JPH06210175A - Catalyst for purification of exhaust gas and its production - Google Patents

Catalyst for purification of exhaust gas and its production

Info

Publication number
JPH06210175A
JPH06210175A JP5026068A JP2606893A JPH06210175A JP H06210175 A JPH06210175 A JP H06210175A JP 5026068 A JP5026068 A JP 5026068A JP 2606893 A JP2606893 A JP 2606893A JP H06210175 A JPH06210175 A JP H06210175A
Authority
JP
Japan
Prior art keywords
oxide
perovskite
exhaust gas
noble metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5026068A
Other languages
Japanese (ja)
Other versions
JP3229054B2 (en
Inventor
Hirotoshi Fujikawa
寛敏 藤川
Hirohisa Tanaka
裕久 田中
Ichiro Takahashi
一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP02606893A priority Critical patent/JP3229054B2/en
Publication of JPH06210175A publication Critical patent/JPH06210175A/en
Application granted granted Critical
Publication of JP3229054B2 publication Critical patent/JP3229054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst having satisfactory purification activity even in the condition of a low temp. of exhaust gas and excellent in durability, as well. CONSTITUTION:The objective catalyst has palladium allowed to coexist with a mixture of a perovskite type multiple oxide with a heat resistant oxide so that palladium is present at a higher concn. on the perovskite type multiple oxide than that on the heat resistant oxide. When the catalyst is produced, an aq. palladium salt soln. of <=pH4 or >pH10 is carried on the above- perovskite type multiple oxide by impregnation or adsorption, the oxide is dried, calcined and dispersed in water together with the heat resistant oxide and the resulting slurry is dried and fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一酸化炭素(CO)、炭
化水素(HC)及び酸化窒素(NOx)の浄化能力に優
れた排気ガス浄化用触媒、特に自動車用ガソリンエンジ
ンなどにおいて、アイドリング時などの排ガス温度が低
い条件でも浄化活性を示す排ガス浄化用触媒と、その製
造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an exhaust gas purifying catalyst having an excellent purifying ability for carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx), particularly in a gasoline engine for automobiles, etc. The present invention relates to an exhaust gas purifying catalyst that exhibits purifying activity even under conditions where the exhaust gas temperature is low, and a method for producing the same.

【0002】[0002]

【従来の技術】排気ガス浄化用三元触媒としてはアルミ
ナ担体にPt、Rh、Pdなどの貴金属を担持した貴金
属触媒が実用化されて広く使用されている。また、希土
類金属、アルカリ土類金属及び遷移金属から構成される
ペロブスカイト型構造を有する複合酸化物は、CO、H
C及びNOxを浄化する安価な排気ガス浄化用三元触媒
として実用化が期待されている(特開昭59−8704
6号公報、特開昭60−82138号公報参照)。この
ペロブスカイト型複合酸化物はCO、HCの浄化能力は
優れているが、NOxの浄化能力がやや劣っており、自
動車排ガス用の三元触媒として実用に供するには十分で
ない。そこで、ペロブスカイト型複合酸化物触媒のNO
x浄化能力を高めるために、貴金属を共存させることも
提案されている(特開平1−168343号公報参
照)。
2. Description of the Related Art As a three-way catalyst for purifying exhaust gas, a noble metal catalyst in which a noble metal such as Pt, Rh, or Pd is supported on an alumina carrier has been put into practical use and widely used. Further, a complex oxide having a perovskite structure composed of a rare earth metal, an alkaline earth metal and a transition metal is CO, H
Practical use is expected as an inexpensive three-way catalyst for purifying C and NOx for exhaust gas (Japanese Patent Laid-Open No. 59-8704).
No. 6, JP-A-60-82138). Although this perovskite type composite oxide has excellent CO and HC purification ability, it is slightly inferior in NOx purification ability and is not sufficient for practical use as a three-way catalyst for automobile exhaust gas. Therefore, NO of the perovskite type complex oxide catalyst
It has also been proposed that a noble metal coexists in order to enhance the x purification capacity (see Japanese Patent Laid-Open No. 1-168343).

【0003】[0003]

