JPH06248306A - Production of hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder

Info

Publication number
JPH06248306A
JPH06248306A JP5057837A JP5783793A JPH06248306A JP H06248306 A JPH06248306 A JP H06248306A JP 5057837 A JP5057837 A JP 5057837A JP 5783793 A JP5783793 A JP 5783793A JP H06248306 A JPH06248306 A JP H06248306A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
storage alloy
alloy powder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5057837A
Other languages
Japanese (ja)
Inventor
Shunichiro Nishikawa
俊一郎 西川
Masaru Yanagimoto
勝 柳本
Akihiko Yanagiya
彰彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5057837A priority Critical patent/JPH06248306A/en
Publication of JPH06248306A publication Critical patent/JPH06248306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a gas-atomized hydrogen storage alloy powder having a high packing density and having an activation rate equivalent to that of the ingot crushed powder. CONSTITUTION:A globular quenched hydrogen storage alloy powder produced in a gas atomization device is heated to 600-1000 deg.C in vacuum while breaking off a cotact with the external air to produce a hydrogen storage alloy powder. The vacuum heating is conducted in a powder recovery main tank 5 and a cyclone collecting tank 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスアトマイズ法を用
いた高活性でかつ高い水素吸蔵特性を有する水素吸蔵合
金粉末の製造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a hydrogen storage alloy powder having a high activity and a high hydrogen storage characteristic by using a gas atomizing method.

【0002】[0002]

【従来の技術】近年、電子技術の進歩によってノート型
パソコン、携帯用電話などエレクトロ製品の小型化が要
求されるようになってきた。それに伴い、これら電子機
器の電源である二次電池の小型化、長寿命化が強く要求
されるようになった。
2. Description of the Related Art In recent years, electronic products such as notebook computers and mobile phones have been required to be downsized due to the progress of electronic technology. Along with this, there has been a strong demand for miniaturization and longer life of secondary batteries, which are the power sources of these electronic devices.

【0003】ところで、従来、ノート型パソコンや携帯
用電話などに用いられる二次電池としてはニッケルカド
ミウム電池が主流であった。しかしながら、環境問題や
高エネルギー化の観点から水素吸蔵合金を負極に用いた
ニッケル水素電池が脚光を浴びるようになった。ニッケ
ル水素電池はニッケルカドミウム電池に比較して約1.
8倍のエネルギー密度を有している。この電池のエネル
ギー密度をさらに上昇させるため、水素吸蔵合金自身の
高エネルギー密度化が望まれている。また、水素吸蔵合
金の特異な性質を利用する応用開発はニッケル水素電池
の他にも水素タンクやヒートポンプなどの様々な分野に
おいて試みられている。
By the way, conventionally, nickel-cadmium batteries have been the mainstream as secondary batteries used in notebook computers, mobile phones, and the like. However, nickel-metal hydride batteries using a hydrogen storage alloy for the negative electrode have come into the spotlight from the viewpoint of environmental problems and higher energy consumption. Compared to nickel-cadmium batteries, nickel-hydrogen batteries have about 1.
It has 8 times the energy density. In order to further increase the energy density of this battery, it is desired to increase the energy density of the hydrogen storage alloy itself. In addition to nickel-metal hydride batteries, application development utilizing the unique properties of hydrogen storage alloys has been attempted in various fields such as hydrogen tanks and heat pumps.

【0004】一般に、ニッケル水素電池用水素吸蔵合金
の使用方法としては、水素ガスとの反応速度を考慮し
て、粉末状にした後発泡金属等に充填して使用されてい
る。しかしながら、現在製造されている水素吸蔵合金粉
末は、ほとんどがインゴット粉砕によるもので形状が不
規則なため充填密度を上げるには限界があり、エネルギ
ー密度向上の妨げとなっている。さらに鋳造時に生じる
組成の偏析や工程の複雑さ等の問題をもっている。
In general, as a method of using a hydrogen storage alloy for a nickel-hydrogen battery, in consideration of the reaction rate with hydrogen gas, it is used after being made into a powder and then filled in a foam metal or the like. However, most hydrogen storage alloy powders currently manufactured are produced by ingot crushing and their shapes are irregular, so there is a limit to increase the packing density, which is an obstacle to the improvement of energy density. Furthermore, there are problems such as composition segregation and process complexity that occur during casting.

【0005】これらの問題を改善する方法として、ガス
アトマイズ法を用いて球形で充填密度が高く且つ急冷効
果による偏析の少ない粉末の製造が試みられている。し
かし、アトマイズ粉末はインゴット粉砕粉に比較して活
性化が難しく、高温でより長時間の活性化処理が必要不
可欠であった。
As a method for solving these problems, it has been attempted to produce a spherical powder having a high packing density and less segregation due to a quenching effect by using a gas atomizing method. However, atomized powder is more difficult to activate than ingot crushed powder, and activation treatment at high temperature for a longer period of time was essential.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上述
のようなガスアトマイズ法による充填密度の高い水素吸
蔵合金粉末の製造にあたって、インゴット粉砕粉と同等
の活性化速度を有するアトマイズ粉末を製造する方法を
提供することである。
An object of the present invention is to produce an atomized powder having an activation rate equivalent to that of an ingot crushed powder in producing a hydrogen storage alloy powder having a high packing density by the gas atomizing method as described above. Is to provide a method.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
めの本発明の手段は、ガスアトマイズ装置内で製造した
球形状をもつ急冷水素吸蔵合金粉末を外気に触れさせる
ことなく、減圧下で600℃以上1000℃以下の温度
で加熱することである。
Means for Solving the Problems According to the means for solving the above-mentioned problems, according to the present invention, the spherical quenched hydrogen-absorbing alloy powder produced in a gas atomizing apparatus is exposed to the outside air at a reduced pressure of 600. That is, heating is performed at a temperature of ℃ to 1000 ℃.

【0008】[0008]

【作用】ガスアトマイズ法によって製造した粉末を減圧
下で加熱することによって、ガスアトマイズ時の急冷特
有の冷却歪を緩和させ、結晶性を向上させ、さらには偏
析を減少させるなどの効果とともに粉末表面の吸着酸素
を除去することで、ガスアトマイズ粉末の初期活性を容
易にした。
[Function] By heating the powder produced by the gas atomizing method under reduced pressure, the cooling strain peculiar to the quenching at the time of gas atomizing is relaxed, the crystallinity is improved, and further segregation is reduced. Removing oxygen facilitated the initial activity of the gas atomized powder.

【0009】図3は、アトマイズ粉末の加熱処理により
結晶性が向上することを示す熱処理温度別のX線回折結
果を示す図である。各グラフの縦軸はX線の任意強度を
示し、各グラフの横軸は回折角度2θを示す。600℃
及び1000℃に加熱処理したアトマイズ粉末のX線の
各ピークは鋭く、半値幅は小さくなっている。従って、
これらの温度で加熱処理したものの結晶性は加熱処理し
ないものあるいは500℃の加熱に比べ向上しているこ
とが理解される。
FIG. 3 is a diagram showing X-ray diffraction results for each heat treatment temperature showing that the crystallinity is improved by the heat treatment of the atomized powder. The vertical axis of each graph shows the arbitrary intensity of X-rays, and the horizontal axis of each graph shows the diffraction angle 2θ. 600 ° C
The X-ray peaks of the atomized powder heat-treated at 1000 ° C. and 1000 ° are sharp and the half-width is small. Therefore,
It is understood that the crystallinity of the material subjected to the heat treatment at these temperatures is improved as compared with that of the material not subjected to the heat treatment or the heating at 500 ° C.

【0010】また、図4および図5はEPMA線の分析
結果を示す図である。これらは粒径100ミクロンのア
トマイズ粉末の断面の研磨面を走査した分析結果を示
し、図4は加熱処理を行っていないアトマイズしたまま
の粉末の結果、図5は600℃で1時間加熱処理した粉
末の結果である。各グラフの縦軸は重量%である。両図
を対比すると、図5の加熱処理したものは図4の加熱処
理を行ってないものに比しグラフが平坦化しており、加
熱処理すると偏析が減少することを示している。
4 and 5 are diagrams showing the results of EPMA line analysis. These show the analysis results obtained by scanning the polished surface of the cross section of the atomized powder having a particle size of 100 μm. FIG. 4 shows the result of the as-atomized powder which was not subjected to the heat treatment, and FIG. 5 was heat treated at 600 ° C. for 1 hour. The result of the powder. The vertical axis of each graph is% by weight. Comparing the two figures, the graph of the heat-treated product of FIG. 5 is flatter than that of the non-heat-treated product of FIG. 4, showing that the heat treatment reduces segregation.

【0011】[0011]

【実施例】【Example】

実施例1:従来のガスアトマイズ法と本発明による減圧
下加熱工程を加えた製造方法によって水素吸蔵合金の粉
末を製造した。調査合金として、Mm−Ni系の5元系
水素吸蔵合金を用いた。
Example 1: A hydrogen storage alloy powder was manufactured by a conventional gas atomizing method and a manufacturing method including a heating step under reduced pressure according to the present invention. As the investigation alloy, an Mm-Ni-based quinary hydrogen storage alloy was used.

【0012】これらの検討結果より、本発明は水素吸蔵
合金ガスアトマイズ粉末の活性化を向上させるのに非常
に有効かつ能率的な製造方法であることが判明した。
From these examination results, it was found that the present invention is a very effective and efficient production method for improving the activation of the hydrogen storage alloy gas atomized powder.

【0013】この結果について、さらに詳細に説明す
る。
The result will be described in more detail.

【0014】図1は本実験に使用したガスアトマイズ装
置の概略図である。粉末回収主タンクおよびサイクロン
補集タンクは着脱可能にガスアトマイズ装置に取付けら
れており、その入口にはバルブが設置してあり、製造し
た粉末を外気と接触させることなく取り出し移動させる
ことができるようになっている。
FIG. 1 is a schematic view of the gas atomizing apparatus used in this experiment. The powder recovery main tank and cyclone collection tank are removably attached to the gas atomizing device, and a valve is installed at the inlet so that the manufactured powder can be taken out and moved without contacting the outside air. Has become.

【0015】従来の単なるガスアトマイズ粉末と本発明
による減圧下で加熱工程を加えた方法によって製造した
粉末の水素吸蔵特性を評価した。
The hydrogen storage characteristics of the conventional mere gas atomized powder and the powder produced by the method of the present invention including a heating step under reduced pressure were evaluated.

【0016】まず、Mm1.00Ni3.50Co0.76Mn0.41
Al0.29に調整した水素吸蔵合金約1Kgをルツボ1に
セットした。装置内を真空脱ガス後、アルゴンガスを
0.1MPaまで導入し、誘導溶解にて試料を溶解し
た。溶解させた合金をノズル2より噴射し、それにアル
ゴンガス(ガス圧1MPa)を噴霧して球状の水素吸蔵
合金粉末を製造した。
First, Mm 1.00 Ni 3.50 Co 0.76 Mn 0.41
About 1 kg of hydrogen storage alloy adjusted to Al 0.29 was set in the crucible 1. After degassing the inside of the apparatus under vacuum, argon gas was introduced up to 0.1 MPa, and the sample was dissolved by induction melting. The melted alloy was jetted from the nozzle 2, and argon gas (gas pressure 1 MPa) was sprayed onto it to produce spherical hydrogen storage alloy powder.

【0017】ガスアトマイズ終了後、アトマイズ装置全
体をロータリーポンプで減圧し真空度10Pa以下に減
圧した状態で粉末回収主タンク5およびサイクロン捕集
タンク7のバルブを閉じ、タンクごと粉末を回収した。
回収した粉末をタンクごとヒーターによって所定の温度
(500、600、1000℃)で1時間加熱処理した
後、炉冷した。製造した粉末の水素吸蔵能力を、PCT
(Pressure Composition Temperature)によって評価し
た。
After completion of the gas atomization, the valve of the powder recovery main tank 5 and the cyclone collection tank 7 was closed in a state where the entire atomizing apparatus was depressurized by a rotary pump to a vacuum degree of 10 Pa or less, and the powder was recovered together with the tank.
The recovered powder, together with the tank, was heat-treated with a heater at a predetermined temperature (500, 600, 1000 ° C.) for 1 hour and then cooled in a furnace. The hydrogen storage capacity of the manufactured powder is
(Pressure Composition Temperature) evaluated.

【0018】図2は水素吸蔵合金粉末製造における本発
明の効果を説明するためのPCT特性図の一例である。
従来のガスアトマイズ法および本発明による製造法によ
って製造したMm−Ni系水素吸蔵合金粉末のPCT測
定結果を示している。測定は各試料に同様の活性化処理
(150℃脱気後3MPaの水素中に保持)を加えた後
温度を45℃に一定して行った。横軸は金属原子1に対
する水素原子の数の比を示す。
FIG. 2 is an example of a PCT characteristic diagram for explaining the effect of the present invention in the production of hydrogen storage alloy powder.
The PCT measurement result of the Mm-Ni system hydrogen storage alloy powder manufactured by the conventional gas atomizing method and the manufacturing method according to the present invention is shown. The measurement was carried out by adding the same activation treatment (holding in hydrogen at 3 MPa after degassing at 150 ° C.) to each sample and keeping the temperature constant at 45 ° C. The horizontal axis represents the ratio of the number of hydrogen atoms to one metal atom.

【0019】その結果、加熱の温度を上昇させることに
よってガスアトマイズ粉末の活性化が促進されることが
わかった。しかし、600℃を越えるとその効果にほと
んど変化がなく、活性化が完了していると考えられる。
一方、再加熱の温度を1000℃以上にすると粉末が焼
結してしまい、粉砕の工程が必要となるため好ましくな
いことがわかった。
As a result, it was found that the activation of the gas atomized powder was promoted by increasing the heating temperature. However, when the temperature exceeds 600 ° C., the effect hardly changes, and it is considered that the activation is completed.
On the other hand, it was found that if the reheating temperature is 1000 ° C. or higher, the powder will sinter and a pulverizing step will be required, which is not preferable.

【0020】つまり、Mm−Ni系水素吸蔵合金粉末を
ガスアトマイズ法によって製造する際、ガスによって急
冷された粉末を600℃から1000℃の温度域で減圧
下で加熱を行うことで粉末の形状を変化させることな
く、十分に活性化された粉末を得ることができる。
That is, when the Mm-Ni-based hydrogen storage alloy powder is manufactured by the gas atomizing method, the powder rapidly cooled by the gas is heated under reduced pressure in the temperature range of 600 ° C to 1000 ° C to change the shape of the powder. A fully activated powder can be obtained without doing so.

【0021】実施例2:Ti−Ni系(Ti17Zr16Ni39
22Cr7 )合金のガスアトマイズ粉末を製造し、実施例1
と同様の条件、工程で粉末を製造し、同様の条件の減圧
下加熱を行った。
Example 2: Ti-Ni system (Ti 17 Zr 16 Ni 39 V
A gas atomized powder of 22 Cr 7 ) alloy was produced and
A powder was produced under the same conditions and steps as described above, and heated under reduced pressure under the same conditions.

【0022】その結果、実施例1のMm−Ni系の合金
と同様に減圧下加熱処理を行うことによって粉末の活性
化が促進されることがわかった。粉末の活性化は600
℃付近以上ならば完了するが、1000℃を超えると焼
結が進行してしまうことがわかった。
As a result, it was found that the powder activation was promoted by performing the heat treatment under reduced pressure as in the case of the Mm-Ni alloy of Example 1. 600 powder activation
It was found that the process was completed when the temperature was above about 0 ° C, but the sintering proceeded when the temperature was above 1000 ° C.

【0023】つまり、Ti−Ni系水素吸蔵合金粉末を
ガスアトマイズ法によって製造する際、急冷された粉末
を減圧下で600℃から1000℃の温度域で加熱処理
を行うことによって粉末の形状を変化させることなく、
十分に活性な粉末を製造することができた。
That is, when the Ti-Ni-based hydrogen storage alloy powder is produced by the gas atomizing method, the rapidly cooled powder is subjected to heat treatment in the temperature range of 600 ° C. to 1000 ° C. under reduced pressure to change the shape of the powder. Without
A fully active powder could be produced.

【0024】実施例3:Fe−Ti系(Ti1.0Fe0.8Mn
0.2 )において実施例1および実施例2と同様の実験を
行った。製造した粉末を減圧下で所定の温度(500、
900、1000℃)で5時間の加熱を行った粉末につ
いてPCT測定を行った。その結果、加熱温度を上昇さ
せることによってガスアトマイズ粉末の活性化が促進さ
れることがわかった。また、1000℃まで粉末の焼結
はほとんどなく、粉末形状にも変化はなかった。
Example 3: Fe-Ti system (Ti 1.0 Fe 0.8 Mn
0.2 ), the same experiment as in Example 1 and Example 2 was performed. The produced powder is decompressed at a predetermined temperature (500,
The PCT measurement was performed on the powder that was heated at 900 and 1000 ° C. for 5 hours. As a result, it was found that the activation of the gas atomized powder was promoted by increasing the heating temperature. Further, the powder hardly sintered up to 1000 ° C., and the powder shape did not change.

【0025】つまり、活性化の困難な水素吸蔵合金粉末
についても、減圧下で加熱時間を増加させることで粉末
形状を変化させることなく、十分に活性な水素吸蔵合金
粉末を製造することができた。
That is, even with respect to the hydrogen storage alloy powder that is difficult to activate, it was possible to produce a sufficiently active hydrogen storage alloy powder without changing the powder shape by increasing the heating time under reduced pressure. .

【0026】また、Ti−Mn系(Ti0.6Zr0.4Mn0.8Cr
1.0Cu0.2 )、Ca−Ni系(Ca0.7Mn0.3Ni5) 、Mg−
Cu系(MgCu2) 、Mg−Ni系(Mg2Ni0.75Cr0.25) な
ど、その他の水素吸蔵合金粉末についてもガスアトマイ
ズによって製造した粉末を減圧下で加熱することによっ
て、十分に活性な粉末を得ることができる。
In addition, Ti--Mn system (Ti 0.6 Zr 0.4 Mn 0.8 Cr
1.0 Cu 0.2 ), Ca-Ni system (Ca 0.7 Mn 0.3 Ni 5 ), Mg-
Cu-based (MgCu 2 ), Mg-Ni-based (Mg 2 Ni 0.75 Cr 0.25 ), and other hydrogen storage alloy powders are also obtained by heating the powders produced by gas atomization under reduced pressure to obtain sufficiently active powders. be able to.

【0027】[0027]

【発明の効果】以上の様に、本発明は、従来のガスアト
マイズによる粉末製造方法を改良して、活性化された水
素吸蔵合金粉末を製造する方法である。さらに、本発明
は、水素吸蔵合金粉末のエネルギー密度ともいえる充填
密度の高い粉末を提供することができる。本発明の方法
により製造した水素吸蔵合金粉末は電池用途の他にも水
素タンクやヒートポンプなどの様々な分野に広く利用で
きる。
As described above, the present invention is a method for producing an activated hydrogen storage alloy powder by improving the conventional method for producing powder by gas atomization. Further, the present invention can provide a powder having a high packing density, which can be said as the energy density of the hydrogen storage alloy powder. The hydrogen storage alloy powder produced by the method of the present invention can be widely used in various fields such as hydrogen tanks and heat pumps, as well as battery applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いたガスアトマイズ装置の概略図で
ある。
FIG. 1 is a schematic view of a gas atomizing apparatus used in the present invention.

【図2】本発明の効果を説明するためのP−C−T測定
結果である。
FIG. 2 is a P-C-T measurement result for explaining the effect of the present invention.

【図3】本発明の作用を説明するためのX線回折結果を
示す。
FIG. 3 shows an X-ray diffraction result for explaining the operation of the present invention.

【図4】加熱処理を行っていない水素吸蔵合金粉末のE
PMA線分析結果を示す。
FIG. 4 E of hydrogen storage alloy powder that has not been heat-treated
The PMA line analysis result is shown.

【図5】本発明の方法による加熱処理を行た水素吸蔵合
金粉末のEPMA線分析結果を示す。
FIG. 5 shows an EPMA line analysis result of a hydrogen storage alloy powder that has been heat-treated by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 溶解ルツボ 2 溶湯ノズル 3 ガスノズル 4 噴霧室 5 粉末回収主タンク 6 サイクロン 7 サイクロン捕集タンク 8 バルブ 1 Melting crucible 2 Molten metal nozzle 3 Gas nozzle 4 Spraying chamber 5 Powder recovery main tank 6 Cyclone 7 Cyclone collecting tank 8 Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスアトマイズ法により製造した水素吸
蔵合金粉末を、減圧下において600℃以上1000℃
以下で加熱することを特徴とする水素吸蔵合金粉末の製
造方法。
1. A hydrogen storage alloy powder produced by a gas atomization method, under reduced pressure, 600 ° C. or more and 1000 ° C.
A method for producing a hydrogen-absorbing alloy powder, which comprises heating below.
【請求項2】 請求項1に記載する減圧下加熱をガスア
トマイズ装置に着脱可能に敷設した粉末回収主タンク内
およびサイクロン捕集タンク内で行うことを特徴とする
水素吸蔵合金粉末の製造方法。
2. A method for producing a hydrogen storage alloy powder, wherein the heating under reduced pressure according to claim 1 is performed in a powder recovery main tank and a cyclone collection tank which are laid detachably on a gas atomizing device.
JP5057837A 1993-02-23 1993-02-23 Production of hydrogen storage alloy powder Pending JPH06248306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5057837A JPH06248306A (en) 1993-02-23 1993-02-23 Production of hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5057837A JPH06248306A (en) 1993-02-23 1993-02-23 Production of hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH06248306A true JPH06248306A (en) 1994-09-06

Family

ID=13067077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5057837A Pending JPH06248306A (en) 1993-02-23 1993-02-23 Production of hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH06248306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265801A (en) * 1997-03-25 1998-10-06 Sanyo Special Steel Co Ltd Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member
CN103157800A (en) * 2013-03-21 2013-06-19 中国航空工业集团公司北京航空材料研究院 Collecting device of high-temperature alloy powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191305A (en) * 1990-11-22 1992-07-09 Sumitomo Metal Ind Ltd Manufacture of powder having low argon content and powder compacted product
JPH06212369A (en) * 1993-01-13 1994-08-02 Sumitomo Metal Ind Ltd Method for heat-treating hydrogen storage alloy for ni-hydrogen battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191305A (en) * 1990-11-22 1992-07-09 Sumitomo Metal Ind Ltd Manufacture of powder having low argon content and powder compacted product
JPH06212369A (en) * 1993-01-13 1994-08-02 Sumitomo Metal Ind Ltd Method for heat-treating hydrogen storage alloy for ni-hydrogen battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265801A (en) * 1997-03-25 1998-10-06 Sanyo Special Steel Co Ltd Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member
CN103157800A (en) * 2013-03-21 2013-06-19 中国航空工业集团公司北京航空材料研究院 Collecting device of high-temperature alloy powder
CN103157800B (en) * 2013-03-21 2014-09-24 中国航空工业集团公司北京航空材料研究院 Collecting device of high-temperature alloy powder

Similar Documents

Publication Publication Date Title
US6461766B1 (en) Hydrogen storage powder and process for preparing the same
CN105710378B (en) A kind of preparation method of spherical metal soft magnetic alloy powder
CN104593651B (en) A kind of Mg-Ti-RE-Ni base hydrogen-storing alloy and preparation method thereof
JP2003534637A5 (en)
AU2020103465A4 (en) Method for preparing high-purity spherical ruthenium powder by microwave one-step method
CN107427925A (en) A kind of fine tantalum powder and preparation method thereof
CN105970083A (en) Manufacturing process for iron-silicon-aluminum alloy powder
KR20210100674A (en) Spherical niobium alloy powder, product containing same, and method for preparing same
CN109848428A (en) The preparation method and metal soft magnetic composite material of metal soft magnetic composite material
CN115194152A (en) Preparation method of porous Ni-Mn-Ga shape memory alloy
WO2020168582A1 (en) Device and method for directly reducing metal compound to prepare metal or alloy powder
WO2000013244A1 (en) A method for powder formation of a hydrogen storage alloy
JPH03122205A (en) Manufacture of ti powder
JPH06248306A (en) Production of hydrogen storage alloy powder
CN114381644B (en) Vanadium-titanium-based hydrogen storage alloy powder and preparation method thereof
CN107338381B (en) The hydrogen-storage alloy and preparation method thereof that fuel cell graphene is catalyzed
JP2821662B2 (en) Titanium-based powder and method for producing the same
CN114570932A (en) Method for preparing spherical titanium-aluminum alloy powder from cuttings
CN107338380B (en) The preparation method of fuel cell high capacity hydrogen storage alloy
CN108011091B (en) Method for preparing ferrosilicon powder by coating magnesium-silicon-iron particles with indium-bismuth alloy and ferrosilicon powder
JPH04362105A (en) Production of fine intermetallic compound powder
CN108054355B (en) Foamed silicon powder, preparation method thereof and lithium ion battery
Nam et al. Effect of ball milling conditions on the microstructure and the transformation behavior of Ti− Ni and Ti− Ni− Cu shape memory alloy powders
JPS6358896B2 (en)
JPH07296810A (en) Hydrogen storage alloy powder and nickel-hydrogen battery