JP5338792B2 - Method for producing lignin derivative and method for producing lignin secondary derivative - Google Patents

Method for producing lignin derivative and method for producing lignin secondary derivative Download PDF

Info

Publication number
JP5338792B2
JP5338792B2 JP2010255936A JP2010255936A JP5338792B2 JP 5338792 B2 JP5338792 B2 JP 5338792B2 JP 2010255936 A JP2010255936 A JP 2010255936A JP 2010255936 A JP2010255936 A JP 2010255936A JP 5338792 B2 JP5338792 B2 JP 5338792B2
Authority
JP
Japan
Prior art keywords
lignin
derivative
group
producing
reactive group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255936A
Other languages
Japanese (ja)
Other versions
JP2011042806A (en
Inventor
純一 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010255936A priority Critical patent/JP5338792B2/en
Publication of JP2011042806A publication Critical patent/JP2011042806A/en
Application granted granted Critical
Publication of JP5338792B2 publication Critical patent/JP5338792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lignin derivative which includes phenolic hydroxide groups at a high rate and to which a reactive group is easily introduced and to provide a lignin secondary derivative to which the reactive group useful as a resin material is introduced and whose high crosslinking density can be expected. <P>SOLUTION: The lignin derivative is obtained by decomposing biomass, wherein a mole ratio of phenolic hydroxide groups to alcoholic hydroxide groups is 9:1 to 8:2. The lignin derivative has a number average molecular weight of 300 to 2,000 expressed in terms of polystyrene measured by gel permeation chromatography. The lignin secondary derivative is formed by introducing the reactive group to the lignin derivative. The reactive group is an epoxy group. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法に関するものである。   The present invention relates to a method for producing a lignin derivative and a method for producing a lignin secondary derivative.

一般的な木質成分に、約30%含まれるリグニンは、セルロースに次いで豊富に生合成される物質であるが、有効な活用方法が確立されていない。リグニンは、芳香環や、フェノール性水酸基、アルコール性水酸基を、豊富に含む構造を有しており、有効利用法のひとつとして樹脂原料が考えられる(例えば、特許文献1参照。)。前記樹脂原料として、リグニンに、エポキシ基等の架橋用官能基を導入する場合、リグニンにおける反応性の低いアルコール性水酸基が、前記官能基の導入を阻害する。舩岡らの報告では、フェノール性水酸基とアルコール性水酸基のモル比は、およそ0.8:1.0〜1.5:1.0程度である(例えば、非特許文献1参照。)。また、リグニンにエポキシ基等の架橋用官能基を導入する場合、アルコール性OH基は反応性が劣るため、予めフェノール化合物を導入する必要があった。長谷川らはリグノフェノールのエポキシ化を検討しているが、フェノール性OH基を増加させているにもかかわらず、エポキシ基の導入率が20%前後と低くなる問題があった(例えば、非特許文献2参照。)。   Lignin, which is contained in about 30% of general wood components, is a substance that is abundantly biosynthesized after cellulose, but an effective utilization method has not been established. Lignin has a structure containing abundant aromatic rings, phenolic hydroxyl groups, and alcoholic hydroxyl groups, and a resin raw material can be considered as one of effective utilization methods (see, for example, Patent Document 1). When a functional group for crosslinking such as an epoxy group is introduced into lignin as the resin raw material, an alcoholic hydroxyl group having low reactivity in lignin inhibits the introduction of the functional group. According to the report by Tsujioka et al., The molar ratio of the phenolic hydroxyl group to the alcoholic hydroxyl group is about 0.8: 1.0 to 1.5: 1.0 (see, for example, Non-Patent Document 1). In addition, when a functional group for crosslinking such as an epoxy group is introduced into lignin, the alcoholic OH group is inferior in reactivity, so that it is necessary to introduce a phenol compound beforehand. Hasegawa et al. Are investigating epoxidation of lignophenol, but despite the increase in phenolic OH groups, there is a problem that the introduction rate of epoxy groups is reduced to around 20% (for example, non-patented). Reference 2).

特開2001−261839号公報JP 2001-261839 A

K. Mikame, M. Funaoka, Polym. J.,38, 585−591, 2006JK. Mikame, M.M. Funaoka, Polym. J. et al. , 38, 585-591, 2006J . Kadota, K. Hasegawa, M. Funaoka Journal of Network Polymer. Japan, 27, 118−125, 2006. Kadota, K .; Hasegawa, M.M. Funoka Journal of Network Polymer. Japan, 27, 118-125, 2006

本発明は、フェノール性水酸基の割合を多く含み、反応性基の導入が容易であるリグニン誘導体を確実に製造する方法を提供するものである。また、本発明は、樹脂原料として有用な反応性基を導入し、高い架橋密度が期待できるリグニン二次誘導体を確実に製造する方法を提供するものである。   The present invention provides a method for reliably producing a lignin derivative containing a large proportion of a phenolic hydroxyl group and in which a reactive group can be easily introduced. In addition, the present invention provides a method for reliably producing a lignin secondary derivative in which a reactive group useful as a resin raw material is introduced and a high crosslinking density can be expected.