【発明が解決しようとする課題】これらの触媒は、自動
車の走行時のような排ガス温度が高い条件では優れた浄
化活性を示すが、アイドリング時などの排ガス温度が低
い条件では十分な浄化活性を示さない。排ガス規制強化
にともなってそのような排ガス温度が低い条件でも十分
な浄化活性を示す触媒が望まれている。ペロブスカイト
型複合酸化物触媒の耐熱性を高めるために、耐熱性酸化
物を共存させることが考えられる。ペロブスカイト型複
合酸化物と耐熱性酸化物との混合物に貴金属としてパラ
ジウムを共存させようとした場合、酸化物の混合物にパ
ラジウム塩水溶液を含浸させた後、焼成することが考え
られる。ペロブスカイト型複合酸化物の比表面積は5〜
50m2/g、大きいものでも100m2/gであるのに
対し、耐熱性酸化物として例えばセリア系複合酸化物を
用いるとその比表面積は100〜250m2/gという
ように大きい。パラジウム塩水溶液を酸化物の混合物に
含浸させた場合、ほぼ比表面積に比例した吸着率でそれ
ぞれの酸化物の粉体にパラジウムが吸着される。つま
り、NOx浄化能力を高めるための貴金属はペロブスカ
イト型複合酸化物上よりも耐熱性酸化物上により高濃度
に吸着される。
These catalysts show excellent purifying activity under conditions where the exhaust gas temperature is high, such as when a vehicle is running, but exhibit sufficient purifying activity under conditions where the exhaust gas temperature is low, such as during idling. Not shown. With the tightening of exhaust gas regulations, there is a demand for a catalyst that exhibits sufficient purification activity even under such low exhaust gas temperature conditions. In order to improve the heat resistance of the perovskite type composite oxide catalyst, it is possible to coexist with a heat resistant oxide. When palladium is intended to coexist as a noble metal in a mixture of a perovskite type complex oxide and a heat resistant oxide, it may be considered that the mixture of oxides is impregnated with an aqueous solution of a palladium salt and then fired. The perovskite complex oxide has a specific surface area of 5 to
50 m 2 / g, whereas it is also 100 m 2 / g be large, the specific surface area is used as the heat-resistant oxides such as ceria composite oxide is large, such as 100 to 250 m 2 / g. When the mixture of oxides is impregnated with the aqueous solution of palladium salt, palladium is adsorbed on the powder of each oxide at an adsorption rate substantially proportional to the specific surface area. That is, the noble metal for enhancing the NOx purification capacity is adsorbed at a higher concentration on the heat-resistant oxide than on the perovskite-type composite oxide.

【0004】低温活性と耐久性の両方の特性を向上させ
るためには、パラジウムなどの貴金属はペロブスカイト
型複合酸化物上により高濃度に吸着されることが望まし
い。本発明は排ガス温度が低い条件でも十分な浄化活性
を示すとともに、耐久性にも優れた排ガス浄化用触媒
と、その製造方法を提供することを目的とするものであ
る。
In order to improve both properties at low temperature activity and durability, it is desirable that a noble metal such as palladium be adsorbed at a higher concentration on the perovskite type complex oxide. An object of the present invention is to provide an exhaust gas purifying catalyst that exhibits sufficient purifying activity even under conditions of low exhaust gas temperature and is excellent in durability, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の排ガス浄化用触
媒では、一般式Ln1-xxMO3(LnはCeを除く希
土類金属、Aはアルカリ土類金属又はCe、Mは遷移金
属で、いずれも1種又は2種以上、0<x<1)で示さ
れるペロブスカイト型複合酸化物と耐熱性酸化物との混
合物に貴金属が共存し、かつ前記貴金属は前記耐熱性酸
化物上よりも前記ペロブスカイト型複合酸化物上に高濃
度に存在している。好ましい態様では、ペロブスカイト
型複合酸化物は、貴金属を含まないペロブスカイト型複
合酸化物を核としてその周囲に貴金属を固溶したペロブ
スカイト型複合酸化物が形成された構造をしている。貴
金属が過剰に存在した場合、固溶しきれなかった貴金属
は、金属又は酸化物として微粒子状態で分散する。貴金
属はPd,Pt,Ru,Rh及びIrからなる群より選
ばれた1種又は2種以上の金属であり、特にPdは低温
浄化活性とNOx浄化活性を向上させるものであり好ま
しい。
In the exhaust gas purifying catalyst of the present invention, the general formula Ln 1-x A x MO 3 (Ln is a rare earth metal excluding Ce, A is an alkaline earth metal or Ce, and M is a transition metal. In each case, noble metal coexists in the mixture of the perovskite-type complex oxide represented by 0 <x <1) and the heat-resistant oxide, and the noble metal is more than the above heat-resistant oxide. Also exists in a high concentration on the perovskite complex oxide. In a preferred embodiment, the perovskite-type composite oxide has a structure in which a perovskite-type composite oxide having no precious metal as a core has a perovskite-type composite oxide formed around it as a solid solution. When the noble metal is present in excess, the noble metal which has not been dissolved completely is dispersed as a metal or an oxide in the form of fine particles. The noble metal is one or more metals selected from the group consisting of Pd, Pt, Ru, Rh, and Ir, and Pd is particularly preferable because it improves low-temperature purification activity and NOx purification activity.

【0006】耐熱性酸化物の種類は特に制限されるもの
ではない、例えば、CeO2,(CeZr)O2の他、
(CeZrY)O2,(CeZrLa)O2,(CeZr
Nd)O2など、一般式(CeZrLn)O2(LnはC
eを除く希土類金属)で表わされる複合酸化物が好まし
い。また、CeO2よりは(CeZr)O2の方が高温に
おける浄化活性を高める効果に優れ、更に(CeZrL
n)O2の方が高温における浄化活性を高める効果に優
れているので、より好ましい。また、例えば酸化第二セ
リウムを主体とし、それにAl,Si,Zr,Th及び
希土類金属元素よりなる群から選ばれた少なくとも1種
類の金属酸化物を含んだもの(特開平62−56322
号公報参照)でもよい。
The type of heat-resistant oxide is not particularly limited, and examples thereof include CeO 2 and (CeZr) O 2 .
(CeZrY) O 2 , (CeZrLa) O 2 , (CeZr
Nd) O 2 and other general formulas (CeZrLn) O 2 (Ln is C
Complex oxides represented by rare earth metals other than e) are preferred. Further, (CeZr) O 2 is superior to CeO 2 in the effect of enhancing the purification activity at high temperature, and (CeZrL)
n) O 2 is more preferable because it is more effective in enhancing the purifying activity at high temperatures. In addition, for example, cerium oxide as a main component and at least one metal oxide selected from the group consisting of Al, Si, Zr, Th, and rare earth metal elements (Japanese Patent Laid-Open No. 62-56322).
(See Japanese Patent Publication).

【0007】本発明の製造方法の一態様では、一般式L
1-xxMO3(LnはCeを除く希土類金属、AはS
rを除くアルカリ土類金属又はCe、Mは遷移金属で、
いずれも1種又は2種以上、0<x<1)で示されるペ
ロブスカイト型複合酸化物に、pHが4以下に調製され
た貴金属塩水溶液を含浸又は吸着により担持させ、乾燥
及び仮焼させた後、耐熱性酸化物とともに水に分散させ
てスラリーとした後、乾燥及び焼成する。pHを4以下
に調製して製造した場合には、ペロブスカイト型複合酸
化物は、ペロブスカイト型複合酸化物を核としてその周
りを貴金属を固溶したペロブスカイト型複合酸化物が取
り囲んだ酸化物となる。貴金属塩水溶液のpHを4以下
とする製造方法の場合は、水溶性貴金属塩としてはPd
Cl2、PtCl2、RuCl3・3H2Oなどの塩化物、
Pd(NO3)2、Ru(NO3)3、Rh(NO3)3などの硝酸
塩、Pd(NO2)2(NH3)2、Pt(NO2)2(NH3)2など
のジニトロジアミン塩など、水溶液が強酸性を示すもの
が好ましい。
In one embodiment of the production method of the present invention, the general formula L
n 1-x A x MO 3 (Ln is a rare earth metal except Ce, A is S
Alkaline earth metals other than r or Ce and M are transition metals,
In each case, one or more kinds of perovskite-type composite oxides represented by 0 <x <1) were impregnated or adsorbed with an aqueous solution of a noble metal salt having a pH of 4 or less, dried, and calcined. Then, it is dispersed in water together with the heat resistant oxide to form a slurry, which is then dried and fired. When prepared by adjusting the pH to 4 or less, the perovskite-type composite oxide is an oxide in which the perovskite-type composite oxide surrounds the perovskite-type composite oxide in which the noble metal is solid-soluted. In the case of the production method in which the pH of the precious metal salt aqueous solution is 4 or less, Pd is used as the water-soluble precious metal salt.
Chlorides such as Cl 2 , PtCl 2 , RuCl 3 .3H 2 O,
Pd (NO 3 ) 2 , Ru (NO 3 ) 3 , Rh (NO 3 ) 3 and other nitrates, Pd (NO 2 ) 2 (NH 3 ) 2 , Pt (NO 2 ) 2 (NH 3 ) 2 and other dinitro It is preferable that the aqueous solution exhibits strong acidity such as a diamine salt.

【0008】本発明の製造方法の他の態様では、一般式
Ln1-xxMO3(この場合、AはSrを含む)で示さ
れるペロブスカイト型複合酸化物に、pHが10より大
きくなるように調製された貴金属塩水溶液を含浸又は吸
着により担持させ、乾燥及び仮焼させた後、耐熱性酸化
物とともに水に分散させてスラリーとした後、乾燥及び
焼成する。貴金属塩水溶液のpHを10より大きくする
製造方法の場合は、テトラアミンパラジウムジクロライ
ドPd(NH3)4Cl2やテトラアミンパラジウム水酸塩
Pd(NH3)4(OH)2などの塩基性水溶液にアンモニア
水や酸を添加してpH>10になるように調製して用い
るか、PdCl2、PtCl2、RuCl3・3H2Oなど
の塩化物、Pd(NO3)2、Ru(NO3)3、Rh(NO3)3
などの硝酸塩、又はPd(NO2)2(NH3)2、Pt(N
2)2(NH3)2などのジニトロジアミン塩などの酸性水
溶液にアンモニア水を添加してpH>10になるように
調製して用いる。
In another embodiment of the production method of the present invention, the perovskite-type composite oxide represented by the general formula Ln 1-x A x MO 3 (where A contains Sr) has a pH of more than 10. The precious metal salt aqueous solution thus prepared is supported by impregnation or adsorption, dried and calcined, and then dispersed in water together with the heat resistant oxide to form a slurry, which is then dried and calcined. In the case of the production method in which the pH of the aqueous solution of a noble metal salt is made higher than 10, a basic aqueous solution such as tetraamine palladium dichloride Pd (NH 3 ) 4 Cl 2 or tetraamine palladium hydrochloride Pd (NH 3 ) 4 (OH) 2 is used. Ammonia water or an acid is added to the solution to prepare a pH> 10, or a chloride such as PdCl 2 , PtCl 2 , RuCl 3 .3H 2 O, Pd (NO 3 ) 2 or Ru (NO 3) is used. ) 3 , Rh (NO 3 ) 3
Nitrate such as Pd (NO 2 ) 2 (NH 3 ) 2 , Pt (N
Ammonia water is added to an acidic aqueous solution of a dinitrodiamine salt such as O 2 ) 2 (NH 3 ) 2 to prepare a pH of> 10.

【0009】[0009]

【発明の効果】本発明の触媒はアイドリング時などの排
ガス温度が100〜200℃程度の低い条件においても
HC,CO,NOxに対して優れた浄化活性を示す。ま
た、耐熱性酸化物を含んで900℃以上の高温でも使用
できるとともに、NOxの浄化に有効な貴金属が耐熱性
酸化物上よりもペロブスカイト型複合酸化物上に高濃度
に存在していることにより耐久性のある触媒となる。
The catalyst of the present invention exhibits excellent purifying activity against HC, CO, and NOx even under a low exhaust gas temperature of about 100 to 200 ° C. during idling. In addition, since it can be used at a high temperature of 900 ° C. or higher including a heat-resistant oxide, and a noble metal effective for purifying NOx is present in a higher concentration on the perovskite-type composite oxide than on the heat-resistant oxide. It becomes a durable catalyst.

【0010】[0010]

【実施例】【Example】

(実施例1)手順A : ペロブスカイト型複合酸化物結晶粉末の製
造方法 ペロブスカイト型複合酸化物(La0.8Ce0.2)(Co0.4
Fe0.6)O3粉末の調製方法を説明する。硝酸ランタン
103.9g、硝酸セリウム26.1g、硝酸コバルト3
4.9g、硝酸鉄72.7gを純水に溶解した水溶液0.
3リットルを用意した。次に、中和共沈剤として炭酸ナ
トリウム50gを溶解した水溶液0.5リットルを用意
した。中和共沈剤を先の水溶液に滴下し、共沈物を得
た。その共沈物を十分水洗し、濾過した後、真空乾燥し
た。これを600℃で3時間大気中で焼成後、粉砕し、
その後、800℃で3時間大気中で焼成を行ない、さら
に粉砕し、(La0.8Ce0.2)(Co0.4Fe0.6)O3の粉
末を作製した。
(Example 1) Step A:. Perovskite-type composite oxide crystalline powder manufacturing method perovskite-type composite oxide (.. La 0 8 Ce 0 2) (Co 0 4
Fe 0. 6) the O 3 powder preparation methods will be described. Lanthanum nitrate 103.9g, cerium nitrate 26.1g, cobalt nitrate 3
An aqueous solution prepared by dissolving 4.9 g and iron nitrate 72.7 g in pure water.
I prepared 3 liters. Next, 0.5 liter of an aqueous solution in which 50 g of sodium carbonate was dissolved was prepared as a neutralizing coprecipitant. The neutralizing coprecipitant was added dropwise to the above aqueous solution to obtain a coprecipitate. The coprecipitate was thoroughly washed with water, filtered, and dried under vacuum. This is baked at 600 ° C for 3 hours in the air and then crushed,
Thereafter, subjected to calcination for 3 hours in air at 800 ° C., it was further pulverized to prepare a (La 0. 8 Ce 0. 2) (Co 0. 4 Fe 0. 6) O 3 powder.

【0011】手順B : 耐熱性酸化物の製造 助触媒として用いる耐熱性酸化物は市販の高比表面積の
酸化セリウム粉末(CeO2比表面積170m2/g、純
度99.9%/TREO(全希土類酸化物))111.9
gを用意し、これにオキシ硝酸ジルコニウム(ZrO(N
3)2)水溶液(液比重1.51、液中にZrO2換算で2
5.0重量%含まれる)147.9g、及び硝酸イットリ
ウム(Y(NO3)3)水溶液(液比重1.62、液中にY2
3換算で21.7重量%含まれる)26.0gを加え、
よく撹拌して混合しながら110℃で10時間大気中で
乾燥した。その後、大気中で600℃で3時間焼成を行
ない、(Ce0.65Zr0.300.05)O2複合酸化物を約1
50g得た。
Procedure B : Production of heat-resistant oxide The heat-resistant oxide used as a co-catalyst is a commercially available cerium oxide powder having a high specific surface area (CeO 2 specific surface area 170 m 2 / g, purity 99.9% / TREO (all rare earths). Oxide)) 111.9
g, and zirconium oxynitrate (ZrO (N
O 3 ) 2 ) aqueous solution (liquid specific gravity 1.51, 2 in the liquid in terms of ZrO 2
5.0% by weight) 147.9 g, and yttrium nitrate (Y (NO 3 ) 3 ) aqueous solution (liquid specific gravity 1.62, Y 2 O in the liquid).
( 21.7% by weight in terms of 3 ) is added 26.0 g,
It was dried in the air at 110 ° C. for 10 hours while being well stirred and mixed. Thereafter, conducted for 3 hours at 600 ° C. in air, (Ce 0. 65 Zr 0 . 30 Y 0. 05) about 1 O 2 composite oxide
Obtained 50 g.

【0012】手順C : ペロブスカイト粉末へのPdの含有 Pd分で1.1重量部となるように硝酸パラジウム溶液
(Pd濃度4.4wt%)25重量部と純水50重量部
とを混合し、液のpHを1.8に調製した。手順Aで製
造した(La0.8Ce0.2)(Co0.4Fe0.6)O3ペロブス
カイト型複合酸化物粉末98.9重量部に純水20重量
部を加えて十分撹拌した後、pH1.8に調整した上記
のPd塩水溶液75重量部を含浸させて十分撹拌し、4
0℃で30分間保持した。その後、撹拌を続けながら1
20℃で12時間乾燥し、空気中で600℃で3時間焼
成した後、めのう乳鉢にて粉砕し、180μmのメッシ
ュを通過させた。ペロブスカイト粉末98.9重量部に
対して添加したPdは金属分で1.1重量部に相当す
る。
Procedure C : Containing Pd in Perovskite Powder 25 parts by weight of a palladium nitrate solution (Pd concentration 4.4% by weight) and 50 parts by weight of pure water were mixed so that the Pd content was 1.1 parts by weight, The pH of the liquid was adjusted to 1.8. Procedure prepared in A (La 0. 8 Ce 0 . 2) (Co 0. 4 Fe 0. 6) well were added and stirred deionized water 20 parts by weight of O 3 perovskite-type composite oxide powder 98.9 parts by weight After that, impregnate with 75 parts by weight of the above Pd salt aqueous solution adjusted to pH 1.8 and sufficiently stir it to
Hold at 0 ° C for 30 minutes. Then, continue stirring 1
After drying at 20 ° C. for 12 hours and baking in air at 600 ° C. for 3 hours, it was ground in an agate mortar and passed through a 180 μm mesh. Pd added to 98.9 parts by weight of the perovskite powder corresponds to 1.1 parts by weight in terms of metal content.

【0013】手順D : スラリーコート(担持) 手順Aで得たPd含有ペロブスカイト粉末を50重量
部、手順Bで製造した耐熱性酸化物粉末を50重量部、
セリアゾル(固形分10wt%)を50重量部(固形分
では5重量部)、及びジルコニアゾル(固形分30wt
%)を3.3重量部(固形分では1重量部)に、全固形
分が50wt%となるように純水を58.7重量部を加
え、ボールミルにて12時間粉砕しながら混合してスラ
リーを得た。そのスラリーをコーゼライトハニカムに流
入させた後、余剰のスラリーを空気流で吹き払い、均一
にコーティングした。スラリーコート後のハニカムを1
20℃で12時間乾燥し、空気中にて600℃で3時間
焼成してハニカム状サンプルを得た。
Procedure D : Slurry coating (support) 50 parts by weight of the Pd-containing perovskite powder obtained in Procedure A, 50 parts by weight of the heat-resistant oxide powder produced in Procedure B,
50 parts by weight of ceria sol (solid content 10 wt%) (5 parts by weight of solid content), and zirconia sol (solid content 30 wt%)
%) To 3.3 parts by weight (1 part by weight of solid content), and 58.7 parts by weight of pure water so that the total solid content is 50% by weight, and mixed while pulverizing for 12 hours in a ball mill. A slurry was obtained. After allowing the slurry to flow into a cordierite honeycomb, the excess slurry was blown off with an air stream to uniformly coat the slurry. 1 honeycomb after slurry coating
It was dried at 20 ° C. for 12 hours and fired in air at 600 ° C. for 3 hours to obtain a honeycomb sample.

【0014】手順E : Pdの再添加 さらに、手順Cで用いたものと同じ硝酸パラジウム溶液
(Pd濃度4.4wt%)12.5重量部を純水50重
量部と混合し、液のpHを1.8に調製した。この溶液
全量にハニカム状サンプルを浸漬し、40℃で2時間保
持してPdを吸着させた後、120℃で12時間乾燥さ
せた後、空気中にて600℃で3時間焼成して実施例1
の触媒試料を得た。
Procedure E : Re-addition of Pd Furthermore, 12.5 parts by weight of the same palladium nitrate solution (Pd concentration 4.4 wt%) used in Procedure C was mixed with 50 parts by weight of pure water to adjust the pH of the solution. Prepared to 1.8. The honeycomb-shaped sample was immersed in the whole amount of this solution, kept at 40 ° C. for 2 hours to adsorb Pd, dried at 120 ° C. for 12 hours, and then baked in air at 600 ° C. for 3 hours. 1
A catalyst sample of was obtained.

【0015】この触媒試料のEPMA(電子線マイクロ
アナライザー)による分析結果を図1の写真に示す。写
真で、画像は走査型電子顕微鏡(SEM)による像であ
り、黒い大きな粒子はペロブスカイト型複合酸化物で、
大きさは約10μmである。白い小さな粒子は耐熱性酸
化物粒子で、大きさは約3μmである。中央を横方向に
横切るラインは線分析を行なった位置を示す基準ライン
であり、波形は分析線上でのPd濃度を表わしている。
この写真の結果によれば、ペロブスカイト型複合酸化物
粒子の外周部のPd濃度が他に比べて高くなっている。
The analysis result of this catalyst sample by EPMA (electron beam microanalyzer) is shown in the photograph of FIG. In the photograph, the image is an image by scanning electron microscope (SEM), black large particles are perovskite type complex oxides,
The size is about 10 μm. The white small particles are refractory oxide particles and have a size of about 3 μm. A line that traverses the center in the horizontal direction is a reference line indicating the position where line analysis was performed, and the waveform represents the Pd concentration on the analysis line.
According to the result of this photograph, the Pd concentration in the outer peripheral portion of the perovskite type complex oxide particle is higher than that of the other.

【0016】(実施例2)実施例1の手順Eで用いた硝
酸パラジウム溶液をテトラアンミンパラジウム硝酸塩
(Pd濃度4.6wt%)に変え、アンモニア水50重
量部を加えてpHを13.0とした以外は、実施例1と
同様に操作により実施例2の触媒試料を得た。
Example 2 The palladium nitrate solution used in the procedure E of Example 1 was changed to tetraammine palladium nitrate (Pd concentration 4.6 wt%), and 50 parts by weight of aqueous ammonia was added to adjust the pH to 13.0. A catalyst sample of Example 2 was obtained in the same manner as in Example 1 except for the above.

【0017】(実施例3)実施例1の手順Cで用いた硝
酸パラジウム溶液をテトラアンミンパラジウム硝酸塩
(Pd濃度4.6wt%)に変えた他は、実施例1の手
順A〜Cと同様の操作にて、ペロブスカイト型複合酸化
物粉末98.9重量部に対してPdを金属分で1.1重
量部に相当する量を添加した粉末を得た。その後、実施
例1と同様の操作により、実施例3の触媒試料を得た。
(Example 3) Operations similar to those of steps A to C of example 1 except that the palladium nitrate solution used in step C of example 1 was changed to tetraamminepalladium nitrate (Pd concentration 4.6 wt%). Thus, a powder was obtained in which Pd was added in an amount corresponding to 1.1 parts by weight in terms of metal content with respect to 98.9 parts by weight of the perovskite type complex oxide powder. Then, by the same operation as in Example 1, a catalyst sample of Example 3 was obtained.

【0018】(実施例4)実施例1の手順Cで用いた硝
酸パラジウム溶液及び手順Eで用いた硝酸パラジウム溶
液を、ともにテトラアンミンパラジウム硝酸塩(Pd濃
度4.6wt%)に変え、他は実施例1と同様にして実
施例4の触媒試料を得た。
Example 4 The palladium nitrate solution used in the procedure C of Example 1 and the palladium nitrate solution used in the procedure E were both changed to tetraammine palladium nitrate (Pd concentration 4.6 wt%), and the other examples were used. A catalyst sample of Example 4 was obtained in the same manner as in 1.

【0019】(実施例5)実施例1の手順Cにおいて、
硝酸パラジウム溶液をPd分で2.2重量部となるよう
に50重量部を計量し、手順Eを省いた以外は実施例1
と同様の操作により、実施例5の触媒試料を得た。
Example 5 In the procedure C of Example 1,
Example 1 except that 50 parts by weight of the palladium nitrate solution was weighed so that the Pd content was 2.2 parts by weight and the procedure E was omitted.
A catalyst sample of Example 5 was obtained by the same operation as above.

【0020】(実施例6)実施例1の手順Cにおいて、
硝酸パラジウム溶液をテトラアンミンパラジウム硝酸塩
(Pd濃度4.6wt%)に代え、Pd分で2.2重量
部となるように47.8重量部を計量し、アンモニア水
50重量部を加えてpH=13.0とし、手順Eを省い
た以外は、実施例1と同様の操作により実施例6の触媒
試料を得た。
Example 6 In the procedure C of Example 1,
The palladium nitrate solution was replaced with tetraammine palladium nitrate (Pd concentration 4.6 wt%), 47.8 parts by weight was weighed so that the Pd content was 2.2 parts by weight, and 50 parts by weight of aqueous ammonia was added to obtain pH = 13. A catalyst sample of Example 6 was obtained by the same procedure as in Example 1 except that the procedure was omitted and the procedure E was omitted.

【0021】(実施例7)実施例4で用いたペロブスカ
イト型複合酸化物(La0.8Ce0.2)(Co0.4Fe0.6)O
3粉末を(La0.8Sr0.2)(Co0.4Fe0.6)O3粉末に代
え、他は実施例4と同様の操作により実施例7の触媒試
料を得た。
[0021] (Example 7) perovskite-type composite oxide used in Example 4 (La 0. 8 Ce 0 . 2) (Co 0. 4 Fe 0. 6) O
3 powder (La 0. 8 Sr 0. 2) (Co 0. 4 Fe 0. 6) instead of the O 3 powder, others to obtain a catalyst sample of Example 7 in the same manner as in Example 4.

【0022】(実施例8)実施例6で用いたペロブスカ
イト型複合酸化物(La0.8Ce0.2)(Co0.4Fe0.6)O
3粉末を(La0.8Sr0.2)(Co0.4Fe0.6)O3粉末に代
え、他は実施例6と同様の操作により実施例8の触媒試
料を得た。
[0022] (Example 8) perovskite-type composite oxide used in Example 6 (La 0. 8 Ce 0 . 2) (Co 0. 4 Fe 0. 6) O
3 powder (La 0. 8 Sr 0. 2) (Co 0. 4 Fe 0. 6) instead of the O 3 powder, others to obtain a catalyst sample of Example 8 in the same manner as in Example 6.

【0023】(実施例9)実施例5で用いたペロブスカ
イト型複合酸化物(La0.8Ce0.2)(Co0.4Fe0.6)O
3粉末をLa0.8Ce0.2CoO3粉末に代え、他は実施例
5と同様の操作により実施例9の触媒試料を得た。
[0023] (Example 9) perovskite-type composite oxide used in Example 5 (La 0. 8 Ce 0 . 2) (Co 0. 4 Fe 0. 6) O
3 powder instead of La 0. 8 Ce 0. 2 CoO 3 powder, others to obtain a catalyst sample of Example 9 in the same manner as in Example 5.

【0024】(比較例)既に実用化されている自動車用
触媒であるPt−Rh/Al23触媒を比較例の触媒試
料とした。Pt−Rh含有量は0.43重量部であっ
た。実施例及び比較例の組成を表1に示し、それぞれの
触媒活性の測定結果を表2に示す。
(Comparative Example) A Pt-Rh / Al 2 O 3 catalyst, which is a catalyst for automobiles that has already been put into practical use, was used as a catalyst sample of a comparative example. The Pt-Rh content was 0.43 parts by weight. The compositions of Examples and Comparative Examples are shown in Table 1, and the measurement results of the respective catalytic activities are shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】触媒活性の測定と耐久試験は以下のように
行なった。触媒活性の測定 ハニカム状(セル数400/inch2)コージェライト担
体(直径30mm、長さ50mm)に担持されたそれぞ
れの試料を下記のモデルガスにて活性を測定した。ガス
温度は触媒への入口ガス温度で示し、室温から昇温し、
NO、CO、HC(C36+C38)のそれぞれが初期
濃度の50%に低下した温度を50%浄化温度とする。
また、リッチガスとリーンガスはそれぞれ1秒毎に切り
換えた。触媒を通るガス流の空間速度(SV)は30,
000/時間とした。
The measurement of the catalytic activity and the durability test were conducted as follows. Measurement of catalytic activity Each sample supported on a honeycomb-shaped (cell number 400 / inch 2 ) cordierite carrier (diameter 30 mm, length 50 mm) was measured for activity with the following model gas. The gas temperature is indicated by the gas temperature at the entrance to the catalyst, and the temperature is raised from room temperature,
The temperature at which each of NO, CO, and HC (C 3 H 6 + C 3 H 8 ) has dropped to 50% of the initial concentration is defined as the 50% purification temperature.
Further, the rich gas and the lean gas were switched every one second. The space velocity (SV) of the gas flow through the catalyst is 30,
000 / hour.

【0028】 リッチガス リーンガス CO 2.6 % 0.7 % HC(C1換算濃度) 0.19% 0.19% H2 0.87% 0.23% CO2 8 % 8 % NO 0.17% 0.17% O2 0.65% 1.8 % H2O 10 % 10 % N2 残部 残部 Rich gas Lean gas CO 2.6% 0.7% HC (concentration of C 1 ) 0.19% 0.19% H 2 0.87% 0.23% CO 2 8% 8% NO 0.17% 0.17% O 2 0.65% 1.8% H 2 O 10% 10% N 2 balance balance

【0029】耐久試験 上記のリッチガスとリーンガスを5秒毎に切り換えて9
00℃で30分、750℃で30分のサイクルを15回
繰り返して耐久試験を行なった。耐久試験後にも前記の
方法で触媒活性を測定した。表2の結果から明らかなよ
うに、各実施例では初期においても耐久後においても5
0%浄化温度が低く、比較例では高い。
Durability test 9 times by switching the rich gas and the lean gas every 5 seconds.
A cycle of 30 minutes at 00 ° C. and 30 minutes at 750 ° C. was repeated 15 times to perform a durability test. After the durability test, the catalyst activity was measured by the above method. As is clear from the results in Table 2, in each of the examples, 5 was obtained at the initial stage and after the endurance.
The 0% purification temperature is low and is high in the comparative example.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の触媒の金属組成とパラジウム分布を示
す顕微鏡写真である。
FIG. 1 is a micrograph showing the metal composition and palladium distribution of a catalyst of an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 一郎 滋賀県蒲生郡竜王町大字山之上3000番地 ダイハツ工業株式会社滋賀テクニカルセン ター内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ichiro Takahashi 3000 Yamanoue, Ryuo Town, Gamo-gun, Shiga Prefecture Daihatsu Industry Co., Ltd. Shiga Technical Center

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属、Aはアルカリ土類金属又はCe、Mは
遷移金属で、いずれも1種又は2種以上、0<x<1)
で示されるペロブスカイト型複合酸化物と耐熱性酸化物
との混合物に貴金属が共存し、かつ前記貴金属は前記耐
熱性酸化物上よりも前記ペロブスカイト型複合酸化物上
に高濃度に存在していることを特徴とする排ガス浄化用
触媒。
1. A compound represented by the general formula Ln 1-x A x MO 3 (Ln is a rare earth metal other than Ce, A is an alkaline earth metal or Ce, and M is a transition metal. x <1)
A noble metal coexists in a mixture of a perovskite type complex oxide and a heat resistant oxide, and the noble metal is present in a higher concentration on the perovskite type complex oxide than on the heat resistant oxide. An exhaust gas purifying catalyst characterized by:
【請求項2】 前記ペロブスカイト型複合酸化物は貴金
属を含まないペロブスカイト型複合酸化物を核としてそ
の周囲に貴金属を固溶したペロブスカイト型複合酸化物
が形成された構造をしている請求項1に記載の排ガス浄
化用触媒。
2. The perovskite-type composite oxide has a structure in which a perovskite-type composite oxide containing noble metal is formed around a core of the perovskite-type composite oxide containing no precious metal as a nucleus. Exhaust gas purifying catalyst described.
【請求項3】 貴金属又は貴金属の酸化物が微粒子状態
で分散している請求項1又は2に記載の排ガス浄化用触
媒。
3. The exhaust gas-purifying catalyst according to claim 1, wherein the noble metal or the oxide of the noble metal is dispersed in a fine particle state.
【請求項4】 貴金属はPd,Pt,Ru,Rh及びI
rからなる群より選ばれた1種又は2種以上の金属であ
る請求項1,2又は3に記載の排ガス浄化用触媒。
4. The noble metal is Pd, Pt, Ru, Rh and I.
The exhaust gas-purifying catalyst according to claim 1, which is one or more metals selected from the group consisting of r.
【請求項5】 貴金属はPdである請求項4に記載の排
ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 4, wherein the noble metal is Pd.
【請求項6】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属、AはSrを除くアルカリ土類金属又は
Ce、Mは遷移金属で、いずれも1種又は2種以上、0
<x<1)で示されるペロブスカイト型複合酸化物に、
pHが4以下に調製された貴金属塩水溶液を含浸又は吸
着により担持させ、乾燥及び仮焼させた後、耐熱性酸化
物とともに水に分散させてスラリーとした後、乾燥及び
焼成することを特徴とする排ガス浄化用触媒の製造方
法。
6. A compound represented by the general formula Ln 1-x A x MO 3 (Ln is a rare earth metal except Ce, A is an alkaline earth metal except Sr or Ce and M are transition metals, and each is one or more kinds. , 0
In the perovskite type complex oxide represented by <x <1),
A noble metal salt aqueous solution having a pH adjusted to 4 or less is carried by impregnation or adsorption, dried and calcined, and then dispersed in water together with a heat resistant oxide to form a slurry, which is then dried and calcined. Exhaust gas purification catalyst manufacturing method.
【請求項7】 一般式Ln1-xxMO3(LnはCeを
除く希土類金属、Aはアルカリ土類金属又はCe、Mは
遷移金属で、いずれも1種又は2種以上、0<x<1)
で示されるペロブスカイト型複合酸化物に、pHが10
より大きくなるように調製された貴金属塩水溶液を含浸
又は吸着により担持させ、乾燥及び仮焼させた後、耐熱
性酸化物とともに水に分散させてスラリーとした後、乾
燥及び焼成することを特徴とする排ガス浄化用触媒の製
造方法。
7. A compound represented by the general formula Ln 1-x A x MO 3 (Ln is a rare earth metal except Ce, A is an alkaline earth metal or Ce, and M is a transition metal. x <1)
The perovskite-type composite oxide represented by
It is characterized in that a precious metal salt aqueous solution prepared to be larger is supported by impregnation or adsorption, dried and calcined, and then dispersed in water together with a heat-resistant oxide to form a slurry, which is then dried and calcined. Exhaust gas purification catalyst manufacturing method.
JP02606893A 1993-01-20 1993-01-20 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP3229054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02606893A JP3229054B2 (en) 1993-01-20 1993-01-20 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02606893A JP3229054B2 (en) 1993-01-20 1993-01-20 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06210175A true JPH06210175A (en) 1994-08-02
JP3229054B2 JP3229054B2 (en) 2001-11-12

Family

ID=12183368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02606893A Expired - Fee Related JP3229054B2 (en) 1993-01-20 1993-01-20 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3229054B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
EP1027926A1 (en) * 1997-08-04 2000-08-16 Teijin Limited Catalyst and process for the preparation of aromatic carbonates
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
US8618231B2 (en) 2008-10-21 2013-12-31 Sun Chemical B.V. Acrylated epoxy-amine oligomers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695580A3 (en) * 1994-08-03 1997-07-09 Toyota Motor Co Ltd Process for producing exhaust-gas-purifying catalyst
US5866500A (en) * 1994-08-03 1999-02-02 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gas-purifying catalyst
EP1027926A1 (en) * 1997-08-04 2000-08-16 Teijin Limited Catalyst and process for the preparation of aromatic carbonates
EP1027926A4 (en) * 1997-08-04 2002-06-12 Teijin Ltd Catalyst and process for the preparation of aromatic carbonates
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
US8618231B2 (en) 2008-10-21 2013-12-31 Sun Chemical B.V. Acrylated epoxy-amine oligomers

Also Published As

Publication number Publication date
JP3229054B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP4959129B2 (en) Exhaust gas purification catalyst
EP0525677A1 (en) Exhaust gas purifying catalyst and method of preparing the same
WO1990014888A1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JP4715556B2 (en) Exhaust gas purification catalyst and method for producing the same
WO1998045027A1 (en) Catalyst composition containing oxides of cerium, zirconium and neodymium
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JPH10235192A (en) Catalyst for cleaning exhaust gas
JP2002535135A (en) Catalyst composition containing oxygen storage component
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP3297825B2 (en) Exhaust gas purification catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JPH0547263B2 (en)
JPH0780311A (en) Catalyst for purification of exhaust gas
EP0963781B1 (en) Catalyst for purifying exhaust gas and process for producing the same
JP3406001B2 (en) Exhaust gas purification catalyst
JP3229054B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP7428681B2 (en) Exhaust gas purification catalyst
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH11217220A (en) Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0578378B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees