JPH06190643A - Manufacture of part - Google Patents

Manufacture of part

Info

Publication number
JPH06190643A
JPH06190643A JP4305853A JP30585392A JPH06190643A JP H06190643 A JPH06190643 A JP H06190643A JP 4305853 A JP4305853 A JP 4305853A JP 30585392 A JP30585392 A JP 30585392A JP H06190643 A JPH06190643 A JP H06190643A
Authority
JP
Japan
Prior art keywords
particles
charged
parts
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4305853A
Other languages
Japanese (ja)
Other versions
JP2600097B2 (en
Inventor
Norio Shintani
紀雄 新谷
Satoru Kishimoto
哲 岸本
Mitsuru Egashira
満 江頭
Yoshio Kyono
純郎 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP4305853A priority Critical patent/JP2600097B2/en
Publication of JPH06190643A publication Critical patent/JPH06190643A/en
Application granted granted Critical
Publication of JP2600097B2 publication Critical patent/JP2600097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Micromachines (AREA)

Abstract

PURPOSE:To manufacture various kinds of parts, which have minute and complicated shapes, such as electronic parts, machine parts, precisely by means of a simplified process. CONSTITUTION:An optional position on a base plate 1 is charged by irradiation of a charged corpuscular beam 3, and then reversely charged particles 2 are stuck on that position, so that the particles 2 are arranged in the optional shape two-dimensionally or threedimensionally. After the particle arrangement, pressing and fixing, sintering, welding, or bonding is carried out according to the requirement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、部品の製造方法に関
するものである。さらに詳しくは、この発明は、微小か
つ複雑形状を有する電子部品、機械部品等を精密に、し
かも簡便なプロセスにより製造することのできる部品の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing parts. More specifically, the present invention relates to a method of manufacturing a component capable of accurately manufacturing an electronic component, a mechanical component, or the like having a minute and complicated shape by a simple process.

【従来の技術とその課題】従来より、エレクトロニクス
等の分野においては、微小な電子回路が作成されてきて
おり、その作成には、主に、リソグラフィー応用技術が
用いられている。また、近年注目されているマイクロマ
シン用の微小機械部品等の作成においても、このリソク
グラフィー応用技術が応用されている。しかしながら、
このリソクグラフィー応用技術による電子部品、機械部
品等の各種部品の製造には、基本的に、 (ア) レジスト塗布 (イ) ビーム、光等の露光 (ウ) 現像 (エ) 埋込層の拡散、蒸着またはエッチング (オ) レジスト除去および洗浄 という数種に亘る工程を要しており、その製造プロセス
は複雑なものとなっている。また、リソグラフィー応用
技術により作成可能な形状は、これまでのところ二次元
的な形状に限定されており、しかも使用することのでき
る素材は、シリコン等のごく限られたものとなってい
た。この発明は、以上の通りの事情に鑑みてなされたも
のであり、従来の電子回路、微小機械部品等の微小部品
の製造方法の欠点を解消し、微小かつ複雑形状を有する
電子部品、機械部品等の各種の部品を精密に、しかも簡
便なプロセスにより製造することのできる、新しい部品
の製造方法を提供することを目的としている。
2. Description of the Related Art Conventionally, minute electronic circuits have been produced in the field of electronics and the like, and lithography application techniques are mainly used for the production thereof. The lithographic application technique is also applied to the production of micromechanical parts for micromachines, which have been drawing attention in recent years. However,
In order to manufacture various parts such as electronic parts and mechanical parts by this lithographic application technology, basically, (a) resist coating (ii) exposure to beam, light, etc. (iii) development (iv) diffusion of buried layer , Vapor deposition or etching (e) It requires several steps of resist removal and cleaning, and the manufacturing process is complicated. Further, the shapes that can be created by the lithography application technology have so far been limited to two-dimensional shapes, and the usable materials have been very limited, such as silicon. The present invention has been made in view of the above circumstances, solves the drawbacks of the conventional methods for manufacturing minute components such as electronic circuits and minute mechanical components, and has a minute and complicated shape. It is an object of the present invention to provide a new part manufacturing method capable of accurately manufacturing various parts such as the above by a simple process.

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、荷電粒子線の照射により基板上
の任意の位置を帯電させた後に、それとは逆極帯電の粒
子をその位置に付着させ、任意形状に粒子を二次元また
は三次元に配列させることを特徴とする部品の製造方法
を提供する。すなわち、たとえば図1に示したように、
微小電子回路等のマイクロデバイスを製造する場合に
は、以下の工程により行うことができる。 <a> 使用する基板(1)および粒子(2)の種類や
性質などに応じて、必要な場合には、放電や電極板への
接触による帯電処理等の前処理を施す。 <b> 電子ビーム等の荷電粒子線(3)を基板(1)
に照射し、基板(1)上の任意の位置を帯電させ、所望
の形状等に描画する。図2は、ポリイミド樹脂板上に電
子ビームにより描画した状態を示した電子顕微鏡像(ボ
ルテージコントラスト像)図である。図中の白い部分が
負に帯電した部分である。 <c> 次いで、帯電処理等の前処理を施した、または
施していない粒子(2)を基板(1)上の描画位置に散
布し、静電気力により付着させる。 <d> この後、必要に応じて、ロールプレス等による
圧着、レーザー照射、加熱炉等による焼結、あるいは接
着剤を用いての接着、または溶着などを行い、粒子
(2)を相互に結合させることができる。 <e> そして、ひずみゲージ、共振回路、センサ等の
各種のマイクロデバイス(4)を得る。 また、マイクロマシン用の微小機械部品の製造に際して
は、図3に例示したような以下の工程により行うことが
できる。 <a> イオンビーム等の荷電粒子線(3)を基板
(1)に照射し、エッチング等により微小機械部品に対
応する型(5)を作成する。この時、同時に型(5)内
部を帯電させることができる。 <b> 前記工程により型(5)内部の帯電が適切でな
い場合には、電子ビーム等の別の荷電粒子線(3)を型
(5)内部に照射することにより所望の極性に代えるこ
とができる。極性を代える必要がない場合には、そのま
ま次の工程に移行する。 <c> 帯電処理等の前処理を施した、または施してい
ない粒子(2)を型(5)内部に静電気力により付着さ
せる。 <d> 次いで、必要に応じてレーザー照射等を行い、
焼結などにより粒子(2)を相互に結合させる。 <e> 以上の<a>〜<d>の工程を繰り返し、三次
元的に粒子(2)を配列積層させ、歯車、ブレード、メ
カニカルアンプ、モータ等の各種の微小機械部品(6)
を得る。
In order to solve the above-mentioned problems, the present invention is to charge an arbitrary position on a substrate by irradiation of a charged particle beam, and then to charge the oppositely charged particle to that position. The present invention provides a method for manufacturing a component, characterized in that the particles are attached to a substrate and particles are arranged in an arbitrary shape in a two-dimensional or three-dimensional manner. That is, for example, as shown in FIG.
When manufacturing a microdevice such as a microelectronic circuit, the following steps can be performed. <a> Depending on the type and properties of the substrate (1) and particles (2) used, if necessary, pretreatment such as discharge or contact with an electrode plate may be performed. <B> Charged particle beam (3) such as electron beam onto substrate (1)
To irradiate the surface of the substrate (1) with electricity, and draw a desired shape or the like. FIG. 2 is an electron microscope image (voltage contrast image) showing a state of drawing on a polyimide resin plate with an electron beam. White parts in the figure are negatively charged parts. <C> Next, the particles (2) that have been subjected to a pretreatment such as a charging treatment or the like are scattered on the drawing position on the substrate (1) and attached by electrostatic force. <D> Thereafter, if necessary, the particles (2) are bonded to each other by performing pressure bonding by a roll press or the like, laser irradiation, sintering by a heating furnace or the like, or adhesion using an adhesive, or welding. Can be made. <E> Then, various microdevices (4) such as a strain gauge, a resonance circuit, and a sensor are obtained. Further, when manufacturing a micro mechanical component for a micro machine, the following steps as exemplified in FIG. 3 can be performed. <a> A substrate (1) is irradiated with a charged particle beam (3) such as an ion beam, and a mold (5) corresponding to a micro mechanical component is created by etching or the like. At this time, the inside of the mold (5) can be charged at the same time. <B> If the inside of the mold (5) is not appropriately charged in the above step, it is possible to irradiate the inside of the mold (5) with another charged particle beam (3) such as an electron beam to change the polarity to a desired polarity. it can. When it is not necessary to change the polarity, the process directly proceeds to the next step. <C> Particles (2) that have been subjected to pretreatment such as charging treatment or not are attached to the inside of the mold (5) by electrostatic force. <D> Next, laser irradiation or the like is performed as necessary,
The particles (2) are bonded to each other by sintering or the like. <E> By repeating the above steps <a> to <d>, the particles (2) are three-dimensionally arranged and laminated, and various micromechanical parts (6) such as gears, blades, mechanical amplifiers, motors, etc.
To get

【作 用】この発明の部品の製造方法においては、セラ
ミックスや高分子製などの基板(1)上に、電子ビー
ム、イオンビーム等の荷電粒子線(3)を直接照射し、
基板(1)上の任意の位置を帯電させ、次いで逆極帯電
の粒子(2)をその位置に付着させて、任意形状に粒子
を二次元または三次元に配列させるため、リソグラフィ
ー応用技術におけるレジスト等が不要となり、プロセス
全体を乾式で行うことができる。工程は簡便となり、微
小部品の製造効率が向上し、短時間での製造も可能とな
る。また、二次元的に配列した粒子(2)の上に、さら
に荷電粒子線(3)の照射と粒子(2)の配列を繰り返
すことにより、三次元の回路や機械部品などを製造する
こともできる。付着させる粒子(2)のサイズは、部品
(4)(6)のサイズに合わせて選定することができ
る。部品(4)(6)の素材は任意とすることができ、
粒子状のものが得られる限り使用可能となる。
[Operation] In the method of manufacturing a component of the present invention, a substrate (1) made of ceramics or polymer is directly irradiated with a charged particle beam (3) such as an electron beam or an ion beam,
A resist in a lithography application technique for charging any position on a substrate (1) and then attaching particles (2) of opposite polarity charge to that position to arrange the particles in an arbitrary shape in two dimensions or three dimensions. Etc. are unnecessary, and the entire process can be performed in a dry process. The process is simplified, the manufacturing efficiency of minute parts is improved, and it is possible to manufacture in a short time. It is also possible to manufacture a three-dimensional circuit or mechanical parts by repeating irradiation of the charged particle beam (3) and arranging the particles (2) on the particles (2) arranged two-dimensionally. it can. The size of the particles (2) to be attached can be selected according to the size of the parts (4) and (6). The materials of the parts (4) and (6) can be arbitrary,
It can be used as long as a particulate form can be obtained.

【実施例】以下実施例を示し、この発明の部品の製造方
法についてさらに詳しく説明する。実施例1 コロナ放電により正に帯電させたポリイミド樹脂膜(厚
さ25μm)上に、走査型電子顕微鏡を用いて回路状に
電子ビーム(加速電圧15kV)を照射し、負の電荷を
帯電させた。この上に平行電極板を用いて正に帯電させ
た金粒子(直径10〜40μm)を散布した。すると、
正電荷と負電荷の間の引力と正電荷同士の斥力に起因し
て電子ビームで描いた回路上に金粒子が整列した。この
金粒子の配列状態および付着原理を各々示したものが図
4および図5である。この金粒子の上にポリイミド樹脂
膜(厚さ25μm)を配置し、およそ20kg/fmm2 の圧
力で圧延したところ、金粒子がつぶれ、相互に結合して
金膜による回路を形成した。この回路の一部を示したも
のが図6である。実施例2 帯電処理をしていないポリイミド樹脂膜(厚さ25μ
m)上に、走査電子顕微鏡を用いて回路状に電子ビーム
(加速電圧15kV)を照射し、負の電荷を帯電させ
た。この上に帯電処理をしていない金粒子(直径10〜
40μm)を散布したところ、静電誘導による引力によ
り電子ビームで描いた回路上に金粒子が配列した。この
付着原理を示したものが図7である。この上にポリイミ
ド樹脂膜(厚さ25μm)を配置し、およそ20kgf/mm
2 の圧力で圧延したところ、金粒子がつぶれ、相互に結
合して金膜による回路を形成した。実施例3 鏡面加工したチタン酸カルシウム基板およびこの基板上
にチタン酸カルシウムのアモルファス層を配設した基板
上に、走査型電子顕微鏡を用いて回路状に電子ビーム
(加速電圧20kV)を照射し、負の電荷を帯電させ
た。この上に平行電極板を用いて正に帯電させた金粒子
(直径20〜40μm)を散布した。正電荷と負電荷の
間の引力と正電荷同士の斥力により電子ビームで描いた
回路上に金粒子が整列した。この状態を示したのが図8
である。付着した金粒子列にレーザービームを照射し加
熱したところ、金粒子同士が基板に溶着し、回路を形成
した。実施例4 集束イオンビームを用い、アルミナ基板上に正に帯電さ
せたガリウムイオンビーム(加速電圧30kV)で微小
な歯車形状の雌型(直径約20μm,深さ約3μm)を
イオン研磨により作成した。この時、雌型内部には正の
電荷が帯電した。次いで、この雌型よりも充分小さい帯
電処理をしていない白金粒子(直径0.5μm)を散布し
たところ、静電誘導による引力によって雌型内部に白金
粒子が付着した。付着した白金粒子にレーザービーム照
射して粒子同士を結合させると、微小な歯車が得られ
た。実施例5 集束イオンビームを用い、アルミナ基板上に正に帯電さ
せたガリウムイオンビーム(加速電圧30kV)で微小
な歯車形状の雌型(直径約20μm,深さ約3μm)を
イオン研磨により作成した。次いで、走査型電子顕微鏡
を用いて、雌型内部に電子ビームを照射し負の電荷を帯
電させた。そして、雌型よりも充分小さい帯電処理をし
ていない白金粒子(直径0.5 μm)を散布したところ、
静電誘導による引力によって雌型内部に白金粒子が付着
した。この状態を示したのが図9である。付着した白金
粒子にレーザービーム照射して粒子同士を結合させる
と、微小な歯車が得られた。もちろんこの発明は、以上
の例によって限定されるものではない。荷電粒子線およ
び基板の種類、粒子および作成する部品の種類および大
きさ等細部については様々な態様が可能であることはい
うまでもない。
EXAMPLES The following is a more detailed explanation of the method of manufacturing the component of the present invention, showing examples. Example 1 A polyimide resin film (thickness: 25 μm) that was positively charged by corona discharge was irradiated with an electron beam (accelerating voltage 15 kV) in a circuit shape using a scanning electron microscope, and was negatively charged. . Gold particles (diameter 10 to 40 μm) that were positively charged were sprayed on this using a parallel electrode plate. Then,
Due to the attractive force between the positive and negative charges and the repulsive force between the positive charges, the gold particles were aligned on the circuit drawn by the electron beam. FIG. 4 and FIG. 5 respectively show the arrangement state and the principle of adhesion of the gold particles. When a polyimide resin film (thickness: 25 μm) was placed on the gold particles and rolled under a pressure of about 20 kg / fmm 2 , the gold particles were crushed and bonded to each other to form a circuit by the gold film. FIG. 6 shows a part of this circuit. Example 2 A polyimide resin film (thickness: 25 μm) not subjected to charging treatment
m) was irradiated with an electron beam (accelerating voltage 15 kV) in a circuit shape using a scanning electron microscope to charge negative charges. Gold particles (diameter 10-
40 μm), gold particles were arranged on the circuit drawn by the electron beam due to the attractive force of electrostatic induction. FIG. 7 shows this adhesion principle. A polyimide resin film (thickness: 25 μm) is placed on top of this, approximately 20 kgf / mm
When rolled under a pressure of 2 , the gold particles were crushed and bonded to each other to form a circuit with a gold film. Example 3 A mirror-finished calcium titanate substrate and a substrate provided with an amorphous layer of calcium titanate on this substrate were irradiated with an electron beam (accelerating voltage 20 kV) in a circuit pattern using a scanning electron microscope. It was charged with a negative charge. Gold particles (diameter 20 to 40 μm) positively charged by using a parallel electrode plate were sprinkled thereon. Gold particles were aligned on the circuit drawn by the electron beam by the attractive force between the positive and negative charges and the repulsive force between the positive charges. This state is shown in FIG.
Is. When the deposited gold particle row was irradiated with a laser beam and heated, the gold particles were welded to each other to form a circuit. Example 4 Using a focused ion beam, a gallium ion beam positively charged (accelerating voltage 30 kV) on an alumina substrate was used to form a minute gear-shaped female mold (diameter about 20 μm, depth about 3 μm) by ion polishing. . At this time, a positive charge was charged inside the female mold. Next, when platinum particles (diameter 0.5 μm) which were sufficiently smaller than this female mold and were not subjected to charging treatment were sprayed, the platinum particles adhered to the inside of the female mold by the attractive force by electrostatic induction. When the adhered platinum particles were irradiated with a laser beam to bond the particles to each other, fine gears were obtained. Example 5 Using a focused ion beam, a gallium ion beam positively charged (accelerating voltage 30 kV) on an alumina substrate was used to form a minute gear-shaped female mold (diameter about 20 μm, depth about 3 μm) by ion polishing. . Then, using a scanning electron microscope, the inside of the female mold was irradiated with an electron beam to be charged with negative charges. And when sprayed with platinum particles (diameter 0.5 μm) that are not sufficiently charged compared to the female mold,
Platinum particles adhered to the inside of the female mold due to the attraction due to electrostatic induction. FIG. 9 shows this state. When the adhered platinum particles were irradiated with a laser beam to bond the particles to each other, fine gears were obtained. Of course, the present invention is not limited to the above examples. It goes without saying that various aspects are possible in terms of details such as types of charged particle beams and substrates, types and sizes of particles and parts to be produced.

【発明の効果】以上詳しく説明した通り、この発明によ
って、微小かつ複雑形状を有する電子部品、機械部品等
の各種部品を精密に、しかも簡便なプロセスにより製造
することができる。
As described in detail above, according to the present invention, various parts such as electronic parts and mechanical parts having a minute and complicated shape can be manufactured precisely and by a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の部品の製造方法によるマイクロデバ
イスの製造工程を例示した工程図である。
FIG. 1 is a process chart illustrating a manufacturing process of a micro device by a method of manufacturing a component of the present invention.

【図2】ポリイミド樹脂板上に光学ビーム描画した一例
を示した電子顕微鏡像図である。
FIG. 2 is an electron microscope image diagram showing an example in which an optical beam is drawn on a polyimide resin plate.

【図3】この発明の方法による微小機械部品の製造工程
を例示した工程図である。
FIG. 3 is a process diagram illustrating the manufacturing process of the micromechanical component according to the method of the present invention.

【図4】電子ビーム描画した回路上に付着した金粒子の
配列状態を例示した光学顕微鏡像図である。
FIG. 4 is an optical microscope image diagram illustrating an array state of gold particles attached on a circuit drawn by an electron beam.

【図5】基板への粒子付着の原理を例示した断面図であ
る。
FIG. 5 is a cross-sectional view illustrating the principle of particle adhesion to a substrate.

【図6】この発明の方法により作成した電子回路の一部
を示した光学顕微鏡像図である。
FIG. 6 is an optical microscope image diagram showing a part of an electronic circuit created by the method of the present invention.

【図7】基板への粒子付着の原理を例示した断面図であ
る。
FIG. 7 is a cross-sectional view illustrating the principle of particle adhesion to a substrate.

【図8】電子ビーム描画した回路上に付着した金粒子の
配列状態の別の例を示した光学顕微鏡像図である。
FIG. 8 is an optical microscope image diagram showing another example of an arrangement state of gold particles attached on a circuit drawn by an electron beam.

【図9】歯車形状の雌型内部に付着した白金粒子の配列
状態を例示した電子顕微鏡像図である。
FIG. 9 is an electron microscope image diagram illustrating an array state of platinum particles attached inside a gear-shaped female die.

【符号の説明】[Explanation of symbols]

1 基板 2 粒子 3 荷電粒子線 4 マイクロデバイス 5 型 6 微小機械部品 1 substrate 2 particles 3 charged particle beam 4 micro device 5 type 6 micro mechanical component

【手続補正書】[Procedure amendment]

【提出日】平成5年12月27日[Submission date] December 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 京野 純郎 東京都目黒区中目黒2丁目3番12号 科学 技術庁金属材料技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junro Kyono 2-3-12 Nakameguro, Meguro-ku, Tokyo Inside the Research Institute for Metals

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子線の照射により基板上の任意の
位置を帯電させた後に、それとは逆極帯電の粒子をその
位置に付着させ、任意形状に粒子を二次元または三次元
に配列させることを特徴とする部品の製造方法。
1. After charging an arbitrary position on a substrate by irradiating a charged particle beam, particles having opposite polar charges are attached to the position to arrange the particles in a two-dimensional or three-dimensional manner in an arbitrary shape. A method of manufacturing a component, which is characterized by the above.
【請求項2】 粒子配列後、必要に応じて圧着、焼結、
溶着または接着する請求項1の部品の製造方法。
2. After the particles are arranged, if necessary, pressure bonding, sintering,
The method for manufacturing a component according to claim 1, wherein the component is welded or adhered.
JP4305853A 1992-10-21 1992-10-21 Parts manufacturing method Expired - Lifetime JP2600097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305853A JP2600097B2 (en) 1992-10-21 1992-10-21 Parts manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305853A JP2600097B2 (en) 1992-10-21 1992-10-21 Parts manufacturing method

Publications (2)

Publication Number Publication Date
JPH06190643A true JPH06190643A (en) 1994-07-12
JP2600097B2 JP2600097B2 (en) 1997-04-16

Family

ID=17950154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305853A Expired - Lifetime JP2600097B2 (en) 1992-10-21 1992-10-21 Parts manufacturing method

Country Status (1)

Country Link
JP (1) JP2600097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000880A1 (en) * 1988-07-26 1990-02-08 Terumo Kabushiki Kaisha Blood collecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386022B2 (en) 2004-11-10 2009-12-16 セイコーエプソン株式会社 Clock display device, movement, and clock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248591A (en) * 1988-03-29 1989-10-04 Nec Corp Method for forming pattern of ceramic wiring board
JPH02122538A (en) * 1988-10-31 1990-05-10 Tokyo Kasoode Kenkyusho:Kk Detection device of charge on semiconductor substrate
JPH03216066A (en) * 1990-01-22 1991-09-24 Toshiba Corp Facsimile equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248591A (en) * 1988-03-29 1989-10-04 Nec Corp Method for forming pattern of ceramic wiring board
JPH02122538A (en) * 1988-10-31 1990-05-10 Tokyo Kasoode Kenkyusho:Kk Detection device of charge on semiconductor substrate
JPH03216066A (en) * 1990-01-22 1991-09-24 Toshiba Corp Facsimile equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000880A1 (en) * 1988-07-26 1990-02-08 Terumo Kabushiki Kaisha Blood collecting device
AU628786B2 (en) * 1988-07-26 1992-09-24 Terumo Kabushiki Kaisha Blood collector

Also Published As

Publication number Publication date
JP2600097B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JP3551838B2 (en) Manufacturing method of three-dimensional shaped object
JP4919604B2 (en) Joining method and joining apparatus
KR101247619B1 (en) Apparatus and Method for nanoscale laser sintering of metal nanoparticles
CN1456933A (en) Sucker, photoetching projective apparatus, method for producing sucker and component producing method
TWI583536B (en) Method for bonding polymer film and polymer film, method for bonding polymer film and inorganic material substrate, laminate of polymer film and laminate of polymer film and inorganic material substrate
CN1693182A (en) Deep submicron three-dimensional rolling mould and its mfg. method
JP2015149390A (en) Imprint device, die, and method of manufacturing article
JP4979918B2 (en) Pressurizing method and pressurizing apparatus
JPH06190643A (en) Manufacture of part
US8409488B2 (en) Nano impression lithographic process which involves the use of a die having a region able to generate heat
CN1618530A (en) Method for making microcapacitor type ultrasonic transducer by using impression technique
JP2008055349A (en) Micro substance fixation apparatus and micro substance fixation method
KR101076685B1 (en) Method for fabricating conductive micro-pattern
TW200403347A (en) Method and device for forming a body having a three-dimensional structure
JP3941348B2 (en) Manufacturing method of microstructure
Kaneko et al. Effect of surface property on transfer-print of Au thin-film to micro-structured substrate
JP3120112B2 (en) Precise placement of small objects
JP3624990B2 (en) Joining method of minute objects
JP2011063476A (en) Method for forming fine pattern
RU2308552C1 (en) Method for manufacturing nano-moulds for contact press-lithography (variants)
JPH07156082A (en) Manipulator and operating method thereof
JPH033252A (en) Sample holder
JPH08155379A (en) Method for transfer-depositing particulate film
JP3504402B2 (en) How to bond small objects
JP3864612B2 (en) Method and apparatus for manufacturing microstructure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term