本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、リグニンにおけるフェノール性水酸基とアルコール性水酸基において、フェノール性水酸基が特定モル比の範囲で多くの割合を含むことにより、反応性基の導入を容易なものとすることができることを見出すとともに、かかるリグニン誘導体を確実に製造する方法を見出し、本発明を完成するに至った。
このような目的は、下記(1)〜(6)の本発明により達成される。
(1) バイオマスを分解して得られるリグニン誘導体の製造方法であって、
バイオマスを水存在下におき、これらを処理温度150〜400℃、処理圧力1.0〜40MPaの高温高圧下において処理時間480分以下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、を有し、
フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むリグニン誘導体を得ることを特徴とするリグニン誘導体の製造方法。
(2) 前記分解処理は、前記バイオマスを撹拌しつつ行うものである上記(1)に記載のリグニン誘導体の製造方法。
(3) 前記リグニン誘導体は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の数平均分子量が300〜2,000である上記(1)または(2)に記載のリグニン誘導体の製造方法。
(4) 前記バイオマスは、リグニンを含有する植物または植物由来の物質である上記(1)ないし(3)のいずれかに記載のリグニン誘導体の製造方法。
(5) バイオマスを分解して得られるリグニン誘導体に反応性基を導入してなるリグニン二次誘導体の製造方法であって、
バイオマスを水存在下におき、これらを処理温度150〜400℃、処理圧力1.0〜40MPaの高温高圧下において処理時間480分以下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、を有し、
フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むリグニン誘導体に前記反応性基を導入してなるリグニン二次誘導体を得ることを特徴とするリグニン二次誘導体の製造方法。
(6) 前記反応性基は、エポキシ基である上記(5)に記載のリグニン二次誘導体の製造方法。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the phenolic hydroxyl group in the lignin and the alcoholic hydroxyl group contain a large proportion of the phenolic hydroxyl group within a specific molar ratio. In addition to finding out that the introduction of a sex group can be facilitated, a method for reliably producing such a lignin derivative has been found, and the present invention has been completed.
Such an object is achieved by the present inventions (1) to (6) below.
(1) A method for producing a lignin derivative obtained by decomposing biomass,
A decomposition step in which biomass is placed in the presence of water, and these are decomposed at a treatment temperature of 150 to 400 ° C. and a treatment pressure of 1.0 to 40 MPa at a high temperature and high pressure for a treatment time of 480 minutes or less ;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step of distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step,
A method for producing a lignin derivative comprising obtaining a lignin derivative containing a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2.
(2) The said decomposition process is a manufacturing method of the lignin derivative as described in said (1) performed while stirring the said biomass .
(3) The said lignin derivative is a manufacturing method of the lignin derivative as described in said (1) or (2) whose polystyrene conversion number average molecular weights measured by the gel permeation chromatography are 300-2,000.
(4) The said biomass is a manufacturing method of the lignin derivative in any one of said (1) thru | or (3) which is a plant or plant-derived substance containing a lignin.
(5) A method for producing a lignin secondary derivative obtained by introducing a reactive group into a lignin derivative obtained by decomposing biomass,
A decomposition step in which biomass is placed in the presence of water, and these are decomposed at a treatment temperature of 150 to 400 ° C. and a treatment pressure of 1.0 to 40 MPa at a high temperature and high pressure for a treatment time of 480 minutes or less ;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introduction step of mixing the treated product obtained by the distillation step and the compound containing the reactive group,
A lignin secondary derivative obtained by obtaining a lignin secondary derivative obtained by introducing the reactive group into a lignin derivative containing a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2. Manufacturing method.
(6) The method for producing a lignin secondary derivative according to (5) , wherein the reactive group is an epoxy group.

本発明によれば、フェノール性水酸基の割合を多く含み、反応性基の導入が容易であるリグニン誘導体を確実に製造する方法を提供でき、また、樹脂原料として有用な反応性基を導入し、高い架橋密度が期待できるリグニン二次誘導体を確実に製造する方法を提供できる。このような高い架橋密度に基づく、すぐれた硬化性と物性等を有するリグニン誘導体ならびにその二次誘導体を得ることで、環境にやさしく、かつ産業上で有用な樹脂を提供しうる。   According to the present invention, it is possible to provide a method for reliably producing a lignin derivative that contains a large proportion of a phenolic hydroxyl group and is easy to introduce a reactive group, and that a reactive group useful as a resin raw material is introduced, A method of reliably producing a lignin secondary derivative that can be expected to have a high crosslinking density can be provided. By obtaining a lignin derivative having excellent curability and physical properties based on such a high crosslinking density and a secondary derivative thereof, an environmentally friendly and industrially useful resin can be provided.

本発明におけるリグニン誘導体はバイオマスを分解して得られるものであって、前記リグニン誘導体はフェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものであることを特徴とするリグニン誘導体である。前記フェノール性水酸基とアルコール性水酸基は共に主としてリグニン骨格由来のものであり、本発明によれば、フェノール性水酸基が前記モル比のように多くの割合を含み、反応性基の導入を容易なものとすることができる。反応性基を多く導入できるため、架橋密度の高い樹脂を提供することが可能になる。本発明のリグニン誘導体の製造方法は、このようなリグニン誘導体を製造する方法である。   The lignin derivative in the present invention is obtained by decomposing biomass, and the lignin derivative has a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2. And a lignin derivative. Both the phenolic hydroxyl group and the alcoholic hydroxyl group are mainly derived from a lignin skeleton, and according to the present invention, the phenolic hydroxyl group contains a large proportion of the molar ratio, and the reactive group can be easily introduced. It can be. Since many reactive groups can be introduced, it becomes possible to provide a resin having a high crosslink density. The method for producing a lignin derivative of the present invention is a method for producing such a lignin derivative.

本発明におけるバイオマスとは、リグニンを含有する植物または前記植物の加工品である。前記植物としては、例えば、ブナ、白樺及びナラなどの広葉樹、杉、松及び桧などの針葉樹、竹及び稲わらなどのイネ科植物などが挙げられる。本発明に用いるバイオマスの形状としては、ブロック、チップ、粉末等が挙げられる。   The biomass in the present invention is a plant containing lignin or a processed product of the plant. Examples of the plant include broad-leaved trees such as beech, birch and oak, conifers such as cedar, pine, and oak, and gramineous plants such as bamboo and rice straw. Examples of the shape of biomass used in the present invention include blocks, chips, and powders.

本発明におけるリグニン誘導体は、前記バイオマスを、溶媒存在下、高温高圧処理により分解することにより得ることができる。
本発明のリグニン誘導体の製造方法の具体例としては、まず、前記バイオマスを一定の大きさに調整し、次いで、これを、溶媒、任意に触媒、と共に、撹拌機及び加熱装置付の耐圧容器に入れて、加熱及び加圧をしながら、撹拌して、前記バイオマスの分解処理を行う(分解工程)。次いで、耐圧容器の内容物をろ過して、ろ液を除去し、水不溶分を水で洗浄、分離する。次いで、前記水不溶分を、リグニンが可溶な溶媒、例えば、アセトンなどに浸漬して(浸漬工程)、リグニン誘導体をアセトンに抽出して、前記アセトンを留去すること(留去工程)により、リグニン誘導体を得ることができる。
The lignin derivative in the present invention can be obtained by decomposing the biomass by high-temperature and high-pressure treatment in the presence of a solvent.
As a specific example of the method for producing a lignin derivative of the present invention, first, the biomass is adjusted to a certain size, and then this is put into a pressure vessel with a stirrer and a heating device together with a solvent, optionally a catalyst. The biomass is stirred while being heated and pressurized (decomposition step). Next, the contents of the pressure vessel are filtered to remove the filtrate, and the water-insoluble matter is washed and separated with water. Next, the water-insoluble matter is immersed in a solvent in which lignin is soluble (for example, acetone) (immersion step), the lignin derivative is extracted into acetone, and the acetone is distilled off (distillation step). A lignin derivative can be obtained.

前記分解処理におけるバイオマスの大きさとしては、100μm〜1cm程度が好ましく、200μm〜500μmがより好ましい。このときバイオマスの形状としては、上記のように、ブロック状、チップ状、粉末状等のいずれであってよい。   As a magnitude | size of the biomass in the said decomposition | disassembly process, about 100 micrometers-1 cm are preferable, and 200 micrometers-500 micrometers are more preferable. At this time, the shape of the biomass may be any of a block shape, a chip shape, a powder shape and the like as described above.

前記分解処理における溶媒としては、水、メタノール及びエタノールなどのアルコール類、フェノール及びクレゾールなどのフェノール類、ケトン類、エーテル類などを挙げることができ、特に水を使用することが好ましい。溶媒の使用量としては、バイオマスに対して多量に用いるほど好ましいが、バイオマス重量の2重量倍〜10重量倍程度が好ましく、3重量倍〜5重量倍程度がより好ましい。また触媒として炭酸ナトリウムなどの無機塩基類を添加してもよい。   Examples of the solvent in the decomposition treatment include water, alcohols such as methanol and ethanol, phenols such as phenol and cresol, ketones, ethers, and the like, and it is particularly preferable to use water. The amount of the solvent used is preferably as large as possible with respect to the biomass, but is preferably about 2 to 10 times the biomass weight, more preferably about 3 to 5 times the biomass weight. An inorganic base such as sodium carbonate may be added as a catalyst.

前記バイオマスを高温高圧で処理する条件としては、処理温度としては通常は150℃〜400℃が好ましく、さらに好ましくは200℃〜380℃である。前記処理温度は、前記範囲外でも使用できるが、リグニン誘導体の分子量は処理温度で制御可能であり、高温で処理すると低分子量体に、低温で処理すると高分子量体になる傾向となる。前記処理時間としては通常は0分〜480分が好ましく、さらに好ましくは30分〜120分である。前記処理時間は、前記範囲外でも使用できるが、リグニン誘導体のOH当量は処理時間で制御可能であり、短時間処理でOH当量は大きく、長時間処理では小さくなる傾向となる。前記圧力としては1.0MPa〜40MPaが好ましく、さらに好ましくは1.5MPa〜25MPaである。前記圧力は、前記範囲外でも使用できるが、より高圧で処理することで、長時間処理を施した場合と同等の効果が得られる。   As conditions for processing the biomass at high temperature and high pressure, the processing temperature is usually preferably 150 ° C to 400 ° C, more preferably 200 ° C to 380 ° C. The treatment temperature can be used outside the above range, but the molecular weight of the lignin derivative can be controlled by the treatment temperature, and tends to be a low molecular weight body when treated at a high temperature and a high molecular weight body when treated at a low temperature. The treatment time is usually preferably 0 minute to 480 minutes, and more preferably 30 minutes to 120 minutes. Although the treatment time can be used outside the above range, the OH equivalent of the lignin derivative can be controlled by the treatment time, and the OH equivalent tends to be large in the short-time treatment and small in the long-time treatment. The pressure is preferably 1.0 MPa to 40 MPa, more preferably 1.5 MPa to 25 MPa. The pressure can be used even outside the above range, but by treating at a higher pressure, an effect equivalent to that obtained when the treatment is performed for a long time can be obtained.

上記範囲内の条件でバイオマスを処理することで、300〜2,000程度と好ましい範囲の数平均分子量となると共に、さらには、本発明におけるリグニン誘導体として、好ましいOH当量である100〜200程度のOH当量に制御しやすくなる。
また、本発明においては、OH当量と分子量は独立に制御が可能であり、例えば、処理温度にかかわらず、短時間処理によりOH当量(主にフェノール性水酸基)が200前後と大きいものが得られ、長時間処理により100前後で飽和して小さなOH当量が得られる。
By treating the biomass under the conditions within the above range, the number average molecular weight is preferably in the range of about 300 to 2,000, and moreover, as the lignin derivative in the present invention, the OH equivalent is preferably about 100 to 200. It becomes easy to control to OH equivalent.
In the present invention, the OH equivalent and the molecular weight can be controlled independently. For example, a OH equivalent (mainly phenolic hydroxyl group) as large as about 200 can be obtained by short-time treatment regardless of the treatment temperature. Saturate at around 100 by long-time treatment to obtain a small OH equivalent.

上記分解して得られたリグニン誘導体は、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものであることを特徴とする。前記リグニン誘導体は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の数平均分子量が300〜2,000であることが好ましい。前記範囲外でも良いが、300より小さいと架橋用官能基を導入した場合、単官能のリグニン二次誘導体が生成し、硬化しない問題が発生する場合があり、2,000より大きいとリグニン二次誘導体の軟化点が高すぎて成形しにくくなる問題が発生する場合がある。   The lignin derivative obtained by the above decomposition is characterized by having a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2. The lignin derivative preferably has a polystyrene-equivalent number average molecular weight of 300 to 2,000 as measured by gel permeation chromatography. However, if the functional group for crosslinking is introduced below 300, a monofunctional lignin secondary derivative may be formed and may not be cured. If it exceeds 2,000, the secondary lignin secondary There may be a problem that the softening point of the derivative is too high and molding becomes difficult.

また、本発明は、上記で得られたリグニン誘導体に、反応性基を導入したリグニン二次誘導体である。このようなリグニン二次誘導体樹脂原料として有用な反応性基を導入し、高い架橋密度が期待できる。   Moreover, this invention is a lignin secondary derivative which introduce | transduced the reactive group into the lignin derivative obtained above. A reactive group useful as such a lignin secondary derivative resin raw material is introduced, and a high crosslinking density can be expected.

リグニン二次誘導体における反応性基は、反応性を有する基であり、その反応性基が自己反応性を有し、2個以上の同じ反応性基が互いに反応しうるもの、他の官能基との間で反応しうるものであればよく、好ましくは炭素−炭素不飽和結合を有するビニル基、同じくエチニル基、マレイミド基など、その他にエポキシ基、シアネート基、イソシアネート基等が例示されるが、特にこれらに限定されるものではない。特に好ましい反応性基としてエポキシ基が挙げられる。   The reactive group in the lignin secondary derivative is a reactive group, the reactive group is self-reactive, two or more of the same reactive groups can react with each other, and other functional groups May be used as long as they can react with each other. Preferably, a vinyl group having a carbon-carbon unsaturated bond, similarly ethynyl group, maleimide group, and the like are exemplified by epoxy group, cyanate group, isocyanate group, etc. In particular, it is not limited to these. A particularly preferred reactive group is an epoxy group.

本発明のリグニン二次誘導体の製造方法は、当業者において、フェノール性水酸基に前記反応性基を導入することができる公知の方法を用いることができ、適宜、反応性基の導入方法は選択することができる。
以下に、それぞれの反応性基の導入方法(反応性基導入工程)の具体例を示すが、これらに限定されるものではない。
例えば、エポキシ基を導入する場合、前記リグニン誘導体をエピクロロヒドリンに溶解し、減圧還流下、NaOHなどの塩基触媒を添加することで得られる。
また、ビニル基を導入する場合、ハロゲン化アリルまたはハロゲン化ビニルベンジル等のビニル基を含むハロゲン化合物と、前記リグニン誘導体を、溶剤に溶解し、加熱攪拌下でNaOHなどの塩基触媒を添加することで得られる。
エチニル基を導入する場合は、ハロゲン化プロパルギルまたはハロゲン化フェニルアセチレン等のエチニル基を含むハロゲン化合物と、前記リグニン誘導体を、溶剤に溶解し、加熱攪拌下でNaOHなどの塩基触媒を添加することで得られる。
さらに、マレイミド基を導入する場合、パラクロロニトロベンゼンを、前記リグニン誘導体のフェノール性OH基に反応させ、エーテル結合を介して結合したポリニトロ化リグニンを得る。次いで、ポリニトロ化リグニンを還元することで、ポリアミノ化リグニンに変換し、無水マレイン酸と反応させることで、マレイミド基を持つリグニン二次誘導体が得られる。
シアネート基を導入する場合、前記リグニン誘導体と、ハロゲン化シアネートを、溶剤に溶解し、加熱攪拌下でNaOHなどの塩基触媒を添加することで得られる。
また、イソシアネート基を導入する場合、リグニンを無水マレイン酸で処理することで、リグニンのOH基をカルボキシル基に変換し、ジフェニルリン酸アジド存在下加熱することで得られる。
As a method for producing the lignin secondary derivative of the present invention, those skilled in the art can use a known method by which the reactive group can be introduced into the phenolic hydroxyl group, and the method for introducing the reactive group is appropriately selected. be able to.
Specific examples of each reactive group introduction method (reactive group introduction step) are shown below, but are not limited thereto.
For example, when an epoxy group is introduced, the lignin derivative is dissolved in epichlorohydrin, and a base catalyst such as NaOH is added under reflux under reduced pressure.
When a vinyl group is introduced, a halogen compound containing a vinyl group such as allyl halide or vinylbenzyl halide and the lignin derivative are dissolved in a solvent, and a base catalyst such as NaOH is added with heating and stirring. It is obtained by.
When introducing an ethynyl group, a halogen compound containing an ethynyl group such as propargyl halide or phenylacetylene and the lignin derivative are dissolved in a solvent, and a base catalyst such as NaOH is added under heating and stirring. can get.
Further, when a maleimide group is introduced, parachloronitrobenzene is reacted with the phenolic OH group of the lignin derivative to obtain a polynitrated lignin bonded through an ether bond. Subsequently, the polynitrated lignin is reduced to be converted to polyaminated lignin and reacted with maleic anhydride to obtain a lignin secondary derivative having a maleimide group.
When a cyanate group is introduced, the lignin derivative and the halogenated cyanate are dissolved in a solvent, and a base catalyst such as NaOH is added under heating and stirring.
Moreover, when introducing an isocyanate group, it is obtained by treating lignin with maleic anhydride to convert the OH group of lignin to a carboxyl group and heating in the presence of diphenylphosphoric acid azide.

本発明におけるリグニン誘導体は、フェノール性OH基を豊富に含むため、従来より、フェノール樹脂が用いられる用途には全般的に適用可能であり、また、リグニン二次誘導体は、導入される反応性基により、例えば、エポキシ樹脂をはじめとする多様な用途に適用可能となる。さらに、従来のリグニン誘導体と比較して、フェノール性OH基を豊富に含むため、二次誘導体化した後、リグニン二次誘導体を硬化した際の架橋密度を高めることが可能である。
このような用途として具体的には、自動車、電気部品、電子部品、半導体に用いられる成形材料、封止材料、積層板、FRP用樹脂等が例示される。
実際の使用においては、前記リグニン誘導体は、単独でフェノール樹脂の用途に使用することや、他のフェノール樹脂と混合して使用することも可能である。
Since the lignin derivative in the present invention contains abundant phenolic OH groups, the lignin derivative is generally applicable to applications in which a phenol resin is conventionally used, and the lignin secondary derivative is a reactive group to be introduced. Thus, for example, it can be applied to various uses including an epoxy resin. Furthermore, since it contains abundant phenolic OH groups as compared with conventional lignin derivatives, it is possible to increase the crosslinking density when the lignin secondary derivative is cured after secondary derivatization.
Specific examples of such applications include molding materials, sealing materials, laminates, and FRP resins used for automobiles, electrical components, electronic components, and semiconductors.
In actual use, the lignin derivative can be used alone for a phenol resin, or can be used in combination with another phenol resin.

また、前記リグニン二次誘導体においては、前記反応性基として、エポキシ基を導入した場合、エポキシ樹脂として使用することが可能であり、このようなリグニン二次誘導体に、硬化剤として、前記リグニン誘導体や他のフェノール樹脂、あるいは当業者で公知の酸無水物等の硬化剤を併用すること、さらには他のエポキシ樹脂と併用することも可能である。
さらには、前記反応性基として、ビニル基を導入した場合、ラジカル、カチオン及びアニオン等の硬化性の樹脂として使用することができ、さらには、前記反応性基として、前記エチニル基、マレイミド基、シアネート基、イソシアネート基などを導入した場合、これらの反応性基を有する公知の樹脂として用いることができ、これらの樹脂は、前記各種用途に使用することができる。
Moreover, in the lignin secondary derivative, when an epoxy group is introduced as the reactive group, it can be used as an epoxy resin, and the lignin derivative can be used as a curing agent for such a lignin secondary derivative. It is also possible to use a curing agent such as a phenolic resin or other phenolic resin, or an acid anhydride known to those skilled in the art, or to use it in combination with another epoxy resin.
Furthermore, when a vinyl group is introduced as the reactive group, it can be used as a curable resin such as a radical, a cation, and an anion. Further, as the reactive group, the ethynyl group, maleimide group, When a cyanate group, an isocyanate group, or the like is introduced, it can be used as a known resin having these reactive groups, and these resins can be used in the various applications.

以下、本発明を実施例、参考例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, a reference example, and a comparative example, this invention is not limited to this.

実施例1
孟宗竹粉(60メッシュアンダー)15gと純水80gを、300mlオートクレーブに導入し、内容物を300rpmで攪拌しながら、8.0MPa、300℃で120分間処理して、孟宗竹を分解した。次いで、分解物をろ過し、純水で洗浄することで、水不溶部10.0gを分離した。この水不溶部をアセトン200mlに一晩浸漬し、ろ過することでアセトン可溶部を回収した。次いで、前記アセトン可溶部より、アセトンを留去後、乾燥することで、リグニン誘導体2.7gを得た。ここで得られたものについて、1H−NMRにより測定した結果から、7〜8ppmに芳香環、3.5〜4ppm付近にメトキシ基、0.5〜3ppmにかけてアルキル基のピークが見られ、リグニン誘導体であることを確認した。
Example 1
15 g of Soso bamboo powder (60 mesh under) and 80 g of pure water were introduced into a 300 ml autoclave, and the contents were treated at 8.0 MPa and 300 ° C. for 120 minutes with stirring at 300 rpm to decompose Soso bamboo. Subsequently, 10.0 g of water-insoluble parts were separated by filtering the decomposition product and washing with pure water. The water-insoluble part was immersed in 200 ml of acetone overnight and filtered to recover the acetone-soluble part. Subsequently, 2.7 g of lignin derivative was obtained by evaporating acetone from the acetone soluble part and then drying. About the thing obtained here, from the result measured by < 1 > H-NMR, an aromatic ring is seen in 7-8 ppm, a methoxy group is observed in the vicinity of 3.5-4 ppm, and a peak of an alkyl group is seen over 0.5-3 ppm. It was confirmed to be a derivative.

上記で得られたリグニン誘導体のOH当量は、以下の方法で決定した。共栓三角フラスコに、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gと、上記で得たリグニン誘導体1.0gを入れて溶解させた。この溶液を60℃で3時間保持した後、純水1mlを添加した。このようにして得られた溶液を、pH=10を終点として、0.1mol/LのNaOH水溶液で滴定したところ、リグニン誘導体のOH当量は118であった。
また、上記で得られたリグニン誘導体中のフェノール性OH基とアルコール性OH基のモル比(以下P/A比)は以下の方法で決定した。上記で得られたリグニン誘導体1.0gを、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gを用いて、前記リグニン誘導体をアセチル化した。この反応溶液より、未反応の無水酢酸およびピリジンを留去し、乾燥して得られたアセチル化したリグニン誘導体を用いて、1H−NMRにより測定した。アセチル基由来のプロトンの積分比(フェノール性OH基に結合したアセチル基由来:2.2〜2.6ppm、アルコール性OH基に結合したアセチル基由来:1.6〜2.2ppm)から、モル比を決定したところ、前記P/A比は9.0:1.0であった。
また、上記で得られたリグニン誘導体の分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=560、分子量分布(Mw/Mn)=1.18であった。
The OH equivalent of the lignin derivative obtained above was determined by the following method. In a stoppered Erlenmeyer flask, 4.0 g of a mixed solution of acetic anhydride / pyridine (1/3 volume ratio) and 1.0 g of the lignin derivative obtained above were dissolved. After maintaining this solution at 60 ° C. for 3 hours, 1 ml of pure water was added. When the solution thus obtained was titrated with a 0.1 mol / L NaOH aqueous solution with pH = 10 as an end point, the OH equivalent of the lignin derivative was 118.
The molar ratio of phenolic OH groups to alcoholic OH groups in the lignin derivative obtained above (hereinafter referred to as P / A ratio) was determined by the following method. 1.0 g of the lignin derivative obtained above was acetylated using 4.0 g of an acetic anhydride / pyridine (1/3 volume ratio) mixed solution. From this reaction solution, unreacted acetic anhydride and pyridine were distilled off, and measurement was performed by 1 H-NMR using an acetylated lignin derivative obtained by drying. From the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic OH groups: 2.2 to 2.6 ppm, derived from acetyl groups bonded to alcoholic OH groups: 1.6 to 2.2 ppm), mol When the ratio was determined, the P / A ratio was 9.0: 1.0.
In addition, the molecular weight of the lignin derivative obtained above was measured by gel permeation chromatography in terms of polystyrene using tetrahydrofuran as an eluent. As a result, number average molecular weight (Mn) = 560, molecular weight distribution (Mw / Mn) = 1. 18

実施例2
実施例1において、処理温度300℃を150℃に変更した他は、実施例1と同様に行い、リグニン誘導体3.5gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=122、P/A比=8.8:1.2、Mn=1800、Mw/Mn=1.82であった。
Example 2
In Example 1, except having changed process temperature 300 degreeC into 150 degreeC, it carried out similarly to Example 1 and obtained the lignin derivative 3.5g. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 122, P / A ratio = 8.8: 1.2, Mn = 1800, Mw / Mn = 1.82. there were.

実施例3
実施例1において、処理温度300℃を200℃に、処理圧力を8.0MPaから1.5MPaに変更した他は、実施例1と同様に行い、リグニン誘導体3.2gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=124、P/A比=8.9:1.1、Mn=1000、Mw/Mn=2.02であった。
Example 3
A lignin derivative 3.2 g was obtained in the same manner as in Example 1 except that the processing temperature 300 ° C. was changed to 200 ° C. and the processing pressure was changed from 8.0 MPa to 1.5 MPa. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 124, P / A ratio = 8.9: 1.1, Mn = 1000, Mw / Mn = 2.02. there were.

実施例4
実施例1において、処理温度300℃を400℃に、処理圧力を8.0MPaから25MPaに変更した他は、実施例1と同様に行い、リグニン誘導体2.1gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=131、P/A比=9.0:1.0、Mn=280、Mw/Mn=1.80であった。
Example 4
In Example 1, except having changed the process temperature from 300 degreeC to 400 degreeC and the process pressure from 8.0MPa to 25MPa, it carried out similarly to Example 1 and obtained 2.1g of lignin derivatives. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 131, P / A ratio = 9.0: 1.0, Mn = 280, Mw / Mn = 1.80. there were.

実施例5
実施例1において、処理時間120分を30分に変更した他は、実施例1と同様に行い、リグニン誘導体3.2gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=202、P/A比=8.9:1.1、Mn=620、Mw/Mn=1.35であった。
Example 5
In Example 1, except having changed processing time 120 minutes into 30 minutes, it carried out similarly to Example 1 and obtained 3.2 g of lignin derivatives. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 202, P / A ratio = 8.9: 1.1, Mn = 620, Mw / Mn = 1.35. there were.

実施例6
実施例1において、処理時間120分を60分に変更した他は、実施例1と同様に行い、リグニン誘導体3.6gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=171、P/A比=8.5:1.5、Mn=570、Mw/Mn=1.24であった。
Example 6
In Example 1, except having changed processing time 120 minutes into 60 minutes, it carried out similarly to Example 1 and obtained 3.6 g of lignin derivatives. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 171, P / A ratio = 8.5: 1.5, Mn = 570, Mw / Mn = 1.24. there were.

実施例7
攪拌装置、冷却器、滴下ロートの付いた100mlの三つ口フラスコに、実施例1と同様にして得たリグニン誘導体1.2gと、エピクロロヒドリン100.0gを導入し、100mmHgの圧力下で減圧還流しながら、20%濃度のNaOH水溶液2.0gを30分かけて滴下した。その後、90分間減圧還流状態を保持して反応混合物を得た。反応混合物は、不溶部を濾過して取り除き、エピクロロヒドリン可溶部を単離した。このエピクロロヒドリン可溶部からエピクロロヒドリンを留去し、乾燥することで、リグニン二次誘導体(エポキシ化リグニン)0.8gを得た。
上記で得られたリグニン二次誘導体の構造を1H−NMRで確認したところ、リグニン誘導体のピークに加えて2.7、2.9、3.3、3.5、3.9ppmにエポキシ基由来のピークが観測された。
リグニン二次誘導体の分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=600、Mw/Mn=1.67であった。
リグニン二次誘導体のエポキシ基導入率は、1H−NMRで測定のところ、30%であった。
Example 7
1.2 g of lignin derivative obtained in the same manner as in Example 1 and 100.0 g of epichlorohydrin were introduced into a 100 ml three-necked flask equipped with a stirrer, a cooler and a dropping funnel, and the pressure was 100 mmHg. Then, 2.0 g of a 20% strength aqueous NaOH solution was added dropwise over 30 minutes. Thereafter, the reaction mixture was obtained by maintaining the reduced-pressure reflux state for 90 minutes. In the reaction mixture, the insoluble part was removed by filtration, and the epichlorohydrin soluble part was isolated. Epichlorohydrin was distilled off from this epichlorohydrin soluble part and dried to obtain 0.8 g of a lignin secondary derivative (epoxidized lignin).
When the structure of the lignin secondary derivative obtained above was confirmed by 1 H-NMR, in addition to the peak of the lignin derivative, 2.7, 2.9, 3.3, 3.5, and 3.9 ppm had an epoxy group. Origin peaks were observed.
The molecular weight of the lignin secondary derivative was Mn = 600 and Mw / Mn = 1.67 as measured by gel permeation chromatography in terms of polystyrene.
The epoxy group introduction rate of the lignin secondary derivative was 30% as measured by 1 H-NMR.

実施例8
攪拌装置、冷却器、滴下ロートの付いた100mlの三つ口フラスコに、実施例1と同様にして得たリグニン誘導体1.2gとN,N’−ジメチルホルムアミド100mlを導入し、20%濃度のNaOH水溶液2.0gを添加し、混合した。この混合溶液を60℃に加熱、攪拌しながら、臭化アリル1.3gを30分間かけて滴下し、さらに60℃で90分間攪拌を続け、反応させた。反応混合物をメチルイソブチルケトン(MIBK)に溶解させた後、MIBK溶液を水で洗浄後、溶剤を留去乾燥することで、リグニン二次誘導体(アリル化リグニン)0.8gを得た。得られたリグニン二次誘導体を実施例7と同様にして評価のところ、Mn=610、官能基導入率は45%であった。
Example 8
1.2 g of lignin derivative obtained in the same manner as in Example 1 and 100 ml of N, N′-dimethylformamide were introduced into a 100 ml three-necked flask equipped with a stirrer, a cooler, and a dropping funnel. An aqueous NaOH solution (2.0 g) was added and mixed. While heating and stirring this mixed solution at 60 ° C., 1.3 g of allyl bromide was added dropwise over 30 minutes, and stirring was further continued at 60 ° C. for 90 minutes to cause a reaction. After the reaction mixture was dissolved in methyl isobutyl ketone (MIBK), the MIBK solution was washed with water, and the solvent was distilled off and dried to obtain 0.8 g of a lignin secondary derivative (allylated lignin). The obtained lignin secondary derivative was evaluated in the same manner as in Example 7. As a result, Mn = 610 and the functional group introduction rate was 45%.

参考例1
実施例1において、溶媒の純水をフェノールに変更した他は、実施例1と同様に行い、リグニン誘導体5.2gを得た。ここで得られたリグニン誘導体を、実施例1と同様にして評価のところ、OH当量=102、P/A比=9.0:1.0、Mn=680、Mw/Mn=1.53であった。
Reference example 1
In Example 1, except having changed the pure water of a solvent into phenol, it carried out similarly to Example 1 and obtained 5.2g of lignin derivatives. The lignin derivative obtained here was evaluated in the same manner as in Example 1. As a result, OH equivalent = 102, P / A ratio = 9.0: 1.0, Mn = 680, Mw / Mn = 1.53. there were.

比較例1
非特許文献1(K. Mikame, M. Funaoka, Polym. J., 38, 585−591, 2006J)を参考に、リグノフェノール誘導体を以下の方法で合成した。孟宗竹粉10gを、500ml容ビーカーにとり、p−クレゾールのアセトン溶液(リグニンC9単位当たり3モル倍量のフェノール誘導体を含む)を加え、ガラス棒で撹拌し、24時間静置させた。その後、アセトンを完全に留去して、p−クレゾール収着木粉を得た。この竹粉に対して、72wt%硫酸100mlを加え、30℃で、1時間激しく撹拌した後、混合物を、大過剰の水に投入、不溶解区分を回収、脱酸し、乾燥して、リグノフェノール誘導体を得た。このリグノフェノール誘導体を、実施例1と同様にして評価のところ、Mn=3600、OH当量=143g/eq、P/A比=5.8:4.2であった。
Comparative Example 1
With reference to Non-Patent Document 1 (K. Mikame, M. Funoka, Polym. J., 38, 585-591, 2006J), lignophenol derivatives were synthesized by the following method. 10 g of Soso bamboo powder was placed in a 500 ml beaker, and an acetone solution of p-cresol (containing 3 moles of phenol derivative per lignin C9 unit) was added, stirred with a glass rod, and allowed to stand for 24 hours. Thereafter, acetone was completely distilled off to obtain p-cresol sorption wood flour. To this bamboo powder, 100 ml of 72 wt% sulfuric acid was added and stirred vigorously at 30 ° C. for 1 hour, and then the mixture was poured into a large excess of water. Undissolved sections were collected, deoxidized, dried, and ligno. A phenol derivative was obtained. When this lignophenol derivative was evaluated in the same manner as in Example 1, Mn = 3600, OH equivalent = 143 g / eq, and P / A ratio = 5.8: 4.2.

比較例2
非特許文献2(Kadota, K. Hasegawa, M. Funaoka Journal of Network Polymer. Japan, 27, 118−125, 2006)を参考に、比較例1で得たリグノフェノール誘導体を以下の方法でエポキシ化した。攪拌装置、冷却器、滴下ロートの付いた100mlの三つ口フラスコに、比較例1で得たリグノフェノール誘導体1.4gとエピクロロヒドリン100.0gを導入し、100mmHgに減圧還流しながら、20%NaOH水溶液1.0gを30分かけて滴下した。その後、90分間減圧還流状態を保持した。反応混合物から不溶部を濾過して除き、エピクロロヒドリン可溶部からエピクロロヒドリンを留去、乾燥することで、エポキシ化リグノフェノール1.3gを得た。得られたリグニン二次誘導体を実施例7と同様にして評価のところ、Mn=2400、エポキシ基導入率は19%であった。
Comparative Example 2
The lignophenol derivative obtained in Comparative Example 1 was epoxidized by the following method with reference to Non-Patent Document 2 (Kadota, K. Hasegawa, M. Funoka Journal of Network Polymer. Japan, 27, 118-125, 2006). . Into a 100 ml three-necked flask equipped with a stirrer, a cooler and a dropping funnel, 1.4 g of the lignophenol derivative obtained in Comparative Example 1 and 100.0 g of epichlorohydrin were introduced and refluxed to 100 mmHg under reduced pressure. 1.0 g of 20% NaOH aqueous solution was added dropwise over 30 minutes. Thereafter, the vacuum reflux state was maintained for 90 minutes. The insoluble part was filtered off from the reaction mixture, and epichlorohydrin was distilled away from the epichlorohydrin soluble part and dried to obtain 1.3 g of epoxidized lignophenol. The obtained lignin secondary derivative was evaluated in the same manner as in Example 7. As a result, Mn = 2400 and the epoxy group introduction rate was 19%.

Claims (6)

バイオマスを分解して得られるリグニン誘導体の製造方法であって、
バイオマスを水存在下におき、これらを処理温度150〜400℃、処理圧力1.0〜40MPaの高温高圧下において処理時間480分以下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、を有し、
フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むリグニン誘導体を得ることを特徴とするリグニン誘導体の製造方法。
A method for producing a lignin derivative obtained by decomposing biomass,
A decomposition step in which biomass is placed in the presence of water, and these are decomposed at a treatment temperature of 150 to 400 ° C. and a treatment pressure of 1.0 to 40 MPa at a high temperature and high pressure for a treatment time of 480 minutes or less ;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step of distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step,
A method for producing a lignin derivative comprising obtaining a lignin derivative containing a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2.
前記分解処理は、前記バイオマスを撹拌しつつ行うものである請求項1に記載のリグニン誘導体の製造方法。 The method for producing a lignin derivative according to claim 1, wherein the decomposition treatment is performed while stirring the biomass . 前記リグニン誘導体は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の数平均分子量が300〜2,000である請求項1または2に記載のリグニン誘導体の製造方法。 The method for producing a lignin derivative according to claim 1 or 2 , wherein the lignin derivative has a polystyrene-equivalent number average molecular weight of 300 to 2,000 as measured by gel permeation chromatography. 前記バイオマスは、リグニンを含有する植物または植物由来の物質である請求項1ないしのいずれかに記載のリグニン誘導体の製造方法。 The method for producing a lignin derivative according to any one of claims 1 to 3 , wherein the biomass is a plant containing lignin or a plant-derived substance. バイオマスを分解して得られるリグニン誘導体に反応性基を導入してなるリグニン二次誘導体の製造方法であって、
バイオマスを水存在下におき、これらを処理温度150〜400℃、処理圧力1.0〜40MPaの高温高圧下において処理時間480分以下で分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、を有し、
フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むリグニン誘導体に前記反応性基を導入してなるリグニン二次誘導体を得ることを特徴とするリグニン二次誘導体の製造方法。
A method for producing a lignin secondary derivative obtained by introducing a reactive group into a lignin derivative obtained by decomposing biomass,
A decomposition step in which biomass is placed in the presence of water, and these are decomposed at a treatment temperature of 150 to 400 ° C. and a treatment pressure of 1.0 to 40 MPa at a high temperature and high pressure for a treatment time of 480 minutes or less ;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introduction step of mixing the treated product obtained by the distillation step and the compound containing the reactive group,
A lignin secondary derivative obtained by obtaining a lignin secondary derivative obtained by introducing the reactive group into a lignin derivative containing a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2. Manufacturing method.
前記反応性基は、エポキシ基である請求項に記載のリグニン二次誘導体の製造方法。 The method for producing a lignin secondary derivative according to claim 5 , wherein the reactive group is an epoxy group.
JP2010255936A 2010-11-16 2010-11-16 Method for producing lignin derivative and method for producing lignin secondary derivative Expired - Fee Related JP5338792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255936A JP5338792B2 (en) 2010-11-16 2010-11-16 Method for producing lignin derivative and method for producing lignin secondary derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255936A JP5338792B2 (en) 2010-11-16 2010-11-16 Method for producing lignin derivative and method for producing lignin secondary derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007252591A Division JP5256679B2 (en) 2007-09-27 2007-09-27 Lignin derivatives and their secondary derivatives

Publications (2)

Publication Number Publication Date
JP2011042806A JP2011042806A (en) 2011-03-03
JP5338792B2 true JP5338792B2 (en) 2013-11-13

Family

ID=43830436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255936A Expired - Fee Related JP5338792B2 (en) 2010-11-16 2010-11-16 Method for producing lignin derivative and method for producing lignin secondary derivative

Country Status (1)

Country Link
JP (1) JP5338792B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP2010007001A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Unsaturated polyester resin composition
EP3192825A4 (en) * 2014-09-12 2018-03-14 Sumitomo Bakelite Company, Ltd. Lignin derivative, lignin resin composition, rubber composition, and molding material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146281A (en) * 1990-10-05 1992-05-20 Kobe Steel Ltd Decomposition of lignin in wood and device therefor
JPH05308845A (en) * 1992-03-31 1993-11-22 Sogo Boukin Kenkyusho:Kk Production of substance usable for medium mushroom, or the like from bamboo leaf and culm
JP3992441B2 (en) * 2001-02-02 2007-10-17 独立行政法人科学技術振興機構 Method for producing compressed wood
JP4015035B2 (en) * 2003-02-06 2007-11-28 岐阜県 Water-absorbing material and method for producing the same
JP2007084769A (en) * 2005-09-26 2007-04-05 Nitta Ind Corp Material for binderless molding and molded article

Also Published As

Publication number Publication date
JP2011042806A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5256679B2 (en) Lignin derivatives and their secondary derivatives
JP5256813B2 (en) Lignin resin composition and molding material
Feghali et al. Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation
JP5348113B2 (en) Method for producing lignin resin composition
JP5338793B2 (en) Method for producing lignin derivative and method for producing lignin secondary derivative
CA2986196C (en) Method for activating and precipitating lignin
WO2014142289A1 (en) Method for manufacturing lignin degradation product
JP6750832B2 (en) Method for producing purified lignin, purified lignin, resin composition and molded article
Qiao et al. Preparation and characterization of a Phenol-formaldehyde resin Adhesive obtained From Bio-ethanol Production residue
JP5338792B2 (en) Method for producing lignin derivative and method for producing lignin secondary derivative
JP5396747B2 (en) Prepreg and substrate using the same
Anggoro Use of epoxidized waste cooking oil as bioplasticizer of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo
JP2013035969A (en) Method for producing lignin derivative, method for producing lignin second derivative, and method for producing natural organic compound
JP6217064B2 (en) Resin composition and resin molded body
JP2014196416A (en) Epoxidized lignin, method for producing the same, resin composition therefrom and molding material therefrom
JP5920069B2 (en) Lignin resin composition and lignin resin molding material
JP5397361B2 (en) Manufacturing method of prepreg
JP5641101B2 (en) Method for producing lignin resin composition
JP2013100563A (en) Lignin derivative and secondary derivative of the same
JP6163761B2 (en) Resin composition and resin molded body
JP6274478B2 (en) Method for producing lignin degradation product
JP5534059B2 (en) Lignin resin composition and molding material
JP2015048359A (en) Lignin resin composition, resin molded article, and molding material
JP2014133817A (en) Method for manufacturing a lignin derivative and lignin resin molded article
JP2018178024A (en) Method for producing lignin-derived epoxy resin, lignin-derived epoxy resin, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees