 and obtained 0.7g of lignin derivatives which have an epoxy group. The lignin derivative having an epoxy group obtained here was evaluated in the same manner as in Example 7. As a result, the molecular weight was Mn = 2000 and Mw / Mn = 3.47.
The epoxy equivalent of the lignin derivative having an epoxy group was 620 as measured by 1 H-NMR.

(樹脂組成物の製造)
上記リグニン誘導体の製造の操作を繰り返して得たエポキシ基を有するリグニン誘導体86重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)14重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
(Manufacture of resin composition)
To 86 parts by weight of the lignin derivative having an epoxy group obtained by repeating the above-described operation of producing the lignin derivative, 14 parts by weight of a novolak type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104) and 1 part by weight of triphenylphosphine were added. The mixture was mixed at room temperature to obtain a lignin resin composition.

<実施例16>
実施例15におけるリグニン誘導体の製造と同様の操作により得たエポキシ基を有するリグニン誘導体44重量部に、軟化点が105℃で水酸基当量104のフェノールノボラック28重量部、軟化点が65℃でエポキシ当量210のオルソクレゾールノボラックエポキシ樹脂28重量部、トリフェニルホスフィン1重量部を常温で混合し、リグニン樹脂組成物を得た。
<Example 16>
44 parts by weight of a lignin derivative having an epoxy group obtained by the same operation as in the production of the lignin derivative in Example 15, 28 parts by weight of phenol novolac having a softening point of 105 ° C. and a hydroxyl equivalent of 104, and an epoxy equivalent of 65 ° C. 210 parts by weight of orthocresol novolac epoxy resin 210 and 1 part by weight of triphenylphosphine were mixed at room temperature to obtain a lignin resin composition.

<実施例17>
実施例15におけるリグニン誘導体の製造と同様の操作を繰り返して得たエポキシ基を有するリグニン誘導体16重量部と実施例5におけるリグニン分解物の製造と同様の操作を繰り返して得たリグニン誘導体84重量部、トリフェニルホスフィン1重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 17>
16 parts by weight of an lignin derivative having an epoxy group obtained by repeating the same operation as the production of the lignin derivative in Example 15 and 84 parts by weight of the lignin derivative obtained by repeating the same operation as the production of the lignin degradation product in Example 5 1 part by weight of triphenylphosphine was mixed at room temperature to obtain a lignin resin composition.

<実施例18>
実施例15におけるリグニン誘導体の製造と同様の操作により得たエポキシ基を有するリグニン誘導体100重量部と、2−メチルイミダゾール2重量部を、常温で混合し、リグニン樹脂組成物を得た。
<Example 18>
100 parts by weight of an lignin derivative having an epoxy group obtained by the same operation as in the production of the lignin derivative in Example 15 and 2 parts by weight of 2-methylimidazole were mixed at room temperature to obtain a lignin resin composition.

<比較例1>
(リグノフェノール誘導体の製造)
非特許文献1(K. Mikame, M. Funaoka, Polym. J., 38, 585−591, 2006J)に準じて、リグノフェノール誘導体を以下の方法で合成した。
孟宗竹粉10gを、500ml容ビーカーにとり、p−クレゾールのアセトン溶液(リグニン構成単位当たり3モル倍量のフェノール誘導体を含む)を加え、ガラス棒で撹拌し、24時間静置させた。その後、アセトンを完全に留去して、p−クレゾール吸着木粉を得た。この竹粉に対して、72wt%硫酸100mlを加え、30℃で、1時間激しく撹拌した混合物を、大過剰の水に投入した溶液から、不溶解区分を回収、脱酸し、乾燥して、リグノフェノール誘導体を得た。このリグノフェノール誘導体を、実施例1と同様にして評価のところ、Mn=3600、OH当量=143g/eq、P/A比=5.8:4.2であった。
<Comparative Example 1>
(Production of lignophenol derivatives)
In accordance with Non-Patent Document 1 (K. Mikame, M. Funoka, Polym. J., 38, 585-591, 2006J), a lignophenol derivative was synthesized by the following method.
Take 10 g of Somune bamboo powder in a 500 ml beaker, add acetone solution of p-cresol (containing 3 mol times phenol derivative per lignin constituent unit), stir with a glass rod and let stand for 24 hours. Thereafter, acetone was completely distilled off to obtain p-cresol-adsorbed wood flour. To this bamboo powder, 100 ml of 72 wt% sulfuric acid was added, and the mixture stirred vigorously at 30 ° C. for 1 hour was recovered from a solution in which a large excess of water was added. A lignophenol derivative was obtained. When this lignophenol derivative was evaluated in the same manner as in Example 1, Mn = 3600, OH equivalent = 143 g / eq, and P / A ratio = 5.8: 4.2.

(樹脂組成物の製造)
上記リグノフェノール誘導体の製造の操作を繰り返して得たリグノフェノール誘導体92重量部に、ヘキサメチレンテトラミン8重量部を、常温で混合し、熱硬化性樹脂組成物を得た。
(Manufacture of resin composition)
8 parts by weight of hexamethylenetetramine was mixed with 92 parts by weight of a lignophenol derivative obtained by repeating the above-described operation for producing a lignophenol derivative at room temperature to obtain a thermosetting resin composition.

<比較例2>
(リグノフェノール誘導体の製造)
非特許文献2(Kadota, K. Hasegawa, M. Funaoka Journal of Network Polymer. Japan, 27, 118−125, 2006)に準じて、比較例1で得たリグノフェノール誘導体を以下の方法でエポキシ化した。攪拌装置、冷却器及び滴下ロートの付いた100mlの三つ口フラスコに、比較例1と同様の操作で得たリグノフェノール誘導体1.4gとエピクロロヒドリン100.0gを投入し、133hPaに減圧還流しながら、20%NaOH水溶液1.0gを30分かけて滴下した。その後、90分間減圧還流状態を保持した。反応混合物から不溶部を濾過して除き、エピクロロヒドリン可溶部からエピクロロヒドリンを留去し、乾燥することで、エポキシ化リグノフェノール1.3gを得た。得られたエポキシ基を有するリグノフェノール誘導体を、実施例7と同様にして評価のところ、Mn=2400、エポキシ当量は790であった。
<Comparative example 2>
(Production of lignophenol derivatives)
According to Non-Patent Document 2 (Kadota, K. Hasegawa, M. Funoka Journal of Network Polymer. Japan, 27, 118-125, 2006), the lignophenol derivative obtained in Comparative Example 1 was epoxidized by the following method. . A 100 ml three-necked flask equipped with a stirrer, a condenser and a dropping funnel was charged with 1.4 g of lignophenol derivative and 100.0 g of epichlorohydrin obtained in the same manner as in Comparative Example 1, and the pressure was reduced to 133 hPa. While refluxing, 1.0 g of a 20% NaOH aqueous solution was added dropwise over 30 minutes. Thereafter, the vacuum reflux state was maintained for 90 minutes. The insoluble part was filtered off from the reaction mixture, and epichlorohydrin was distilled away from the epichlorohydrin soluble part and dried to obtain 1.3 g of epoxidized lignophenol. When the obtained lignophenol derivative having an epoxy group was evaluated in the same manner as in Example 7, Mn = 2400 and the epoxy equivalent was 790.

(樹脂組成物の製造)
上記リグノフェノール誘導体の製造の操作を繰り返して得たエポキシ基を有するリグノフェノール誘導体88重量部に、軟化点が105℃で水酸基当量104のフェノールノボラック12重量部、トリフェニルホスフィン1重量部を、常温で混合し、熱硬化性樹脂組成物を得た。
(Manufacture of resin composition)
To 88 parts by weight of the lignophenol derivative having an epoxy group obtained by repeating the above-described operation for producing the lignophenol derivative, 12 parts by weight of phenol novolac having a softening point of 105 ° C. and a hydroxyl group equivalent of 104 and 1 part by weight of triphenylphosphine were added at room temperature. To obtain a thermosetting resin composition.

(成形材料の製造)
<実施例19>
実施例1と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
(Manufacture of molding materials)
<Example 19>
100 parts by weight of the same lignin resin composition as in Example 1 and 300 parts by weight of crushed fused silica (average particle size 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例20>
実施例2と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 20>
100 parts by weight of the same lignin resin composition as in Example 2 and 300 parts by weight of crushed fused silica (average particle size 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例21>
実施例3と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 21>
100 parts by weight of the same lignin resin composition as in Example 3 and 300 parts by weight of crushed fused silica (average particle size: 10 μm) were blended and kneaded at 90 ° C. for 5 minutes to obtain a molding material.

<実施例22>
実施例4と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 22>
100 parts by weight of the same lignin resin composition as in Example 4 and 300 parts by weight of crushed fused silica (average particle size 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例23>
実施例5と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 23>
100 parts by weight of the same lignin resin composition as in Example 5 and 300 parts by weight of crushed fused silica (average particle size 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例24>
実施例6と同様のリグニン樹脂組成物100重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 24>
100 parts by weight of the same lignin resin composition as in Example 6 and 300 parts by weight of crushed fused silica (average particle size 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例25>
実施例7と同様のリグニン樹脂組成物101重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 25>
101 parts by weight of the same lignin resin composition as in Example 7 and 300 parts by weight of crushed fused silica (average particle size: 10 μm) were blended and kneaded at 90 ° C. for 5 minutes to obtain a molding material.

<実施例26>
実施例8と同様のリグニン樹脂組成物101重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 26>
101 parts by weight of the same lignin resin composition as in Example 8 and 300 parts by weight of crushed fused silica (average particle size: 10 μm) were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例27>
実施例9と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 27>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 9, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例28>
実施例10と同様のリグニン樹脂組成物102重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 28>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 102 parts by weight of the same lignin resin composition as in Example 10, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例29>
実施例11と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 29>
300 parts by weight of crushed fused silica (average particle size: 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 11 and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例30>
実施例12と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 30>
300 parts by weight of crushed fused silica (average particle size: 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 12, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例31>
実施例13と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 31>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 13, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例32>
実施例14と同様のリグニン樹脂組成物102重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 32>
300 parts by weight of crushed fused silica (average particle size: 10 μm) was blended with 102 parts by weight of the same lignin resin composition as in Example 14, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例33>
実施例15と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 33>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 15, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例34>
実施例16と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 34>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 16, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例35>
実施例17と同様のリグニン樹脂組成物101重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 35>
300 parts by weight of crushed fused silica (average particle size: 10 μm) was blended with 101 parts by weight of the same lignin resin composition as in Example 17, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<実施例36>
実施例18と同様のリグニン樹脂組成物102重量部に、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Example 36>
300 parts by weight of crushed fused silica (average particle size 10 μm) was blended with 102 parts by weight of the same lignin resin composition as in Example 18, and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

<比較例3>
比較例1と同様の操作により得たリグノフェノール誘導体92重量部に、ヘキサメチレンテトラミン8重量部、破砕状溶融シリカ(平均粒径10μm)300重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Comparative Example 3>
9 parts by weight of hexamethylenetetramine and 300 parts by weight of crushed fused silica (average particle size 10 μm) are blended with 92 parts by weight of a lignophenol derivative obtained by the same operation as in Comparative Example 1, and kneaded with a hot roll at 90 ° C. for 5 minutes. Thus, a molding material was obtained.

<比較例4>
比較例2と同様の操作により得たエポキシ基を有するリグノフェノール誘導体88重量部に、ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)12重量部、破砕状溶融シリカ(平均粒径10μm)300重量部、トリフェニルホスフィン1重量部を配合し、熱ロールで90℃5分間混練して成形材料を得た。
<Comparative example 4>
To 88 parts by weight of a lignophenol derivative having an epoxy group obtained by the same operation as in Comparative Example 2, 12 parts by weight of a novolac type phenol resin (softening point: 105 ° C., hydroxyl equivalent: 104), crushed fused silica (average particle diameter) 10 μm) 300 parts by weight and 1 part by weight of triphenylphosphine were blended and kneaded with a hot roll at 90 ° C. for 5 minutes to obtain a molding material.

(樹脂組成物及び成形材料の評価)
実施例1〜18および比較例1、2で得られた樹脂組成物の硬化特性を評価することを目的として、下記測定方法によりキュラストメーターの最高トルクの評価をした結果を表1に示した。
実施例19〜36および比較例3、4で得られた成形材料を用いて、下記測定方法によりバーコール硬度の評価をした結果を表2に示した。
(Evaluation of resin composition and molding material)
Table 1 shows the results of evaluating the maximum torque of the curast meter by the following measurement method for the purpose of evaluating the curing characteristics of the resin compositions obtained in Examples 1 to 18 and Comparative Examples 1 and 2. .
Table 2 shows the results of evaluation of the Barcol hardness using the molding materials obtained in Examples 19 to 36 and Comparative Examples 3 and 4 by the following measuring method.

キュラストメーター測定方法
試験に供すべき樹脂組成物を約4.3gとり、キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIV PS型)を用い、測定温度175℃、振幅角1°にてトルクの経時変化測定を行なった。このようにして得たトルクの経時変化曲線から、得られる最高トルク値を読み取った。
Curast meter measurement method Approximately 4.3 g of the resin composition to be subjected to the test is taken, and the measurement temperature is 175 ° C. and the amplitude angle is 1 ° using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IV PS type). The torque change with time was measured. The maximum torque value obtained was read from the time course curve of the torque thus obtained.

バーコール硬度測定方法
JIS−K6911に準ずる吸水円盤作製金型を用いて、175℃、120秒成形した後、即座に取り出して175℃に加熱した熱板上に10秒間放置し、直ちに成形品の熱時硬度を、バーコール硬度計(GYZJ935)を用いて測定した。この数値が大きいほど硬化性が高いことを示す。
Barcol hardness measurement method Using a water-absorbing disk manufacturing die according to JIS-K6911, after molding at 175 ° C. for 120 seconds, immediately take it out and leave it on a hot plate heated to 175 ° C. for 10 seconds. The time hardness was measured using a Barcol hardness tester (GYZJ935). It shows that sclerosis | hardenability is so high that this figure is large.

Figure 0005348113
Figure 0005348113

Figure 0005348113
Figure 0005348113

表1から、本発明により得られるリグニン樹脂組成物は、比較例に比べて、硬化度に優れるものであった。表2によれば、本発明により得られる成形材料は、比較例に比べて、硬化性に極めて優れるものであった。   From Table 1, the lignin resin composition obtained by this invention was excellent in the degree of hardening compared with the comparative example. According to Table 2, the molding material obtained by this invention was very excellent in sclerosis | hardenability compared with the comparative example.

本発明により得られるリグニン樹脂組成物及び成形材料は、硬化性に優れることから、電気部品、電子部品、自動車用部品等の用途に好適に使用できる。   Since the lignin resin composition and molding material obtained by this invention are excellent in sclerosis | hardenability, they can be used conveniently for uses, such as an electrical component, an electronic component, and an automotive component.

Claims (3)

バイオマスを分解して得られるリグニン化合物のフェノール性水酸基にエポキシ基を導入してなるリグニン誘導体と架橋剤とを必須成分とするリグニン樹脂組成物の製造方法であって、
バイオマスを水存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記エポキシ基を含む化合物とを混合する反応性基導入工程と、
前記反応性基導入工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするリグニン樹脂組成物の製造方法。
A method for producing a lignin resin composition comprising, as essential components, a lignin derivative formed by introducing an epoxy group into a phenolic hydroxyl group of a lignin compound obtained by decomposing biomass and a crosslinking agent,
A decomposition step of placing biomass in the presence of water and decomposing them under high temperature and high pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introduction step of mixing the treated product obtained by the distillation step and the compound containing the epoxy group ;
A cross-linking agent mixing step of mixing the processed product obtained by the reactive group introducing step and the cross-linking agent,
The said lignin compound is a manufacturing method of the lignin resin composition characterized by including phenolic hydroxyl group and alcoholic hydroxyl group by the ratio of 9: 1 to 8: 2 by molar ratio.
前記分解工程は、水存在下にあるバイオマスを、処理温度150〜400℃、処理圧力1.0〜40MPa、処理時間480分以下で分解処理するものである請求項に記載のリグニン樹脂組成物の製造方法。 The lignin resin composition according to claim 1 , wherein the decomposition step decomposes biomass in the presence of water at a processing temperature of 150 to 400 ° C, a processing pressure of 1.0 to 40 MPa, and a processing time of 480 minutes or less. Manufacturing method. 前記リグニン樹脂組成物は、リグニン化合物の含有量が40〜95wt%、架橋剤の含有量が5〜60wt%である請求項1または2に記載のリグニン樹脂組成物の製造方法。 The method for producing a lignin resin composition according to claim 1 or 2 , wherein the lignin resin composition has a lignin compound content of 40 to 95 wt% and a crosslinking agent content of 5 to 60 wt%.
JP2010256670A 2010-11-17 2010-11-17 Method for producing lignin resin composition Expired - Fee Related JP5348113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256670A JP5348113B2 (en) 2010-11-17 2010-11-17 Method for producing lignin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256670A JP5348113B2 (en) 2010-11-17 2010-11-17 Method for producing lignin resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008077377A Division JP5256813B2 (en) 2008-03-25 2008-03-25 Lignin resin composition and molding material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013134059A Division JP5641101B2 (en) 2013-06-26 2013-06-26 Method for producing lignin resin composition

Publications (2)

Publication Number Publication Date
JP2011057997A JP2011057997A (en) 2011-03-24
JP5348113B2 true JP5348113B2 (en) 2013-11-20

Family

ID=43945960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256670A Expired - Fee Related JP5348113B2 (en) 2010-11-17 2010-11-17 Method for producing lignin resin composition

Country Status (1)

Country Link
JP (1) JP5348113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227585A (en) * 2013-06-26 2013-11-07 Sumitomo Bakelite Co Ltd Method for producing lignin resin composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP5822596B2 (en) * 2011-08-09 2015-11-24 国立大学法人京都大学 Lignin resin molding material
JP5750336B2 (en) * 2011-08-09 2015-07-22 国立大学法人京都大学 Lignin resin composition, prepreg and composite structure
JP5885960B2 (en) * 2011-08-09 2016-03-16 国立大学法人京都大学 Method for producing lignin derivative, method for producing lignin secondary derivative, and method for producing natural organic compound
JP6004313B2 (en) * 2012-02-13 2016-10-05 国立研究開発法人産業技術総合研究所 Method for producing resin raw material from lignocellulosic biomass and method for avoiding blockage of solid line in reactor outlet line in the apparatus
JP6217064B2 (en) * 2012-09-25 2017-10-25 住友ベークライト株式会社 Resin composition and resin molded body
JP6406948B2 (en) * 2014-09-12 2018-10-17 日本製紙株式会社 Lignin derivative for rubber reinforcement, method for producing lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP6422708B2 (en) * 2014-09-12 2018-11-14 日本製紙株式会社 Method for producing lignin derivative for rubber reinforcement, method for producing lignin resin composition, and method for producing rubber composition
DE112017000191T5 (en) * 2016-04-19 2018-08-02 Fuji Electric Co., Ltd. Lignin skeleton resin composition and casting containing the resin composition
US20200247835A1 (en) 2017-07-31 2020-08-06 Toray Industries, Inc. Method of producing lignin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595308B2 (en) * 1987-09-04 1997-04-02 王子製紙株式会社 Lignin-phenol resin composition
JP4081579B2 (en) * 2001-09-14 2008-04-30 愛知県 Lignocellulosic material and use thereof
JP2006111599A (en) * 2004-10-18 2006-04-27 Kansai Paint Co Ltd Antiseptic agent
JP5043575B2 (en) * 2007-07-23 2012-10-10 パナソニック株式会社 Plant-derived composition and cured product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227585A (en) * 2013-06-26 2013-11-07 Sumitomo Bakelite Co Ltd Method for producing lignin resin composition

Also Published As

Publication number Publication date
JP2011057997A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5256813B2 (en) Lignin resin composition and molding material
JP5348113B2 (en) Method for producing lignin resin composition
JP2009084320A (en) Lignin derivative and secondary derivative thereof
Karami et al. An efficient fully bio‐based reactive diluent for epoxy thermosets: 2‐[(Oxiran‐2‐ylmethoxy) methyl] furan versus a petroleum‐based counterpart
TW201726769A (en) Method for producing purified lignin, purified lignin, resin composition and molded body
JP5641101B2 (en) Method for producing lignin resin composition
JP2012201828A (en) Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative
JP5534059B2 (en) Lignin resin composition and molding material
JP5338793B2 (en) Method for producing lignin derivative and method for producing lignin secondary derivative
JP5920069B2 (en) Lignin resin composition and lignin resin molding material
JP6217064B2 (en) Resin composition and resin molded body
WO2018139074A1 (en) Novolac type phenolic resin, resin composition and method for producing novolac type phenolic resin
JP6645440B2 (en) Lignin resin composition, cured product and molded product
JP5750336B2 (en) Lignin resin composition, prepreg and composite structure
JP2014196416A (en) Epoxidized lignin, method for producing the same, resin composition therefrom and molding material therefrom
JP6163761B2 (en) Resin composition and resin molded body
JP5397361B2 (en) Manufacturing method of prepreg
JP2015048361A (en) Lignin resin composition, resin molded article, prepreg, and molding material
JP5338792B2 (en) Method for producing lignin derivative and method for producing lignin secondary derivative
JP2017178973A (en) Resin composition and molding
JP2013227469A (en) Lignin resin composition, lignin resin molding material and method for producing lignin derivative
JP2012201645A (en) Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative and lignin secondary derivative
JP2015048359A (en) Lignin resin composition, resin molded article, and molding material
JP5754169B2 (en) Lignin derivative, lignin secondary derivative, lignin resin composition, prepreg and composite structure
JP2014133817A (en) Method for manufacturing a lignin derivative and lignin resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees