JP3864612B2 - Method and apparatus for manufacturing microstructure - Google Patents

Method and apparatus for manufacturing microstructure Download PDF

Info

Publication number
JP3864612B2
JP3864612B2 JP06987499A JP6987499A JP3864612B2 JP 3864612 B2 JP3864612 B2 JP 3864612B2 JP 06987499 A JP06987499 A JP 06987499A JP 6987499 A JP6987499 A JP 6987499A JP 3864612 B2 JP3864612 B2 JP 3864612B2
Authority
JP
Japan
Prior art keywords
substrate
microstructure
manufacturing
pattern
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06987499A
Other languages
Japanese (ja)
Other versions
JP2000265285A (en
Inventor
睦也 高橋
高幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP06987499A priority Critical patent/JP3864612B2/en
Publication of JP2000265285A publication Critical patent/JP2000265285A/en
Application granted granted Critical
Publication of JP3864612B2 publication Critical patent/JP3864612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層造形方法によって製造される微小ギアや微細光学部品、あるいはこれらを成形する金型等の微小構造体の製造方法および製造装置に関し、特に、歩留りおよび断面形状精度を向上させることができる微小構造体の製造方法および装置に関する。
【0002】
【従来の技術】
積層造形方法は、コンピュータで設計された複雑な形状の3次元物体を短納期で造形する方法として近年急速に普及している。積層造形方法により造形された3次元物体は、種々の装置の部品のモデル(プロトタイプ)として、部品の動作や形状の良否を調べるために利用される。この方法が適用される部品のサイズは、数cm以上の比較的大きな部品が多かったが、近年、精密に加工して形成される微小部品、例えば微小ギアや微細光学部品にもこの方法を適用したいというニーズがある。このようなニーズに対応する従来の微小構造体の製造方法および装置として、例えば、特開平10−305488号公報に示されるものがある。
【0003】
図8は、この従来の微小構造体の製造方法および装置に係る積層装置を示す。積層装置3は、積層工程が行われる真空槽300を有し、この真空槽300の内部に、基板400が載置される基板ホルダ301と、基板400上に形成される薄膜が転写されるステージ302と、ステージ302に取り付けられ、基板400上のアライメントマークを検出する顕微鏡の如きマーク検出部306と、ステージ302をx軸方向に移動させるX軸テーブル310と、ステージ302をY軸方向に移動させるY軸テーブル320とを備え、真空槽300の外部に、基板ホルダ301をZ軸方向に移動させるZ軸テーブル330と、基板ホルダ301をZ軸回りに回転させるθテーブル340とを備える。
【0004】
図9(a) 〜(c) は、製造工程を示す。この微小構造体の製造方法は、同図(a) に示すように、基板400上に真空蒸着法等によってアルミ等の薄膜402をポリイミド等の離型層401を介して着膜した後、その薄膜402を同図(b) および(c) に示すようにフォトリソグラフィー法によりパターニングして微小構造体の各断面形状に対応した複数の薄膜402aを所定のピッチで形成するとともに、アライメントマーク403も所定の位置に同時に形成する。次に、その複数の薄膜402aが形成された基板(パターン基板)400を図8に示す真空槽300内の基板ホルダ301上に載置し、マーク検出部306を用いてアライメントマーク403を観察し、アライメントマーク403が原点位置に達するようにX軸テーブル310、Y軸テーブル320およびθテーブル340によって位置決めする。次に、ステージ302が1層目の薄膜(同図の例では最も径の大きい薄膜)402a上に位置するようにX軸テーブル310およびY軸テーブル320によってステージ302を原点位置から予め定められた距離を移動させる。基板ホルダ301を上昇させてステージ302上の対向基板(図示せず)に接合させた後、基板ホルダ301を下降させると、薄膜402aが基板400から剥離してステージ302側に転写される。2層目以降の薄膜(同図の例では2番目に大きい径の大きい薄膜)402aを接合する場合は、ステージ302が2 層目の薄膜402a上に位置するようにX軸テーブル310およびY軸テーブル320によってステージ302を所定のピッチ移動させ、同様に2層目の薄膜402aを1層目の薄膜402a上に転写し、これを繰り返すことにより、図10に示すように、対向基板上に複数の薄膜402aが積層された微小構造体410が形成される。この製造方法によると、膜厚制御性が良好で基板全体に渡って膜厚均一性に優れたスパッタリング法等の着膜方法を用いて複数の薄膜を形成できるので、積層方向の解像度が高い微小構造体を製造することができる。
【0005】
【発明が解決しようとする課題】
しかし、従来の微小構造体の製造方法および装置によると、基板の初期形状や離型層および薄膜の内部応力によりパターン基板に反りが生じるため、薄膜転写時に、対向基板へ薄膜を面全体で接触させることが困難になり、対向基板への薄膜の転写性が低下する。また、対向基板に対し基板が凹形状に反っていると、薄膜転写時に、対向基板が基板のエッジ部分から接触してゆくことになり、その結果、基板のエッジ部分が欠けてパーティクルを発生することがある。従って、歩留りを低下させるという問題がある。
一方、基板の初期形状や離型層および薄膜の内部応力を事前に測定し、それから基板上に離型層および薄膜を形成したときの基板の反りの方向や反りの量を求め、求めた反りの方向および反りの量に基づいて、基板に形成したときに基板の反りを緩和する反り制御層の材料および形成条件を決定し、決定された材料および形成条件に基づいて基板に反り制御層を形成することにより、基板の反りを緩和して歩留りを向上させる微小構造体の製造方法が、本出願人によって提案されているが、この方法によるとパターン基板を製造するのに多くの工程が必要となり、パターン基板の製造時間が増大するという問題がある。
【0006】
また、従来の微小構造体の製造方法および装置によると、薄膜と対向基板を接合した後、両者を離す時に基板が動くことがあり、この場合、各層の薄膜毎に位置がずれてしまい、その結果、断面形状精度が低下するという問題がある。
【0007】
従って、本発明の目的は歩留りおよび断面形状精度を向上させることができる微小構造体の製造方法および装置を提供することである。
【0008】
【課題を解決するための手段】
本発明は上記の目的を達成するため、パターン基板上に形成された複数の薄膜を所定の順序で対向基板上に圧接することにより前記対向基板上に前記複数の薄膜を積層して微小構造体を製造する微小構造体の製造方法において、前記複数の薄膜を前記対向基板上へ圧接する前に、250nm以下の表面算術平均粗さを有した1μm以下の平面度の平面に、裏面の表面算術平均粗さを10nm以下にした前記パターン基板を前記裏面側から吸着させて前記パターン基板の表面1μm以下の平面度にすることを特徴とする微小構造体の製造方法を提供するものである。
【0009】
また、本発明は上記の目的を達成するため、パターン基板上に形成された複数の薄膜を所定の順序で対向基板上に圧接することにより前記対向基板上に前記複数の薄膜を積層して微小構造体を製造する微小構造体の製造装置において、250nm以下の表面算術平均粗さを有した1μm以下の平面度の平面によって形成され、裏面の表面算術平均粗さを10nm以下にした前記パターン基板を前記裏面側から吸着して前記パターン基板の表面1μm以下の平面度にする平面度設定手段を備えたことを特徴とする微小構造体の製造装置を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の微小構造体の製造方法および装置を添付図面を参照しながら詳細に説明する。
【0011】
図1は本発明の第1の実施の形態に係る積層装置を示す。この積層装置1は、真空槽2を有し、この真空槽2の内部に、x軸方向,y軸方向及びz軸回りのθ方向にそれぞれ移動させるx−y−θステージ4と、x−y−θステージ4上に設けられ、基板上に複数の薄膜を形成してなるパターン基板3を静電力により吸着面5aに吸着して固定する静電チャック5と、対向基板6が表面7aに形成されるとともに、z軸方向に移動するzステージ7と、x−y−θステージ4側およびzステージ7側に粒子ビーム8をそれぞれ照射してFAB(Fast Atom Beam)処理を施す第1の粒子ビーム出射端9Aおよび第2の粒子ビーム出射端9Bと、真空槽2内の真空度を検出する真空計10と、x―y−θステージ4に向けてzステージ7に設けられ、パターン基板3に形成された位置マークを検出することによりパターン基板3のアライメント状態を検出する例えば顕微鏡の如きマーク検出部(図示せず)を配設している。なお、「FAB処理」とは、粒子ビーム8として例えばアルゴン原子ビームを1kV程度の電圧で加速して材料の表面に照射し、材料表面の酸化膜,不純物等を除去して清浄な表面を形成する処理をいう。本実施の形態では、FABの照射条件を処理対象の材料に応じて加速電圧1〜1.5kV、照射時間1〜10分の範囲で変更するようにしている。
【0012】
x−y−θステージ4は、真空中で使用可能なものであり、パターン基板3をx軸方向およびy軸方向にそれぞれ移動させるxステージ40およびyステージ41と、z軸回りに回転するθステージ42とを備える。
【0013】
zステージ7は、例えば、ステンレス,アルミニウム合金等の金属からなる。対向基板6は、10mm角からなり、zステージ7上に積層された複数の薄膜からなる微小構造体をzステージ7から容易に取り出せるようにするため、予め、zステージ7の表面7aに形成される。
【0014】
図2は積層装置1の制御系を示す。積層装置1は、本装置1全体の制御を司る制御部11を有し、この制御部11に、制御部11のプログラムを含む各種の情報(x−y−θステージ4の移動ピッチ情報等)を記憶するメモリ12、真空槽2内を真空にする真空ポンプ13、第1および第2の粒子ビーム出射端9A,9Bからそれぞれ粒子ビーム8を照射する第1のFAB処理部14A及び第2のFAB処理部14B、上記静電チャック5に、所定の電圧(例えば、500V)を印加する静電チャック駆動部17、xステージ40を構成するx軸モータ40a及びx軸位置検出部40b、yステージ41を構成するy軸モータ41a及びy軸位置検出部41b、θステージ42を構成するθモータ42a及びθ位置検出部42b、zステージ7を構成するz軸モータ7b及びz軸位置検出部7c、上記マーク検出部18、及び上記真空計10を各々接続している。x軸位置検出部40b,y軸位置検出部41b,θ位置検出部42b及びz軸位置検出部7cは、例えば、エンコーダやレーザー干渉計,ガラススケール等を用いることができる。これらを用いることにより、サブμmの移動精度を実現できる。
【0015】
第1および第2のFAB処理部14A,14Bは、1〜15kVの加速電圧を、対応する第1および第2の粒子ビーム出射端9A,9Bに付与するものである。
【0016】
制御部11は、メモリ12が記憶するプログラム及びx−y−θステージ4の移動ピッチ情報に基づいて、パターン基板3が載置されたx−y−θステージ4を所定のピッチで移動させつつ、zステージ7の表面7aに対向基板6を介して順次積層して接合させることにより微小構造体を形成するように積層装置1の各部を制御するようになっている。
【0017】
図3は静電チャック5の構成を示す。静電チャック5は、後述する電極板52と大地間に所定の電圧(例えば、500V)を印加する電源51と、電源51の正極に接続され、静電的に正極にさせられる電極板52と、電極板52上に一体に設けられ、電極板52によって静電的に正極にさせられる誘電体板53を備え、誘電体板53の表面である吸着面5aに静電的に負極にさせられたパターン基板3を静電力により吸着させる構成を有している。なお、電源51の正負を反対にして誘電体板53を静電的に負極にし、静電的に正極にさせられたパターン基板3を静電力により吸着させるようにしても良い。
【0018】
誘電体板53は、吸着面5aを形成する表面を1μm以下の平面度で形成して構成され、パターン基板3に反りがあっても、吸着したときそれを平坦に矯正して固定するようになっている。誘電体板53を構成する材料としては、例えば、アルミナなどから成るセラミック系や、シリコーンゴムなどから成る高分子系があるが、平面精度が極めて高いセラミック系が好ましい。また、吸着面5aは、250nm以下、更に望ましくは50nm以下の表面算術平均粗さを有しており、パターン基板3を強固に固定して薄膜転写時のパターン基板3のずれを防ぐようになっている。また、同じ理由でパターン基板3の裏面を10nm以下、更に望ましくは1nm以下の表面算術平均粗さとしている。
【0019】
次に、第1の実施の形態の積層装置1を用いた微小構造体の製造方法を説明する。
【0020】
図4の(a) 〜(c) 、図5の(a),(b) 、図6の(a),(b) 、及び図7は、製造工程を示す。
【0021】
(1) 着膜
まず、図4の(a) に示すように、基板31として両面を研磨したSiウェハを準備し、この基板31の上にポリイミド(日立化成製ポリイミドPIX3400)をスピンコーティング法により塗布し、最高温度350℃でベークし、離型層32を形成する。このとき、基板31はポリイミドの応力により中央部に対し周辺部が約30μm反った凹形状となった。なお、基板31の裏面の算術平均粗さは1nmであった。
【0022】
次に、図4の(b) に示すように、離型層32の上にスパッタリング法によりA1薄膜33を0.5μm着膜する。なお、ターゲットには高純度A1を使用し、スパッタ圧力0.5Pa、基板31の温度は室温とする。着膜中は水晶振動子式膜厚計で常時膜厚をモニターし、膜厚が0.5μmに達したところで着膜を終了する。この結果、基板31上のA1薄膜33の膜厚分布は、0.5±0.02μm以下が得られた。なお、Al薄膜33の応力は小さいため、基板形状に影響を及ぼすことはなかった。
【0023】
(2) パターンニング
次に、図4の(c) に示すように、基板31の表面にフォトレジスト(図示せず)を塗布し、通常のフォトリソグラフィー法によりA1薄膜33をエッチングし、所望の微小構造体の断面形状にパターニングして複数のパターン薄膜34を形成してパターン基板3を形成する。フォトレジストにはポジ型を用い、フォトマスク(図示せず)を用いてレジストを露光した。A1薄膜33をエッチングした後、フォトレジストを剥離液にて除去する。断面形状をパターニングする際、同時に、基板31とzステージ7のxy面内の相対的位置合わせを行うための位置合わせマーク(図示せず)を所定の位置に形成する。なお、パターニングを行った後も基板形状に変化はなかった。
【0024】
(3) パターン基板3の真空槽2への導入
次に、図5の(a) に示すように、複数のパターン薄膜34が形成されたパターン基板3を真空槽2内のx−y―θステージ4上の静電チャック5にセツトし、固定する。すなわち、制御部11により静電チャック駆動部17を制御して、電源51により静電チャック5の電極板52と大地間に電圧を印加し、誘電体板52を静電的に正極にすることにより吸着面5aに静電的に負極にさせられたパターン基板3を静電力により吸着して固定する。本実施の形態では、吸着面5aの平面度が1μm以下、算術平均粗さが100nmを有するアルミナ製誘電体板52を用い、電源51の印加電圧を500Vとした。この固定でパターン基板3の反り量は1μm以下となり、パターン基板3は平坦となった。
【0025】
(4) アライメント調整(位置決め)
オペレータは、マーク検出部18によりパターン基板3を拡大観察しながらそれに形成された位置マークを検出することによりパターン基板3のアライメント状態、つまり対向基板6とパターン基板3の相対位置関係を測定し、対向基板6の直下に1層目のパターン薄膜34が位置するようにx−y−θステージ4を調整する。
【0026】
(5) 真空槽2内の排気
オペレータが、積層装置1の図示しない排気スイッチを押下すると、制御部11は、真空計10の検出値に基づいて真空ポンプ13を制御して真空槽2内を10-6Pa台まで排気し、真空槽2内を高真空状態あるいは超高真空状態にする。
【0027】
(6) FAB処理
制御部11は、第1および第2のFAB処理部14A,14Bを制御して第1の粒子ビーム出射端9Bから対向基板6の表面に粒子ビーム8としてアルゴン原子ビームを照射し、第2の粒子ビーム出射端9Aからパターン薄膜34の表面に粒子ビーム8として同じくアルゴン原子ビームを照射してFAB処理を施す。本実施の形態では、アルゴン原子ビームを電圧1.5kV、電流15mAで10分間照射した。
【0028】
(7) 薄膜転写
制御部11は、図5(b) に示すように、z軸位置検出部7cの検出信号に基づいてz軸モータ7bを制御してzステージ7を下降させ、1層目のパターン薄膜34に接近させて清浄な対向基板6の表面と1層目のパターン薄膜34の表面とを接触させ、更に所定の荷重(例えば、50kgf/cm2 )で所定の時間(例えば5分間)押し付けておくと、対向基板6と1層目のパターン薄膜34が強固に接合される。なお、接合強度を引っ張り試験により評価したところ、50〜100MPaであった
【0029】
次に、図6(a) に示すように、zステージ7を上昇させて元の位置に復帰させると、パターン基板31上の1層目のパターン薄膜34とその下の離型層32の密着力よりも、対向基板6と1層目のパターン薄膜34の接合力の方が大きいため、1層目のパターン薄膜34はパターン基板31から対向基板6側に転写される。このとき、静電チャック5の吸着面5a,及びパターン基板3の裏面の表面粗さが良好であったため、静電チャック5上でパターン基板3が動くことがなかった。
【0030】
次に、制御部11は、図6(b) に示すように、メモリ12が記憶するプログラムおよびx−y−θステージ4の移動ピッチ情報に基づいて、x−y−θステージ4を所定のピッチ移動させる。これにより対向基板6の直下に2層目のパターン薄膜34が位置する。
【0031】
この後、上述したのと同様に、位置決め・FAB照射・転写を行うことにより、図7に示すように、1層目のパターン薄膜34に2層目のパターン薄膜34が積層される。最初の工程との唯一の違いは、FAB処理工程において、2回目のときはzステージ7上の対向基板6の表面にアルゴン原子ビームを照射するのではなく、1層目のパターン薄膜34の裏面(それまで基板31に離型層32を介して接触していた面)に照射し、そこを清浄化することである。以降、位置決め・FAB照射・転写の各工程を繰り返すことにより、対向基板6上に徴小構造体完成する。その後、対向基板6を除去することにより、微小構造体が得られる。
【0032】
上述した第1の実施の形態によれば、以下の効果が得られる。
(1) パターン基板3を静電チャック5上に固定したとき、1μm以下の平面度の吸着面5aの形状に倣ってパターン基板3が1μm以下の平面度になるため、薄膜転写時に面全体が接触し、対向基板6にパターン薄膜34を確実に転写することができる。また、対向基板6がパターン基板3のエッジ部分に接触することがなく、パーティクルの発生を防ぐことができる。その結果、歩留りを向上させることができる。
(2) 静電チャック5の吸着面5aの算術平均粗さが250nm以下に、また、基板31の裏面の算術平均粗さが10nm以下になっているため、両者の接触面積が増加し、吸着面5aにパターン基板3を強固に固定することができる。このため、薄膜転写時において対向基板6をパターン基板3から引き離す際、パターン基板3が動いて位置ずれするのを防ぐことができ、その結果、微小構造体の断面形状精度を向上させることができる。
【0033】
【発明の効果】
以上説明した通り、本発明の微小構造体の製造方法及び装置によると、複数の薄膜を対向基板上へ圧接する前に、所定の表面算術平均粗さを有した所定の平面度の平面にパターン基板を吸着させてパターン基板を所定の平面度にするようにしたため、歩留りおよび微小構造体の断面形状精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る積層装置を示す説明図。
【図2】第1の実施の形態に係る積層装置の制御系を示すブロック図。
【図3】第1の実施の形態に係る積層装置の静電チャックを示す説明図。
【図4】第1の実施の形態に係る着膜工程及びパターニング工程を示す断面図。
【図5】第1の実施の形態に係る転写工程を示す説明図。
【図6】第1の実施の形態に係る転写工程を示す説明図。
【図7】第1の実施の形態に係る転写工程を示す説明図。
【図8】従来の微小構造体の製造方法に係る積層装置を示す説明図。
【図9】従来の着膜工程およびパターニング工程を示す説明図。
【図10】従来の製造方法により完成された微小構造体を示す斜視図。
【符号の説明】
1 積層装置
2 真空槽
3 パターン基板
4 x−y−θステージ
5 静電チャック
5a 吸着面
6 対向基板
7 zステージ
7a zステージの表面
7b z軸モータ
7c z軸位置検出部
8 粒子ビーム
9A 第1の粒子ビーム出射端
9B 第2の粒子ビーム出射端
10 真空計
11 制御部
12 メモリ
13 真空ポンプ
14A 第1のFAB処理部
14B 第2のFAB処理部
17 静電チャック駆動部
18 マーク検出部
31 基板
32 離型層
33
34 パターン薄膜
40 xステージ
40a x軸モータ
40b x軸位置検出部
41 yステージ
41a y軸モータ
41b y軸位置検出部
42 θステージ
42a θモータ
42b θ位置検出部
51 電源
52 電極板
53 誘電体板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method and a manufacturing apparatus for a minute gear and a minute optical component manufactured by an additive manufacturing method, or a microstructure such as a mold for molding these, and in particular, can improve yield and cross-sectional shape accuracy. The present invention relates to a method and an apparatus for manufacturing a microstructure that can be formed.
[0002]
[Prior art]
The additive manufacturing method is rapidly spreading in recent years as a method of modeling a three-dimensional object having a complicated shape designed by a computer with a short delivery time. A three-dimensional object modeled by the additive manufacturing method is used as a model (prototype) of parts of various devices in order to examine the operation and shape of parts. Many of the parts to which this method is applied are relatively large parts of several centimeters or more, but in recent years, this method has also been applied to minute parts formed by precision machining, such as minute gears and minute optical parts. There is a need to do it. For example, Japanese Patent Application Laid-Open No. 10-305488 discloses a conventional microstructure manufacturing method and apparatus that meet such needs.
[0003]
FIG. 8 shows a laminating apparatus according to this conventional microstructure manufacturing method and apparatus. The laminating apparatus 3 includes a vacuum chamber 300 in which a laminating process is performed. A substrate holder 301 on which the substrate 400 is placed and a thin film formed on the substrate 400 are transferred to the inside of the vacuum chamber 300. 302, a mark detection unit 306 such as a microscope that is attached to the stage 302 and detects an alignment mark on the substrate 400, an X-axis table 310 that moves the stage 302 in the x-axis direction, and a stage 302 that moves in the Y-axis direction A Z-axis table 330 that moves the substrate holder 301 in the Z-axis direction, and a θ table 340 that rotates the substrate holder 301 around the Z-axis.
[0004]
9A to 9C show the manufacturing process. As shown in FIG. 2A, the microstructure is manufactured by depositing a thin film 402 of aluminum or the like on a substrate 400 via a release layer 401 such as polyimide by vacuum deposition or the like. As shown in FIGS. 2B and 2C, the thin film 402 is patterned by photolithography to form a plurality of thin films 402a corresponding to each cross-sectional shape of the microstructure at a predetermined pitch. Simultaneously formed at predetermined positions. Next, the substrate (pattern substrate) 400 on which the plurality of thin films 402 a are formed is placed on the substrate holder 301 in the vacuum chamber 300 shown in FIG. 8, and the alignment mark 403 is observed using the mark detection unit 306. Then, positioning is performed by the X-axis table 310, the Y-axis table 320, and the θ table 340 so that the alignment mark 403 reaches the origin position. Next, the stage 302 is determined in advance from the origin position by the X-axis table 310 and the Y-axis table 320 so that the stage 302 is positioned on the first layer of thin film (thin film having the largest diameter in the example in the figure) 402a. Move the distance. After the substrate holder 301 is raised and bonded to the counter substrate (not shown) on the stage 302, the substrate holder 301 is lowered, and the thin film 402a is peeled off from the substrate 400 and transferred to the stage 302 side. When joining the second and subsequent thin films (thin film having the second largest diameter in the example in the figure) 402a, the X-axis table 310 and the Y-axis are set so that the stage 302 is positioned on the second thin film 402a. The stage 302 is moved by a predetermined pitch by the table 320, and the second thin film 402a is similarly transferred onto the first thin film 402a. By repeating this, a plurality of films are formed on the counter substrate as shown in FIG. A microstructure 410 in which the thin film 402a is stacked is formed. According to this manufacturing method, since a plurality of thin films can be formed by using a deposition method such as a sputtering method with good film thickness controllability and excellent film thickness uniformity over the entire substrate, the resolution in the stacking direction is very small. A structure can be manufactured.
[0005]
[Problems to be solved by the invention]
However, according to the conventional microstructure manufacturing method and apparatus, the pattern substrate is warped due to the initial shape of the substrate, the release layer and the internal stress of the thin film, so that the thin film contacts the entire surface of the counter substrate during thin film transfer. This makes it difficult to transfer the thin film onto the counter substrate. Also, if the substrate is warped in a concave shape with respect to the counter substrate, the counter substrate will come in contact with the edge portion of the substrate during thin film transfer, and as a result, the edge portion of the substrate is chipped and particles are generated. Sometimes. Therefore, there is a problem that the yield is lowered.
On the other hand, the initial shape of the substrate and the internal stress of the release layer and thin film are measured in advance, and then the direction and amount of warpage of the substrate when the release layer and thin film are formed on the substrate are obtained, and the obtained warpage Based on the direction and amount of warpage, determine the material and formation conditions of the warpage control layer that relaxes the warpage of the substrate when formed on the substrate, and apply the warpage control layer to the substrate based on the determined material and formation conditions. The present applicant has proposed a manufacturing method of a microstructure that reduces the warpage of the substrate and improves the yield by forming, but according to this method, many steps are required to manufacture the pattern substrate. Thus, there is a problem that the manufacturing time of the pattern substrate increases.
[0006]
Also, according to the conventional microstructure manufacturing method and apparatus, the substrate may move when the thin film and the counter substrate are joined and then separated from each other. In this case, the position of each thin film is shifted, As a result, there exists a problem that cross-sectional shape accuracy falls.
[0007]
Accordingly, an object of the present invention is to provide a method and an apparatus for manufacturing a microstructure capable of improving yield and cross-sectional shape accuracy.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a microstructure in which a plurality of thin films formed on a pattern substrate are pressed onto the counter substrate in a predetermined order to stack the plurality of thin films on the counter substrate. In the method of manufacturing the microstructure for manufacturing the surface, the surface arithmetic on the back surface is formed on a flat surface of 1 μm or less having a surface arithmetic average roughness of 250 nm or less before the plurality of thin films are pressed onto the counter substrate. by adsorbing the patterned substrate in which the average roughness 10nm or less from the back surface side, there is provided a method of manufacturing a microstructure, characterized in that the surface of the patterned substrate to the following flatness 1μm .
[0009]
Further, in order to achieve the above-mentioned object, the present invention is configured by laminating the plurality of thin films on the counter substrate by pressing the plurality of thin films formed on the pattern substrate on the counter substrate in a predetermined order. In the microstructure manufacturing apparatus for manufacturing a structure, the pattern substrate is formed by a plane having a flatness of 1 μm or less and having a surface arithmetic average roughness of 250 nm or less , and the surface arithmetic average roughness of the back surface is 10 nm or less the adsorbed from the back side, there is provided a manufacturing system for a microstructure, characterized in that the surface of the patterned substrate with a flatness setting means for following flatness 1 [mu] m.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method and apparatus for manufacturing a microstructure according to the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 shows a laminating apparatus according to a first embodiment of the present invention. The laminating apparatus 1 has a vacuum chamber 2, and an xy-θ stage 4 that moves in the x-axis direction, the y-axis direction, and the θ-direction around the z-axis, respectively, inside the vacuum chamber 2, and x- An electrostatic chuck 5 provided on the y-θ stage 4 and attracting and fixing the pattern substrate 3 formed by forming a plurality of thin films on the substrate to the attracting surface 5a by electrostatic force, and a counter substrate 6 on the surface 7a First, the z stage 7 that is formed and moves in the z-axis direction, and the particle beam 8 is irradiated to each of the xy-θ stage 4 side and the z stage 7 side to perform FAB (Fast Atom Beam) processing. The particle beam emitting end 9A and the second particle beam emitting end 9B, the vacuum gauge 10 for detecting the degree of vacuum in the vacuum chamber 2, and the z stage 7 facing the xy-θ stage 4, are provided on the pattern substrate. By detecting the position mark formed in 3 For example a microscope such mark detecting unit for detecting an alignment state of the turn substrate 3 are disposed (not shown). The “FAB treatment” means that, for example, an argon atom beam is accelerated as a particle beam 8 at a voltage of about 1 kV and irradiated on the surface of the material to remove the oxide film, impurities, etc. on the surface of the material, thereby forming a clean surface. The process to do. In this embodiment, the FAB irradiation conditions are changed in the range of an acceleration voltage of 1 to 1.5 kV and an irradiation time of 1 to 10 minutes according to the material to be processed.
[0012]
The xy-θ stage 4 can be used in a vacuum, and an x stage 40 and a y stage 41 that move the pattern substrate 3 in the x-axis direction and the y-axis direction, respectively, and θ that rotates around the z-axis. Stage 42.
[0013]
The z stage 7 is made of metal such as stainless steel or aluminum alloy, for example. The counter substrate 6 has a 10 mm square, and is formed in advance on the surface 7 a of the z stage 7 so that a microstructure formed of a plurality of thin films stacked on the z stage 7 can be easily taken out from the z stage 7. The
[0014]
FIG. 2 shows a control system of the laminating apparatus 1. The laminating apparatus 1 has a control unit 11 that controls the entire apparatus 1, and various information including a program of the control unit 11 (such as movement pitch information of the xy-θ stage 4) is included in the control unit 11. , A vacuum pump 13 that evacuates the vacuum chamber 2, a first FAB processing unit 14A that irradiates the particle beam 8 from the first and second particle beam emitting ends 9A and 9B, and a second one, respectively. FAB processing unit 14B, electrostatic chuck driving unit 17 for applying a predetermined voltage (for example, 500V) to the electrostatic chuck 5, x-axis motor 40a and x-axis position detecting unit 40b constituting the x stage 40, y stage 41, the y-axis motor 41a and the y-axis position detector 41b, the θ motor 42a and the θ position detector 42b that constitute the θ stage 42, the z axis motor 7b and the z axis that constitute the z stage 7.置検 out portion 7c, and the mark detecting unit 18, and the vacuum gauge 10 respectively connected. For example, an encoder, a laser interferometer, a glass scale, or the like can be used for the x-axis position detection unit 40b, the y-axis position detection unit 41b, the θ position detection unit 42b, and the z-axis position detection unit 7c. By using these, sub-μm movement accuracy can be realized.
[0015]
The first and second FAB processing units 14A and 14B apply an acceleration voltage of 1 to 15 kV to the corresponding first and second particle beam emitting ends 9A and 9B.
[0016]
The control unit 11 moves the xy-θ stage 4 on which the pattern substrate 3 is placed at a predetermined pitch based on the program stored in the memory 12 and the movement pitch information of the xy-θ stage 4. Each part of the laminating apparatus 1 is controlled so as to form a microstructure by sequentially laminating and joining the surface 7a of the z stage 7 via the counter substrate 6.
[0017]
FIG. 3 shows the configuration of the electrostatic chuck 5. The electrostatic chuck 5 includes a power source 51 that applies a predetermined voltage (for example, 500 V) between an electrode plate 52 to be described later and the ground, and an electrode plate 52 that is connected to the positive electrode of the power source 51 and is electrostatically made positive. The dielectric plate 53 is integrally provided on the electrode plate 52 and is electrostatically made positive by the electrode plate 52, and is electrostatically made negative by the attracting surface 5a which is the surface of the dielectric plate 53. The patterned substrate 3 is attracted by electrostatic force. It is also possible to reverse the polarity of the power source 51 so that the dielectric plate 53 is electrostatically negative, and the pattern substrate 3 that is electrostatically positive is attracted by electrostatic force.
[0018]
The dielectric plate 53 is configured by forming the surface on which the attracting surface 5a is formed with a flatness of 1 μm or less so that even if the pattern substrate 3 is warped, it is straightened and fixed when adsorbed. It has become. Examples of the material constituting the dielectric plate 53 include a ceramic system made of alumina or the like, and a polymer system made of silicone rubber or the like, but a ceramic system with extremely high planar accuracy is preferable. Further, the adsorption surface 5a has a surface arithmetic average roughness of 250 nm or less, more preferably 50 nm or less, and the pattern substrate 3 is firmly fixed to prevent displacement of the pattern substrate 3 during thin film transfer. ing. For the same reason, the back surface of the pattern substrate 3 has a surface arithmetic average roughness of 10 nm or less, more preferably 1 nm or less.
[0019]
Next, a method for manufacturing a microstructure using the laminating apparatus 1 according to the first embodiment will be described.
[0020]
4 (a) to (c), FIG. 5 (a), (b), FIG. 6 (a), (b), and FIG. 7 show the manufacturing process.
[0021]
(1) Film deposition First, as shown in FIG. 4A, a Si wafer having both surfaces polished is prepared as a substrate 31, and polyimide (Hitachi Chemical Polyimide PIX3400) is applied onto the substrate 31 by a spin coating method. It is applied and baked at a maximum temperature of 350 ° C. to form a release layer 32. At this time, the substrate 31 had a concave shape with the peripheral portion warped by about 30 μm with respect to the central portion due to the stress of the polyimide. The arithmetic average roughness of the back surface of the substrate 31 was 1 nm.
[0022]
Next, as shown in FIG. 4B, an A1 thin film 33 is deposited on the release layer 32 by a sputtering method to a thickness of 0.5 μm. Note that high purity A1 is used as the target, the sputtering pressure is 0.5 Pa, and the temperature of the substrate 31 is room temperature. During film formation, the film thickness is constantly monitored by a crystal oscillator type film thickness meter, and the film formation is terminated when the film thickness reaches 0.5 μm. As a result, the film thickness distribution of the A1 thin film 33 on the substrate 31 was 0.5 ± 0.02 μm or less. In addition, since the stress of the Al thin film 33 was small, the substrate shape was not affected.
[0023]
(2) Patterning Next, as shown in FIG. 4 (c), a photoresist (not shown) is applied to the surface of the substrate 31, and the A1 thin film 33 is etched by a normal photolithography method. The pattern substrate 3 is formed by forming a plurality of pattern thin films 34 by patterning into the cross-sectional shape of the microstructure. A positive type photoresist was used, and the resist was exposed using a photomask (not shown). After the A1 thin film 33 is etched, the photoresist is removed with a stripping solution. When patterning the cross-sectional shape, at the same time, an alignment mark (not shown) for performing relative alignment in the xy plane of the substrate 31 and the z stage 7 is formed at a predetermined position. The substrate shape did not change after patterning.
[0024]
(3) Introduction of the pattern substrate 3 into the vacuum chamber 2 Next, as shown in FIG. 5A, the pattern substrate 3 on which the plurality of pattern thin films 34 are formed is replaced with xy-θ in the vacuum chamber 2. Set and fix to the electrostatic chuck 5 on the stage 4. That is, the electrostatic chuck driving unit 17 is controlled by the control unit 11 and a voltage is applied between the electrode plate 52 of the electrostatic chuck 5 and the ground by the power source 51 to make the dielectric plate 52 electrostatically positive. The pattern substrate 3 electrostatically made negative by the suction surface 5a is sucked and fixed by electrostatic force. In the present embodiment, an alumina dielectric plate 52 having a flatness of the adsorption surface 5a of 1 μm or less and an arithmetic average roughness of 100 nm is used, and the applied voltage of the power source 51 is set to 500V. With this fixing, the amount of warpage of the pattern substrate 3 became 1 μm or less, and the pattern substrate 3 became flat.
[0025]
(4) Alignment adjustment (positioning)
The operator measures the alignment state of the pattern substrate 3, that is, the relative positional relationship between the counter substrate 6 and the pattern substrate 3, by detecting the position mark formed on the pattern substrate 3 while magnifying and observing the pattern substrate 3 with the mark detector 18. The xy-θ stage 4 is adjusted so that the first pattern thin film 34 is positioned directly under the counter substrate 6.
[0026]
(5) When the exhaust operator in the vacuum chamber 2 depresses an exhaust switch (not shown) of the stacking apparatus 1, the control unit 11 controls the vacuum pump 13 based on the detection value of the vacuum gauge 10 to move the interior of the vacuum chamber 2. The vacuum chamber 2 is evacuated to a level of 10 −6 Pa and the inside of the vacuum chamber 2 is brought into a high vacuum state or an ultrahigh vacuum state.
[0027]
(6) The FAB processing control unit 11 controls the first and second FAB processing units 14A and 14B to irradiate the surface of the counter substrate 6 with an argon atom beam as the particle beam 8 from the first particle beam emitting end 9B. Then, the surface of the pattern thin film 34 is irradiated with the same argon atom beam as the particle beam 8 from the second particle beam emitting end 9A to perform the FAB process. In this embodiment mode, an argon atom beam is irradiated at a voltage of 1.5 kV and a current of 15 mA for 10 minutes.
[0028]
(7) As shown in FIG. 5 (b), the thin film transfer control unit 11 controls the z axis motor 7b based on the detection signal of the z axis position detection unit 7c to lower the z stage 7, and the first layer The surface of the clean counter substrate 6 is brought into contact with the surface of the pattern thin film 34 and the surface of the first pattern thin film 34 are brought into contact with each other, and a predetermined load (for example, 50 kgf / cm 2 ) is applied for a predetermined time (for example, 5 minutes) ) When pressed, the counter substrate 6 and the first pattern thin film 34 are firmly bonded. The bonding strength was evaluated by a tensile test and found to be 50 to 100 MPa.
Next, as shown in FIG. 6 (a), when the z stage 7 is raised and returned to the original position, the first pattern thin film 34 on the pattern substrate 31 and the release layer 32 therebelow are adhered. Since the bonding force between the counter substrate 6 and the first pattern thin film 34 is greater than the force, the first pattern thin film 34 is transferred from the pattern substrate 31 to the counter substrate 6 side. At this time, since the surface roughness of the attracting surface 5a of the electrostatic chuck 5 and the back surface of the pattern substrate 3 was good, the pattern substrate 3 did not move on the electrostatic chuck 5.
[0030]
Next, as shown in FIG. 6B, the control unit 11 sets the xy-θ stage 4 to a predetermined value based on the program stored in the memory 12 and the movement pitch information of the xy-θ stage 4. Move the pitch. As a result, the second pattern thin film 34 is positioned directly below the counter substrate 6.
[0031]
Thereafter, in the same manner as described above, positioning, FAB irradiation, and transfer are performed, so that the second pattern thin film 34 is laminated on the first pattern thin film 34 as shown in FIG. The only difference from the first step is that in the FAB processing step, the second time, the surface of the counter substrate 6 on the z stage 7 is not irradiated with an argon atom beam, but the back surface of the first pattern thin film 34. It is to irradiate and clean the surface (the surface that has been in contact with the substrate 31 through the release layer 32 until then). Thereafter, the miniaturized structure is completed on the counter substrate 6 by repeating the steps of positioning, FAB irradiation, and transfer. Thereafter, the counter substrate 6 is removed to obtain a microstructure.
[0032]
According to the first embodiment described above, the following effects can be obtained.
(1) When the pattern substrate 3 is fixed on the electrostatic chuck 5, the pattern substrate 3 has a flatness of 1 μm or less following the shape of the suction surface 5a having a flatness of 1 μm or less. The pattern thin film 34 can be reliably transferred to the counter substrate 6 in contact. Further, the counter substrate 6 does not come into contact with the edge portion of the pattern substrate 3, and the generation of particles can be prevented. As a result, the yield can be improved.
(2) Since the arithmetic average roughness of the adsorption surface 5a of the electrostatic chuck 5 is 250 nm or less and the arithmetic average roughness of the back surface of the substrate 31 is 10 nm or less, the contact area between the two increases, and the adsorption The pattern substrate 3 can be firmly fixed to the surface 5a. For this reason, when the counter substrate 6 is separated from the pattern substrate 3 during thin film transfer, the pattern substrate 3 can be prevented from moving and being displaced, and as a result, the cross-sectional shape accuracy of the microstructure can be improved. .
[0033]
【The invention's effect】
As described above, according to the microstructure manufacturing method and apparatus of the present invention, before pressing a plurality of thin films onto a counter substrate, a pattern is formed on a plane having a predetermined flatness with a predetermined surface arithmetic average roughness. Since the substrate is adsorbed to make the pattern substrate have a predetermined flatness, the yield and the accuracy of the cross-sectional shape of the microstructure can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a stacking apparatus according to a first embodiment of the invention.
FIG. 2 is a block diagram showing a control system of the stacking apparatus according to the first embodiment.
FIG. 3 is an explanatory view showing an electrostatic chuck of the laminating apparatus according to the first embodiment.
FIG. 4 is a sectional view showing a film forming process and a patterning process according to the first embodiment.
FIG. 5 is an explanatory diagram showing a transfer process according to the first embodiment.
FIG. 6 is an explanatory diagram showing a transfer process according to the first embodiment.
FIG. 7 is an explanatory diagram showing a transfer process according to the first embodiment.
FIG. 8 is an explanatory view showing a stacking apparatus according to a conventional microstructure manufacturing method.
FIG. 9 is an explanatory view showing a conventional film forming process and a patterning process.
FIG. 10 is a perspective view showing a microstructure completed by a conventional manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stacking apparatus 2 Vacuum chamber 3 Pattern substrate 4 xy-theta stage 5 Electrostatic chuck 5a Suction surface 6 Opposite substrate 7 z stage 7a Surface of z stage 7b z-axis motor 7c z-axis position detection part 8 Particle beam 9A 1st Particle beam emitting end 9B Second particle beam emitting end 10 Vacuum gauge 11 Control unit 12 Memory 13 Vacuum pump 14A First FAB processing unit 14B Second FAB processing unit 17 Electrostatic chuck driving unit 18 Mark detection unit 31 Substrate 32 the release layer 33 thin film <br/> 34 patterned film 40 x stage 40a x-axis motor 40b x-axis position detector 41 y stage 41a y-axis motor 41b y-axis position detector 42 theta stage 42a theta motor 42b theta position detection Part 51 Power supply 52 Electrode plate 53 Dielectric plate

Claims (6)

パターン基板上に形成された複数の薄膜を所定の順序で対向基板上に圧接することにより前記対向基板上に前記複数の薄膜を積層して微小構造体を製造する微小構造体の製造方法において、
前記複数の薄膜を前記対向基板上へ圧接する前に、250nm以下の表面算術平均粗さを有した1μm以下の平面度の平面に、裏面の表面算術平均粗さを10nm以下にした前記パターン基板を前記裏面側から吸着させて前記パターン基板の表面1μm以下の平面度にすることを特徴とする微小構造体の製造方法。
In a method for manufacturing a microstructure, a plurality of thin films formed on a pattern substrate are pressed onto a counter substrate in a predetermined order to laminate the plurality of thin films on the counter substrate to manufacture a micro structure.
Prior to press-contacting the plurality of thin films onto the counter substrate, the patterned substrate having a surface arithmetic average roughness of a back surface of 10 μm or less on a flat surface having a flatness of 1 μm or less having a surface arithmetic average roughness of 250 nm or less the adsorbed from the back side, the manufacturing method for a microstructure characterized by the surface of the patterned substrate to the following flatness 1 [mu] m.
前記平面への前記パターン基板の吸着は、前記平面として静電的に所定の極性にされた電極板と一体になった誘電体板を前記所定の極性にし、前記パターン基板を静電的に前記所定の極性と反対の極性にすることにより行う請求項1記載の微小構造体の製造方法。The adsorption of the pattern substrate to the flat surface is such that a dielectric plate integrated with an electrode plate electrostatically having a predetermined polarity as the flat surface has the predetermined polarity, and the pattern substrate is electrostatically The method for manufacturing a microstructure according to claim 1, wherein the method is performed by setting the polarity opposite to the predetermined polarity. 前記誘電体は、セラミックスを用いる請求項記載の微小構造体の製造方法。The method for manufacturing a microstructure according to claim 2 , wherein the dielectric plate uses ceramics. パターン基板上に形成された複数の薄膜を所定の順序で対向基板上に圧接することにより前記対向基板上に前記複数の薄膜を積層して微小構造体を製造する微小構造体の製造装置において、
250nm以下の表面算術平均粗さを有した1μm以下の平面度の平面によって形成され、裏面の表面算術平均粗さを10nm以下にした前記パターン基板を前記裏面側から吸着して前記パターン基板の表面1μm以下の平面度にする平面度設定手段を備えたことを特徴とする微小構造体の製造装置。
In the microstructure manufacturing apparatus for manufacturing a microstructure by stacking the plurality of thin films on the counter substrate by pressing the plurality of thin films formed on the pattern substrate on the counter substrate in a predetermined order,
Formed by the following surface arithmetic mean roughness 1μm or less flatness of a plane having a 250 nm, the patterned substrate was 10nm or less surface arithmetic mean roughness of the rear surface by suction from the back side, of the patterned substrate An apparatus for manufacturing a microstructure, comprising flatness setting means for making the surface flatness of 1 μm or less .
前記平面度設定手段は、静電的に所定の極性にされた電極板と、前記電極板と一体になって前記所定の極性にされた1μm以下の平面度を有した誘電体板を有し、前記パターン基板は、静電的に前記所定の極性と反対の極性にされて前記誘電体に吸着される構成の請求項記載の微小構造体の製造装置。It said flatness setting means, chromatic an electrostatically predetermined polarity to the electrodes plate, a dielectric plate before SL having a 1μm following flatness that is a predetermined polarity is integral with the electrode plate 5. The microstructure manufacturing apparatus according to claim 4 , wherein the pattern substrate is electrostatically made to have a polarity opposite to the predetermined polarity and is attracted to the dielectric plate . 前記誘電体は、セラミックスである請求項記載の微小構造体の製造装置。6. The microstructure manufacturing apparatus according to claim 5 , wherein the dielectric plate is ceramic.
JP06987499A 1999-03-16 1999-03-16 Method and apparatus for manufacturing microstructure Expired - Fee Related JP3864612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06987499A JP3864612B2 (en) 1999-03-16 1999-03-16 Method and apparatus for manufacturing microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06987499A JP3864612B2 (en) 1999-03-16 1999-03-16 Method and apparatus for manufacturing microstructure

Publications (2)

Publication Number Publication Date
JP2000265285A JP2000265285A (en) 2000-09-26
JP3864612B2 true JP3864612B2 (en) 2007-01-10

Family

ID=13415379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06987499A Expired - Fee Related JP3864612B2 (en) 1999-03-16 1999-03-16 Method and apparatus for manufacturing microstructure

Country Status (1)

Country Link
JP (1) JP3864612B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929758B1 (en) * 2008-04-07 2011-02-11 Commissariat Energie Atomique TRANSFER METHOD USING A FERROELECTRIC SUBSTRATE

Also Published As

Publication number Publication date
JP2000265285A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP3161362B2 (en) Microstructure, its manufacturing method, its manufacturing apparatus, substrate and molding die
US10679884B2 (en) Film electrode for electrostatic chuck
JP3864612B2 (en) Method and apparatus for manufacturing microstructure
JP2000238000A (en) Manufacture and apparatus for micro-structure
JP4575651B2 (en) Manufacturing method of laminated structure and laminated structure
JP3941348B2 (en) Manufacturing method of microstructure
JP3612945B2 (en) Manufacturing method of microstructure
JPH11221829A (en) Substrate for forming thin coat and manufacture of microstructure
JP3804293B2 (en) Microstructure manufacturing method and manufacturing apparatus
JP3800273B2 (en) Microstructure manufacturing method and manufacturing apparatus
JP3821200B2 (en) Method and apparatus for manufacturing microstructure
JP3882423B2 (en) Manufacturing method of microstructure
JP3627482B2 (en) Manufacturing method of microstructure
JP3785845B2 (en) Manufacturing method of microstructure
JP4333093B2 (en) Method and apparatus for manufacturing microstructure
JP3663940B2 (en) MICROSTRUCTURE MANUFACTURING DEVICE AND MICROSTRUCTURE MANUFACTURING METHOD
JP4182630B2 (en) Diaphragm structure, microtransducer, and manufacturing method thereof
JP3509487B2 (en) Manufacturing method of microstructure
JP3627486B2 (en) Manufacturing method of microstructure
JP3627496B2 (en) Manufacturing method of microstructure
JP4318416B2 (en) Manufacturing method of microstructure
JP3870628B2 (en) Microstructure manufacturing method and manufacturing apparatus
JP2002036195A (en) Micro structural body and method of manufacturing the same
JP2001287198A (en) Microstructure and its manufacturing method, and etching device
JP2005212028A (en) Method and device for manufacturing microstructure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees