JP5397361B2 - Manufacturing method of prepreg - Google Patents
Manufacturing method of prepreg Download PDFInfo
- Publication number
- JP5397361B2 JP5397361B2 JP2010256671A JP2010256671A JP5397361B2 JP 5397361 B2 JP5397361 B2 JP 5397361B2 JP 2010256671 A JP2010256671 A JP 2010256671A JP 2010256671 A JP2010256671 A JP 2010256671A JP 5397361 B2 JP5397361 B2 JP 5397361B2
- Authority
- JP
- Japan
- Prior art keywords
- lignin
- mass
- crosslinking agent
- prepreg
- varnish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Epoxy Resins (AREA)
Description
本発明は、プリプレグの製造方法に関するものである。 The present invention relates to a method for producing a prepreg.
一般的な木質成分に、約30質量%含まれるリグニンは、セルロースに次いで豊富に生合成される物質である。このリグニンは一般に、3種類の異なるフェニルプロぺノール部分からなる三次元の架橋ポリマーであるが、その化学構造が極めて複雑であるため、有効な活用方法が確立されていない。しかしながら、化学構造として、芳香環と、フェノール性水酸基及びアルコール性水酸基を、豊富に含むことから、リグニンの有効利用法の一つとして樹脂原料が考えられる(例えば、特許文献1参照。)。前記樹脂原料として、リグニンに、エポキシ基等の架橋用官能基を導入する場合、リグニンにおける反応性の低いアルコール性水酸基が、前記官能基の導入を阻害する。舩岡らの報告では、フェノール性水酸基とアルコール性水酸基のモル比は、およそ0.8:1.0〜1.5:1.0程度である(例えば、非特許文献1参照。)。また、リグニンにエポキシ基等の架橋用官能基を導入する場合、アルコール性水酸基は反応性が劣るため、予めフェノール化合物を導入する必要があった。長谷川らはリグノフェノールのエポキシ化を検討しているが、フェノール性水酸基を増加させているにもかかわらず、エポキシ基の導入率が20%前後と低くなる問題があった(例えば、非特許文献2参照。)。そのため、これらのリグノフェノールやそのエポキシ化物は基板用途に適用した場合、プリプレグや基板の耐熱性が劣るという問題点があった。 Lignin, which is contained in about 30% by mass in a general wood component, is a substance that is abundantly biosynthesized after cellulose. This lignin is generally a three-dimensional crosslinked polymer composed of three different phenylpropenol moieties. However, since its chemical structure is extremely complex, an effective utilization method has not been established. However, since the chemical structure contains abundant aromatic rings, phenolic hydroxyl groups, and alcoholic hydroxyl groups, a resin raw material can be considered as one of effective utilization methods of lignin (see, for example, Patent Document 1). When a functional group for crosslinking such as an epoxy group is introduced into lignin as the resin raw material, an alcoholic hydroxyl group having low reactivity in lignin inhibits the introduction of the functional group. According to the report by Tsujioka et al., The molar ratio of the phenolic hydroxyl group to the alcoholic hydroxyl group is about 0.8: 1.0 to 1.5: 1.0 (see, for example, Non-Patent Document 1). In addition, when a functional group for crosslinking such as an epoxy group is introduced into lignin, the alcoholic hydroxyl group is inferior in reactivity, so that it is necessary to introduce a phenol compound in advance. Hasegawa et al. Are studying epoxidation of lignophenol, but there is a problem that the introduction rate of epoxy groups is reduced to around 20% even though phenolic hydroxyl groups are increased (for example, non-patent documents). 2). Therefore, when these lignophenols and epoxidized products thereof are applied to substrate applications, there is a problem that the heat resistance of the prepreg and the substrate is inferior.
本発明はかかる状況に鑑みなされたもので、従来のリグノフェノールを用いた場合に比べても、耐熱性に優れるプリプレグを確実に製造する方法を提供するものである。 This invention is made | formed in view of this condition, and provides the method of manufacturing reliably the prepreg which is excellent in heat resistance compared with the case where the conventional lignophenol is used.
本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、フェノール性水酸基又はそれ以外の反応性基を特定の割合で有するリグニン化合物及び架橋剤を含む樹脂組成物を用いることにより、優れた耐熱性と物性を実現できるプリプレグが得られることを見出すとともに、かかるプリプレグを確実に製造する方法を見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have used a resin composition containing a lignin compound having a phenolic hydroxyl group or other reactive group in a specific ratio and a crosslinking agent. In addition to finding out that a prepreg capable of realizing excellent heat resistance and physical properties can be obtained, a method for reliably producing such a prepreg has been found, and the present invention has been completed.
このような目的は、下記(1)〜(6)の本発明により達成される。
(1) リグニン化合物と架橋剤とを含む樹脂組成物を基材に含浸してなるプリプレグの製造方法であって、
バイオマスを水存在下におき、これらを高温高圧下で撹拌して分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、
前記架橋剤混合工程により得られた処理物を基材に含浸する含浸工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするプリプレグの製造方法。
(2) リグニン化合物のフェノール性水酸基に反応性基を導入してなるリグニン誘導体と架橋剤とを含む樹脂組成物を基材に含浸してなるプリプレグの製造方法であって、
バイオマスを水存在下におき、これらを高温高圧下で撹拌して分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、
前記反応性基導入工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、
前記架橋剤混合工程により得られた処理物を基材に含浸する含浸工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするプリプレグの製造方法。
(3) 前記反応性基は、エポキシ基である上記(2)に記載のプリプレグの製造方法。
(4) 前記樹脂組成物は、さらに充填剤を含む上記(1)ないし(3)のいずれかに記載のプリプレグの製造方法。
(5) 前記樹脂組成物は、リグニン化合物と架橋剤との合計量において、リグニン化合物の含有量が40〜95質量%、架橋剤の含有量が5〜60質量%である上記(1)ないし(4)のいずれかに記載のプリプレグの製造方法。
(6) 前記分解処理における温度は150〜400℃であり、前記分解処理における圧力は1.0〜40MPaである上記(1)ないし(5)のいずれかに記載のプリプレグの製造方法。
Such an object is achieved by the present inventions (1) to (6) below.
(1) A process for producing a prepreg the resin composition obtained by impregnating a substrate comprising a a lignin compound crosslinking agent,
A decomposition step in which biomass is placed in the presence of water, and these are stirred and decomposed under high temperature and pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A crosslinking agent mixing step of mixing the processed product obtained by the distillation step and a crosslinking agent;
An impregnation step of impregnating a base material with the processed product obtained by the crosslinking agent mixing step,
The said lignin compound is a manufacturing method of the prepreg characterized by including a phenolic hydroxyl group and alcoholic hydroxyl group by the molar ratio of 9: 1-8: 2.
(2) A process for producing a prepreg the resin composition obtained by impregnating a base material containing a lignin derivative obtained by introducing a reactive group into the phenolic hydroxyl group of lignin compound and a crosslinking agent,
A decomposition step in which biomass is placed in the presence of water, and these are stirred and decomposed under high temperature and pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introducing step of mixing the treated product obtained by the distillation step and the compound containing the reactive group;
A crosslinking agent mixing step of mixing the processed product obtained by the reactive group introduction step and a crosslinking agent;
An impregnation step of impregnating a base material with the processed product obtained by the crosslinking agent mixing step,
The said lignin compound is a manufacturing method of the prepreg characterized by including a phenolic hydroxyl group and alcoholic hydroxyl group by the molar ratio of 9: 1-8: 2.
(3) The manufacturing method of the prepreg as described in said (2) whose said reactive group is an epoxy group.
(4) The method for producing a prepreg according to any one of (1) to (3), wherein the resin composition further includes a filler.
(5) In the total amount of the lignin compound and the crosslinking agent, the resin composition has a lignin compound content of 40 to 95% by mass and a crosslinking agent content of 5 to 60% by mass (1) to (1) to (4) The manufacturing method of the prepreg in any one of.
(6) The method for producing a prepreg according to any one of (1) to (5), wherein a temperature in the decomposition treatment is 150 to 400 ° C., and a pressure in the decomposition treatment is 1.0 to 40 MPa.
本発明によれば耐熱性に優れるプリプレグを確実に製造する方法を提供することができる。また、本発明により得られたプリプレグを硬化した基板は、耐熱性に優れるものである。 ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing reliably the prepreg excellent in heat resistance can be provided. Moreover, the board | substrate which hardened | cured the prepreg obtained by this invention is excellent in heat resistance.
本発明は、リグニン化合物と架橋剤とを含む樹脂組成物を、基材に含浸させたプリプレグを製造する方法であって、バイオマスを分解して得られる、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するリグニン化合物(以下リグニン分解物と称することがある。)、および該リグニン化合物のフェノール性水酸基に反応性基を導入したリグニン誘導体から選ばれる1種または2種を用いることを特徴とするものである。このような本発明によれば、耐熱性に優れたプリプレグを確実に製造することができ、さらに該プリプレグを硬化した基板を提供できる。 The present invention is a method for producing a prepreg in which a base material is impregnated with a resin composition containing a lignin compound and a crosslinking agent, the molar ratio of phenolic hydroxyl groups and alcoholic hydroxyl groups obtained by decomposing biomass. Or a lignin compound having a ratio of 9: 1 to 8: 2 (hereinafter sometimes referred to as a lignin degradation product) and a lignin derivative in which a reactive group is introduced into the phenolic hydroxyl group of the lignin compound or Two types are used. According to the present invention, a prepreg excellent in heat resistance can be reliably produced, and a substrate obtained by curing the prepreg can be provided.
上記リグニン化合物におけるフェノール性水酸基を有する構造としては、例えば、フェノール構造、グアヤコール構造及び2,6−ジメトシキフェノール構造などを挙げることができる。 Examples of the structure having a phenolic hydroxyl group in the lignin compound include a phenol structure, a guaiacol structure, and a 2,6-dimethoxyphenol structure.
本発明に用いるリグニン化合物におけるリグニン分解物は、バイオマスを分解して得られるものであって、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものである。
また、該リグニン化合物にフェノール性水酸基以外の反応性基を有するリグニン誘導体は、後述するエポキシ基、ビニル基、エチニル基、マレイミド基、シアネート基及びイソシアネート基等の反応性基を、前記フェノール性水酸基に導入したものである。
前記リグニン誘導体を含めたリグニン化合物は、架橋部位を多数有するため、プリプレグに用いた場合、耐熱性などの特性に優れたものとなる。
本発明に用いるリグニン化合物としては、上記の中でも、反応性や取扱いのし易さの上で、バイオマスを分解して得られるリグニン分解物が好ましい。
The lignin degradation product in the lignin compound used in the present invention is obtained by decomposing biomass, and has a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2.
Further, the lignin derivative having a reactive group other than the phenolic hydroxyl group in the lignin compound includes a reactive group such as an epoxy group, a vinyl group, an ethynyl group, a maleimide group, a cyanate group and an isocyanate group, which will be described later. Was introduced.
Since the lignin compound including the lignin derivative has a number of cross-linked sites, when it is used for a prepreg, it has excellent properties such as heat resistance.
Among the above, as the lignin compound used in the present invention, a lignin degradation product obtained by decomposing biomass is preferable in terms of reactivity and ease of handling.
前記バイオマスとしては、リグニンを含有する植物及び前記植物の加工品などを挙げることができる。前記植物としては、例えば、ブナ、白樺及びナラなどの広葉樹、杉、松及び桧などの針葉樹、竹及び稲わらなどのイネ科植物などが挙げられる。本発明に用いるバイオマスの形状としては、ブロック、チップ、粉末等が挙げられる。 Examples of the biomass include plants containing lignin and processed products of the plants. Examples of the plant include broad-leaved trees such as beech, birch and oak, conifers such as cedar, pine, and oak, and gramineous plants such as bamboo and rice straw. Examples of the shape of biomass used in the present invention include blocks, chips, and powders.
本発明に用いるリグニン化合物におけるリグニン分解物は、前記バイオマスを、溶媒存在下、高温高圧処理により分解することにより得ることができる。
リグニン化合物の製造方法の具体例としては、まず、前記バイオマスを一定の大きさに調整し、次いで、これを、溶媒、任意に触媒、と共に、撹拌機及び加熱装置付の耐圧容器に入れて、加熱及び加圧をしながら、撹拌して、前記バイオマスの分解処理を行う(分解工程)。次いで、耐圧容器の内容物をろ過して、ろ液を除去し、水不溶分を水で洗浄し、分離する。次いで、前記水不溶分を、リグニン化合物が可溶な溶媒、例えば、アセトンなどに浸漬して(浸漬工程)、リグニン化合物をアセトンに抽出して、前記アセトンを留去すること(留去工程)により、リグニン分解物としてリグニン化合物を得ることができる。
The lignin degradation product in the lignin compound used in the present invention can be obtained by decomposing the biomass by high-temperature and high-pressure treatment in the presence of a solvent.
As a specific example of a method for producing a lignin compound, first, the biomass is adjusted to a certain size, and then, together with a solvent, optionally a catalyst, put in a pressure vessel with a stirrer and a heating device, The biomass is decomposed while being heated and pressurized (decomposition step). Next, the content of the pressure vessel is filtered to remove the filtrate, and the water-insoluble matter is washed with water and separated. Next, the water-insoluble matter is immersed in a solvent in which the lignin compound is soluble (for example, acetone) (immersion step), the lignin compound is extracted into acetone, and the acetone is distilled off (distillation step). Thus, a lignin compound can be obtained as a lignin degradation product.
前記分解処理におけるバイオマスの大きさとしては、100μm〜1cm程度が好ましく、200μm〜500μmがより好ましい。このときバイオマスの形状としては、上記のように、ブロック状、チップ状、粉末状等のいずれであってよい。 As a magnitude | size of the biomass in the said decomposition | disassembly process, about 100 micrometers-1 cm are preferable, and 200 micrometers-500 micrometers are more preferable. At this time, the shape of the biomass may be any of a block shape, a chip shape, a powder shape and the like as described above.
前記分解処理における溶媒としては、水、メタノール及びエタノールなどのアルコール類、フェノール及びクレゾールなどのフェノール類、ケトン類、エーテル類などを挙げることができ、特に水を使用することが好ましい。溶媒の使用量としては、バイオマスに対して多量に用いるほど好ましいが、バイオマス質量の2質量倍〜10質量倍程度が好ましく、3質量倍〜5質量倍程度がより好ましい。また、バイオマスの分解を促進する上で、触媒として炭酸ナトリウムなどの無機塩基類を添加してもよい。 Examples of the solvent in the decomposition treatment include water, alcohols such as methanol and ethanol, phenols such as phenol and cresol, ketones, ethers, and the like, and it is particularly preferable to use water. As a usage-amount of a solvent, although it is so preferable that it is used in large quantities with respect to biomass, about 2 mass times-10 mass times of biomass mass are preferable, and about 3 mass times-5 mass times are more preferable. Moreover, when accelerating | stimulating decomposition | disassembly of biomass, you may add inorganic bases, such as sodium carbonate, as a catalyst.
前記バイオマスを高温高圧で処理する条件としては、処理温度として通常は150℃〜400℃が好ましく、さらに好ましくは200℃〜380℃である。前記処理温度は、前記範囲外でも使用できるが、リグニン化合物の分子量は処理温度で制御可能であり、高温で処理すると低分子量体に、低温で処理すると高分子量体になる傾向がある。 As conditions for processing the biomass at high temperature and high pressure, the processing temperature is usually preferably from 150 ° C to 400 ° C, more preferably from 200 ° C to 380 ° C. The treatment temperature can be used outside the above range, but the molecular weight of the lignin compound can be controlled by the treatment temperature, and tends to be a low molecular weight body when treated at a high temperature and a high molecular weight body when treated at a low temperature.
上記処理における処理時間としては、通常は0分〜480分が好ましく、さらに好ましくは30分〜120分である。前記処理時間は、前記範囲外でも使用できるが、リグニン化合物のフェノール性水酸基当量は処理時間で制御可能であり、短時間処理でフェノール性水酸基当量は大きくなり、長時間処理では小さくなる傾向となる。なお、上記処理時間は耐圧容器内の温度が所定の温度に達したときから、冷却を始める(加熱を終了する)までの時間である。
前記高圧処理における圧力としては1.0MPa〜40MPaが好ましく、さらに好ましくは1.5MPa〜25MPaである。前記圧力は、前記範囲外でも使用できるが、より高圧で処理することで、長時間処理を施した場合と同等の効果が得られる。
As processing time in the said process, 0 minute-480 minutes are preferable normally, More preferably, it is 30 minutes-120 minutes. Although the treatment time can be used outside the above range, the phenolic hydroxyl group equivalent of the lignin compound can be controlled by the treatment time, the phenolic hydroxyl group equivalent tends to increase with short-time treatment, and tends to decrease with long-time treatment. . The processing time is a time from when the temperature in the pressure vessel reaches a predetermined temperature until cooling is started (heating is finished).
The pressure in the high-pressure treatment is preferably 1.0 MPa to 40 MPa, more preferably 1.5 MPa to 25 MPa. The pressure can be used even outside the above range, but by treating at a higher pressure, an effect equivalent to that obtained when the treatment is performed for a long time can be obtained.
上記範囲内の条件でバイオマスを処理することで、300〜2,000程度と好ましい範囲の数平均分子量となると共に、さらには、本発明におけるリグニン化合物として、好ましいフェノール性水酸基当量である100〜200程度のフェノール性水酸基当量に制御しやすくなる。
また、前記製造方法の具体例においては、フェノール性水酸基当量と分子量は独立に制御が可能であり、例えば、処理温度にかかわらず、短時間処理によりフェノール性水酸基当量(主にフェノール性水酸基)が200前後と大きいものが得られ、長時間処理により100前後で飽和して小さなフェノール性水酸基当量が得られる。
By treating the biomass under the conditions within the above range, the number average molecular weight is in the preferred range of about 300 to 2,000, and furthermore, it is a preferred phenolic hydroxyl group equivalent of 100 to 200 as the lignin compound in the present invention. It becomes easy to control to the phenolic hydroxyl group equivalent of a grade.
In the specific example of the production method, the phenolic hydroxyl group equivalent and the molecular weight can be controlled independently. For example, the phenolic hydroxyl group equivalent (mainly phenolic hydroxyl group) is obtained by short-time treatment regardless of the treatment temperature. A large product of about 200 is obtained, and a small phenolic hydroxyl group equivalent is obtained by saturation at about 100 by long-time treatment.
上記に例示した製造方法などで得られたリグニン分解物は、フェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するものであることを特徴とする。 The lignin degradation product obtained by the production method exemplified above has a phenolic hydroxyl group and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2.
前記リグニン分解物は、ゲル浸透クロマトグラフィーにより測定したポリスチレン換算の数平均分子量が300〜2,000であることが好ましい。前記範囲外でも使用できるが、300より小さいと、リグニン分解物として、単官能のモノマーやオリゴマーが存在し、硬化物とした場合に架橋密度が低下し、耐熱性に劣ることになる場合があり、2,000より大きいと、リグニン分解物の軟化点が高くなりすぎて、成形しにくくなる問題が発生する場合がある。数平均分子量については、リグニン誘導体においても同様である。 The lignin degradation product preferably has a polystyrene-equivalent number average molecular weight of 300 to 2,000 as measured by gel permeation chromatography. Although it can be used outside the above range, if it is smaller than 300, monofunctional monomers and oligomers exist as lignin decomposition products, and when cured, the crosslink density may decrease and heat resistance may be poor. If it is larger than 2,000, the softening point of the lignin decomposition product becomes too high, which may cause the problem of difficulty in molding. The same applies to the number average molecular weight of lignin derivatives.
また、本発明に用いるリグニン化合物におけるリグニン誘導体は、前記リグニン分解物にフェノール性水酸基以外の反応性基を導入したものであり、樹脂原料として有用な反応性を有し、高い架橋密度を得ることができる。 Moreover, the lignin derivative in the lignin compound used in the present invention is obtained by introducing a reactive group other than a phenolic hydroxyl group into the lignin decomposition product, has a useful reactivity as a resin raw material, and obtains a high crosslinking density. Can do.
前記リグニン誘導体が有する反応性基は、反応性を有する基であり、その反応性基が自己反応性を有し、2個以上の同じ反応性基が互いに反応し得るもの、または他の官能基との間で反応し得るものであればよく、例えば、エポキシ基、ビニル基及びエチニル基などの炭素−炭素不飽和結合基、マレイミド基、シアネート基、イソシアネート基などを挙げることができるが、これらに限定されるものではない。これらの中でも、硬化物の寸法安定性や耐水性、耐薬品性および電気絶縁性が高いことからエポキシ基が好ましい。 The reactive group of the lignin derivative is a reactive group, the reactive group is self-reactive, and two or more identical reactive groups can react with each other, or other functional group As long as they can react with each other, and examples thereof include carbon-carbon unsaturated bond groups such as epoxy groups, vinyl groups, and ethynyl groups, maleimide groups, cyanate groups, and isocyanate groups. It is not limited to. Among these, an epoxy group is preferable because the cured product has high dimensional stability, water resistance, chemical resistance, and electrical insulation.
前記リグニン誘導体の製造方法は、当業者において、一般的に、フェノール性水酸基に、反応性基を、共有結合を介して結合させる公知の方法を用いることができ、適宜、反応性基の導入方法は選択することができる。具体例としては、上記で得られたリグニン分解物のフェノール性水酸基に、前記反応性基を導入して得ることができる。 As a method for producing the lignin derivative, a person skilled in the art can generally use a known method in which a reactive group is bonded to a phenolic hydroxyl group via a covalent bond. Can be selected. As a specific example, it can be obtained by introducing the reactive group into the phenolic hydroxyl group of the lignin degradation product obtained above.
以下に、反応性基の導入方法(反応性基導入工程)の具体例を示すが、これらに限定されるものではない。
反応性基としてエポキシ基を導入する場合、例えば、上記で得たリグニン分解物を、エピクロロヒドリンに溶解し、減圧還流下、水酸化ナトリウムなどの塩基触媒を用いて反応させることで得られる。
Although the specific example of the introduction method (reactive group introduction | transduction process) of a reactive group is shown below, it is not limited to these.
When an epoxy group is introduced as a reactive group, for example, the lignin decomposition product obtained above is obtained by dissolving in epichlorohydrin and reacting with a base catalyst such as sodium hydroxide under reflux under reduced pressure. .
また、反応性基としてビニル基を導入する場合、例えば、ハロゲン化アリル及びハロゲン化ビニルベンジル等のビニル基を含むハロゲン化合物と、上記で得たリグニン分解物を、溶剤に溶解し、加熱して、水酸化ナトリウムなどの塩基触媒を用いて反応させることで得られる。 When a vinyl group is introduced as a reactive group, for example, a halogen compound containing a vinyl group such as allyl halide and vinylbenzyl halide and the lignin decomposition product obtained above are dissolved in a solvent and heated. It can be obtained by reacting using a base catalyst such as sodium hydroxide.
本発明に用いる架橋剤としては、リグニン化合物のフェノール性水酸基あるいはフェノール核に反応しうるものや反応性基を有するリグニン化合物(リグニン誘導体)の反応性基と反応する官能基を有するものであれば、特に限定されるものではない。 As the crosslinking agent used in the present invention, any one capable of reacting with the phenolic hydroxyl group or phenol nucleus of the lignin compound or having a functional group that reacts with the reactive group of the lignin compound (lignin derivative) having a reactive group. There is no particular limitation.
リグニン化合物としてリグニン分解物を用いる場合の架橋剤としては、リグニン化合物に含まれるフェノール性水酸基に対しては、オルソクレゾールノボラックエポキシ樹脂及びビスフェノールA型エポキシ樹脂等のエポキシ樹脂;ヘキサメチレンジイソシアネート及びトルエンジイソシアネート等のウレタン樹脂;ホルムアルデヒド、アセトアルデヒド及びパラホルムアルデヒド等のアルデヒド類;ポリオキシメチレンなどのアルデヒド源;ヘキサメチレンテトラミン;レゾール型フェノール樹脂;等の通常のフェノール樹脂に用いる公知の架橋剤や、リグニン分解物に含まれる芳香環に対しては、親電子置換反応して架橋し得る化合物などを挙げることができる。 As a crosslinking agent in the case of using a lignin degradation product as a lignin compound, for phenolic hydroxyl groups contained in the lignin compound, epoxy resins such as orthocresol novolac epoxy resin and bisphenol A type epoxy resin; hexamethylene diisocyanate and toluene diisocyanate Urethane resins such as formaldehyde, acetaldehyde and paraformaldehyde; aldehyde sources such as polyoxymethylene; hexamethylenetetramine; resol type phenol resins; Examples of the aromatic ring contained in the compound include compounds capable of crosslinking by electrophilic substitution reaction.
前記レゾール型フェノール樹脂は、特に限定されないが、油変性レゾール型フェノール樹脂を含んでも良い。油変性レゾール型フェノール樹脂としては、例えば桐油、アマニ油、紅花油及びクルミ油等の乾性油により変性された乾性油変性レゾール型フェノール樹脂;大豆油、綿実油及び胡麻油等の半乾性により変性された半乾性油変性レゾール型フェノール樹脂等が挙げられる。これらの中でも、プリプレグや基板における打ち抜き性を考慮する場合、桐油変性レゾール型フェノール樹脂が好ましい。 The resol type phenol resin is not particularly limited, but may include an oil-modified resol type phenol resin. Examples of the oil-modified resol type phenol resin include a dry oil-modified resol type phenol resin modified with a drying oil such as paulownia oil, linseed oil, safflower oil, and walnut oil; Examples include semi-drying oil-modified resol type phenol resin. Among these, when considering punchability in a prepreg or a substrate, tung oil-modified resol type phenol resin is preferable.
また、反応性基を有するリグニン化合物(リグニン誘導体)を用いる場合の架橋剤としては、該反応性基と反応する架橋剤又は自己架橋性の反応性基を有する架橋剤であれば良い。 Moreover, as a crosslinking agent in the case of using the lignin compound (lignin derivative) which has a reactive group, what is necessary is just a crosslinking agent which reacts with this reactive group, or has a self-crosslinking reactive group.
リグニン誘導体として、エポキシ基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なエポキシ樹脂用硬化剤であればよく、例えば、ノボラック型フェノール樹脂などのフェノール樹脂;フェノール性水酸基を有するリグニン化合物;ジエチレントリアミン、m−キシリレンジアミン及びN−アミノエチルピペラジン等のアミン系化合物;無水フタル酸、無水コハク酸及び無水マレイン酸等の酸無水物;ジシアンジアミド、グアニジン類、2−メチルイミダゾール;2−エチル−4−メチルイミダゾール等のエポキシ樹脂のアニオン系硬化剤などが挙げられる。エポキシ基の自己架橋においては、例えば、2−メチルイミダゾール及び2−エチル−4−メチルイミダゾール等のイミダゾール類;1,8−ジアザビシクロ(5,4,0)ウンデセン−7などのアニオン系重合開始剤;トリフェニルスルホニウムヘキサフルオロホスフェート及びジフェニルスルホニウムテトラフルオロボレート等のスルホニウム塩、並びにフェニルジアゾニウムヘキサフルオロポスフェート及びフェニルジアゾニウムテトラフルオロボレート等のジアゾニウム塩などのカチオン系重合開始剤;などが挙げられる。これらの中でも、反応性などの上で、リグニン化合物が好ましい。 As a crosslinking agent in the case of using a lignin compound having an epoxy group as a lignin derivative, a general curing agent for an epoxy resin may be used. For example, a phenol resin such as a novolac-type phenol resin; a lignin having a phenolic hydroxyl group Compounds; amine compounds such as diethylenetriamine, m-xylylenediamine and N-aminoethylpiperazine; acid anhydrides such as phthalic anhydride, succinic anhydride and maleic anhydride; dicyandiamide, guanidines, 2-methylimidazole; An anionic curing agent of epoxy resin such as ethyl-4-methylimidazole can be used. In the self-crosslinking of the epoxy group, for example, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole; anionic polymerization initiators such as 1,8-diazabicyclo (5,4,0) undecene-7 And cationic polymerization initiators such as sulfonium salts such as triphenylsulfonium hexafluorophosphate and diphenylsulfonium tetrafluoroborate, and diazonium salts such as phenyldiazonium hexafluorophosphate and phenyldiazonium tetrafluoroborate. Among these, a lignin compound is preferable in terms of reactivity.
リグニン誘導体として、イソシアネート基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なイソシアネート樹脂用硬化剤であればよく、例えば、フェノール樹脂、リグニン分解物、ポリビニルアルコール及びポリアミン系化合物などを挙げることができる。 As a crosslinking agent in the case of using a lignin compound having an isocyanate group as a lignin derivative, a general curing agent for isocyanate resin may be used, for example, phenol resin, lignin decomposition product, polyvinyl alcohol, polyamine compound, and the like. Can be mentioned.
リグニン誘導体として、ビニル基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なビニル基含有化合物の重合開始剤であればよく、例えば、ブチルリチウム及びナトリウムエトキシド等のアニオン重合開始剤;アゾビスイソブチロニトリル(AIBN)及び過酸化ベンゾイル(BPO)等のラジカル重合開始剤などを挙げることができる。 As a crosslinking agent when a lignin compound having a vinyl group is used as the lignin derivative, a general vinyl group-containing compound polymerization initiator may be used. For example, anionic polymerization initiators such as butyl lithium and sodium ethoxide And radical polymerization initiators such as azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO).
リグニン誘導体として、エチニル基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なエチニル基含有化合物の重合触媒であればよく、例えば、5塩化モリブデン、5塩化タングステン及びノルボルナジエンロジウムクロリドダイマーなどを挙げることができる。 As a lignin derivative, a crosslinking agent in the case of using a lignin compound having an ethynyl group may be a polymerization catalyst of a general ethynyl group-containing compound, such as molybdenum pentachloride, tungsten pentachloride and norbornadiene rhodium chloride dimer. Can be mentioned.
リグニン誘導体として、マレイミド基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なマレイミド基含有化合物の重合開始剤であればよく、例えば、BPO等のパーオキサイド及び前記アニオン系重合開始剤などを挙げることができる。 As a lignin derivative, the crosslinking agent in the case of using a lignin compound having a maleimide group may be a general polymerization initiator of a maleimide group-containing compound, such as a peroxide such as BPO and the anionic polymerization initiator. And so on.
リグニン誘導体として、シアネート基を有するリグニン化合物を用いた場合の架橋剤としては、一般的なシアネート基含有化合物の重合触媒であればよく、例えば、ナフテン酸コバルトなどの金属触媒などを挙げることができる。 As the lignin derivative, the crosslinking agent in the case of using a lignin compound having a cyanate group may be a general polymerization catalyst of a cyanate group-containing compound, and examples thereof include metal catalysts such as cobalt naphthenate. .
本発明に用いる樹脂組成物は、リグニン化合物と架橋剤を含むものであり、これらの成分を混合して得られる(架橋剤混合工程)。また、リグニン化合物は、バイオマスを分解して得られるフェノール性水酸基とアルコール性水酸基をモル比として9:1〜8:2の比率で有するリグニン化合物、及び該リグニン化合物のフェノール性水酸基に反応性基を導入したリグニン誘導体から選ばれる1種又は2種を用いることができ、上記リグニン化合物及びリグニン誘導体においては、それぞれの1種又は2種以上を用いることができる。 The resin composition used in the present invention contains a lignin compound and a crosslinking agent, and is obtained by mixing these components (crosslinking agent mixing step). Moreover, a lignin compound has a phenolic hydroxyl group obtained by decomposing biomass and an alcoholic hydroxyl group in a molar ratio of 9: 1 to 8: 2, and a reactive group to the phenolic hydroxyl group of the lignin compound. 1 type or 2 types chosen from the lignin derivative which introduce | transduced can be used, and each 1 type, or 2 or more types can be used in the said lignin compound and lignin derivative.
樹脂組成物におけるリグニン化合物と架橋剤の含有量としては、リグニン化合物と架橋剤の合計量において、リグニン化合物を40〜95質量%用いることが好ましく、50〜90質量%用いることがより好ましい。また架橋剤は5〜60質量%用いることが好ましく、10〜50質量%用いることがより好ましい。 As content of the lignin compound and a crosslinking agent in a resin composition, it is preferable to use 40-95 mass% of lignin compounds in the total amount of a lignin compound and a crosslinking agent, and it is more preferable to use 50-90 mass%. Moreover, it is preferable to use 5-60 mass% of crosslinking agents, and it is more preferable to use 10-50 mass%.
本発明に用いる樹脂組成物は、リグニン化合物と架橋剤の他に、必要に応じて任意に充填材を含んでいても良い。前記充填材としては、例えば、溶融シリカ、結晶シリカ、クレー、アルミナ、マイカ及びガラス繊維などの無機充填材、木粉、パルプ、粉砕布及び熱硬化性樹脂硬化物粉などの有機充填材等が挙げられ、これらの1種類以上を使用することができるが、これらに限定されるものではない。これらの中でも、無機充填剤は、難燃性を改善するのに効果がある。 The resin composition used in the present invention may optionally contain a filler in addition to the lignin compound and the crosslinking agent. Examples of the filler include inorganic fillers such as fused silica, crystalline silica, clay, alumina, mica and glass fiber, and organic fillers such as wood powder, pulp, pulverized cloth, and thermosetting resin cured powder. One or more of these can be used, but is not limited thereto. Among these, inorganic fillers are effective in improving flame retardancy.
上記リグニン樹脂組成物における充填材の含有量としては、リグニン化合物と架橋剤の合計量100質量部に対して10〜900質量部が好ましく、20〜500質量部がより好ましい。 As content of the filler in the said lignin resin composition, 10-900 mass parts is preferable with respect to 100 mass parts of total amounts of a lignin compound and a crosslinking agent, and 20-500 mass parts is more preferable.
上記の成分に加えて、本発明の目的を阻害しない範囲で、任意に、着色剤、酸化防止剤、還元剤、紫外線不透過剤等の各種添加剤を加えることができる。これらは、1種類を用いても2種類以上を併用してもよい。 In addition to the above components, various additives such as a colorant, an antioxidant, a reducing agent, and an ultraviolet opaque agent can be optionally added within the range not impairing the object of the present invention. These may be used alone or in combination of two or more.
また、プリプレグの製造において、樹脂組成物をワニスとして用いる場合に有機溶剤を使用することができる。有機溶剤は、リグニン化合物および架橋剤と相溶するものであれば、特に限定されない。具体的には、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセルソルブ、プロピレングリコールメチルエーテルおよびそのアセテート、トルエン、キシレン、ジメチルホルムアミドなどが挙げられ、これらは1種あるいは2種以上を適宜混合して使用することも可能である。
上記ワニスにおいて有機溶剤の使用量としては、リグニン樹脂組成物100質量部に対して、20〜400質量部が好ましく、50〜200質量部がより好ましい。
In the production of prepreg, an organic solvent can be used when the resin composition is used as a varnish. The organic solvent is not particularly limited as long as it is compatible with the lignin compound and the crosslinking agent. Specific examples include methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, propylene glycol methyl ether and its acetate, toluene, xylene, dimethylformamide, and the like. These may be used alone or in combination of two or more. It is also possible to do.
In the varnish, the amount of the organic solvent used is preferably 20 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the lignin resin composition.
本発明により得られるプリプレグは、上記樹脂組成物を、基材に含浸してなるものである。 The prepreg obtained by the present invention is obtained by impregnating a base material with the above resin composition.
本発明に用いる基材としては、ガラス織布、ガラス不繊布等のガラス繊維基材、クラフト紙、リンター紙等の紙材、アラミド繊維、ポリエステル繊維、アクリル繊維等の合成繊維等の織布や不織布からなる有機合成繊維基材、金属繊維、カーボン繊維、鉱物繊維等の織布や不織布からなる無機繊維基材、これらのマット類等が挙げられ、これらの基材の原料繊維は単独又は混合して使用してもよい。 As the base material used in the present invention, glass fiber base materials such as glass woven fabric and glass non-woven fabric, paper materials such as kraft paper and linter paper, woven fabric such as synthetic fibers such as aramid fiber, polyester fiber and acrylic fiber, Examples include organic synthetic fiber base materials composed of non-woven fabrics, woven fabrics such as metal fibers, carbon fibers and mineral fibers, inorganic fiber base materials composed of non-woven fabrics, and mats thereof. May be used.
本発明により得られるプリプレグは、上記基材に、上記樹脂組成物を含浸させた(含浸工程)後、乾燥して製造することができる。このとき、樹脂組成物は通常、有機溶媒を用いてワニスとして用いることができるが、粉末状としても用いても良い。 The prepreg obtained by the present invention can be produced by drying the impregnated substrate after impregnating the resin composition (impregnation step). At this time, the resin composition can be usually used as a varnish using an organic solvent, but may also be used as a powder.
樹脂組成物を基材に含浸させる方法は通常の方法を使用することができる。例えば、基材を樹脂ワニスに浸漬して含浸させる方法、各種コーターにより塗布する方法、スプレーによる吹き付け法などが挙げられる。
乾燥して得られたプリプレグにおいて、ワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。
A usual method can be used as a method of impregnating the substrate with the resin composition. For example, a method of immersing the substrate in a resin varnish and impregnating, a method of applying with various coaters, a spraying method by spraying and the like can be mentioned.
In the prepreg obtained by drying, the organic solvent used for the varnish is preferably volatilized by 80% by mass or more.
プリプレグを製造する乾燥条件は、通常、乾燥温度80〜180℃程度で、乾燥時間はワニスのゲル化時間を考慮して、目的のプリプレグ特性に合わせて自由に選択することができる。
上記プリプレグの製造条件等を説明したが、これらに限定されない。
The drying conditions for producing the prepreg are usually a drying temperature of about 80 to 180 ° C., and the drying time can be freely selected according to the desired prepreg characteristics in consideration of the gelation time of the varnish.
Although the manufacturing conditions of the said prepreg were demonstrated, it is not limited to these.
本発明によれば、樹脂含浸率はプリプレグの全質量に対するリグニン化合物と架橋剤の合計質量の割合で表され、30〜80質量%であることが好ましく、40〜70質量%であることがより好ましい。樹脂分は、目的のプリプレグの性能、及びプリプレグを積層して得られる基板における絶縁層の厚さに合わせて適宜決定することができる。また、ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が35〜70質量%になるようにされることが好ましい。 According to the present invention, the resin impregnation rate is represented by the ratio of the total mass of the lignin compound and the crosslinking agent with respect to the total mass of the prepreg, and is preferably 30 to 80% by mass, more preferably 40 to 70% by mass. preferable. The resin content can be appropriately determined according to the performance of the target prepreg and the thickness of the insulating layer in the substrate obtained by laminating the prepreg. Moreover, it is preferable that the amount of impregnations of a varnish shall be 35-70 mass% of varnish solid content with respect to the total amount of a varnish solid content and a base material.
本発明により得られる基板は、上記プリプレグを、1枚又は2枚以上を積層して得られる積層体を硬化させたものである。 The substrate obtained by the present invention is obtained by curing a laminate obtained by laminating one or two or more of the prepregs.
本発明により得られる基板の製造方法は次の通りである。
本発明におけるプリプレグ又はそれを複数枚積層した積層体に、通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱しながら加圧して成形することにより、単層の基板及び上記積層体より得られる積層板である基板を製造することができる。
また、上記製造工程において、必要に応じて、上記プリプレグ又は積層体の片面又は両面に金属箔を積層して、加熱加圧して成形することにより金属張積層板を製造することができる。金属箔を使用して金属張積層板とすることにより、金属層に回路加工を施してプリント配線回路板とすることができる。
The manufacturing method of the board | substrate obtained by this invention is as follows.
The prepreg in the present invention or a laminate obtained by laminating a plurality of the prepregs is usually at a temperature in the range of 150 to 280 ° C, preferably in the range of 180 ° C to 250 ° C, and usually in the range of 0.5 to 20 MPa, preferably in the range of 1 to 8 MPa. Thus, by pressing and molding while heating, a single-layer substrate and a substrate that is a laminate obtained from the laminate can be produced.
Moreover, in the said manufacturing process, a metal-clad laminated board can be manufactured by laminating | stacking metal foil on the one surface or both surfaces of the said prepreg or a laminated body as needed, and heat-pressing and shape | molding it. By using a metal foil as a metal-clad laminate, circuit processing can be applied to the metal layer to obtain a printed circuit board.
本発明に用いられる金属箔は、銅箔やアルミニウム箔が一般的に用いられるが、通常積層板に用いられている5〜200μmのものを使用できる。また、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔或いはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。 As the metal foil used in the present invention, a copper foil or an aluminum foil is generally used. However, a metal foil having a thickness of 5 to 200 μm which is usually used for a laminate can be used. Also, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a 0.5-15 μm copper layer and a 10-300 μm copper layer are provided on both sides. Alternatively, a three-layer composite foil or a two-layer composite foil in which aluminum and a copper foil are combined can be used.
前記積層板は、例えば、プリント配線板用、マザーボード用、更には半導体チップを搭載した半導体プラスチックパッケージ用等に好適に使用される。 The laminated board is preferably used for, for example, a printed wiring board, a mother board, and a semiconductor plastic package on which a semiconductor chip is mounted.
以下、本発明について実施例を挙げて詳細に説明するが、本発明はなんらこれらに限定されない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these at all.
実施例1
[リグニン分解物ワニスの製造]
孟宗竹粉(60メッシュアンダー)15gと純水80gを、300mlオートクレーブに導入し、内容物を300rpmで攪拌しながら、1.6MPa、200℃で120分間処理して、孟宗竹を分解した。次いで、分解物をろ過し、純水で洗浄することで、水不溶部10.0gを分離した。この水不溶部をアセトン200mlに8時間浸漬した後、ろ過することでアセトン可溶部を回収した。次いで、前記アセトン可溶部より、アセトンを留去後、乾燥することで、リグニン分解物(A)3.2gを得た。次いで、上記リグニン分解物の製造の操作を繰り返して得たリグニン分解物(A)をメタノールで希釈して樹脂分50質量%のリグニン分解物(A)ワニス330gを得た。
Example 1
[Production of lignin degradation product varnish]
15 g of Somune bamboo powder (60 mesh under) and 80 g of pure water were introduced into a 300 ml autoclave, and the contents were treated at 1.6 MPa and 200 ° C. for 120 minutes while stirring at 300 rpm to decompose the Somune bamboo. Subsequently, 10.0 g of water-insoluble parts were separated by filtering the decomposition product and washing with pure water. The water-insoluble part was immersed in 200 ml of acetone for 8 hours and then filtered to collect the acetone-soluble part. Subsequently, acetone was distilled off from the acetone-soluble part, followed by drying to obtain 3.2 g of a lignin decomposition product (A). Next, the lignin degradation product (A) obtained by repeating the above-described production process of the lignin degradation product was diluted with methanol to obtain 330 g of a lignin degradation product (A) varnish having a resin content of 50% by mass.
上記で得られたリグニン分解物(A)について1H−NMRにより測定した結果から、7〜8ppmに芳香環、3.5〜4ppm付近にメトキシ基、0.5〜3ppmにかけてアルキル基のピークが見られ、リグニン分解物であることを確認した。 From the result of 1 H-NMR measurement of the lignin degradation product (A) obtained above, the peak of the aromatic group was 7-8 ppm, the aromatic ring was 3.5-8 ppm, the methoxy group was near 3.5-4 ppm, and 0.5-3 ppm. It was confirmed that it was a lignin degradation product.
上記で得られたリグニン分解物のOH当量は、以下の方法で決定した。共栓三角フラスコに、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gと、上記で得たリグニン分解物1.0gを入れて溶解させた。この溶液を60℃で3時間保持した後、純水1mlを添加した。このようにして得られた溶液を、pH=10を終点として、0.1mol/LのNaOH水溶液で滴定したところ、リグニン分解物(A)のOH当量は118であった。 The OH equivalent of the lignin degradation product obtained above was determined by the following method. In a stoppered Erlenmeyer flask, 4.0 g of a mixed solution of acetic anhydride / pyridine (1/3 volume ratio) and 1.0 g of the lignin decomposition product obtained above were dissolved. After maintaining this solution at 60 ° C. for 3 hours, 1 ml of pure water was added. When the solution thus obtained was titrated with a 0.1 mol / L NaOH aqueous solution with pH = 10 as an end point, the OH equivalent of the lignin decomposition product (A) was 118.
また、上記で得られたリグニン分解物中のフェノール性OH基とアルコール性OH基のモル比(以下P/A比)は以下の方法で決定した。上記で得られたリグニン分解物(A)1.0gを、無水酢酸/ピリジン(1/3容量比)混合溶液4.0gを用いて、前記リグニン分解物をアセチル化した。この反応溶液より、未反応の無水酢酸およびピリジンを留去し、乾燥して得られたアセチル化したリグニン分解物(A)を用いて、1H−NMRにより測定した。アセチル基由来のプロトンの積分比(フェノール性OH基に結合したアセチル基由来:2.2〜2.6ppm、アルコール性OH基に結合したアセチル基由来:1.6〜2.2ppm)から、モル比を決定したところ、前記P/A比は8.9:1.1であった。 The molar ratio of phenolic OH groups and alcoholic OH groups in the lignin degradation product obtained above (hereinafter referred to as P / A ratio) was determined by the following method. The lignin degradation product (A) 1.0 g obtained above was acetylated using 4.0 g of acetic anhydride / pyridine (1/3 volume ratio) mixed solution. From this reaction solution, unreacted acetic anhydride and pyridine were distilled off, and the acetylated lignin decomposition product (A) obtained by drying was measured by 1 H-NMR. From the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic OH groups: 2.2 to 2.6 ppm, derived from acetyl groups bonded to alcoholic OH groups: 1.6 to 2.2 ppm), mol When the ratio was determined, the P / A ratio was 8.9: 1.1.
また、上記で得られたリグニン分解物(A)の分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=1000、分子量分布(Mw/Mn)=2.02であった。 Further, the molecular weight of the lignin degradation product (A) obtained above was measured by gel permeation chromatography in terms of polystyrene using tetrahydrofuran as an eluent. The number average molecular weight (Mn) = 1000, molecular weight distribution (Mw / Mn ) = 2.02.
[レゾール型フェノール樹脂の製造]
攪拌機、冷却管を備えた300mL3つ口フラスコにフェノール240g、37質量%ホルムアルデヒド水溶液240g、トリエチルアミン4.8gからなる混合物を、60℃で2時間反応させ、次に減圧下で濃縮し、これをメタノールで希釈して樹脂分50質量%のレゾール型フェノール樹脂ワニス670gを得た。
[Production of resol-type phenolic resin]
A mixture consisting of 240 g of phenol, 240 g of 37% by weight formaldehyde aqueous solution and 4.8 g of triethylamine was reacted at 60 ° C. for 2 hours in a 300 mL three-necked flask equipped with a stirrer and a condenser, and then concentrated under reduced pressure. To obtain 670 g of a resol type phenol resin varnish having a resin content of 50% by mass.
[基材含浸用の樹脂ワニスの調整]
上記で得られたリグニン分解物(A)ワニス33質量部とレゾール型フェノール樹脂ワニス67質量部とを混合し、基材含浸用の樹脂ワニス1000gを得た。
[Adjustment of resin varnish for substrate impregnation]
33 parts by mass of the lignin degradation product (A) varnish obtained above and 67 parts by mass of a resol type phenolic resin varnish were mixed to obtain 1000 g of a resin varnish for impregnating a substrate.
[プリプレグ及び積層板の製造]
次に、上記で得られた基材含浸用の樹脂ワニスを樹脂含有率55質量%(プリプレグ全体に対する割合)となるように、クラフト紙(坪量135g/m2)へ、ディップコーター装置で塗工し、160℃で5分間乾燥してプリプレグを得た。このプリプレグ8枚とその表裏両面に接着剤つき銅箔(FSM日本電解(株)製、厚さ18μm)を重ね合わせ、200℃、5MPa、10分加熱加圧成形して、厚さ1.6mmの積層板を得た。
[Manufacture of prepreg and laminate]
Next, the varnish for impregnating the base material obtained above was applied to kraft paper (basis weight 135 g / m 2 ) with a dip coater so that the resin content was 55% by mass (ratio to the whole prepreg). And dried at 160 ° C. for 5 minutes to obtain a prepreg. Eight prepregs and both front and back sides of the copper foil with adhesive (FSM Nippon Electrolytic Co., Ltd., thickness 18 μm) are overlaid, heat-pressed at 200 ° C., 5 MPa, 10 minutes, thickness 1.6 mm A laminate was obtained.
半田耐熱性について、JIS−C6481に準じて、上記で得られた積層板を用いて、煮沸2時間の吸湿処理を行った後、260℃の半田槽に180秒間浮かべた後の、外観の異常の有無を調べた。目視で異常の見られないものを異常なしとした。 About solder heat resistance, after performing a moisture absorption treatment for 2 hours with boiling using the laminate obtained above according to JIS-C6481, abnormal appearance after floating in a solder bath at 260 ° C. for 180 seconds The presence or absence of was investigated. Those that were not visually inspected were regarded as having no abnormality.
実施例2
[桐油変性レゾール型フェノール樹脂の製造]
フェノール115gと桐油72gを、パラトルエンスルホン酸の存在下、95℃で2時間反応させ、更にパラホルムアルデヒド47g、ヘキサメチレンテトラミン2.2g、トルエン2000gを加えて、90℃で2時間反応後、減圧下で濃縮し、これをトルエンとメタノールの混合溶媒で希釈して樹脂分50質量%の桐油変性レゾール型フェノール樹脂ワニス420gを得た。
Example 2
[Manufacture of tung oil-modified resol type phenol resin]
115 g of phenol and 72 g of paulownia oil were reacted at 95 ° C. for 2 hours in the presence of paratoluenesulfonic acid, and 47 g of paraformaldehyde, 2.2 g of hexamethylenetetramine and 2000 g of toluene were further added, and the reaction was performed at 90 ° C. for 2 hours. The mixture was concentrated under reduced pressure and diluted with a mixed solvent of toluene and methanol to obtain 420 g of tung oil-modified resol type phenol resin varnish having a resin content of 50% by mass.
実施例1における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部とレゾール型フェノール樹脂ワニス67質量部を、リグニン分解物(A)ワニス42質量部、レゾール型フェノール樹脂ワニス16質量部、上記で得られた桐油変性レゾール型フェノール樹脂ワニス42質量部とした以外は、実施例1と同様にし、積層板を得た。 In the resin varnish for substrate impregnation in Example 1, 33 parts by mass of the lignin decomposition product (A) varnish and 67 parts by mass of the resol type phenol resin varnish, 42 parts by mass of the lignin decomposition product (A) varnish, and the resol type phenol resin varnish A laminated board was obtained in the same manner as in Example 1 except that 16 parts by mass and 42 parts by mass of the tung oil-modified resol type phenol resin varnish obtained above were used.
実施例3
[エポキシ基を有するリグニン誘導体ワニスの製造]
攪拌装置、冷却器、滴下ロートの付いた100mlの三つ口フラスコに、実施例1と同様にして得たリグニン分解物(A)1.2gと、エピクロロヒドリン100.0gを導入し、100mmHgの圧力下で減圧還流しながら、20質量%濃度のNaOH水溶液2.0gを30分かけて滴下した。その後、90分間減圧還流状態を保持して反応混合物を得た。反応混合物は、不溶部を濾過して取り除き、エピクロロヒドリン可溶部を単離した。このエピクロロヒドリン可溶部からエピクロロヒドリンを留去し、乾燥することで、リグニン誘導体(D)(エポキシ化リグニン)0.8gを得た。
Example 3
[Production of lignin derivative varnish having an epoxy group]
Into a 100 ml three-necked flask equipped with a stirrer, a condenser and a dropping funnel, 1.2 g of the lignin degradation product (A) obtained in the same manner as in Example 1 and 100.0 g of epichlorohydrin were introduced. While refluxing under a reduced pressure of 100 mmHg, 2.0 g of a 20 mass% NaOH aqueous solution was added dropwise over 30 minutes. Thereafter, the reaction mixture was obtained by maintaining the reduced-pressure reflux state for 90 minutes. In the reaction mixture, the insoluble part was removed by filtration, and the epichlorohydrin soluble part was isolated. Epichlorohydrin was distilled off from this epichlorohydrin soluble part and dried to obtain 0.8 g of lignin derivative (D) (epoxidized lignin).
上記で得られたエポキシ基を有するリグニン誘導体(D)の構造を1H−NMRで確認したところ、リグニン誘導体のピークに加えて2.7、2.9、3.3、3.5、3.9ppmにエポキシ基由来のピークが観測された。 When the structure of the lignin derivative (D) having an epoxy group obtained above was confirmed by 1 H-NMR, it was found to be 2.7, 2.9, 3.3, 3.5, 3 in addition to the peak of the lignin derivative. A peak derived from an epoxy group was observed at .9 ppm.
エポキシ基を有するリグニン誘導体(D)の分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=950、Mw/Mn=3.67であった。
エポキシ基を有するリグニン誘導体(D)のエポキシ当量は、1H−NMRで測定のところ、390であった。
The molecular weight of the lignin derivative (D) having an epoxy group was Mn = 950 and Mw / Mn = 3.67 as measured by gel permeation chromatography in terms of polystyrene.
The epoxy equivalent of the lignin derivative (D) having an epoxy group was 390 as measured by 1 H-NMR.
上記リグニン誘導体の製造の操作を繰り返して得たエポキシ基を有するリグニン誘導体(D)をメタノールで希釈して樹脂分50質量%のリグニン誘導体(D)ワニス790gを得た。 The lignin derivative (D) having an epoxy group obtained by repeating the operation for producing the lignin derivative was diluted with methanol to obtain 790 g of a lignin derivative (D) varnish having a resin content of 50% by mass.
[ノボラック型フェノール樹脂ワニスの製造]
ノボラック型フェノール樹脂(軟化点:105℃、水酸基当量:104)をメタノールで希釈して樹脂分50質量%のノボラック型フェノール樹脂ワニスを得た。
[Manufacture of novolac-type phenolic resin varnish]
A novolac-type phenol resin (softening point: 105 ° C., hydroxyl group equivalent: 104) was diluted with methanol to obtain a novolac-type phenol resin varnish having a resin content of 50% by mass.
実施例1における紙基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部とレゾール型フェノール樹脂ワニス67質量部を、上記で得られたエポキシ基を有するリグニン誘導体(D)ワニス79質量部と上記で得られたノボラック型フェノール樹脂ワニス21質量部に2−メチルイミダゾール2質量部を加えたものにした以外は、実施例1と同様にし、積層板を得た。 In the resin varnish for impregnating the paper base material in Example 1, 33 parts by mass of the lignin decomposition product (A) varnish and 67 parts by mass of the resol type phenol resin varnish were used to obtain the lignin derivative (D) varnish having the epoxy group obtained above. A laminate was obtained in the same manner as in Example 1, except that 79 parts by mass and 21 parts by mass of the novolac type phenolic resin varnish obtained above were added with 2 parts by mass of 2-methylimidazole.
実施例4
実施例1における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部とレゾール型フェノール樹脂ワニス67質量部を、実施例3と同様にして得られたエポキシ基を有するリグニン誘導体(D)ワニス77質量部、リグニン分解物(A)ワニス23質量部に2−メチルイミダゾール2質量部を加えたものにした以外は、実施例1と同様にし、積層板を得た。
Example 4
In the resin varnish for substrate impregnation in Example 1, 33 parts by mass of the lignin degradation product (A) varnish and 67 parts by mass of the resol type phenolic resin varnish were obtained in the same manner as in Example 3 to obtain a lignin derivative having an epoxy group. (D) 77 mass parts of varnish, lignin decomposition product (A) Except having added 2 mass parts of 2-methylimidazole to 23 mass parts of varnish, it carried out similarly to Example 1, and obtained the laminated board.
実施例5
実施例1における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部とレゾール型フェノール樹脂ワニス67質量部を、実施例3と同様にして得られたエポキシ基を有するリグニン誘導体(D)ワニス98質量部に2−メチルイミダゾール2質量部を加えたものにした以外は、実施例1と同様にし、積層板を得た。
Example 5
In the resin varnish for substrate impregnation in Example 1, 33 parts by mass of the lignin degradation product (A) varnish and 67 parts by mass of the resol type phenolic resin varnish were obtained in the same manner as in Example 3 to obtain a lignin derivative having an epoxy group. (D) A laminate was obtained in the same manner as in Example 1 except that 98 parts by mass of varnish and 2 parts by mass of 2-methylimidazole were added.
実施例6
実施例1において、リグニン分解物の製造における処理温度200℃を300℃に変更した以外は、実施例1と同様に行い、リグニン分解物(B)3.6gを得た。ここで得られたリグニン分解物(B)を、実施例1と同様にして評価のところ、水酸基当量=171、P/A比=8.5:1.5、軟化点88℃、Mn=570、Mw/Mn=1.24であった。
Example 6
In Example 1, it carried out like Example 1 except having changed processing temperature 200 ° C in manufacture of a lignin decomposition product into 300 ° C, and obtained 3.6 g of lignin decomposition products (B). The lignin degradation product (B) obtained here was evaluated in the same manner as in Example 1. As a result, the hydroxyl equivalent weight = 171, P / A ratio = 8.5: 1.5, softening point 88 ° C., Mn = 570 Mw / Mn = 1.24.
上記リグニン分解物の製造を繰り返して得られたリグニン分解物(B)をメタノールで希釈して樹脂分50質量%のリグニン分解物(B)ワニス330gを得た。 The lignin decomposition product (B) obtained by repeating the production of the above lignin decomposition product was diluted with methanol to obtain 330 g of a lignin decomposition product (B) varnish having a resin content of 50% by mass.
実施例1における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部を、上記で得たリグニン分解物(B)ワニス33質量部に変更した以外は、実施例1と同様にし、積層板を得た。 In the resin varnish for base material impregnation in Example 1, 33 parts by mass of the lignin decomposition product (A) varnish was changed to 33 parts by mass of the lignin decomposition product (B) varnish obtained above, and was the same as Example 1. To obtain a laminate.
実施例7
実施例2における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス42質量部を実施例6と同様にして得られたリグニン分解物(B)ワニス42質量部に変更した以外は、実施例2と同様にし、積層板を得た。
Example 7
In the resin varnish for substrate impregnation in Example 2, except that 42 parts by mass of the lignin decomposition product (A) varnish was changed to 42 parts by mass of the lignin decomposition product (B) varnish obtained in the same manner as in Example 6, A laminate was obtained in the same manner as in Example 2.
実施例8
実施例3のリグニン誘導体の製造において、リグニン分解物(A)1.2gを、実施例6と同様にして得たリグニン分解物(B)1.2gに変更した他は、実施例3と同様に行い、エポキシ基を有するリグニン誘導体(E)0.9gを得た。ここで得られたエポキシ基を有するリグニン誘導体(E)を、実施例3と同様にして評価のところ、分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=750、Mw/Mn=2.89であった。
エポキシ基を有するリグニン誘導体(E)のエポキシ当量は、1H−NMRで測定のところ、540であった。
Example 8
In the production of the lignin derivative of Example 3, 1.2 g of the lignin degradation product (A) was changed to 1.2 g of the lignin degradation product (B) obtained in the same manner as in Example 6, and the same as in Example 3. Then, 0.9 g of a lignin derivative (E) having an epoxy group was obtained. When the lignin derivative (E) having an epoxy group obtained here was evaluated in the same manner as in Example 3, the molecular weight was measured by gel permeation chromatography in terms of polystyrene. Mn = 750, Mw / Mn = It was 2.89.
The epoxy equivalent of the lignin derivative (E) having an epoxy group was 540 as measured by 1 H-NMR.
上記リグニン誘導体の製造を繰り返して得られたエポキシ基を有するリグニン誘導体(E)をメタノールで希釈して樹脂分50質量%のリグニン誘導体(E)ワニス840gを得た。 The lignin derivative (E) having an epoxy group obtained by repeating the production of the lignin derivative was diluted with methanol to obtain 840 g of a lignin derivative (E) varnish having a resin content of 50% by mass.
実施例1において、基材含浸用の樹脂ワニスを、上記で得たリグニン誘導体(E)ワニス84質量部、実施例3と同様にして得られたノボラック型フェノール樹脂ワニス16質量部及び2−メチルイミダゾール2質量部を混合したものに変更した以外は、実施例1と同様にし、積層板を得た。 In Example 1, the resin varnish for impregnating the base material was 84 parts by mass of the lignin derivative (E) varnish obtained above, 16 parts by mass of the novolak type phenol resin varnish obtained in the same manner as in Example 3, and 2-methyl A laminate was obtained in the same manner as in Example 1 except that 2 parts by mass of imidazole were mixed.
実施例9
実施例1において、基材含浸用の樹脂ワニスを、実施例8と同様にして得たエポキシ基を有するリグニン誘導体(E)ワニス76質量部、実施例6と同様にして得たリグニン分解物(B)ワニス24質量部及び2−メチルイミダゾール2質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Example 9
In Example 1, the resin varnish for impregnating the base material was 76 parts by mass of the lignin derivative (E) varnish having an epoxy group obtained in the same manner as in Example 8, and the lignin decomposition product obtained in the same manner as in Example 6 ( B) A laminate was obtained in the same manner as in Example 1 except that 24 parts by mass of varnish and 2 parts by mass of 2-methylimidazole were mixed.
実施例10
実施例1において、基材含浸用の樹脂ワニスを、実施例8と同様にして得たエポキシ基を有するリグニン誘導体(E)ワニス98質量部及び2−メチルイミダゾール2質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Example 10
In Example 1, the resin varnish for base impregnation was mixed with 98 parts by mass of the lignin derivative (E) varnish having an epoxy group obtained in the same manner as in Example 8 and 2 parts by mass of 2-methylimidazole. Except for this, a laminate was obtained in the same manner as in Example 1.
実施例11
実施例1において、リグニン分解物の製造における処理温度200℃を150℃に変更した以外は、実施例1と同様に行い、リグニン分解物(C)3.5gを得た。ここで得られたリグニン分解物(C)を、実施例1と同様にして評価のところ、水酸基当量=122、P/A比=8.1:1.9、軟化点121℃、Mn=1800、Mw/Mn=1.82であった。
Example 11
In Example 1, it carried out like Example 1 except having changed processing temperature 200 ° C in manufacture of a lignin decomposition product into 150 ° C, and obtained lignin decomposition product (C) 3.5g. The lignin degradation product (C) obtained here was evaluated in the same manner as in Example 1. As a result, hydroxyl equivalent = 122, P / A ratio = 8.1: 1.9, softening point 121 ° C, Mn = 1800 Mw / Mn = 1.82.
上記リグニン分解物の製造を繰り返して得られたリグニン分解物(C)をメタノールで希釈して樹脂分50質量%のリグニン分解物(C)ワニス330gを得た。 The lignin degradation product (C) obtained by repeating the production of the lignin degradation product was diluted with methanol to obtain 330 g of a lignin degradation product (C) varnish having a resin content of 50% by mass.
実施例1において、基材含浸用の樹脂ワニスを、リグニン分解物(A)ワニス33質量部を上記で得たリグニン分解物(C)ワニス33質量部に変更した以外は、実施例1と同様にし、積層板を得た。 In Example 1, the resin varnish for substrate impregnation was the same as in Example 1 except that 33 parts by mass of the lignin decomposition product (A) varnish was changed to 33 parts by mass of the lignin decomposition product (C) varnish obtained above. To obtain a laminate.
実施例12
実施例2における基材含浸用の樹脂ワニスにおいて、リグニン分解物(A)ワニス33質量部を実施例11と同様にして得られた(C)ワニス33質量部に変更した以外は、実施例2と同様にし、積層板を得た。
Example 12
In the resin varnish for impregnating the base material in Example 2, Example 2 except that 33 parts by mass of the lignin decomposition product (A) varnish was changed to 33 parts by mass of (C) varnish obtained in the same manner as Example 11. In the same manner as above, a laminate was obtained.
実施例13
実施例3のリグニン誘導体の製造において、リグニン分解物(A)1.2gを、実施例11と同様にして得たリグニン分解物(C)1.2gに変更した他は、実施例3と同様に行い、エポキシ基を有するリグニン誘導体(F)0.7gを得た。ここで得られたエポキシ基を有するリグニン誘導体(F)を、実施例3と同様にして評価のところ、分子量は、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、Mn=2000、Mw/Mn=3.47であった。
エポキシ基を有するリグニン誘導体(F)のエポキシ当量は、1H−NMRで測定のところ、620であった。
Example 13
In the production of the lignin derivative of Example 3, 1.2 g of the lignin degradation product (A) was changed to 1.2 g of the lignin degradation product (C) obtained in the same manner as in Example 11, and the same as in Example 3. To obtain 0.7 g of a lignin derivative (F) having an epoxy group. When the lignin derivative (F) having an epoxy group obtained here was evaluated in the same manner as in Example 3, the molecular weight was measured by gel permeation chromatography in terms of polystyrene. Mn = 2000, Mw / Mn = 3.47.
The epoxy equivalent of the lignin derivative (F) having an epoxy group was 620 as measured by 1 H-NMR.
上記リグニン誘導体の製造を繰り返して得られたエポキシ基(F)を有するリグニン誘導体をメタノールで希釈して樹脂分50質量%のリグニン誘導体(F)ワニス860gを得た。 The lignin derivative having an epoxy group (F) obtained by repeating the production of the lignin derivative was diluted with methanol to obtain 860 g of a lignin derivative (F) varnish having a resin content of 50% by mass.
実施例1において、基材含浸用の樹脂ワニスを、上記で得たリグニン誘導体(F)ワニス96質量部、実施例3と同様にして得られたノボラック型フェノール樹脂ワニス14質量部及び2−メチルイミダゾール2質量部を混合したものに変更した以外は、実施例1と同様にし、積層板を得た。 In Example 1, the resin varnish for impregnating the base material was 96 parts by mass of the lignin derivative (F) varnish obtained above, 14 parts by mass of the novolac-type phenol resin varnish obtained in the same manner as in Example 3, and 2-methyl A laminate was obtained in the same manner as in Example 1 except that 2 parts by mass of imidazole were mixed.
実施例14
実施例1において、基材含浸用の樹脂ワニスを、実施例13と同様にして得たエポキシ基を有するリグニン誘導体(F)ワニス84質量部、実施例11同様にして得たリグニン分解物(C)ワニス16質量部及び2−メチルイミダゾール2質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Example 14
In Example 1, the resin varnish for impregnating the base material was 84 parts by mass of the lignin derivative (F) varnish having an epoxy group obtained in the same manner as in Example 13, and the lignin decomposition product (C ) A laminate was obtained in the same manner as in Example 1 except that 16 parts by mass of varnish and 2 parts by mass of 2-methylimidazole were mixed.
実施例15
実施例1において、基材含浸用の樹脂ワニスを、実施例13と同様にして得たエポキシ基を有するリグニン誘導体(F)ワニス98質量部及び2−メチルイミダゾール2質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Example 15
In Example 1, the resin varnish for substrate impregnation was mixed with 98 parts by mass of the lignin derivative (F) varnish having an epoxy group obtained in the same manner as in Example 13 and 2 parts by mass of 2-methylimidazole. Except for this, a laminate was obtained in the same manner as in Example 1.
実施例16
攪拌機、冷却管を備えた1L3つ口フラスコに実施例1の操作を繰り返して得たリグニン分解物(A)100g、アセトン300mL、炭酸カリウム5g、アリルブロミド100gを導入し、3時間還流加熱した。反応混合物から溶媒を除去し、酢酸エチルに残渣を溶解した。有機相を2質量%塩酸、純水で洗浄後、硫酸マグネシウムで乾燥し、1Lのヘキサンに再沈殿し、乾燥することで、ビニル基を有するリグニン誘導体(G)88gを得た。
Example 16
100 g of lignin decomposition product (A), 300 mL of acetone, 5 g of potassium carbonate, and 100 g of allyl bromide obtained by repeating the operation of Example 1 were introduced into a 1 L three-necked flask equipped with a stirrer and a condenser, and heated at reflux for 3 hours. The solvent was removed from the reaction mixture and the residue was dissolved in ethyl acetate. The organic phase was washed with 2% by mass hydrochloric acid and pure water, dried over magnesium sulfate, reprecipitated in 1 L of hexane, and dried to obtain 88 g of a lignin derivative (G) having a vinyl group.
上記で得られたビニル基を有するリグニン誘導体(G)の構造を1H−NMRで確認したところ、リグニン誘導体のピークに加えて6.1、5.4、5.3、4.7ppmにアリル基由来のピークが観測された。内部標準として添加したピリジンとの積分比からビニル基当量は512g/モルであった。
ビニル基を有するリグニン誘導体(G)の分子量、分子量分布、軟化点は実施例1と同様に評価し、それぞれMn=1150、Mw/Mn=2.86、93℃であった。
The structure of the lignin derivative (G) having a vinyl group obtained above was confirmed by 1 H-NMR. In addition to the peak of the lignin derivative, 6.1, 5.4, 5.3, 4.7 ppm were allylated. A peak derived from the group was observed. From the integration ratio with pyridine added as an internal standard, the vinyl group equivalent was 512 g / mol.
The molecular weight, molecular weight distribution, and softening point of the lignin derivative (G) having a vinyl group were evaluated in the same manner as in Example 1, and were Mn = 1150, Mw / Mn = 2.86, and 93 ° C., respectively.
上記リグニン誘導体の製造の操作を繰り返して得たビニル基を有するリグニン誘導体(G)をメタノールで希釈して樹脂分50質量%のリグニン誘導体(G)ワニス990gを得た。
実施例1において、基材含浸用の樹脂ワニスを、上記と同様にして得たリグニン誘導体(G)ワニス99質量部にアゾビスイソブチロニトリル1質量部を添加したものにした以外は、実施例1と同様にし、積層板を得た。
The lignin derivative (G) having a vinyl group obtained by repeating the operation for producing the lignin derivative was diluted with methanol to obtain 990 g of a lignin derivative (G) varnish having a resin content of 50% by mass.
In Example 1, except that the resin varnish for impregnating the base material was prepared by adding 1 part by mass of azobisisobutyronitrile to 99 parts by mass of the lignin derivative (G) varnish obtained in the same manner as described above. In the same manner as in Example 1, a laminate was obtained.
実施例17
破砕状溶融シリカ粉末(平均粒径10μm)にメタノールを加えて50質量%に調整した溶融シリカワニス330gを得た。
実施例1において、基材含浸用の樹脂ワニスを、実施例1と同様にして得たリグニン分解物(A)ワニス22質量部、実施例1と同様にして得たレゾール型フェノール樹脂ワニス45質量部及び上記で得た溶融シリカワニス33質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Example 17
Methanol was added to crushed fused silica powder (average particle size 10 μm) to obtain 330 g of fused silica varnish adjusted to 50 mass%.
In Example 1, the resin varnish for impregnating the base material was 22 parts by mass of the lignin decomposition product (A) varnish obtained in the same manner as in Example 1, and the resol type phenolic resin varnish obtained in the same manner as in Example 1 was 45 mass. A laminate was obtained in the same manner as in Example 1 except that 33 parts by mass of the fused silica varnish obtained above was mixed.
比較例1
非特許文献1(K. Mikame, M. Funaoka, Polym. J., 38, 585−591, 2006)に準じて、リグノフェノール誘導体を以下の方法で合成した。孟宗竹粉10gを、500ml容ビーカーにとり、p−クレゾールのアセトン溶液(リグニン構成単位当たり3モル倍量のフェノール誘導体を含む)を加え、ガラス棒で撹拌し、24時間静置させた。その後、アセトンを完全に留去して、p−クレゾール収着木粉を得た。この竹粉に対して、72質量%硫酸100mlを加え、30℃で、1時間激しく撹拌した後、混合物を、大過剰の水に投入、不溶解区分を回収、脱酸し、乾燥して、リグノフェノール誘導体を得た。このリグノフェノール誘導体を、実施例1と同様にして評価のところ、Mn=3600、OH当量=143g/eq、P/A比=5.8:4.2であった。
このリグノフェノール誘導体をメタノールで希釈して樹脂分50質量%のリグノフェノール誘導体ワニスを得た。
実施例1において、基材含浸用ワニスを、上記で得られたリグノフェノール誘導体ワニス37質量部と、実施例1と同様にして得られたレゾール型フェノール樹脂ワニス63質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Comparative Example 1
According to Non-Patent Document 1 (K. Mikame, M. Funaka, Polym. J., 38, 585-591, 2006), a lignophenol derivative was synthesized by the following method. Take 10 g of Somune bamboo powder in a 500 ml beaker, add acetone solution of p-cresol (containing 3 mol times phenol derivative per lignin constituent unit), stir with a glass rod and let stand for 24 hours. Thereafter, acetone was completely distilled off to obtain p-cresol sorption wood flour. To this bamboo flour, 100 ml of 72 mass% sulfuric acid was added and stirred vigorously at 30 ° C. for 1 hour, and then the mixture was poured into a large excess of water, the insoluble fraction was collected, deacidified, and dried. A lignophenol derivative was obtained. When this lignophenol derivative was evaluated in the same manner as in Example 1, Mn = 3600, OH equivalent = 143 g / eq, and P / A ratio = 5.8: 4.2.
This lignophenol derivative was diluted with methanol to obtain a lignophenol derivative varnish having a resin content of 50% by mass.
In Example 1, the base material impregnation varnish was prepared by mixing 37 parts by mass of the lignophenol derivative varnish obtained above and 63 parts by mass of the resol type phenol resin varnish obtained in the same manner as in Example 1. Except for this, a laminate was obtained in the same manner as in Example 1.
比較例2
非特許文献2(Kadota, K. Hasegawa, M. Funaoka Journal of Network Polymer. Japan, 27, 118−125, 2006)に準じて、比較例1で得たリグノフェノール誘導体を以下の方法でエポキシ化した。攪拌装置、冷却器、滴下ロートの付いた100mlの三つ口フラスコに、比較例1で得たリグノフェノール誘導体1.4gとエピクロロヒドリン100.0gを導入し、100mmHgに減圧還流しながら、20%NaOH水溶液1.0gを30分かけて滴下した。その後、90分間減圧還流状態を保持した。反応混合物から不溶部を濾過して除き、エピクロロヒドリン可溶部からエピクロロヒドリンを留去、乾燥することで、エポキシ化リグノフェノール二次誘導体1.3gを得た。得られたエポキシ基を有するリグノフェノール二次誘導体を実施例3と同様にして評価のところ、Mn=2400、エポキシ当量は790であった。
このエポキシ基を有するリグノフェノール二次誘導体をメタノールで希釈して樹脂分50質量%のエポキシ基を有するリグノフェノール二次誘導体ワニスを得た。
実施例1において、基材含浸用ワニスを、上記で得られたエポキシ基を有するリグノフェノール二次誘導体ワニス100質量部と、2−メチルイミダゾール2質量部を混合したものにした以外は、実施例1と同様にし、積層板を得た。
Comparative Example 2
According to Non-Patent Document 2 (Kadota, K. Hasegawa, M. Funoka Journal of Network Polymer. Japan, 27, 118-125, 2006), the lignophenol derivative obtained in Comparative Example 1 was epoxidized by the following method. . Into a 100 ml three-necked flask equipped with a stirrer, a cooler and a dropping funnel, 1.4 g of the lignophenol derivative obtained in Comparative Example 1 and 100.0 g of epichlorohydrin were introduced and refluxed to 100 mmHg under reduced pressure. 1.0 g of 20% NaOH aqueous solution was added dropwise over 30 minutes. Thereafter, the vacuum reflux state was maintained for 90 minutes. The insoluble part was filtered off from the reaction mixture, and epichlorohydrin was distilled off from the epichlorohydrin soluble part and dried to obtain 1.3 g of an epoxidized lignophenol secondary derivative. The obtained lignophenol secondary derivative having an epoxy group was evaluated in the same manner as in Example 3. As a result, Mn = 2400 and the epoxy equivalent was 790.
This lignophenol secondary derivative having an epoxy group was diluted with methanol to obtain a lignophenol secondary derivative varnish having an epoxy group with a resin content of 50% by mass.
In Example 1, except that the base material impregnation varnish was prepared by mixing 100 parts by mass of the lignophenol secondary derivative varnish having an epoxy group obtained above and 2 parts by mass of 2-methylimidazole. 1 to obtain a laminate.
表1から、本発明により得られたプリプレグを用いた基板は、比較例に比べて、耐熱性に優れるものであった。 From Table 1, the board | substrate using the prepreg obtained by this invention was excellent in heat resistance compared with the comparative example.
Claims (6)
バイオマスを水存在下におき、これらを高温高圧下で撹拌して分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、
前記架橋剤混合工程により得られた処理物を基材に含浸する含浸工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするプリプレグの製造方法。 The resin composition comprising a lignin compound and crosslinking agent A method of manufacturing a prepreg obtained by impregnating a base material,
A decomposition step in which biomass is placed in the presence of water, and these are stirred and decomposed under high temperature and pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A crosslinking agent mixing step of mixing the processed product obtained by the distillation step and a crosslinking agent;
An impregnation step of impregnating a base material with the processed product obtained by the crosslinking agent mixing step,
The said lignin compound is a manufacturing method of the prepreg characterized by including a phenolic hydroxyl group and alcoholic hydroxyl group by the molar ratio of 9: 1-8: 2.
バイオマスを水存在下におき、これらを高温高圧下で撹拌して分解処理する分解工程と、
前記分解工程により得られた処理物中の不溶分をリグニンが可溶な溶媒に浸漬処理する浸漬工程と、
前記浸漬工程により得られた処理物中の可溶分から前記リグニンが可溶な溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、
前記反応性基導入工程により得られた処理物と架橋剤とを混合する架橋剤混合工程と、
前記架橋剤混合工程により得られた処理物を基材に含浸する含浸工程と、を有し、
前記リグニン化合物は、フェノール性水酸基とアルコール性水酸基とをモル比で9:1〜8:2の比率で含むものであることを特徴とするプリプレグの製造方法。 A method of manufacturing a prepreg the resin composition obtained by impregnating a base material containing a lignin derivative obtained by introducing a reactive group into the phenolic hydroxyl group of lignin compound and a crosslinking agent,
A decomposition step in which biomass is placed in the presence of water, and these are stirred and decomposed under high temperature and pressure;
An immersion step of immersing the insoluble matter in the processed product obtained by the decomposition step in a solvent in which lignin is soluble;
A distillation step for distilling off the solvent in which the lignin is soluble from the soluble matter in the treated product obtained by the immersion step;
A reactive group introducing step of mixing the treated product obtained by the distillation step and the compound containing the reactive group;
A crosslinking agent mixing step of mixing the processed product obtained by the reactive group introduction step and a crosslinking agent;
An impregnation step of impregnating a base material with the processed product obtained by the crosslinking agent mixing step,
The said lignin compound is a manufacturing method of the prepreg characterized by including a phenolic hydroxyl group and alcoholic hydroxyl group by the molar ratio of 9: 1-8: 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256671A JP5397361B2 (en) | 2010-11-17 | 2010-11-17 | Manufacturing method of prepreg |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256671A JP5397361B2 (en) | 2010-11-17 | 2010-11-17 | Manufacturing method of prepreg |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008144098A Division JP5396747B2 (en) | 2008-06-02 | 2008-06-02 | Prepreg and substrate using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011032493A JP2011032493A (en) | 2011-02-17 |
JP5397361B2 true JP5397361B2 (en) | 2014-01-22 |
Family
ID=43761861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010256671A Expired - Fee Related JP5397361B2 (en) | 2010-11-17 | 2010-11-17 | Manufacturing method of prepreg |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5397361B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2946049B1 (en) * | 2009-05-27 | 2013-01-18 | Chaire Europ De Chimie Nouvelle Pour Un Dev Durable | NATURAL PHENOLIC COMPOUNDS AND THEIR ACTIVATION MODE FOR THE FORMULATION OF THERMOSETTING RESINS |
JP5750336B2 (en) * | 2011-08-09 | 2015-07-22 | 国立大学法人京都大学 | Lignin resin composition, prepreg and composite structure |
JP5822596B2 (en) * | 2011-08-09 | 2015-11-24 | 国立大学法人京都大学 | Lignin resin molding material |
EP3059274B1 (en) * | 2013-10-16 | 2018-06-06 | Sumitomo Bakelite Co., Ltd. | Resin composition and rubber composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263549A (en) * | 2008-04-28 | 2009-11-12 | Hitachi Ltd | Epoxy resin composition of vegetable origin, and various instruments using the same |
-
2010
- 2010-11-17 JP JP2010256671A patent/JP5397361B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011032493A (en) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5256679B2 (en) | Lignin derivatives and their secondary derivatives | |
JP5396747B2 (en) | Prepreg and substrate using the same | |
JP5885960B2 (en) | Method for producing lignin derivative, method for producing lignin secondary derivative, and method for producing natural organic compound | |
JP5397361B2 (en) | Manufacturing method of prepreg | |
JP2012201828A (en) | Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative | |
JP5750336B2 (en) | Lignin resin composition, prepreg and composite structure | |
JP5338793B2 (en) | Method for producing lignin derivative and method for producing lignin secondary derivative | |
JP5920069B2 (en) | Lignin resin composition and lignin resin molding material | |
JP6181347B2 (en) | Method for producing lignin derivative and method for producing lignin secondary derivative | |
JP6217064B2 (en) | Resin composition and resin molded body | |
JP6163761B2 (en) | Resin composition and resin molded body | |
JP2013227469A (en) | Lignin resin composition, lignin resin molding material and method for producing lignin derivative | |
JP5754169B2 (en) | Lignin derivative, lignin secondary derivative, lignin resin composition, prepreg and composite structure | |
JP5338792B2 (en) | Method for producing lignin derivative and method for producing lignin secondary derivative | |
JP2015048361A (en) | Lignin resin composition, resin molded article, prepreg, and molding material | |
JP2014193977A (en) | Resin composition, prepreg including the resin composition, laminate sheet, and molding material | |
JPWO2016098667A1 (en) | Impregnated plate, laminated plate and resin composition | |
JP2014133817A (en) | Method for manufacturing a lignin derivative and lignin resin molded article | |
JP2015048359A (en) | Lignin resin composition, resin molded article, and molding material | |
TWI600674B (en) | Dicyclopentadiene-phenol with 2,6 dimethyl phenol copolymer epoxy preparation and use | |
JP2022147272A (en) | Method for producing kraft lignin-containing phenolic resin | |
JP2013100563A (en) | Lignin derivative and secondary derivative of the same | |
JP2018024715A (en) | Impregnated plate, laminate and resin composition | |
JP2015048360A (en) | Lignin resin composition, resin molded article, and molding material | |
JP2013226786A (en) | Decorative laminate, and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131007 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |