JPH06212409A - Micromachining method and device - Google Patents

Micromachining method and device

Info

Publication number
JPH06212409A
JPH06212409A JP440093A JP440093A JPH06212409A JP H06212409 A JPH06212409 A JP H06212409A JP 440093 A JP440093 A JP 440093A JP 440093 A JP440093 A JP 440093A JP H06212409 A JPH06212409 A JP H06212409A
Authority
JP
Japan
Prior art keywords
work
electron beam
micromachining
micromachining method
processing part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP440093A
Other languages
Japanese (ja)
Inventor
Hitoshi Origasa
仁 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP440093A priority Critical patent/JPH06212409A/en
Publication of JPH06212409A publication Critical patent/JPH06212409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To build three-dimensional fine structural parts which cannot be formed by the conventional surface micromachining method applying a semicon ductor processing technique by the simple process. CONSTITUTION:The processing part of a work is irradiated with an electron beam focused to this part by using the micromachining device constituted of a positioning table 4 to be mounted with the work 3, an electron beam generator 6 for irradiating the processing part of the work with the electron beam 5, a material supplying device 8 for supplying carbon particulates 7 (building material) toward the processing part of the work from the circumference, a vacuum container 1 housing these device and a vacuum evacuation device 2, by which amorphous deposits 9 are grown to a desired shape to the processing part of the work and the three-dimensional parts are built with the carbon particulates drawn from the circumference by electrofying as the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロマシーン,マ
イクロアクチュエータなどを対象とした微細構造体の加
工に適用するマイクロマシニング方法, および装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micromachining method and apparatus applied to the processing of fine structures for micromachines, microactuators and the like.

【0002】[0002]

【従来の技術】微小なマイクロマシーン,マイクロアク
チュエータなどの微細構造体(μmオーダ)に対する製
造技術として、放電加工,レーザ加工のほかに、半導体
加工技術を応用した加工方法として、多結晶シリコンを
構造材とし、これにエッチング加工の容易なリン・けい
素ガラスなどを分離層材として組合わせ、ホォトリソグ
ラフィ,エッチング処理を繰り返すプロセスを経て所望
の機構部品を製作するようにした表面マイクロマシニン
グ法が知られている。
2. Description of the Related Art In addition to electrical discharge machining and laser machining as a manufacturing technique for microstructures (on the order of μm) such as minute micromachines and microactuators, polycrystalline silicon is used as a machining method to which semiconductor machining technology is applied. A surface micromachining method is known in which a desired mechanical component is manufactured through a process of repeating photolithography and etching treatment by combining it with a material such as phosphorus and silicon glass, which is easy to etch, as a separation layer material. Has been.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記した半
導体加工技術を応用した従来の表面マイクロマシニング
法は、加工の主体がエッチング処理法であることから平
面的な積層構造体のものにしか適用できず、立体的な微
細構造部品を構築するには不向きである。本発明は上記
の点にかんがみなされたものであり、その目的は半導体
加工技術を応用した従来の表面マイクロマシニング法で
は成し得ない3次元的な微細構造部品を簡単なプロセス
で構築できるようにしたマイクロマシニング方法,およ
び装置を提供することにある。
By the way, the conventional surface micromachining method to which the above-mentioned semiconductor processing technique is applied can be applied only to a planar laminated structure because the main processing is an etching method. Therefore, it is not suitable for constructing a three-dimensional fine structure component. The present invention has been made in view of the above points, and an object thereof is to construct a three-dimensional microstructured component by a simple process that cannot be achieved by the conventional surface micromachining method to which semiconductor processing technology is applied. To provide a micromachining method and device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明のマイクロマシニング方法は、真空中でワー
クの加工部分に焦点を合わせて電子ビームを照射し、帯
電により周囲から引き寄せられた微粒子を構築材料に、
ワークの加工部分に非晶質の堆積物を成長させて立体的
な部品を構築するものとする。
In order to achieve the above object, the micromachining method of the present invention irradiates an electron beam while focusing on a processed portion of a workpiece in a vacuum and attracts it from the surroundings by charging. Fine particles as building material,
It is assumed that a three-dimensional part is constructed by growing an amorphous deposit on the processed part of the work.

【0005】また、前記マイクロマシニング方法におい
て、構築材料としてカーボン微粒子を採用するのがよ
い。一方、前記マイクロマシニング方法の実施に用いる
本発明のマイクロマシニング装置は、ワークを搭載する
位置決めテーブルと、ワークの加工部分に向けて電子ビ
ームを照射する電子ビーム発生装置と、ワークの加工部
分に向けて周囲から微粒子の構築材料を供給する材料供
給手段と、これらを収容した真空容器, および真空引き
装置とから構成するものとする。
Further, in the above-mentioned micromachining method, it is preferable to employ fine carbon particles as a building material. On the other hand, the micromachining apparatus of the present invention used for carrying out the micromachining method is provided with a positioning table for mounting a work, an electron beam generator for irradiating an electron beam toward a work portion of the work, and a work portion for the work. And a vacuum container accommodating them, and a vacuuming device.

【0006】[0006]

【作用】上記方法で所望の立体的な微細構造体を構築す
るには、被加工ワーク(ワークには、必要により従来と
同様な半導体加工技術を応用した表面マイクロマシニン
グ法によって基板(シリコンウェーハなど)の上に微細
機構の基体となる平面的な構造部品を加工して仮組立て
しておく)を真空容器内の位置決めテーブルに搭載して
容器内を真空引きした後、ワークの加工部分に焦点を合
わせて電子ビーム発生装置から出射した電子ビームを照
射するとともに、その加工部分の近傍に外部よりカーボ
ン微粒子(グラファイト)を供給する。これにより、ワ
ークの加工部分が電子ビームの照射を受けて局部的に帯
電されるとともに、この部分に周囲から静電力で引き寄
せられたカーボン微粒子が電子ビームの照射を受けて非
晶質の堆積物(アモルファスカーボン)に変質し、さら
に電子ビームの照射時間経過とともに堆積物が成長し、
最終的に所望の立体的な構造部品が構築されるようにな
る。
In order to construct a desired three-dimensional fine structure by the above-mentioned method, a work piece to be processed (if necessary, a substrate (such as a silicon wafer) is applied by the surface micromachining method to which the same semiconductor processing technology as the conventional one is applied. ) On which the planar structural parts that will be the base of the micromechanism are processed and temporarily assembled) are mounted on the positioning table in the vacuum container to evacuate the inside of the container, and then focus on the processed part of the work. In addition, the electron beam emitted from the electron beam generator is irradiated, and carbon fine particles (graphite) are supplied from the outside in the vicinity of the processed portion. As a result, the processed part of the workpiece is locally charged by being irradiated with the electron beam, and the carbon fine particles attracted to this part by an electrostatic force from the surroundings are irradiated with the electron beam to form an amorphous deposit. (Amorphous carbon), the deposit grows with the passage of electron beam irradiation time,
Eventually, a desired three-dimensional structural component will be constructed.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。まず、図1に本発明によるマイクロマシニング装
置の構成を示す。図において、1は真空容器、2は真空
引き装置であり、真空容器1の内部にはワーク3を搭載
する位置決めテーブル(例えばX−Yテーブル)4と、
加工部分に向けて電子ビーム5を照射する電子ビーム発
生装置6と、外部より構築材料であるカーボン微粒子7
(例えばグラファイト)を供給する材料供給装置8を備
えている。なお、図示装置は概念図として表したもので
あり、実際の装置は電子顕微鏡などに組み込んで使用さ
れる。
Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows the configuration of a micromachining apparatus according to the present invention. In the figure, reference numeral 1 is a vacuum container, 2 is a vacuuming device, and inside the vacuum container 1, a positioning table (for example, an XY table) 4 on which a work 3 is mounted,
An electron beam generator 6 for irradiating a processed portion with an electron beam 5 and carbon fine particles 7 as a construction material from the outside
A material supply device 8 for supplying (for example, graphite) is provided. The illustrated device is shown as a conceptual diagram, and the actual device is used by being incorporated in an electron microscope or the like.

【0008】かかるマイクロマシニング装置を用いてワ
ーク3の上に機構部品としての突起物を構築するには、
シリコンウェーハなどのワーク3を位置決めテーブル4
の上に載置し、かつ真空容器1の内部を真空引きした状
態で、ワーク3の加工地点に焦点を合わせて電子ビーム
発生装置6より電子ビーム5を照射するとともに、加工
地点の近傍に向けて材料供給装置8よりカーボン微粒子
7を供給する。
In order to construct a protrusion as a mechanical component on the work 3 using such a micromachining device,
Positioning table 4 for workpieces 3 such as silicon wafers
In the state where the vacuum container 1 is placed on top of the workpiece and the inside of the vacuum container 1 is evacuated, the electron beam generator 6 irradiates the electron beam 5 by focusing on the machining point of the workpiece 3 and directs it to the vicinity of the machining point. The carbon fine particles 7 are supplied from the material supply device 8.

【0009】これにより、ワーク3の加工部分(電子ビ
ームのスポット点)が局部的に帯電して該部に周囲から
カーボン微粒子7が引き寄せられるとともに、引き寄せ
られたカーボン微粒子7が電子ビーム7の照射を受けて
非晶質の堆積物(アモルファスカーボン)に変質し、さ
らに電子ビームの照射時間経過とともに突起状の堆積物
9に成長する。
As a result, the processed portion (electron beam spot point) of the work 3 is locally charged, and the carbon fine particles 7 are attracted from the periphery to this portion, and the attracted carbon fine particles 7 are irradiated with the electron beam 7. In response to this, it is transformed into an amorphous deposit (amorphous carbon), and further grows into a protrusion-shaped deposit 9 as the electron beam irradiation time elapses.

【0010】次に、本発明のマイクロマシニング方法で
製作したマイクロマシーンの具体的な微細構造体の事例
を図2,図3に示す。まず、図2は基板10から突出し
た軸11と、軸11に軸支された回転体12とからなる
回転構造体((a)図参照)に対し、図1で述べたと同
様な電子ビーム堆積物を軸11の周面上に形成し、回転
体12を両側から挟んで軸上の定位置に保持するフラン
ジ状の堆積物13,14((b)図参照)を構築したも
のである。ここで、最初に(a)図に示した構造体をエ
ッチング加工を主体とする従来の表面マイクロマシニン
グ法で製作する。次に、この構造体を図1のマシニング
装置における位置決めテーブル4の上に載せ、(b)図
のように軸11を中心に基板10を回転させながら軸端
の周面上に電子ビーム5を照射してリング状の堆積物1
3を形成する。続いて回転体12を軸端側に移動した後
に、前記と同様な方法で軸11の周面に電子ビームを照
射してもう一方の堆積物14を構築する。これにより、
回転体12が堆積物13,14を支持フランジとして軸
11上の定位置に保持した立体的な回転構造物が完成す
る。
Next, FIGS. 2 and 3 show examples of specific microstructures of a micromachine manufactured by the micromachining method of the present invention. First, FIG. 2 shows an electron beam deposition similar to that described in FIG. 1 for a rotary structure (see FIG. 2A) including a shaft 11 protruding from a substrate 10 and a rotary body 12 pivotally supported by the shaft 11. The object is formed on the peripheral surface of the shaft 11, and the flange-shaped deposits 13 and 14 (see FIG. (B)) for holding the rotating body 12 from both sides and holding it at a fixed position on the shaft are constructed. Here, first, the structure shown in FIG. 3A is manufactured by a conventional surface micromachining method mainly including etching. Next, this structure is placed on the positioning table 4 in the machining apparatus of FIG. 1, and the electron beam 5 is placed on the peripheral surface of the shaft end while rotating the substrate 10 about the shaft 11 as shown in FIG. Irradiate and deposit ring 1
3 is formed. Subsequently, after moving the rotating body 12 to the shaft end side, the peripheral surface of the shaft 11 is irradiated with an electron beam in the same manner as described above to construct the other deposit 14. This allows
A three-dimensional rotating structure in which the rotating body 12 holds the deposits 13 and 14 as supporting flanges in a fixed position on the shaft 11 is completed.

【0011】一方、図3は(a)図のように2本の鎖輪
付きリンク15,16を連ねて構成したユニバーサルジ
ョイント式リンク機構の製作例を示す。まず、エッチン
グ加工を主体とした従来の表面マイクロマシニング法に
より(b)図に示すような鎖輪付きのリンク15と16
を別々に製作する。ここで、リンク15の鎖輪15aは
閉じた環状体であるのに対し、リンク16の鎖輪16a
は環状体の周上一部が欠如(欠如部をPで示す)してお
り、この欠如部Pからリンク15の鎖輪15aを通して
図示のような状態に仮組立てする。次に(b)図の仮組
立体を図1のマシニング装置における位置決めテーブル
4に載せ、この状態で(c)図のようにリンク16の鎖
輪16aに対し、欠如部Pの端面に電子ビーム5を照射
してこの部分に肉盛りした堆積物17を欠如部に沿って
成長させる。そして、最終的に欠如部Pを堆積物17で
埋め、(a)図のように堆積物17を介して連なった環
状の鎖輪16aを構築する。
On the other hand, FIG. 3 shows an example of manufacturing a universal joint type link mechanism constituted by connecting two links 15 and 16 with chain rings as shown in FIG. First, links 15 and 16 with a chain ring as shown in FIG.
Are manufactured separately. Here, the chain wheel 15a of the link 15 is a closed annular body, while the chain wheel 16a of the link 16 is
Partially lacks on the circumference of the annular body (the lacking portion is indicated by P), and is temporarily assembled from this lacking portion P through the chain ring 15a of the link 15 in the state shown in the drawing. Next, the temporary assembly shown in (b) is placed on the positioning table 4 in the machining device shown in FIG. 1, and in this state, an electron beam is applied to the end face of the cutout P with respect to the chain ring 16a of the link 16 as shown in (c). 5 is irradiated to grow a deposit 17 that is built up on this portion along the absent portion. Then, finally, the lacking portion P is filled with the deposit 17 to construct an annular chain ring 16a which is continuous through the deposit 17 as shown in FIG.

【0012】[0012]

【発明の効果】以上述べたように、本発明のマイクロマ
シニング方法によれば、エッチング加工を主体とする従
来の表面マイクロマシニング法では成し得なかった3次
元的な構造体の構築が簡単なプロセスで実現でき、これ
によりマイクロマシーン製作技術の拡大化が図れる。
As described above, according to the micromachining method of the present invention, it is easy to construct a three-dimensional structure which could not be achieved by the conventional surface micromachining method mainly composed of etching. This can be realized by a process, and this will enable the expansion of micromachine manufacturing technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるマイクロマシニング装置
の構成図
FIG. 1 is a block diagram of a micromachining device according to an embodiment of the present invention.

【図2】本発明のマイクロマシニング方法で製作した回
転構造体の一例を示し、(a),(b)はそれぞれ異なる
加工状態での構造体の断面図
FIG. 2 shows an example of a rotary structure manufactured by the micromachining method of the present invention, and (a) and (b) are cross-sectional views of the structure in different processing states.

【図3】本発明のマイクロマシニング方法で製作したユ
ニバーサルジョイント式リンク機構を示し、(a)は構
造体の組立完成図、(b),(c)はそれぞれ異なる加工
状態での構造体の断面図
FIG. 3 shows a universal joint type link mechanism manufactured by the micromachining method of the present invention, where (a) is a completed assembly drawing of the structure, and (b) and (c) are cross-sections of the structure in different processing states. Figure

【符号の説明】[Explanation of symbols]

1 真空容器 2 真空引き装置 3 ワーク 4 位置決めテーブル 5 電子ビーム 6 電子ビーム発生装置 7 カーボン微粒子(グラファイト) 8 材料供給装置 9 堆積物 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Vacuuming device 3 Work piece 4 Positioning table 5 Electron beam 6 Electron beam generator 7 Carbon fine particles (graphite) 8 Material supply device 9 Deposit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マイクロマシーンなどを対象とした微細構
造体の加工に適用するマイクロマシニング方法であっ
て、真空中でワークの加工部分に焦点を合わせて電子ビ
ームを照射し、帯電により周囲から引き寄せられた微粒
子を構築材料に、ワークの加工部分に非晶質の堆積物を
成長させて立体的な部品を構築することを特徴とするマ
イクロマシニング方法。
1. A micromachining method applied to the processing of a fine structure for a micromachine or the like, which is performed by irradiating an electron beam while focusing on a processed portion of a workpiece in a vacuum and attracting it from the surroundings by charging. A micromachining method characterized in that a three-dimensional component is constructed by growing an amorphous deposit on a processed part of a work using the obtained fine particles as a construction material.
【請求項2】請求項1記載のマイクロマシニング方法に
おいて、構築材料がカーボン微粒子であることを特徴と
するマイクロマシニング方法。
2. The micromachining method according to claim 1, wherein the building material is carbon fine particles.
【請求項3】ワークを搭載する位置決めテーブルと、ワ
ークの加工部分に向けて電子ビームを照射する電子ビー
ム発生装置と、ワークの加工部分に向けて周囲から微粒
子の構築材料を供給する材料供給手段と、これらを収容
した真空容器, および真空引き装置とから構成したこと
を特徴とする請求項1記載のマイクロマシニング方法の
実施に用いるマイクロマシニング装置。
3. A positioning table on which a work is mounted, an electron beam generator for irradiating a work portion of the work with an electron beam, and a material supply means for supplying a construction material of fine particles from the periphery toward the work portion of the work. 2. A micromachining apparatus used for carrying out the micromachining method according to claim 1, comprising a vacuum container accommodating these, and a vacuuming apparatus.
JP440093A 1993-01-14 1993-01-14 Micromachining method and device Pending JPH06212409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP440093A JPH06212409A (en) 1993-01-14 1993-01-14 Micromachining method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP440093A JPH06212409A (en) 1993-01-14 1993-01-14 Micromachining method and device

Publications (1)

Publication Number Publication Date
JPH06212409A true JPH06212409A (en) 1994-08-02

Family

ID=11583298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP440093A Pending JPH06212409A (en) 1993-01-14 1993-01-14 Micromachining method and device

Country Status (1)

Country Link
JP (1) JPH06212409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502020A (en) * 2015-09-28 2019-01-24 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method for coating a substrate with particles and apparatus for carrying out the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502020A (en) * 2015-09-28 2019-01-24 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method for coating a substrate with particles and apparatus for carrying out the method
US10476084B2 (en) 2015-09-28 2019-11-12 VON ARDENNE Asset GmbH & Co. KG Method for substrate coating with particles and device for carrying out the method

Similar Documents

Publication Publication Date Title
JP3464320B2 (en) Processing method and processing apparatus using high-speed atomic beam
EP0703596B1 (en) Method and apparatus for energy beam machining
US5998097A (en) Fabrication method employing energy beam source
KR101258813B1 (en) Vacuum processing apparatus, vacuum processing method, and micro-machining apparatus
JP2005310757A (en) Device and method for manufacturing three-dimensional fine structure
JP2004087174A (en) Ion beam device, and working method of the same
JP4185062B2 (en) Processing stage, focused beam processing apparatus, and focused beam processing method
JP3236484B2 (en) Energy beam processing method
JP3504426B2 (en) Processing method and processing apparatus using energy beam
JPH06212409A (en) Micromachining method and device
JP3624990B2 (en) Joining method of minute objects
JPS5988819A (en) Envelope unit for locally vacuum treating
JP3438377B2 (en) Ion shower doping equipment
JP3470715B2 (en) Plasma deposition method and apparatus
JP4292389B2 (en) Foreign matter removal method and foreign matter removal device
JP2005045124A (en) Stencil mask, and method and device for charged particle irradiation
JPS61187336A (en) Plasma etching device
JP3504402B2 (en) How to bond small objects
CN112366127B (en) Atmospheric pressure low-temperature plasma jet processing method with solid mask focusing and application
JPS59165422A (en) Dry process apparatus
JP3035884B2 (en) Micro processing equipment
Nakao et al. Integration of 3-D shape construction and assembly to realize micro systems
JP3426062B2 (en) Film formation method
JP2024048470A (en) Substrate processing method and chip manufacturing method
JPH06190643A (en) Manufacture of part