JPH06213051A - Accumulating fuel injection system - Google Patents

Accumulating fuel injection system

Info

Publication number
JPH06213051A
JPH06213051A JP685793A JP685793A JPH06213051A JP H06213051 A JPH06213051 A JP H06213051A JP 685793 A JP685793 A JP 685793A JP 685793 A JP685793 A JP 685793A JP H06213051 A JPH06213051 A JP H06213051A
Authority
JP
Japan
Prior art keywords
fuel
pressure
common rail
fuel injection
rail pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP685793A
Other languages
Japanese (ja)
Other versions
JP3345933B2 (en
Inventor
Kazuhiko Oshima
和彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP00685793A priority Critical patent/JP3345933B2/en
Publication of JPH06213051A publication Critical patent/JPH06213051A/en
Application granted granted Critical
Publication of JP3345933B2 publication Critical patent/JP3345933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an accumulator type fuel injection system which is able to detect any fuel leakage accurately irrespective of the load variation and revolution of an engine. CONSTITUTION:In a period of time ranging from a span of timing Ti when an injector driving pulse is stopped to another timing Te when the fuel supply of a fuel feed pump is started, common rail pressure Pc is usually kept almost constant. On the other hand, when a fuel leakage out of a fuel feeding system ranging from the fuel feed pump to the injector is produced, the common rail pressure Pc goes down significantly in this period of time. In addition, this behavior is not related to the load variation and revolution of a diesel engine. Accordingly, at these two point of time, both common rail pressure values Pc1 and Pc2 are measured, and on the basis of the difference, the fuel leakage from the fuel feeding system is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料供給ポンプから圧
送されてくる燃料を蓄圧室(コモンレール)内に高圧状
態で蓄え、その高圧燃料を内燃機関の各気筒に設けられ
た燃料噴射弁に供給する蓄圧式燃料供給装置に関し、詳
しくは、その燃料供給系からの燃料洩れを検出すること
のできる蓄圧式燃料噴射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention stores fuel fed under pressure from a fuel supply pump in a high pressure state in a pressure accumulating chamber (common rail), and uses the high pressure fuel in a fuel injection valve provided in each cylinder of an internal combustion engine. More specifically, the present invention relates to a pressure accumulation type fuel injection device capable of detecting a fuel leak from the fuel supply system.

【0002】[0002]

【従来の技術】従来より、例えば特開昭62−2581
60号公報に開示されているように、燃料供給ポンプか
ら圧送されてくる燃料を一旦コモンレールに蓄え、これ
を燃料噴射弁を介してディーゼル機関に噴射供給する装
置が知られている。また、この種の蓄圧式燃料噴射装置
では、コモンレール内の燃料圧力(コモンレール圧)に
より燃料噴射弁からの燃料噴射圧が決定されるため、コ
モンレール圧を検出する圧力センサを設け、該検出され
たコモンレール圧に基づいて燃料供給ポンプからの燃料
圧送量を制御している。
2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 62-2581.
As disclosed in Japanese Patent Laid-Open No. 60, there is known a device in which fuel fed under pressure from a fuel supply pump is temporarily stored in a common rail and then injected and supplied to a diesel engine via a fuel injection valve. Further, in this type of pressure accumulating fuel injection device, the fuel injection pressure from the fuel injection valve is determined by the fuel pressure in the common rail (common rail pressure). Therefore, a pressure sensor for detecting the common rail pressure is provided and the fuel pressure is detected. The fuel feed amount from the fuel supply pump is controlled based on the common rail pressure.

【0003】このように、コモンレールに高圧燃料を一
旦蓄えるようにした装置では、コモンレール圧により燃
料噴射圧を制御でき、また燃料噴射弁の開弁時間および
開弁時期により燃料噴射量および燃料噴射時期を夫々制
御できる。このため、燃料噴射ポンプとノズルからなる
一般的な燃料噴射装置に比べて、この種の装置では燃料
噴射制御を緻密に行なうことができる。
As described above, in the device in which the high pressure fuel is temporarily stored in the common rail, the fuel injection pressure can be controlled by the common rail pressure, and the fuel injection amount and the fuel injection timing can be controlled by the opening time and opening timing of the fuel injection valve. Can be controlled respectively. Therefore, as compared with a general fuel injection device including a fuel injection pump and a nozzle, this type of device can perform fuel injection control more precisely.

【0004】[0004]

【発明が解決しようとする課題】ところが、この種の燃
料噴射装置では、燃料供給ポンプから燃料噴射弁に至る
燃料供給系においてパイプ割れなどの異常が発生した場
合、次のような問題が発生していた。このような場合、
燃料が洩れることによりコモンレール圧が低下する。こ
のため、コモンレール圧を所望の値に制御するために
は、燃料供給ポンプからの燃料の圧送量を増加しなけれ
ばならない。すると、これにより燃料の洩れ量が更に増
加する、といった悪循環に陥ることがあったのである。
However, in this type of fuel injection device, when an abnormality such as a pipe crack occurs in the fuel supply system from the fuel supply pump to the fuel injection valve, the following problems occur. Was there. In such cases,
Common rail pressure drops due to fuel leaks. Therefore, in order to control the common rail pressure to a desired value, it is necessary to increase the amount of fuel pumped from the fuel supply pump. As a result, a vicious cycle may occur in which the amount of fuel leakage further increases.

【0005】そこで本願出願人は、こうした燃料供給系
での燃料洩れを特別なセンサを使用することなく速やか
に検出可能な装置として、特願平3−97324号など
により、燃料供給ポンプからの燃料圧送量を決定する制
御量などから燃料洩れを判定するようにした装置を提案
した。しかしながら、ディーゼル機関の負荷が変動する
と、コモンレール圧の目標値(以下目標コモンレール圧
と記載)も変化する。すると、燃料供給ポンプの上記制
御量も大きく変化し、燃料洩れの判定が不可能となるこ
とがあった。このため、ディーゼル機関の運転中、燃料
洩れを常時検出することができなかった。
Therefore, the applicant of the present application has proposed a fuel from a fuel supply pump as disclosed in Japanese Patent Application No. 3-97324 as a device capable of promptly detecting such a fuel leak in a fuel supply system without using a special sensor. We proposed a device that determines fuel leakage from the control amount that determines the pumping amount. However, when the load of the diesel engine changes, the target value of the common rail pressure (hereinafter referred to as the target common rail pressure) also changes. Then, the control amount of the fuel supply pump also greatly changes, and it may be impossible to determine the fuel leak. For this reason, fuel leakage could not always be detected during operation of the diesel engine.

【0006】また、燃料洩れの判定に用いる上記制御量
のしきい値はディーゼル機関の回転数によって変化す
る。なぜならば、通常燃料供給ポンプはディーゼル機関
に同期して回転するので、燃料供給ポンプの上記制御量
と燃料圧送量との対応関係は、ディーゼル機関の回転数
によって変化する。このため、目標コモンレール圧や燃
料噴射量が同一であっても、上記制御量のしきい値がデ
ィーゼル機関の回転数によって変化するのである。とこ
ろが、ディーゼル機関のあらゆる回転数に対して上記し
きい値を算出するためのマップを設定するのは困難であ
る。従って、上記装置では、通常ディーゼル機関のあら
ゆる回転数において燃料洩れを正確に検出することは容
易なことではなかった。
Further, the threshold value of the above-mentioned control amount used for judging the fuel leakage changes depending on the rotational speed of the diesel engine. Because the fuel supply pump normally rotates in synchronization with the diesel engine, the correspondence between the control amount of the fuel supply pump and the fuel pumping amount changes depending on the rotation speed of the diesel engine. Therefore, even if the target common rail pressure and the fuel injection amount are the same, the threshold value of the control amount changes depending on the rotation speed of the diesel engine. However, it is difficult to set a map for calculating the above threshold value for all engine speeds of the diesel engine. Therefore, in the above device, it is usually not easy to accurately detect the fuel leakage at any rotation speed of the diesel engine.

【0007】そこで本発明は、機関の負荷変動や回転数
に関わらず、燃料洩れを正確に検出することのできる蓄
圧式燃料噴射装置を提供することを目的としてなされ
た。
Therefore, the present invention has been made for the purpose of providing a pressure accumulating fuel injection device capable of accurately detecting a fuel leak irrespective of load fluctuations and engine speed of the engine.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
になされた本発明は、図8に例示するように、燃料を高
圧状態で蓄える蓄圧室と、該蓄圧室に燃料を圧送する燃
料供給ポンプと上記蓄圧室に蓄えられた高圧燃料を内燃
機関の各気筒に噴射供給する燃料噴射弁と、上記蓄圧室
内の燃料圧を検出する燃料圧検出手段とを備えた蓄圧式
燃料噴射装置において、上記燃料供給ポンプによる燃料
圧送、および上記燃料噴射弁による燃料噴射が、いずれ
も実行されない所定の判定期間を検出する判定期間検出
手段と、上記判定期間に、上記燃料圧検出手段にて検出
される上記蓄圧室内の燃料圧変化を算出する燃料圧変化
算出手段と、該算出された燃料圧変化に基づき、上記燃
料供給ポンプから上記燃料噴射弁に至る燃料供給系から
の燃料洩れを判定する燃料洩れ判定手段と、を設けたこ
とを特徴とする蓄圧式燃料噴射装置を要旨としている。
DISCLOSURE OF THE INVENTION The present invention, which has been made to achieve the above object, is, as illustrated in FIG. 8, a pressure accumulating chamber for accumulating fuel in a high pressure state, and a fuel supply for feeding fuel to the accumulating chamber under pressure. In a pressure accumulating fuel injection device comprising a fuel injection valve for injecting high-pressure fuel stored in the pressure accumulating chamber into each cylinder of an internal combustion engine, and a fuel pressure detecting means for detecting a fuel pressure in the pressure accumulating chamber, The fuel pressure pumping by the fuel supply pump and the fuel injection by the fuel injection valve are both detected by the determination period detecting means for detecting a predetermined determination period, and the fuel pressure detecting means is detected during the determination period. Fuel pressure change calculating means for calculating a fuel pressure change in the pressure accumulating chamber, and fuel leakage from a fuel supply system from the fuel supply pump to the fuel injection valve is determined based on the calculated fuel pressure change. And fuel leakage determining means, the accumulator fuel injection apparatus characterized by the provided it is a gist that.

【0009】[0009]

【作用】このように構成された本発明では、燃料供給ポ
ンプは蓄圧室に燃料を圧送し、燃料噴射弁は蓄圧室に蓄
えられた燃料を各気筒に噴射する。このため、燃料圧検
出手段が検出する蓄圧室内の燃料圧は、燃料供給ポンプ
による燃料圧送時に増加し、燃料噴射弁による燃料噴射
時に減少する。一方、燃料圧送および燃料噴射がいずれ
も実行されない所定の判定期間には、蓄圧室内の燃料圧
は通常ほぼ一定に保持される。そして、この判定期間に
おける燃料圧は、機関の負荷変動や回転数に関わらず上
記挙動を示す。
In the present invention thus constructed, the fuel supply pump pressure-feeds the fuel to the pressure accumulating chamber, and the fuel injection valve injects the fuel stored in the pressure accumulating chamber to each cylinder. Therefore, the fuel pressure in the pressure accumulating chamber detected by the fuel pressure detecting means increases when the fuel is pumped by the fuel supply pump and decreases when the fuel is injected by the fuel injection valve. On the other hand, the fuel pressure in the pressure accumulating chamber is normally held substantially constant during a predetermined determination period in which neither fuel pressure feeding nor fuel injection is executed. Then, the fuel pressure in this determination period exhibits the above-mentioned behavior irrespective of the load variation and the engine speed of the engine.

【0010】ところが、燃料供給ポンプから燃料噴射弁
に至る燃料供給系からの燃料洩れが発生すると、判定期
間中に蓄圧室内の燃料圧が有意に低下する。本発明で
は、判定期間に検出される蓄圧室内の燃料圧変化を算出
し、その燃料圧変化に基づいて上記燃料供給系からの燃
料洩れを判定しているので、機関の負荷変動や回転数に
関わらず、燃料洩れを正確に検出することができる。
However, when fuel leaks from the fuel supply system from the fuel supply pump to the fuel injection valve, the fuel pressure in the pressure accumulator drops significantly during the determination period. In the present invention, the fuel pressure change in the accumulator detected during the determination period is calculated, and the fuel leak from the fuel supply system is determined based on the fuel pressure change. Regardless, the fuel leak can be accurately detected.

【0011】[0011]

【実施例】以下に本発明の実施例を図面と共に説明す
る。先ず図1は実施例の蓄圧式燃料噴射装置全体の構成
を表す概略構成図である。図に示す如く本実施例の蓄圧
式燃料噴射装置1は、6気筒のディーゼルエンジン2
と、ディーゼルエンジン2の各気筒に燃料を噴射供給す
る燃料噴射弁(インジェクタ)3と、このインジェクタ
3に供給する高圧燃料を蓄圧する蓄圧室(コモンレー
ル)4と、コモンレール4に高圧燃料を圧送する燃料供
給ポンプ5と、これらを制御する電子制御回路6とを備
える。
Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic configuration diagram showing the overall configuration of a pressure-accumulation fuel injection device according to an embodiment. As shown in the figure, the pressure-accumulation fuel injection device 1 of the present embodiment is a 6-cylinder diesel engine 2
A fuel injection valve (injector) 3 for injecting fuel into each cylinder of the diesel engine 2; a pressure accumulating chamber (common rail) 4 for accumulating high-pressure fuel to be supplied to the injector 3; and high-pressure fuel pressure-feeding to the common rail 4. The fuel supply pump 5 and the electronic control circuit 6 which controls these are provided.

【0012】電子制御回路6は、回転数センサ7および
アクセルセンサ8にて検出したディーゼルエンジン2の
回転数NEやアクセル開度AF(ディーゼルエンジン2
の負荷に対応する)を取り込み、ディーゼルエンジン2
の燃焼状態がこの検出した運転状態に応じて最適となる
ような燃料噴射圧を実現するための目標コモンレール圧
を算出し、燃料圧検出手段としての圧力センサ9にて検
出したコモンレール4内の実際の燃料圧力(コモンレー
ル圧Pc)が上記目標コモンレール圧と一致するように
燃料供給ポンプ5を駆動制御するフィードバック制御を
行う。
The electronic control circuit 6 includes a rotational speed NE of the diesel engine 2 detected by the rotational speed sensor 7 and an accelerator sensor 8 and an accelerator opening AF (the diesel engine 2).
Corresponding to the load of), diesel engine 2
Of the inside of the common rail 4 detected by the pressure sensor 9 as the fuel pressure detection means by calculating the target common rail pressure for realizing the fuel injection pressure in which the combustion state of the fuel cell is optimized according to the detected operating state. Feedback control for driving and controlling the fuel supply pump 5 is performed so that the fuel pressure (common rail pressure Pc) of the above-mentioned target common rail pressure matches.

【0013】燃料供給ポンプ5は、240°CA周期で
燃料を圧送する一対のプランジャポンプ(以下、第1ポ
ンプ5a,第2ポンプ5bと記載)からなっている。各
ポンプ5a,5bは、各プランジャの位相を120°C
A異にしている。また、各ポンプ5a,5bは、電子制
御回路6からの制御指令に従って、燃料タンク10に蓄
えられた燃料を低圧ポンプ11を経て吸入し、自身の内
部にて高圧に加圧し、この加圧された高圧燃料を供給配
管12a,12bを介してコモンレール4に圧送する。
なお、燃料供給ポンプ5に対する制御指令は、回転数セ
ンサ7や図示しない気筒判別センサなどからの検出値に
基づいた所定のタイミングで出力される。また、各ポン
プ5a,5bの内部構造は周知であるのでここでは詳述
しない。
The fuel supply pump 5 is composed of a pair of plunger pumps (hereinafter, referred to as a first pump 5a and a second pump 5b) which pressure-feeds fuel at a 240 ° CA cycle. Each pump 5a, 5b has a phase of each plunger of 120 ° C.
A is different. Further, each of the pumps 5a, 5b sucks the fuel stored in the fuel tank 10 through the low pressure pump 11 according to a control command from the electronic control circuit 6, pressurizes it to a high pressure inside itself, and pressurizes this. The high-pressure fuel is pressure-fed to the common rail 4 via the supply pipes 12a and 12b.
The control command to the fuel supply pump 5 is output at a predetermined timing based on the detection value from the rotation speed sensor 7 or a cylinder discrimination sensor (not shown). The internal structure of each pump 5a, 5b is well known and will not be described in detail here.

【0014】各インジェクタ3は、配管13によって、
高圧燃料を蓄圧したコモンレール4と連結されている。
そして、各インジェクタ3に配設されたコントロール弁
14を開閉動作することで、このコモンレール4にて蓄
圧されて目標燃料圧力となった高圧燃料が、ディーゼル
エンジン2の各気筒の燃焼室へ噴射される。このインジ
ェクタ3のコントロール弁14の開閉動作は、電子制御
回路6からのインジェクタ駆動パルスに基づいて実行さ
れる。
Each injector 3 is connected by a pipe 13 to
It is connected to a common rail 4 that stores high-pressure fuel.
Then, by opening and closing the control valve 14 provided in each injector 3, the high-pressure fuel accumulated in the common rail 4 to reach the target fuel pressure is injected into the combustion chamber of each cylinder of the diesel engine 2. It The opening / closing operation of the control valve 14 of the injector 3 is executed based on the injector drive pulse from the electronic control circuit 6.

【0015】次に、このように構成された蓄圧式燃料噴
射装置1におけるコモンレール圧Pcの変化を、図2の
タイムチャートに基づいて説明する。(b),(d)に
示すように、第1ポンプ5a,第2ポンプ5bの図示し
ないプランジャは、240°CA周期で摺動している。
プランジャが上昇中のポンプ(第1ポンプ5aまたは第
2ポンプ5b)に、電子制御回路から(a),(c)に
示す駆動パルスを入力すると、当該ポンプは、所定の遅
れ時間TC後にコモンレール4へ燃料の圧送を開始す
る。当該ポンプは、そのプランジャが上死点に達するま
での間燃料を圧送し続け、その間のプランジャ移動量に
比例する量の燃料をコモンレール4へ圧送する。すなわ
ち、電子制御回路6が所定タイミングTFで第1ポンプ
駆動パルスまたは第2ポンプ駆動パルスを出力すると、
それからTC後のタイミングTeにコモンレール圧Pc
が上昇し始める。
Next, the change of the common rail pressure Pc in the pressure-accumulation type fuel injection device 1 thus constructed will be described with reference to the time chart of FIG. As shown in (b) and (d), the unillustrated plungers of the first pump 5a and the second pump 5b slide at a 240 ° CA cycle.
When the drive pulses shown in (a) and (c) are input from the electronic control circuit to the pump (first pump 5a or second pump 5b) whose plunger is moving upward, the pump will cause the common rail 4 to pass after a predetermined delay time TC. To start pumping fuel to. The pump continues to pump fuel until the plunger reaches the top dead center, and pumps to the common rail 4 an amount of fuel proportional to the plunger movement amount during that time. That is, when the electronic control circuit 6 outputs the first pump drive pulse or the second pump drive pulse at the predetermined timing TF,
Then, at the timing Te after TC, the common rail pressure Pc
Begins to rise.

【0016】また、電子制御回路6はディーゼルエンジ
ン2の各気筒が点火時期に達する度に、その点火気筒に
属するインジェクタ3のコントロール弁14に、(e)
に示すインジェクタ駆動パルスを出力する。すると、そ
のパルス出力とほぼ同時に当該インジェクタ3が開弁
し、コモンレール4内に蓄えられた燃料が気筒内に噴射
される。従って、電子制御回路6が所定タイミングでイ
ンジェクタ駆動パルスを出力すると、ほぼ同時にコモン
レール圧Pcが減少する。また、所定タイミングTiに
てインジェクタ駆動パルスを停止すると、当該インジェ
クタ3が閉弁して燃料噴射が終了する。なお、上記タイ
ミングTF,Te,およびTiは、気筒判別のための基
準信号から当該タイミングまでの時間で定義されてい
る。
Further, the electronic control circuit 6 controls the control valve 14 of the injector 3 belonging to the ignition cylinder (e) every time each cylinder of the diesel engine 2 reaches the ignition timing.
The injector drive pulse shown in is output. Then, the injector 3 is opened almost simultaneously with the pulse output, and the fuel stored in the common rail 4 is injected into the cylinder. Therefore, when the electronic control circuit 6 outputs the injector drive pulse at a predetermined timing, the common rail pressure Pc decreases almost at the same time. When the injector drive pulse is stopped at the predetermined timing Ti, the injector 3 closes and the fuel injection ends. The timings TF, Te, and Ti are defined by the time from the reference signal for cylinder discrimination to the timing.

【0017】コモンレール圧Pcはこのような挙動を示
すので、インジェクタ駆動パルスが停止されるタイミン
グTiから、燃料供給ポンプ5の燃料供給が開始される
タイミングTeまでの期間では、コモンレール圧Pcは
通常ほぼ一定に保持される。ところが、燃料供給ポンプ
5からインジェクタ3に至る燃料供給系からの燃料洩れ
が発生すると、この期間中にコモンレール圧Pcが有意
に低下する。そこで本実施例では、上記期間中の二つの
時点でコモンレール圧Pcを測定し(これをPc1 ,P
c2 とする)、両コモンレール圧Pc1 ,Pc2 の圧力
差に基づいて上記燃料供給系からの燃料洩れを検出して
いる。続いて、電子制御回路6にて実行されるこの燃料
洩れ検出処理について、図3〜図7に基づいて説明す
る。
Since the common rail pressure Pc exhibits such a behavior, the common rail pressure Pc is usually almost in the period from the timing Ti at which the injector drive pulse is stopped to the timing Te at which the fuel supply of the fuel supply pump 5 is started. Holds constant. However, when fuel leaks from the fuel supply system from the fuel supply pump 5 to the injector 3, the common rail pressure Pc significantly decreases during this period. Therefore, in this embodiment, the common rail pressure Pc is measured at two points during the above period (Pc1, Pc1,
The fuel leak from the fuel supply system is detected based on the pressure difference between the common rail pressures Pc1 and Pc2. Next, the fuel leak detection process executed by the electronic control circuit 6 will be described with reference to FIGS.

【0018】先ず、図3は本実施例の燃料洩れ検出処理
のメインルーチンを表すフローチャートである。なお、
この処理はディーゼルエンジン2の運転中所定期間(例
えば3msec.)毎に実行される。処理を開始すると、先
ずステップ301にて燃料洩れの判断に用いる圧力低下
率DPcのしきい値Ptを、コモンレール圧Pcの平均
値Pccと、燃料温度とに基づいて図4のマップにより
算出する。なお、圧力低下率DPcは、コモンレール圧
PcがPc1 からPc2 まで変化する間の、1msec.当
りの圧力低下率であり、後述の処理によって算出され
る。また、平均値Pccは、所定のタイミング(例えば
タイミングTiとタイミングTeとの中間)で検出した
コモンレール圧Pcによって代用することができる。更
に、燃料温度は、燃料タンク10に設けた周知の燃料温
度センサ20によって検出される。
First, FIG. 3 is a flow chart showing the main routine of the fuel leakage detection processing of this embodiment. In addition,
This process is executed every predetermined period (for example, 3 msec.) During operation of the diesel engine 2. When the process is started, first, at step 301, the threshold value Pt of the pressure decrease rate DPc used for judging the fuel leakage is calculated based on the average value Pcc of the common rail pressure Pc and the fuel temperature by the map of FIG. The pressure decrease rate DPc is a pressure decrease rate per 1 msec. While the common rail pressure Pc changes from Pc1 to Pc2, and is calculated by the process described later. Further, the average value Pcc can be substituted by the common rail pressure Pc detected at a predetermined timing (for example, between the timing Ti and the timing Te). Further, the fuel temperature is detected by a well-known fuel temperature sensor 20 provided in the fuel tank 10.

【0019】またここで、図4のマップは次のような特
性を有している。コモンレール4への燃料の供給・噴射
が行われないタイミングTiからタイミングTeに至る
期間では、燃料供給系が正常であっても、インジェクタ
3の弁の隙間などから若干の燃料が流出する。従って、
この間にコモンレール圧Pcは、図5に例示するように
若干減少する。また、このコモンレール圧Pcの減少傾
向は、同図に一点鎖線で例示するように、コモンレール
圧Pcが高いほど顕著になり、燃料の粘度が低いほど、
例えば燃料温度が高いほど顕著になる。そこで、図4の
マップも、コモンレール圧Pcの平均値Pccが高いほ
ど、燃料温度が高いほど、しきい値Ptが大きくなるよ
うに作製されている。なお、図5では、比較のためコモ
ンレール圧Pcの最大値を揃えて記載している。また、
図4,図5では、燃料温度を粘性のパラメータとしてい
るが、燃料の粘性は温度以外のパラメータ、例えば燃料
の種類などによっても変化する。そこで、これらのパラ
メータを加味した更に高次のマップを作製してもよい。
The map of FIG. 4 has the following characteristics. In the period from the timing Ti to the timing Te when the fuel is not supplied / injected into the common rail 4, some fuel flows out from the gap of the valve of the injector 3 even if the fuel supply system is normal. Therefore,
During this period, the common rail pressure Pc slightly decreases as illustrated in FIG. The decreasing tendency of the common rail pressure Pc becomes more remarkable as the common rail pressure Pc becomes higher, and the viscosity of the fuel becomes lower, as illustrated by the alternate long and short dash line in FIG.
For example, the higher the fuel temperature, the more remarkable. Therefore, the map of FIG. 4 is also made so that the threshold value Pt increases as the average value Pcc of the common rail pressure Pc increases and the fuel temperature increases. In addition, in FIG. 5, the maximum values of the common rail pressure Pc are shown together for comparison. Also,
Although the fuel temperature is used as the viscosity parameter in FIGS. 4 and 5, the fuel viscosity also changes depending on parameters other than temperature, such as the type of fuel. Therefore, a higher-order map in which these parameters are added may be created.

【0020】図3に戻って、続くステップ303では、
コモンレール圧Pc1 ,Pc2 の圧力差に基づいて後述
の処理で算出される圧力低下率DPcがしきい値Ptを
上回ったか否かを判断する。DPc>Ptのときは続く
ステップ305へ移行し、DPc≦Ptのときはそのま
ま一旦処理を終了する。ステップ303で肯定判断して
ステップ305へ移行すると、ディーゼルエンジン2始
動時にリセットされる異常カウンタNをインクリメント
して、ステップ307へ移行する。ステップ307で
は、異常カウンタNの値が10を超えたか否かを判断す
る。10を超えた場合はステップ309にて、燃料洩れ
を表す異常フラグErをセットして一旦処理を終了し、
N≦10の場合はそのまま一旦処理を終了する。なお、
この異常フラグErをセットすると、図示しない他のル
ーチンにより運転者への異常報知など所定の処理がなさ
れる。
Returning to FIG. 3, in the following step 303,
Based on the pressure difference between the common rail pressures Pc1 and Pc2, it is determined whether or not the pressure decrease rate DPc calculated in the process described later exceeds the threshold value Pt. When DPc> Pt, the process proceeds to the following step 305, and when DPc ≦ Pt, the process is temporarily terminated. When an affirmative decision is made in step 303 and the routine moves to step 305, the abnormality counter N that is reset when the diesel engine 2 is started is incremented and the routine moves to step 307. In step 307, it is determined whether or not the value of the abnormality counter N exceeds 10. If it exceeds 10, in step 309, the abnormality flag Er indicating fuel leakage is set, and the process is terminated once,
If N ≦ 10, the process is temporarily terminated. In addition,
When the abnormality flag Er is set, other routines (not shown) perform predetermined processing such as notification of abnormality to the driver.

【0021】次に、前述の圧力低下率DPcを算出する
ための処理を説明する。図6は、コモンレール圧Pc1
を検出すると共に、コモンレール圧Pc2 の検出タイミ
ングを設定する検出タイミング設定ルーチンを表すフロ
ーチャートである。なお、このルーチンは、タイミング
Tiから2msec.経過すると、上記メインルーチンへの
割込処理として実行される。
Next, the processing for calculating the above-mentioned pressure decrease rate DPc will be described. FIG. 6 shows the common rail pressure Pc1.
5 is a flowchart showing a detection timing setting routine for detecting the common rail pressure Pc2 and setting the detection timing of the common rail pressure Pc2. It should be noted that this routine is executed as an interrupt process to the main routine when 2 msec. Has elapsed from the timing Ti.

【0022】処理を開始すると、ステップ601にて、
そのとき検出されているコモンレール圧Pcをコモンレ
ール圧Pc1 とする。続くステップ603では、タイミ
ングTiからタイミングTeに至る期間が7msec.より
長いか否かを判断する。ここで肯定判断すると、続くス
テップ605へ移行し、判定期間フラグFを2に設定す
る。続いて、ステップ607にてタイマTmを4msec.
に設定して処理を終了する。なお、判定期間フラグF
は、コモンレール圧Pc1 の検出タイミングからコモン
レール圧Pc2 の検出タイミングに至る期間(以下、判
定期間と記載)の長さを表すフラグである。
When the processing is started, in step 601,
The common rail pressure Pc detected at that time is defined as the common rail pressure Pc1. In the following step 603, it is determined whether or not the period from the timing Ti to the timing Te is longer than 7 msec. If an affirmative determination is made here, the routine proceeds to subsequent step 605, where the determination period flag F is set to 2. Then, in step 607, the timer Tm is set to 4 msec.
And the process ends. The determination period flag F
Is a flag indicating the length of a period (hereinafter referred to as a determination period) from the detection timing of the common rail pressure Pc1 to the detection timing of the common rail pressure Pc2.

【0023】また、Te−Ti≦7(msec.)であり、
ステップ603にて否定判断すると、ステップ611へ
移行する。ステップ611では、Te−Tiが4msec.
より長いか否かを判断する。ここで肯定判断すると、続
くステップ613へ移行し、判定期間フラグFを1に設
定する。続いて、ステップ615にてタイマTmを1m
sec.に設定して処理を終了する。
Further, Te-Ti≤7 (msec.),
When a negative determination is made in step 603, the process proceeds to step 611. In step 611, Te-Ti is 4 msec.
Determine if it is longer. If an affirmative determination is made here, the process moves to the following step 613, and the determination period flag F is set to 1. Then, in step 615, the timer Tm is set to 1 m.
Set to sec. and end the process.

【0024】一方、Te−Tm≦4(msec.)であり、
ステップ611にて否定判断すると、ステップ617に
て判定期間フラグFを0に設定した後処理を終了する。
なお、判定期間フラグFを0に設定した場合、電子制御
回路6は次に述べる圧力低下率算出ルーチンを実行しな
い。次に、図7はコモンレール圧Pc2 を検出すると共
に、圧力低下率DPcを算出する圧力低下率算出ルーチ
ンを表すフローチャートである。なお、このルーチン
は、前述のステップ607または615でタイマTmを
設定した後、その設定時間が経過すると、上記メインル
ーチンへの割込処理として実行される。
On the other hand, Te-Tm ≦ 4 (msec.),
When a negative determination is made in step 611, the determination period flag F is set to 0 in step 617, and the post-processing is ended.
When the determination period flag F is set to 0, the electronic control circuit 6 does not execute the pressure decrease rate calculation routine described below. Next, FIG. 7 is a flow chart showing a pressure decrease rate calculation routine for detecting the common rail pressure Pc2 and calculating the pressure decrease rate DPc. It should be noted that this routine is executed as an interrupt process to the main routine when the set time has elapsed after the timer Tm was set in step 607 or 615 described above.

【0025】処理を開始すると、ステップ701にて、
そのとき検出されているコモンレール圧Pcをコモンレ
ール圧Pc2 とする。続くステップ703では、前述の
ステップ601にて検出したコモンレール圧Pc1 から
ステップ701にて検出したコモンレール圧Pc2 を差
し引き、その値を圧力低下率DPcとする。続くステッ
プ705では、判定期間フラグFが1であるか否かを判
断する。F=1のときはそのまま処理を終了し、F≠1
すなわちF=2のときは続くステップ707へ移行す
る。ステップ707では、ステップ703にて算出した
圧力低下率DPcを4で除し、これを新たに圧力低下率
DPcとして処理を終了する。
When the processing is started, in step 701,
The common rail pressure Pc detected at that time is referred to as common rail pressure Pc2. In the following step 703, the common rail pressure Pc2 detected in step 701 is subtracted from the common rail pressure Pc1 detected in step 601 and the value is taken as the pressure decrease rate DPc. In the following step 705, it is determined whether or not the determination period flag F is 1. When F = 1, the processing is terminated as it is, and F ≠ 1.
That is, when F = 2, the process proceeds to the following step 707. In step 707, the pressure decrease rate DPc calculated in step 703 is divided by 4, and this is newly set as the pressure decrease rate DPc, and the process ends.

【0026】すなわち、判定期間フラグFが1であると
きは判定期間は1msec.である。このため、Pc1 −P
c2 はそのままで1msec.当りの圧力低下率である。と
ころが、判定期間フラグFが2であるときは判定期間は
4msec.である。このため、Pc1 −Pc2 は4msec.
当りの圧力低下率となる。そこで、F=2の場合、ステ
ップ707にて(Pc1 −Pc2 )/4を圧力低下率D
Pcとするのである。
That is, when the determination period flag F is 1, the determination period is 1 msec. Therefore, Pc1 -P
c2 is the rate of pressure drop per 1 msec. However, when the determination period flag F is 2, the determination period is 4 msec. Therefore, Pc1-Pc2 is 4msec.
It is the rate of pressure drop per hit. Therefore, in the case of F = 2, in step 707, (Pc1-Pc2) / 4 is set to the pressure decrease rate D.
It is Pc.

【0027】なお、上記処理において、ステップ603
〜615が判定期間検出手段に、ステップ703が燃料
圧変化算出手段に、ステップ301〜309が燃料洩れ
判定手段にそれぞれ相当する処理である。以上の処理に
より、本実施例では図2(f)に例示するように、イン
ジェクタ駆動パルスが停止するタイミングTiの2mse
c.後にコモンレール圧Pc1 を検出し、その1msec.ま
たは4msec.後にコモンレール圧Pc2 を検出してい
る。更に、コモンレール圧Pc2 の検出タイミングと、
燃料供給ポンプ5がコモンレール4に燃料を圧送するタ
イミングTeとの間には、少なくとも1msec.の間隔が
ある。このため、上記判定期間では、インジェクタ3に
よる燃料噴射や燃料供給ポンプ5による燃料供給がコモ
ンレール圧Pcの変化に殆ど影響を与えない。従って、
上記判定期間には、ディーゼルエンジン2の負荷変動や
回転数に関わらず、コモンレール圧Pcは、通常ほぼ一
定に保持される。また、燃料洩れのときは、上記判定期
間にコモンレール圧Pcが有意に低下する。
In the above process, step 603.
6 to 615 correspond to the determination period detecting means, step 703 corresponds to the fuel pressure change calculating means, and steps 301 to 309 correspond to the fuel leak determining means. Through the above processing, in this embodiment, as shown in FIG. 2F, 2 mse of the timing Ti at which the injector drive pulse stops.
c. The common rail pressure Pc1 is detected later, and the common rail pressure Pc2 is detected 1 msec. or 4 msec later. Furthermore, the detection timing of the common rail pressure Pc2,
There is an interval of at least 1 msec. With the timing Te at which the fuel supply pump 5 pumps fuel to the common rail 4. Therefore, during the determination period, the fuel injection by the injector 3 and the fuel supply by the fuel supply pump 5 have almost no influence on the change in the common rail pressure Pc. Therefore,
During the above-described determination period, the common rail pressure Pc is normally held substantially constant regardless of the load fluctuation and the rotation speed of the diesel engine 2. In the case of fuel leakage, the common rail pressure Pc significantly decreases during the above determination period.

【0028】本実施例では、上記判定期間における1m
sec.当りの圧力低下率DPcを算出し、これがしきい値
Ptを上回った回数が10回を超えたとき、燃料供給ポ
ンプ5からインジェクタ3に至る燃料供給系からの燃料
洩れを判定している。このため本実施例の蓄圧式燃料噴
射装置1では、ディーゼルエンジン2の負荷変動や回転
数に関わらず、燃料洩れを正確に検出することができ
る。
In this embodiment, 1 m in the above determination period
The pressure decrease rate DPc per sec. is calculated, and when the number of times the threshold value Pt exceeds the threshold value Pt exceeds 10 times, the fuel leakage from the fuel supply system from the fuel supply pump 5 to the injector 3 is determined. . Therefore, the pressure-accumulation fuel injection device 1 of the present embodiment can accurately detect the fuel leakage regardless of the load fluctuation and the rotation speed of the diesel engine 2.

【0029】なお、本発明は、ディーゼル機関に限らず
種々の内燃機関、例えば、筒内噴射式の火花点火式ガソ
リン機関などにも適用可能である。
The present invention is not limited to diesel engines, but can be applied to various internal combustion engines, such as in-cylinder injection spark ignition gasoline engines.

【0030】[0030]

【発明の効果】以上詳述したように、本発明の蓄圧式燃
料噴射装置では、燃料圧送および燃料噴射がいずれも実
行されない所定の判定期間における蓄圧室内の燃料圧変
化に基づいて、上記燃料供給系の燃料洩れを検出してい
る。この判定期間には、機関の負荷変動や回転数に関わ
らず、蓄圧室内の燃料圧は通常ほぼ一定に保持される。
また、燃料洩れのときは、上記判定期間にその燃料圧が
有意に低下する。このため、本発明では、機関の負荷変
動や回転数に関わらず、燃料洩れを正確に検出すること
ができる。
As described above in detail, in the pressure-accumulation fuel injection device of the present invention, the fuel supply is performed based on the change in the fuel pressure in the pressure accumulation chamber during the predetermined determination period in which neither the fuel pressure feeding nor the fuel injection is executed. A system fuel leak has been detected. During this determination period, the fuel pressure in the pressure accumulating chamber is usually kept substantially constant regardless of the load variation and the engine speed of the engine.
Further, in the case of fuel leakage, the fuel pressure is significantly reduced during the above determination period. Therefore, in the present invention, the fuel leakage can be accurately detected regardless of the load variation and the engine speed of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の蓄圧式燃料噴射装置全体の構成を表す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a configuration of an entire pressure accumulation type fuel injection device of an embodiment.

【図2】実施例におけるコモンレール圧の変化を表すタ
イムチャートである。
FIG. 2 is a time chart showing changes in common rail pressure in the example.

【図3】実施例の燃料洩れ検出処理のメインルーチンを
表すフローチャートである。
FIG. 3 is a flowchart showing a main routine of a fuel leakage detection process of the embodiment.

【図4】圧力低下率のしきい値とコモンレール圧,燃料
温度との関係を表すマップである。
FIG. 4 is a map showing the relationship between the threshold value of the pressure drop rate, the common rail pressure, and the fuel temperature.

【図5】コモンレール圧力変化の、平均コモンレール
圧,燃料温度による相違を表すタイムチャートである。
FIG. 5 is a time chart showing the difference in common rail pressure change depending on the average common rail pressure and fuel temperature.

【図6】実施例の検出タイミング設定ルーチンを表すフ
ローチャートである。
FIG. 6 is a flowchart showing a detection timing setting routine of the embodiment.

【図7】実施例の圧力低下率算出ルーチンを表すフロー
チャートである。
FIG. 7 is a flowchart showing a pressure decrease rate calculation routine of the embodiment.

【図8】本発明の構成例示図である。FIG. 8 is a diagram illustrating the configuration of the present invention.

【符号の説明】[Explanation of symbols]

1…蓄圧式燃料噴射装置 2…ディーゼルエンジ
3…インジェクタ 4…コモンレール 5…燃料供給ポンプ
6…電子制御回路 9…圧力センサ
1 ... Accumulation type fuel injection device 2 ... Diesel engine
3 ... Injector 4 ... Common rail 5 ... Fuel supply pump
6 ... Electronic control circuit 9 ... Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料を高圧状態で蓄える蓄圧室と、 該蓄圧室に燃料を圧送する燃料供給ポンプと上記蓄圧室
に蓄えられた高圧燃料を内燃機関の各気筒に噴射供給す
る燃料噴射弁と、 上記蓄圧室内の燃料圧を検出する燃料圧検出手段とを備
えた蓄圧式燃料噴射装置において、 上記燃料供給ポンプによる燃料圧送、および上記燃料噴
射弁による燃料噴射が、いずれも実行されない所定の判
定期間を検出する判定期間検出手段と、 上記判定期間に上記燃料圧検出手段にて検出される上記
蓄圧室内の燃料圧変化を算出する燃料圧変化算出手段
と、 該算出された燃料圧変化に基づき、上記燃料供給ポンプ
から上記燃料噴射弁に至る燃料供給系からの燃料洩れを
判定する燃料洩れ判定手段と、 を設けたことを特徴とする蓄圧式燃料噴射装置。
1. A pressure accumulation chamber for storing fuel in a high pressure state, a fuel supply pump for pressure-feeding the fuel to the pressure accumulation chamber, and a fuel injection valve for injecting the high pressure fuel stored in the pressure accumulation chamber into each cylinder of an internal combustion engine. In the pressure-accumulation fuel injection device including a fuel pressure detection unit that detects the fuel pressure in the pressure accumulation chamber, a predetermined determination is made that neither the fuel pressure pumping by the fuel supply pump nor the fuel injection by the fuel injection valve is executed. Determination period detection means for detecting a period, fuel pressure change calculation means for calculating a fuel pressure change in the pressure accumulation chamber detected by the fuel pressure detection means during the determination period, and based on the calculated fuel pressure change A fuel-accumulation fuel injection device comprising: a fuel-leakage judging means for judging a fuel leak from a fuel supply system from the fuel supply pump to the fuel injection valve;
JP00685793A 1993-01-19 1993-01-19 Accumulator type fuel injection device Expired - Lifetime JP3345933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00685793A JP3345933B2 (en) 1993-01-19 1993-01-19 Accumulator type fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00685793A JP3345933B2 (en) 1993-01-19 1993-01-19 Accumulator type fuel injection device

Publications (2)

Publication Number Publication Date
JPH06213051A true JPH06213051A (en) 1994-08-02
JP3345933B2 JP3345933B2 (en) 2002-11-18

Family

ID=11649912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00685793A Expired - Lifetime JP3345933B2 (en) 1993-01-19 1993-01-19 Accumulator type fuel injection device

Country Status (1)

Country Link
JP (1) JP3345933B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748930A2 (en) * 1995-06-15 1996-12-18 Mercedes-Benz Ag Method for detecting operating failures in a fuel injection apparatus for an internal combustion engine
WO1997010423A1 (en) * 1995-09-14 1997-03-20 Robert Bosch Gmbh Method of operating a fuel-injection device
FR2741113A1 (en) * 1995-11-09 1997-05-16 Bosch Gmbh Robert METHOD AND DEVICE FOR DETECTING A LEAK IN A FUEL SUPPLY SYSTEM OF A HIGH PRESSURE INJECTION INTERNAL COMBUSTION ENGINE
FR2746852A1 (en) * 1996-04-02 1997-10-03 Daimler Benz Ag METHOD FOR RECOGNIZING DERANGEMENTS IN THE OPERATION OF A FUEL INJECTION SYSTEM
EP0857867A1 (en) * 1997-02-03 1998-08-12 Robert Bosch Gmbh Method and apparatus for detecting leaks
WO1999028610A1 (en) * 1997-11-28 1999-06-10 Zexel Corporation Method of jetting high pressure fuel and apparatus therefor
JP2000274297A (en) * 1999-03-24 2000-10-03 Isuzu Motors Ltd Common rail type fuel injection device
EP0974826A3 (en) * 1998-07-23 2001-09-12 Robert Bosch Gmbh Method and device for leakage recognition in a fuel supply system of a combustion engine
EP0846222B1 (en) * 1996-06-26 2001-11-28 Robert Bosch Gmbh Process for operating a fuel injection device
KR100345134B1 (en) * 1999-12-30 2002-07-24 현대자동차주식회사 Device and method for leak detection of diesel engine of vehicle
KR100345138B1 (en) * 1999-12-30 2002-08-14 기아자동차주식회사 Method for leak detection of diesel engine of vehicle
EP1327762A2 (en) * 2002-01-11 2003-07-16 Robert Bosch Gmbh Method, computer programme and control and/or regulation device for operating an internal combustion engine, and internal combustion engine
KR100405711B1 (en) * 2001-07-11 2003-11-14 현대자동차주식회사 Common rail system fuel leakage detection algorithm
US6871633B1 (en) * 2004-05-24 2005-03-29 Mitsubishi Denki Kabushiki Kaisha Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
WO2005045221A1 (en) * 2003-11-06 2005-05-19 Robert Bosch Gmbh Method for operating a combustion engine
DE19622757B4 (en) * 1995-11-09 2007-05-10 Robert Bosch Gmbh Method and device for detecting a leak in a fuel supply system of a high-pressure injection internal combustion engine
DE102007052451A1 (en) * 2007-11-02 2009-05-14 Continental Automotive Gmbh Method for determining current steady leakage volume of hydraulic system, particularly injectors, involves injecting fuel in combustion chamber of internal combustion engine by multiple injectors
WO2010038126A1 (en) * 2008-09-30 2010-04-08 Eaton Corporation Leak detection system
JP2010216279A (en) * 2009-03-13 2010-09-30 Denso Corp Fuel injection control device and accumulator fuel injection system using the same
JP2011064108A (en) * 2009-09-16 2011-03-31 Denso Corp Fuel injection device
JP2011247123A (en) * 2010-05-25 2011-12-08 Bosch Corp Device for diagnosis of failure in fuel temperature sensor, and accumulator fuel injection device
WO2013104986A1 (en) 2012-01-13 2013-07-18 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for fuel supply system
JP2013177823A (en) * 2012-02-28 2013-09-09 Denso Corp Fuel leakage detection apparatus
JP2013203235A (en) * 2012-03-28 2013-10-07 Kubota Corp Hybrid work vehicle
JP2013203234A (en) * 2012-03-28 2013-10-07 Kubota Corp Hybrid working vehicle
JP2013238161A (en) * 2012-05-15 2013-11-28 Nippon Sharyo Seizo Kaisha Ltd Portable engine generator
US9561789B2 (en) 2012-03-28 2017-02-07 Kubota Corporation Hybrid work vehicle
FR3098551A1 (en) * 2019-07-11 2021-01-15 Continental Automotive Gmbh diagnostic process for a high pressure injection system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748930A3 (en) * 1995-06-15 1998-01-14 Daimler-Benz Aktiengesellschaft Method for detecting operating failures in a fuel injection apparatus for an internal combustion engine
EP0748930B1 (en) * 1995-06-15 2000-08-09 DaimlerChrysler AG Method for detecting operating failures in a fuel injection apparatus for an internal combustion engine
EP0748930A2 (en) * 1995-06-15 1996-12-18 Mercedes-Benz Ag Method for detecting operating failures in a fuel injection apparatus for an internal combustion engine
WO1997010423A1 (en) * 1995-09-14 1997-03-20 Robert Bosch Gmbh Method of operating a fuel-injection device
DE19622757B4 (en) * 1995-11-09 2007-05-10 Robert Bosch Gmbh Method and device for detecting a leak in a fuel supply system of a high-pressure injection internal combustion engine
FR2741113A1 (en) * 1995-11-09 1997-05-16 Bosch Gmbh Robert METHOD AND DEVICE FOR DETECTING A LEAK IN A FUEL SUPPLY SYSTEM OF A HIGH PRESSURE INJECTION INTERNAL COMBUSTION ENGINE
FR2746852A1 (en) * 1996-04-02 1997-10-03 Daimler Benz Ag METHOD FOR RECOGNIZING DERANGEMENTS IN THE OPERATION OF A FUEL INJECTION SYSTEM
EP0846222B1 (en) * 1996-06-26 2001-11-28 Robert Bosch Gmbh Process for operating a fuel injection device
EP0857867A1 (en) * 1997-02-03 1998-08-12 Robert Bosch Gmbh Method and apparatus for detecting leaks
DE19703891B4 (en) * 1997-02-03 2008-07-31 Robert Bosch Gmbh Method and device for detecting a leak
WO1999028610A1 (en) * 1997-11-28 1999-06-10 Zexel Corporation Method of jetting high pressure fuel and apparatus therefor
EP0974826A3 (en) * 1998-07-23 2001-09-12 Robert Bosch Gmbh Method and device for leakage recognition in a fuel supply system of a combustion engine
JP2000274297A (en) * 1999-03-24 2000-10-03 Isuzu Motors Ltd Common rail type fuel injection device
KR100345138B1 (en) * 1999-12-30 2002-08-14 기아자동차주식회사 Method for leak detection of diesel engine of vehicle
KR100345134B1 (en) * 1999-12-30 2002-07-24 현대자동차주식회사 Device and method for leak detection of diesel engine of vehicle
KR100405711B1 (en) * 2001-07-11 2003-11-14 현대자동차주식회사 Common rail system fuel leakage detection algorithm
EP1327762A2 (en) * 2002-01-11 2003-07-16 Robert Bosch Gmbh Method, computer programme and control and/or regulation device for operating an internal combustion engine, and internal combustion engine
EP1327762A3 (en) * 2002-01-11 2005-09-07 Robert Bosch Gmbh Method, computer programme and control and/or regulation device for operating an internal combustion engine, and internal combustion engine
WO2005045221A1 (en) * 2003-11-06 2005-05-19 Robert Bosch Gmbh Method for operating a combustion engine
US7360408B2 (en) 2003-11-06 2008-04-22 Robert Bosch Gmbh Method for determining a fuel pressure related fault and operating an internal combustion engine based on the fault
CN100430589C (en) * 2003-11-06 2008-11-05 罗伯特.博世有限公司 Method for operating a combustion engine
US6871633B1 (en) * 2004-05-24 2005-03-29 Mitsubishi Denki Kabushiki Kaisha Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
DE102007052451A1 (en) * 2007-11-02 2009-05-14 Continental Automotive Gmbh Method for determining current steady leakage volume of hydraulic system, particularly injectors, involves injecting fuel in combustion chamber of internal combustion engine by multiple injectors
DE102007052451B4 (en) * 2007-11-02 2009-09-24 Continental Automotive Gmbh Method for determining the current continuous leakage quantity of a common-rail injection system and injection system for an internal combustion engine
WO2010038126A1 (en) * 2008-09-30 2010-04-08 Eaton Corporation Leak detection system
US8332130B2 (en) 2008-09-30 2012-12-11 Dale Arden Stretch Leak detection system
JP2010216279A (en) * 2009-03-13 2010-09-30 Denso Corp Fuel injection control device and accumulator fuel injection system using the same
JP2011064108A (en) * 2009-09-16 2011-03-31 Denso Corp Fuel injection device
JP2011247123A (en) * 2010-05-25 2011-12-08 Bosch Corp Device for diagnosis of failure in fuel temperature sensor, and accumulator fuel injection device
CN104105862A (en) * 2012-01-13 2014-10-15 丰田自动车株式会社 Abnormality determination apparatus and abnormality determination method for fuel supply system
WO2013104986A1 (en) 2012-01-13 2013-07-18 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for fuel supply system
JP2013144937A (en) * 2012-01-13 2013-07-25 Toyota Motor Corp Failure determination apparatus for fuel supply system
JP2013177823A (en) * 2012-02-28 2013-09-09 Denso Corp Fuel leakage detection apparatus
DE102013101850B4 (en) 2012-02-28 2021-07-22 Denso Corporation Fuel leak detection device for use in fuel injection systems
JP2013203234A (en) * 2012-03-28 2013-10-07 Kubota Corp Hybrid working vehicle
JP2013203235A (en) * 2012-03-28 2013-10-07 Kubota Corp Hybrid work vehicle
US9561789B2 (en) 2012-03-28 2017-02-07 Kubota Corporation Hybrid work vehicle
JP2013238161A (en) * 2012-05-15 2013-11-28 Nippon Sharyo Seizo Kaisha Ltd Portable engine generator
FR3098551A1 (en) * 2019-07-11 2021-01-15 Continental Automotive Gmbh diagnostic process for a high pressure injection system

Also Published As

Publication number Publication date
JP3345933B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3345933B2 (en) Accumulator type fuel injection device
EP0969196B1 (en) Fuel-Injection system for engine and process for defining the beginning of pressure drop in common rail
EP0905359B1 (en) A fuel injection method and device for engines
JP4075774B2 (en) Injection quantity control device for diesel engine
EP1832737B1 (en) Abnormality-determining device and method for fuel supply system
US20050199221A1 (en) Method for controlling an injection valve of an internal combustion engine
US9284904B2 (en) Method and device for monitoring a high-pressure fuel system
US20150112576A1 (en) Pump control apparatus for fuel supply system of fuel-injection engine
JP3339326B2 (en) Fuel supply device
JP2000303887A (en) Fuel injector for internal combustion engine
JPH084577A (en) Fuel injection device for internal combustion engine
US7493887B2 (en) Method for detecting preinjection
JP2001123871A (en) Control device for diesel engine
CN111550339A (en) Engine oil way air discharge method and system and oil rail pressure calibration method
US10808644B2 (en) Method and apparatus for preventing engine stall of vehicle
JP3716498B2 (en) Fuel injection device for direct injection internal combustion engine
JP4788557B2 (en) Fuel injection control device
JP4193302B2 (en) Accumulated fuel injection system
JP4218218B2 (en) Common rail fuel injection system
JP5994677B2 (en) Fuel injection control device
JP2003227394A (en) Pressure accumulation type fuel injection device
JP6094464B2 (en) Fuel injection control device
JP5929740B2 (en) Fuel injection control device
JP5338650B2 (en) Accumulated fuel injection system
JPH06101532A (en) Accumulator fuel injection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11