JPH06212369A - Method for heat-treating hydrogen storage alloy for ni-hydrogen battery - Google Patents

Method for heat-treating hydrogen storage alloy for ni-hydrogen battery

Info

Publication number
JPH06212369A
JPH06212369A JP5004105A JP410593A JPH06212369A JP H06212369 A JPH06212369 A JP H06212369A JP 5004105 A JP5004105 A JP 5004105A JP 410593 A JP410593 A JP 410593A JP H06212369 A JPH06212369 A JP H06212369A
Authority
JP
Japan
Prior art keywords
hydrogen
heat treatment
alloy
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5004105A
Other languages
Japanese (ja)
Other versions
JP3022019B2 (en
Inventor
Hideya Kaminaka
秀哉 上仲
Koichi Kamishiro
光一 神代
Takashi Arakawa
尚 荒川
Sumio Toyozumi
澄夫 豊住
Yukiteru Takeshita
幸輝 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5004105A priority Critical patent/JP3022019B2/en
Publication of JPH06212369A publication Critical patent/JPH06212369A/en
Application granted granted Critical
Publication of JP3022019B2 publication Critical patent/JP3022019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To increase the initial activity of a hydrogen storage alloy for a Ni-hydrogen battery by heat treatment. CONSTITUTION:The hydrogen storage alloy for a Ni hydrogen battery is held to 550 to 1200 deg.C for 2 to 8hr in a hydrogen gas atmosphere having <=30ppm oxygen concn. or in a rare gas atmosphere having <=30ppm oxygen concn. and >=1vol% hydrogen concn. and is thereafter cooled to <=50 deg.C at <=20K/min cooling rate in the same atmosphere, and the hydrogen storage alloy for a Ni-hydrogen battery is subjected to heat treatment. The hydrogen storage alloy solidified at >=50K/sec cooling rate from the melting state is subjected to the heat treatment preferably by executing holding to 550 to 950 deg.C for 2 to 5hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ni−水素電池用水素吸
蔵合金の熱処理方法に関し、特に初期活性化を容易に
し、Ni−水素電池製造の生産性向上に寄与する水素吸蔵
合金の熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for hydrogen storage alloys for Ni-hydrogen batteries, and more particularly to a heat treatment method for hydrogen storage alloys that facilitates initial activation and contributes to improved productivity of Ni-hydrogen battery production. Regarding

【0002】[0002]

【従来の技術】現在、AV機器やノート型パソコンのメ
モリー・バックアップ、移動式携帯電話などに用いる小
型二次電池は、Ni−Cd電池が主流である。しかし、Cdに
は公害問題、Cdが亜鉛精錬の副産物として生産され、世
界での年産量が7000トンという資源量制約の問題があ
る。
2. Description of the Related Art At present, Ni-Cd batteries are the mainstream of small secondary batteries used for memory backup of AV equipment and notebook type personal computers, mobile cellular phones and the like. However, Cd has a pollution problem, and Cd is produced as a by-product of zinc refining, and the world's annual output is 7,000 tons.

【0003】これらの問題と、より高容量の二次電池開
発といった観点から、Cdの代わりに陰極 (負極) 用材料
として水素吸蔵合金を用いた、Ni−水素電池と呼ばれる
二次電池が開発された。この水素吸蔵合金を用いた二次
電池は、Ni−Cd電池やNi−Zn電池に比べて容量が高い
ため、地球環境問題から無公害車として利用が拡大しつ
つある電気自動車用の二次電池としての利用も検討され
ており、今まさに量産が始まろうとしている。
From the viewpoint of these problems and the development of a secondary battery having a higher capacity, a secondary battery called Ni-hydrogen battery has been developed which uses a hydrogen storage alloy as a material for the cathode (negative electrode) instead of Cd. It was Secondary batteries using this hydrogen storage alloy have a higher capacity than Ni-Cd batteries and Ni-Zn batteries, so secondary batteries for electric vehicles are expanding their use as pollution-free vehicles due to global environmental problems. It is also being considered for use as, and mass production is about to begin.

【0004】しかし、量産を開始するに当たりいくつか
の問題点が新たにクローズアップされてきた。その1つ
の問題点は、初期活性化に非常に時間がかかり、生産性
を阻害する要因となっていることである。即ち、Ni−水
素電池では、充電・放電時に水素吸蔵合金電極での水素
の吸収・放出が起こるが、初期にはこの水素の吸収・放
出の効率が悪いため、電池本来の性能が発揮されない。
そのため、電池を組み立てた後、所定の放電容量が得ら
れるようになるまで予め活性化処理を施す必要がある。
現在行われている初期活性化処理は、低電流での長時間
充電と放電 (15〜20時間充電、数時間で放電) を数回く
り返すという方法である。従って、電池を組み立てて
も、出荷するまでに数日の充電・放電を工場内で繰り返
す必要があった。
However, some problems have been newly highlighted at the start of mass production. One of the problems is that the initial activation takes a very long time, which is a factor that hinders productivity. That is, in a Ni-hydrogen battery, hydrogen absorption / desorption occurs at the hydrogen storage alloy electrode during charging / discharging, but since the efficiency of hydrogen absorption / desorption is poor at the initial stage, the original performance of the battery cannot be exhibited.
Therefore, after assembling the battery, it is necessary to perform an activation treatment in advance until a predetermined discharge capacity is obtained.
The current initial activation process is a method of repeating long-time charging and discharging (charging for 15 to 20 hours, discharging for several hours) at low current several times. Therefore, even after assembling the battery, it was necessary to repeat charging and discharging for several days within the factory before shipping.

【0005】この問題点を解決する手段として、特開平
3−219036号公報には、Bなどの特定の元素を添加し
て、水素吸収・放出時の粉化を促進し、比表面積を増加
させることで、初期の活性化特性を向上させることが提
案されている。しかし、この方法では、粉化を生じさせ
るために生成させた第2相は、可逆的に水素を吸収・放
出する量が少ないため、合金全体としては放電容量が低
下する上、粉化が進みすぎて電極の集電性が低下し、早
期に放電容量が劣化するという問題もある。
As a means for solving this problem, Japanese Patent Application Laid-Open No. 3-219036 discloses that a specific element such as B is added to promote pulverization at the time of absorbing and desorbing hydrogen and increasing the specific surface area. Therefore, it has been proposed to improve the initial activation characteristics. However, in this method, the second phase generated to cause pulverization has a small amount of reversibly absorbing and releasing hydrogen, so that the discharge capacity of the alloy as a whole is reduced and the pulverization proceeds. There is also a problem that the current collecting property of the electrode is deteriorated due to the excess and the discharge capacity is deteriorated at an early stage.

【0006】[0006]

【発明が解決しようとする課題】従って、Ni−水素電池
用水素吸蔵合金の実用化に際しては、合金の本来の性能
を損なうことなく初期活性化特性を改善する新たな手段
が求められている。本発明の目的は、Ni−水素電池用水
素吸蔵合金の初期活性化特性を、新たな元素の添加によ
らず、水素吸蔵量や寿命を犠牲にすることなく改善する
手段を提供することである。
Therefore, in the practical application of hydrogen storage alloys for Ni-hydrogen batteries, new means for improving the initial activation characteristics without impairing the original performance of the alloys are required. An object of the present invention is to provide a means for improving the initial activation characteristics of the hydrogen storage alloy for Ni-hydrogen battery without adding a new element and without sacrificing the hydrogen storage amount or the life. .

【0007】[0007]

【課題を解決するための手段】本発明者らは水素吸蔵合
金の活性化特性を左右する要因を種々検討したところ、
以下の知見を得た。 水素吸蔵合金の初期の水素吸収・放出を阻害する要因
は、合金表面に生成する酸化膜であり、この酸化膜が水
素透過を妨げるために活性化が遅れ、活性化処理に長時
間を要するようになる。 表面に酸素膜が生成するのは、熱処理過程および機械
的な粉砕過程である。
[Means for Solving the Problems] The present inventors have studied various factors that affect the activation characteristics of hydrogen storage alloys.
The following findings were obtained. The factor that hinders the initial absorption and desorption of hydrogen in hydrogen storage alloys is the oxide film formed on the alloy surface. become. The oxygen film is formed on the surface during the heat treatment process and the mechanical crushing process.

【0008】これらの知見より、水素含有雰囲気中で水
素吸蔵合金の熱処理とその後の冷却を行うことで、熱処
理時の合金表面酸化膜の生成が防止されると共に、冷却
過程で合金が気相状態の水素を吸収し、気相での活性化
が起こることを見い出し、この合金をNi−水素二次電池
の負極活物質に用いると、電池の活性化特性が改善され
ることを確認して本発明を完成した。
From these findings, heat treatment of a hydrogen storage alloy in a hydrogen-containing atmosphere and subsequent cooling prevent the formation of an oxide film on the surface of the alloy during the heat treatment and, at the same time, the alloy is in a gas phase state during the cooling process. It was found that this alloy absorbs hydrogen and activates in the gas phase, and when this alloy is used for the negative electrode active material of Ni-hydrogen secondary battery, it was confirmed that the activation property of the battery is improved. Completed the invention.

【0009】ここに、本発明の要旨は、水素吸蔵合金
を、酸素濃度30 ppm以下の水素ガス雰囲気下、または酸
素濃度30 ppm以下、水素濃度1vol%以上の希ガス雰囲気
下、 550〜1200℃の温度に2〜8時間保持した後、前記
雰囲気下20 K/min以下の冷却速度で50℃以下の温度まで
冷却することを特徴とする、Ni−水素電池用水素吸蔵合
金の熱処理方法である。
Here, the gist of the present invention is to provide a hydrogen storage alloy at 550 to 1200 ° C. in a hydrogen gas atmosphere having an oxygen concentration of 30 ppm or less, or in a rare gas atmosphere having an oxygen concentration of 30 ppm or less and a hydrogen concentration of 1 vol% or more. The method for heat treating a hydrogen storage alloy for a Ni-hydrogen battery is characterized in that it is held at the temperature of 2 to 8 hours and then cooled to a temperature of 50 ° C. or less in the atmosphere at a cooling rate of 20 K / min or less. .

【0010】水素吸蔵合金を、融解状態から50 K/sec以
上の冷却速度で凝固させて得た場合には、水素吸蔵合金
の熱処理は、前記雰囲気下で 550〜950 ℃の温度に2〜
5時間保持した後、前記雰囲気下20 K/min以下の冷却速
度で50℃以下の温度まで冷却することにより行うことが
好ましい。
When the hydrogen storage alloy is obtained by solidifying it from the molten state at a cooling rate of 50 K / sec or more, the heat treatment of the hydrogen storage alloy is performed under the above atmosphere at a temperature of 550 to 950 ° C.
After holding for 5 hours, it is preferable to perform cooling to a temperature of 50 ° C. or less in the atmosphere at a cooling rate of 20 K / min or less.

【0011】[0011]

【作用】本発明は、水素吸蔵合金の熱処理とその後の冷
却を、水素ガス雰囲気あるいは水素を含む不活性な希ガ
ス雰囲気中で行うことにより、合金表面の酸化を防止す
るとともに、冷却過程で気相状態の水素を吸収させ、合
金を活性化させるものである。
According to the present invention, the heat treatment of the hydrogen storage alloy and the subsequent cooling are performed in a hydrogen gas atmosphere or an inert rare gas atmosphere containing hydrogen to prevent oxidation of the alloy surface and to prevent vaporization during the cooling process. It absorbs phase hydrogen and activates the alloy.

【0012】水素吸蔵合金の水素解離圧は一般に温度上
昇と共に上昇するため、水素吸蔵合金は高温では水素を
放出し、低温では水素を吸収する性質がある。本発明の
熱処理法に従って水素含有雰囲気中で冷却すると、この
性質により水素吸蔵合金は水素を吸収し、この気相の水
素吸収によって合金の水素に対する活性度が高まる。そ
のため、この合金を負極活物質とするNi−水素電池の初
期活性化が容易となる。
Since the hydrogen dissociation pressure of a hydrogen storage alloy generally increases as the temperature rises, the hydrogen storage alloy has the property of releasing hydrogen at high temperatures and absorbing hydrogen at low temperatures. When cooled in a hydrogen-containing atmosphere according to the heat treatment method of the present invention, the hydrogen storage alloy absorbs hydrogen due to this property, and the vapor absorption of hydrogen increases the activity of the alloy for hydrogen. Therefore, the initial activation of the Ni-hydrogen battery using this alloy as the negative electrode active material becomes easy.

【0013】本発明の熱処理法は、任意のNi−水素電池
用水素吸蔵合金に適用可能である。代表的なNi−水素電
池電池用水素吸蔵合金は、LaNi5 系もしくはMmNi5
(MmはLaを主成分とするランタノイド希土類金属の混合
物であるミッシュメタル) 水素吸蔵合金と、ラーベス相
のZrV2系水素吸蔵合金である。LaNi5 もしくはMmNi5
おいて、Niの一部はCo, Mn, Al, Fe, V, Cu, B, Mo, W,
Ta などの1種もしくは2種以上の金属で置換されてい
てもよい。ZrV2においては、Zrの一部はTi, Hfの1種も
しくは2種の金属で、Vの一部はNi, Mn, Fe, Co, Mo,
Cr, W, Al などの1種もしくは2種以上の金属で置換さ
れていてもよい。
The heat treatment method of the present invention can be applied to any hydrogen storage alloy for Ni-hydrogen batteries. A typical hydrogen storage alloy for Ni-hydrogen batteries is LaNi 5 series or MmNi 5 series.
(Mm is a misch metal that is a mixture of lanthanoid rare earth metals containing La as a main component) Hydrogen storage alloys and Laves phase ZrV 2 -based hydrogen storage alloys. In LaNi 5 or MmNi 5 , a part of Ni is Co, Mn, Al, Fe, V, Cu, B, Mo, W,
It may be substituted with one or more metals such as Ta. In ZrV 2 , part of Zr is one or two metals of Ti and Hf, and part of V is Ni, Mn, Fe, Co, Mo,
It may be substituted with one or more metals such as Cr, W and Al.

【0014】水素吸蔵合金は従来より公知の任意の方法
で製造することができる。合金の製造方法は、例えば、
高周波誘導加熱により融解させた合金を型に鋳込んで冷
却するインゴット法 (この場合は、冷却速度は通常10 K
/sec以下と遅くなる) でも、或いはガスアトマイズ法、
回転電極法、ロール急冷法などの50 K/sec以上の冷却速
度での凝固(急冷凝固)が可能な方法のいずれでもよ
い。必要であれば、得られた水素吸蔵合金を、熱処理前
に不活性ガス雰囲気中で粉砕してもよい。粉砕は熱処理
の後で行ってもよい。また、ガスアトマイズ法のよう
に、粉末状で合金が得られる場合には、粉砕が必要ない
こともある。
The hydrogen storage alloy can be manufactured by any conventionally known method. The alloy manufacturing method is, for example,
Ingot method in which alloy melted by high frequency induction heating is cast into a mold and cooled (in this case, the cooling rate is usually 10 K
/ sec or slower) or gas atomizing method,
Any method capable of solidification (quick solidification) at a cooling rate of 50 K / sec or more, such as a rotating electrode method or a roll quenching method, may be used. If necessary, the obtained hydrogen storage alloy may be ground in an inert gas atmosphere before heat treatment. The crushing may be performed after the heat treatment. Further, when the alloy is obtained in the form of powder as in the gas atomizing method, pulverization may not be necessary.

【0015】本発明によれば、水素吸蔵合金を、酸素濃
度30 ppm以下の水素ガス雰囲気下、または酸素濃度30 p
pm以下、水素濃度1vol%以上の希ガス雰囲気で熱処理す
る。希ガスとしては、He、Ar、Ne、Krの各ガスが使用で
きるが、通常は最も安価なArガスが好ましい。このよう
なガスを用いる理由は、合金表面に酸化膜を生じさせな
いためには、熱処理雰囲気を還元性雰囲気とする必要が
あるからである。不活性ガス雰囲気として最も一般的な
窒素ガス雰囲気は、N2とH2が共存した場合、水素吸蔵合
金の触媒作用によりNH3 が発生して合金が被毒されるこ
とがあるため、本発明方法では使用しない。
According to the present invention, the hydrogen storage alloy is placed in a hydrogen gas atmosphere having an oxygen concentration of 30 ppm or less or at an oxygen concentration of 30 p.
Heat treatment is performed in a rare gas atmosphere having a hydrogen concentration of 1 vol% or more and pm or less. He, Ar, Ne and Kr gases can be used as the rare gas, but the cheapest Ar gas is usually preferable. The reason for using such a gas is that the heat treatment atmosphere must be a reducing atmosphere in order to prevent the formation of an oxide film on the alloy surface. The most common nitrogen gas atmosphere as an inert gas atmosphere is that when N 2 and H 2 coexist, the catalytic action of the hydrogen storage alloy may generate NH 3 and poison the alloy. Not used in the method.

【0016】水素を含有する熱処理雰囲気ガス中の酸素
濃度を30 ppm以下としたのは、熱処理中の表面酸化を防
止するためである。この効果を充分得るためには、30 p
pm以下の酸素濃度が必要であり、望ましくは10 ppm以下
とすると一層有効である。
The oxygen concentration in the heat treatment atmosphere gas containing hydrogen is set to 30 ppm or less in order to prevent surface oxidation during the heat treatment. To get this effect, 30 p
An oxygen concentration of pm or less is required, and it is more effective if it is desirably 10 ppm or less.

【0017】熱処理を希ガス雰囲気とする場合には、雰
囲気ガスが最低1vol%の水素を含有する必要がある。こ
れは、熱処理およびその後の冷却時に、水素吸収により
合金を活性化させるのに必要な最低の水素分圧を得るた
めである。望ましくは水素濃度が3vol%以上であると、
この効果がさらに高まる。
When the heat treatment is carried out in a rare gas atmosphere, the atmosphere gas must contain at least 1 vol% hydrogen. This is to obtain the lowest hydrogen partial pressure needed to activate the alloy by hydrogen absorption during heat treatment and subsequent cooling. Desirably, if the hydrogen concentration is 3 vol% or more,
This effect is further enhanced.

【0018】上述した水素含有ガス雰囲気中での熱処理
は、合金を 550〜1200℃の温度に2〜8時間保持するこ
とにより行う。これにより、熱処理中の合金表面の酸化
を防ぎながら合金を均質化させることができる。10 K/s
ec以下の冷却速度で凝固させたインゴット法において
は、好ましい熱処理条件は 800〜1100℃×6〜8時間で
ある。
The above heat treatment in the hydrogen-containing gas atmosphere is carried out by holding the alloy at a temperature of 550 to 1200 ° C. for 2 to 8 hours. This makes it possible to homogenize the alloy while preventing oxidation of the alloy surface during heat treatment. 10 K / s
In the ingot method of solidifying at a cooling rate of ec or less, the preferable heat treatment condition is 800 to 1100 ° C x 6 to 8 hours.

【0019】水素吸蔵合金を50 K/sec以上の冷却速度で
の急冷凝固により製造した場合 (ガスアトマイズ法、回
転電極法などの溶製法を採用した場合) には、凝固冷却
時の歪を除去するための歪取り焼鈍を目的とする熱処理
を行うことが好ましい。従って、この場合には、熱処理
を 550〜950 ℃の温度に2〜5時間保持することにより
行うことが好ましい。このような条件の熱処理では、偏
析を生ずることなく、歪を除去し、結晶粒径を制御する
ことができる。この場合のより好ましい熱処理条件は 7
00〜900 ℃×3〜4時間である。
When the hydrogen storage alloy is manufactured by rapid solidification at a cooling rate of 50 K / sec or more (when a melting method such as a gas atomizing method or a rotating electrode method is adopted), strain during solidification cooling is removed. Therefore, it is preferable to perform heat treatment for the purpose of strain relief annealing. Therefore, in this case, it is preferable to carry out the heat treatment by maintaining the temperature at 550 to 950 ° C. for 2 to 5 hours. By heat treatment under such conditions, strain can be removed and the crystal grain size can be controlled without causing segregation. The more preferable heat treatment condition in this case is 7
00 to 900 ° C x 3 to 4 hours.

【0020】上記条件で水素含有ガス雰囲気下に熱処理
した後、20 K/min以下の冷却速度で50℃以下の温度まで
冷却する。この冷却時の雰囲気も、上記熱処理時の雰囲
気と同じである。上述した水素含有ガス雰囲気であれ
ば、熱処理時と冷却時とで雰囲気ガスを変更してもよい
が、通常は熱処理時の雰囲気のまま冷却を行うのが簡便
である。
After the heat treatment in the hydrogen-containing gas atmosphere under the above-mentioned conditions, it is cooled to a temperature of 50 ° C. or less at a cooling rate of 20 K / min or less. The atmosphere during this cooling is also the same as the atmosphere during the heat treatment. In the hydrogen-containing gas atmosphere described above, the atmosphere gas may be changed during the heat treatment and during the cooling, but it is usually simple to perform the cooling in the atmosphere during the heat treatment.

【0021】熱処理中あるいは熱処理後の冷却時に、合
金は水素吸収を開始し、活性化が起こる。温度が下がる
とともに水素吸収量は増加するが、水素吸蔵合金の性質
として、水素吸収時は激しい発熱が起こる。このため、
急激に温度を下げると、一度に多量の水素を吸収して急
激な発熱昇温が生じ、所望の熱処理温度以上の温度にな
ったり、自己発熱により焼結したり、自己発熱によって
合金組成が熱分解したりするという問題が生じる。この
ような発熱を避けるために、熱処理後の冷却速度は20 K
/min以下の徐冷とする。望ましい冷却速度をは10 K/min
以下である。
During the heat treatment or during the cooling after the heat treatment, the alloy starts absorbing hydrogen and activation occurs. Although the amount of absorbed hydrogen increases as the temperature decreases, the hydrogen storage alloy has the property of generating intense heat when absorbing hydrogen. For this reason,
If the temperature is drastically lowered, a large amount of hydrogen is absorbed at one time, causing a sudden rise in heat generation, and the temperature rises above the desired heat treatment temperature, self-heating causes sintering, and self-heating causes the alloy composition to heat up. The problem of disassembly occurs. To avoid such heat generation, the cooling rate after heat treatment is 20 K
Slow cooling less than / min. The desired cooling rate is 10 K / min
It is the following.

【0022】この徐冷で50℃以下まで冷却する理由は次
の通りである。多くの水素吸蔵合金は、低温になるほど
水素吸蔵量が増加する。合金を活性化をさせるためには
より多くの水素を吸蔵させることが望ましい。Ni−水素
電池用途に用いる合金は、50℃における水素吸収平衡圧
力が1〜5気圧以下となるものが多く、50℃以下まで冷
却すれば、合金の水素吸収平衡圧力が1〜5気圧程度に
なるまで水素を吸収して合金の活性化が進行する。この
ため50℃以下まで、望ましくは40℃以下まで冷却する必
要がある。また、水素雰囲気で熱処理した合金を高温で
大気中に取り出すと、表面に酸化膜が生成して活性化が
遅くなる可能性がある。これを防止するためにも、50℃
以下まで、望ましくは40℃まで冷却し、その後大気中に
取り出す必要がある。
The reason for cooling to 50 ° C. or lower by this slow cooling is as follows. In many hydrogen storage alloys, the hydrogen storage amount increases as the temperature decreases. It is desirable to store more hydrogen in order to activate the alloy. Many of the alloys used for Ni-hydrogen batteries have a hydrogen absorption equilibrium pressure of 1 to 5 atm or less at 50 ° C, and if cooled to 50 ° C or less, the hydrogen absorption equilibrium pressure of the alloy becomes about 1 to 5 atm. Hydrogen is absorbed until it reaches the temperature and the activation of the alloy proceeds. Therefore, it is necessary to cool it to 50 ° C or lower, preferably 40 ° C or lower. Further, if the alloy heat-treated in a hydrogen atmosphere is taken out into the atmosphere at a high temperature, an oxide film may be formed on the surface and the activation may be delayed. To prevent this, 50 ℃
It is necessary to cool to below, preferably to 40 ° C, and then take out to the atmosphere.

【0023】[0023]

【実施例】表1に実施例に用いた合金〜の組成を示
す。これらの合金は、純度99.9%のフレーク状電解Ni、
99.8%の電解Co、99.9%ショット状Al、99.8%の板状電
解Mn、Ni−56.91%V母合金、99.5%以上のスポンジ状Z
r、希土類金属純度が99.8%以上のMm (ミッシュメタル)
(La=28 wt%、Ce=48 wt%、Nd=18 wt%、Pr=6 wt%)
を原料として用い、75 kg/chのArガスアトマイズ法
(I) 、0.1 kg/ch のArアークボタン溶解法 (II) 、ま
たは50 kg/chの高周波真空誘導加熱溶解法 (III)により
溶製した。各溶製法での合金の冷却速度を表2に示す。
EXAMPLES Table 1 shows the compositions of the alloys used in the examples. These alloys are flaky electrolytic Ni with a purity of 99.9%,
99.8% electrolytic Co, 99.9% shot-like Al, 99.8% plate-like electrolytic Mn, Ni-56.91% V mother alloy, 99.5% or more sponge-like Z
r, Mm with a rare earth metal purity of 99.8% or more (Misch metal)
(La = 28 wt%, Ce = 48 wt%, Nd = 18 wt%, Pr = 6 wt%)
75 kg / ch Ar gas atomization method using
(I), 0.1 kg / ch Ar arc button melting method (II) or 50 kg / ch high frequency vacuum induction heating melting method (III). Table 2 shows the cooling rate of the alloy in each melting method.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】得られた供試合金を、各実施例に記載のよ
うに熱処理した。熱処理した供試合金を、Arガス雰囲気
中で74μm以下、32μm以上に粉砕し、結着材 (ポリビ
ニルアルコール5%水溶液) を添加して混練した。ペー
スト状となった合金粉末をニッケル製発泡状金属多孔体
(例えば、住友電工製セルメット) 内に充填し、乾燥し
た後、1.5 ton/cm3 の圧力で加圧して、粉末をセルメッ
ト内に担持させて、負極を構成した。この時の合金担持
量は約12gであった。
The resulting donations were heat treated as described in each example. The heat-treated match gold was crushed to 74 μm or less and 32 μm or more in an Ar gas atmosphere, and a binder (polyvinyl alcohol 5% aqueous solution) was added and kneaded. Nickel foam metal porous body made of pasty alloy powder
(For example, Sumitomo Electric Celmet) was filled and dried, and then pressurized at a pressure of 1.5 ton / cm 3 to support the powder in Celmet to form a negative electrode. The amount of alloy carried at this time was about 12 g.

【0027】正極には市販の公称2000 mA のNi正極板を
用い、正極と負極の間に6N−KOH のアルカリ電解液を含
浸させたナイロン不織布をセパレータとしてはさみ込
み、公称2000 mA の電池とした。この電池を単二型のケ
ース内に密閉化し、試験に用いる電池を得た。この電池
は、負極の容量が大きい正極容量規制型電池である。
A commercially available Ni positive electrode plate of nominal 2000 mA was used for the positive electrode, and a nylon non-woven fabric impregnated with an alkaline electrolyte of 6N-KOH was sandwiched between the positive electrode and the negative electrode as a separator to obtain a battery of nominal 2000 mA. . This battery was hermetically sealed in a C-type case to obtain a battery used for the test. This battery is a positive electrode capacity regulated battery having a large negative electrode capacity.

【0028】なお、アトマイズ溶製材においては、熱処
理後にArガス雰囲気中で上記のように粉砕を行ったもの
(溶製法IA) と、アトマイズ溶製ままの74〜32μmの粉
末を熱処理し、未粉砕のもの (溶製法IB) の両者を用い
て、それぞれ別の電池を構成した。
The atomized ingot material was crushed as described above in an Ar gas atmosphere after heat treatment.
A different battery was constructed by using both the (melting method IA) and the atomized as-melted powder of 74 to 32 μm that had not been pulverized (melting method IB).

【0029】(実施例1)本発明の熱処理条件範囲の妥当
性を証明するために、供試合金を表3に示したAガスお
よびFガス (従来ガス) を用いて表4に示す各種条件下
で熱処理を行い、上記のように電池を構成して、初期活
性化試験により初期活性化の容易さを比較した。熱処理
は、AガスまたはFガスを満たした密閉型雰囲気炉で表
4に示す温度および保持時間で行い、その後20 K/minの
冷却速度で20℃まで冷却した後、炉から取り出した。
(Example 1) In order to prove the validity of the heat treatment condition range of the present invention, various conditions shown in Table 4 were used by using match gas as the gas A and gas F (conventional gas) shown in Table 3. Heat treatment was performed below, and the batteries were configured as described above, and the ease of initial activation was compared by an initial activation test. The heat treatment was performed in a closed atmosphere furnace filled with A gas or F gas at the temperature and holding time shown in Table 4, then cooled to 20 ° C. at a cooling rate of 20 K / min, and then taken out of the furnace.

【0030】初期活性化試験は、組み立てた電池を25℃
において1000 mA で3時間充電した後、2000 mA で端子
電圧0.9 V まで放電する充電・放電繰り返し試験により
行った。1回目の放電容量と10回目の放電容量を測定
し、その比 (1回目の放電容量/10回目の放電容量×10
0 %) により、初期活性化の容易さを評価した。結果も
表4に示す。
The initial activation test was carried out at 25 ° C. for the assembled battery.
After 3 hours of charging at 1000 mA at 2000 mA, a repeated charging / discharging test was conducted in which the terminal voltage was discharged to 0.9 V at 2000 mA. The discharge capacity at the 1st time and the discharge capacity at the 10th time were measured, and the ratio (1st discharge capacity / 10th discharge capacity × 10
0%) was used to evaluate the ease of initial activation. The results are also shown in Table 4.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】表4の結果から、次の事実が明らかとなっ
た。 熱処理条件が本発明範囲外であるNo.1、No.2、No.7、
No.12 では、本発明範囲内の組成を持つAガスを用いて
も、初期放電容量 (1サイクル目の放電容量) は、10サ
イクル目の75%以下であり、初期活性化特性がよくなか
った。
From the results shown in Table 4, the following facts became clear. No. 1, No. 2, No. 7, heat treatment conditions are outside the scope of the present invention,
In No. 12, even when A gas having a composition within the range of the present invention was used, the initial discharge capacity (first cycle discharge capacity) was 75% or less at the 10th cycle, and the initial activation characteristics were not good. It was

【0034】いずれの溶製法で得られた合金材につい
ても、Aガスを用いて本発明の範囲内の熱処理条件で熱
処理を行ったものは、初期放電容量が10サイクル目の75
%以上であり、初期活性化特性が改善された。
The alloy materials obtained by any of the melting methods were heat treated under the heat treatment conditions within the scope of the present invention using A gas, and the initial discharge capacity was 75 at the 10th cycle.
% Or more, the initial activation characteristics were improved.

【0035】Arガスアトマイズ法 (溶製法IAおよびI
B) またはボタン溶解法 (溶製法II) により、凝固時に5
0 K/sec以上の冷却速度で急冷を受けた合金材では、(55
0〜950℃) ×(2〜5時間) の範囲内で熱処理を行うと、
初期放電容量が10サイクル目の90%以上となり、特に初
期活性に優れていた。
Ar gas atomizing method (melting method IA and I
B) or button melting method (melting method II)
For alloy materials that have been rapidly cooled at a cooling rate of 0 K / sec or more, (55
When heat treatment is performed within the range of (0 to 950 ° C) x (2 to 5 hours),
The initial discharge capacity was 90% or more at the 10th cycle, and the initial activity was particularly excellent.

【0036】ガスアトマイズ溶製材については、本発
明の範囲内の条件で熱処理を行うと、未粉砕で電池を構
成しても (溶製法IB) 、十分な初期活性を有する粉末が
得られた。従って、ガスアトマイズ法で溶製した場合に
は、粉砕工程を省略できる点で有利である。
With respect to the gas atomized ingot material, when heat-treated under the conditions within the scope of the present invention, a powder having sufficient initial activity was obtained even if the battery was constructed without being ground (melting method IB). Therefore, when melted by the gas atomization method, it is advantageous in that the crushing step can be omitted.

【0037】(実施例2)熱処理ガス組成の影響を調査す
べく、表3に示したA〜Fの組成のガスを使用して900
℃×4hrの熱処理を行い、20 K/minの冷却速度で20℃ま
で冷却してから熱処理炉から取り出した。得られた熱処
理合金材の初期活性を調査した結果を表5に示す。
(Example 2) In order to investigate the influence of the heat treatment gas composition, gases having compositions A to F shown in Table 3 were used.
Heat treatment was performed at 4 ° C for 4 hours, the temperature was cooled to 20 ° C at a cooling rate of 20 K / min, and the product was taken out of the heat treatment furnace. Table 5 shows the results of investigating the initial activity of the heat-treated alloy material obtained.

【0038】[0038]

【表5】 [Table 5]

【0039】表5に示した結果から、次の事実が明らか
となった。 酸素濃度が35 ppmのBガスを用いて熱処理した場合
は、通常のArガスを用いた場合と大きな差異は認められ
ない (No.14 とNo.18 の比較) 。 ガス中の水素濃度が1vol%以下の条件で熱処理して
も、大きな改善効果が認められない (No.15 とNo.18)。
From the results shown in Table 5, the following facts became clear. When heat-treated using B gas with an oxygen concentration of 35 ppm, no significant difference is observed compared to the case of using normal Ar gas (comparison between No. 14 and No. 18). Even if the heat treatment is performed under the condition that the hydrogen concentration in the gas is 1 vol% or less, no significant improvement effect is observed (No. 15 and No. 18).

【0040】(実施例3)表1に示した合金組成のの合
金について、表2に示したAガスを用いて900℃×4hr
の熱処理を行った際の、合金の初期活性化特性に対する
冷却速度および炉からの取り出し温度の影響を調査し
た。熱処理後は20 K/minの冷却速度で40℃まで冷却して
から熱処理炉から取り出した。試験結果を表6に示す。
Example 3 For alloys having the alloy compositions shown in Table 1, the gas A shown in Table 2 was used to obtain 900 ° C. × 4 hr.
The effects of the cooling rate and the temperature at which the alloy was removed from the furnace on the initial activation characteristics of the alloy during the heat treatment of were investigated. After the heat treatment, it was cooled to 40 ° C at a cooling rate of 20 K / min and then taken out of the heat treatment furnace. The test results are shown in Table 6.

【0041】[0041]

【表6】 [Table 6]

【0042】表6に示した結果から、次の事実が明らか
となった。 冷却速度が20 K/min以下で50℃以下の温度まで冷却し
た場合には、ガスアトマイズ材で90%以上、高周波誘導
加熱溶解材で85%以上の初期活性が得られる。
From the results shown in Table 6, the following facts became clear. When the cooling rate is 20 K / min or less and the temperature is 50 ° C or less, the gas atomized material has an initial activity of 90% or more, and the high frequency induction heating melting material has an initial activity of 85% or more.

【0043】冷却速度が20 K/minより大 (No.23)であ
るか、または取り出し温度が50℃より高温 (No.28)もの
については、初期活性が75%以下となった。この両者に
ついてX線回折を行ったところ、希土類金属 (La、Ce、
Nd) の酸化物の回折線が認められ、酸化が本合金の初期
活性度を低下したものと考えられる。
When the cooling rate was higher than 20 K / min (No. 23) or the take-out temperature was higher than 50 ° C. (No. 28), the initial activity was 75% or less. When X-ray diffraction was performed on both of these, rare earth metals (La, Ce,
The diffraction line of the oxide of Nd) was observed, and it is considered that the oxidation reduced the initial activity of this alloy.

【0044】[0044]

【発明の効果】本発明の水素吸蔵合金の熱処理方法によ
れば、熱処理中の合金表面の酸化防止に加えて、その後
の冷却時に水素吸収が起こって合金が活性化されるた
め、Ni−水素電池を構成した場合の初期活性が非常に高
くなる。具体的には、1サイクル目の初期放電容量が最
低でも10サイクル目の放電容量 (所定放電容量) の75%
以上となる。特に、50 K/sec以上の冷却速度で急冷凝固
した合金を(550〜950 ℃)× (2〜5時間) の条件で熱
処理すると、初期放電容量が10サイクル目の90%以上と
非常に高い初期活性が得られる。そのため、Ni−水素電
池の初期活性化に必要な充電・放電の回数が少なくてす
み、電池の生産性が大幅に改善される。
According to the method for heat treating a hydrogen storage alloy of the present invention, in addition to preventing oxidation of the alloy surface during heat treatment, hydrogen absorption occurs during subsequent cooling to activate the alloy, so that Ni-hydrogen is used. The initial activity is very high when the battery is constructed. Specifically, the initial discharge capacity in the first cycle is at least 75% of the discharge capacity in the 10th cycle (predetermined discharge capacity).
That is all. In particular, when the alloy rapidly solidified at a cooling rate of 50 K / sec or more is heat treated under the condition of (550 to 950 ℃) × (2 to 5 hours), the initial discharge capacity is very high, 90% or more at the 10th cycle. Initial activity is obtained. Therefore, the number of times of charging / discharging required for initial activation of the Ni-hydrogen battery can be reduced, and the productivity of the battery can be significantly improved.

フロントページの続き (72)発明者 豊住 澄夫 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 竹下 幸輝 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内Front page continuation (72) Sumio Toyosumi 4-53-3 Kitahama, Chuo-ku, Osaka City Sumitomo Kinen Kogyo Co., Ltd. (72) Yuuki Takeshita 4-53-3 Kitahama, Chuo-ku, Osaka Sumitomo Kinen Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を、酸素濃度30 ppm以下の
水素ガス雰囲気下、または酸素濃度30 ppm以下、水素濃
度1vol%以上の希ガス雰囲気下、 550〜1200℃の温度に
2〜8時間保持した後、前記雰囲気下20 K/min以下の冷
却速度で50℃以下の温度まで冷却することを特徴とす
る、Ni−水素電池用水素吸蔵合金の熱処理方法。
1. A hydrogen storage alloy in a hydrogen gas atmosphere having an oxygen concentration of 30 ppm or less, or in a rare gas atmosphere having an oxygen concentration of 30 ppm or less and a hydrogen concentration of 1 vol% or more at a temperature of 550 to 1200 ° C. for 2 to 8 hours. A method for heat treatment of a hydrogen storage alloy for a Ni-hydrogen battery, which is characterized by cooling in the atmosphere at a cooling rate of 20 K / min or less to a temperature of 50 ° C or less after the holding.
【請求項2】 融解状態から50 K/sec以上の冷却速度で
凝固させた水素吸蔵合金を、酸素濃度30 ppm以下の水素
ガス雰囲気下、または酸素濃度30 ppm以下、水素濃度1
vol%以上の希ガス雰囲気下、 550〜950 ℃の温度に2〜
5時間保持した後、前記雰囲気下20 K/min以下の冷却速
度で50℃以下の温度まで冷却することを特徴とする、Ni
−水素電池用水素吸蔵合金の熱処理方法。
2. A hydrogen storage alloy solidified from a molten state at a cooling rate of 50 K / sec or more in a hydrogen gas atmosphere with an oxygen concentration of 30 ppm or less, or with an oxygen concentration of 30 ppm or less and a hydrogen concentration of 1
2 to 550 to 950 ℃ under noble gas atmosphere of vol% or more
After holding for 5 hours, the atmosphere is cooled to a temperature of 50 ° C. or less at a cooling rate of 20 K / min or less.
-Heat treatment method for hydrogen storage alloys for hydrogen batteries.
JP5004105A 1993-01-13 1993-01-13 Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery Expired - Lifetime JP3022019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5004105A JP3022019B2 (en) 1993-01-13 1993-01-13 Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5004105A JP3022019B2 (en) 1993-01-13 1993-01-13 Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery

Publications (2)

Publication Number Publication Date
JPH06212369A true JPH06212369A (en) 1994-08-02
JP3022019B2 JP3022019B2 (en) 2000-03-15

Family

ID=11575516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5004105A Expired - Lifetime JP3022019B2 (en) 1993-01-13 1993-01-13 Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery

Country Status (1)

Country Link
JP (1) JP3022019B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248306A (en) * 1993-02-23 1994-09-06 Sanyo Special Steel Co Ltd Production of hydrogen storage alloy powder
EP0806803A1 (en) * 1996-05-09 1997-11-12 Mitsubishi Materials Corporation Hydrogen occluding alloy, process for its preparation and electrode
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
CN114427045A (en) * 2021-12-10 2022-05-03 厚普清洁能源股份有限公司 High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248306A (en) * 1993-02-23 1994-09-06 Sanyo Special Steel Co Ltd Production of hydrogen storage alloy powder
EP0806803A1 (en) * 1996-05-09 1997-11-12 Mitsubishi Materials Corporation Hydrogen occluding alloy, process for its preparation and electrode
US5900334A (en) * 1996-05-09 1999-05-04 Mitsubishi Materials Corporation Hydrogen occluding alloy
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
US6238822B1 (en) 1997-01-31 2001-05-29 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder and method of manufacturing the same
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same
CN114427045A (en) * 2021-12-10 2022-05-03 厚普清洁能源股份有限公司 High-uniformity vanadium-titanium-based hydrogen storage alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3022019B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP3828922B2 (en) Low Co hydrogen storage alloy
US5738736A (en) Hydrogen storage alloy and electrode therefrom
JPS61285658A (en) Manufacture of hydrogen occlusion electrode
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
US5277998A (en) Hydrogen-absorbing alloy electrode
JPH0641663A (en) Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP3321818B2 (en) Method for producing hydrogen storage alloy for Ni-hydrogen battery
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH05217578A (en) Manufacture of hydrogen storage alloy electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JP3198896B2 (en) Nickel-metal hydride battery
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2000243388A (en) Hydrogen storage alloy electrode, manufacture of electrode and alkaline storage battery
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH06310133A (en) Hydrogen storage alloy electrode and its manufacture
JPH05114403A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0729570A (en) Hydrogen storage alloy for nickel/hydrogen battery
JPH08143986A (en) Production of hydrogen storage alloy
JPH0873970A (en) Hydrogen storage alloy and cathode for nickel-hydrogen battery using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214