JPH0620679A - Battery electrode - Google Patents
Battery electrodeInfo
- Publication number
- JPH0620679A JPH0620679A JP4202928A JP20292892A JPH0620679A JP H0620679 A JPH0620679 A JP H0620679A JP 4202928 A JP4202928 A JP 4202928A JP 20292892 A JP20292892 A JP 20292892A JP H0620679 A JPH0620679 A JP H0620679A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- battery
- pas
- particle size
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池用電極に係り、更
に詳細には半導体の性能を有する不溶不融性物質とリチ
ウム酸化コバルトとの複合物を活物質とする電池用電極
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery electrode, and more particularly to a battery electrode using as an active material a composite of an insoluble and infusible substance having semiconductor properties and lithium cobalt oxide.
【0002】[0002]
【従来の技術】近年、家電製品及び電子機器のポータブ
ル化,コードスレ化が急速に進展している。これに伴
い、小型軽量で高性能な電池が電源として求められる様
になった。現在、上記機器の電源としては乾電池等の所
謂一次電池とNi−Cd電池や鉛電池等の二次電池が使
用されている。しかし、最近では寿命が短く交換の必要
がある一次電池に対して繰り返し充電が可能な二次電池
が多用されるようになった。就中、小型機器用電源とし
て、Ni−Cd電池が現在主流になっているが高容量化
といったニーズに対し、その性能改善も限界に近付いて
いる。加えて、ここ数年来地球環境問題についての議論
が盛んになっており、活物質であるCdの有害性に対す
る世論が高まっている。そこでNi−Cd電池以上の性
能を持ち、かつ信頼性,安全性を持った二次電池の開発
に対する期待が大きい。2. Description of the Related Art In recent years, portable appliances and electronic appliances have been rapidly made into portable cords and cords. Along with this, compact and lightweight batteries with high performance have been demanded as power sources. At present, so-called primary batteries such as dry batteries and secondary batteries such as Ni-Cd batteries and lead batteries are used as power sources for the above devices. However, recently, secondary batteries, which have a short life and need to be replaced, and which can be repeatedly charged, have been widely used. Above all, Ni-Cd batteries are currently the mainstream as a power source for small devices, but in response to the needs for higher capacity, the improvement in performance is approaching the limit. In addition, discussions on global environmental issues have been active in the last few years, and public opinion about the harmfulness of Cd, which is an active material, is increasing. Therefore, there are great expectations for the development of a secondary battery that has higher performance than Ni-Cd batteries and that is reliable and safe.
【0003】本出願人は先に有機半導体の一種であるポ
リアセン系骨格構造を含有する不溶不融性基体に電子供
与性物質または電子受容性物質をドーピングしたものを
電極活物質として用いる二次電池を提案している(特開
昭60−170163号公報)。この電池は高性能で薄
形化,軽量化の可能性も有しており、電極活物質の酸化
安定性も高く、さらにその成形も容易であるなど将来有
望な二次電池である。更に、本出願人は、上記ポリアセ
ン系有機半導体と金属酸化物の複合物を活物質として用
いる二次電池を提案している(特開昭63−31475
9号公報)。この電池は上記ポリアセン系有機半導体を
用いた電池の特徴である急速充電性を失うこと無く大き
な容量を有するが、しかし容量は未だ満足のいくものと
はいえない。The present applicant has previously used a secondary battery in which an insoluble and infusible substrate containing a polyacene-based skeleton, which is one of organic semiconductors, is doped with an electron donating substance or an electron accepting substance as an electrode active material. Has been proposed (Japanese Patent Laid-Open No. 60-170163). This battery is a promising secondary battery with high performance, possibility of thinning and weight saving, high oxidation stability of electrode active material, and easy molding. Further, the present applicant has proposed a secondary battery using a composite of the above polyacene-based organic semiconductor and a metal oxide as an active material (Japanese Patent Laid-Open No. 63-31475).
No. 9). This battery has a large capacity without losing the rapid charging property which is a feature of the battery using the polyacene-based organic semiconductor, but the capacity is not yet satisfactory.
【0004】[0004]
【発明が解決しようとする課題】本発明者らは、上述の
問題に鑑み鋭意研究を進め種々の方法で電極を作成した
結果、リチウム酸化コバルト(III)の平均粒径および電
極の細孔体積を特定の範囲に制御すると、この電極は単
位体積当たりの容量が著しく上昇することを見出し、本
発明を完成したものであって、その目的とするところは
容量、特に単位体積当たりの容量が大きい電池用電極を
提供するにある。DISCLOSURE OF INVENTION Problems to be Solved by the Invention The inventors of the present invention have made extensive studies in view of the above problems, and have produced electrodes by various methods. As a result, the average particle size of lithium cobalt oxide (III) and the pore volume of electrodes are It has been found that the capacity per unit volume of this electrode remarkably increases when the electrode is controlled to a specific range, and the object of the present invention is to achieve a large capacity, particularly a large capacity per unit volume. To provide an electrode for a battery.
【0005】[0005]
【課題を解決するための手段】上述の目的は、(a)炭
素,水素及び酸素からなる芳香族縮合ポリマ−の熱処理
物であって、水素原子/炭素原子の原子数比が0.05
〜0.5であるポリアセン系骨格構造を有し、かつBE
T法による比表面積が600m2 /g以上である不溶不
融性基体と、(b)リチウム酸化コバルトとの複合物を
活物質とする電池用電極であって、(1)該リチウム酸
化コバルトの平均粒径が1μm以下であり、かつ(2)
該電極における01.μm以下の細孔直径を有する細孔
体積が全細孔体積に対して70%以上を占めることを特
徴とする電池用電極により達成される。The above-mentioned object is (a) a heat-treated product of an aromatic condensed polymer composed of carbon, hydrogen and oxygen, wherein the atomic ratio of hydrogen atoms / carbon atoms is 0.05.
BE having a polyacene-based skeleton structure of 0.5 to 0.5
A battery electrode comprising, as an active material, a composite of an insoluble infusible substrate having a specific surface area of 600 m 2 / g or more as measured by the T method, and (b) lithium cobalt oxide, which comprises (1) The average particle size is 1 μm or less, and (2)
01. This is achieved by an electrode for a battery, characterized in that the pore volume having a pore diameter of μm or less occupies 70% or more of the total pore volume.
【0006】本発明で使用する前記のポリアセン系骨格
構造を有する不溶不融性基体(以下で、PASと称する
ことがある)は、本願出願人による特開昭60−152
554号公報、特開昭60−170163号公報他に記
載されているものである。ここで芳香族系縮合ポリマー
とは、フェノール性水酸基を有する芳香族炭化水素化合
物とアルデヒド類との縮合物である。芳香族炭化水素化
合物としては、例えばフェノール,クレゾール,キシレ
ノールの如きいわゆるフェノール類が好適であるが、こ
れらに限られない。例えば次式(化1):The insoluble infusible substrate (hereinafter sometimes referred to as PAS) having the polyacene skeleton structure used in the present invention is disclosed in JP-A-60-152 by the applicant of the present invention.
No. 554, JP-A-60-170163, and the like. Here, the aromatic condensation polymer is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. Suitable aromatic hydrocarbon compounds include, but are not limited to, so-called phenols such as phenol, cresol and xylenol. For example, the following formula (Formula 1):
【化1】 (ここで、x及びyは夫々独立に0.1又は2である)
で示されるメチレンビスフェノール類であることがで
き、あるいはヒドロキシビフェニル類,ヒドロキシナフ
タレン類であることもできる。これらのうち、実用的に
はフェノール類、特にフェノールが好適である。[Chemical 1] (Where x and y are independently 0.1 or 2)
Can be methylene bisphenols, or hydroxybiphenyls, hydroxynaphthalenes. Of these, phenols, particularly phenol, are suitable for practical use.
【0007】本発明における芳香族系縮合ポリマーとし
ては、上記のフェノール性水酸基を有する芳香族炭化水
素化合物の1部をフェノール性水酸基を有さない芳香族
炭化水素化合物例えばキシレン,トルエン,アニリン等
で置換した変性芳香族系ポリマー、例えばフェノールと
キシレンとホルムアルデヒドとの縮合物である変性芳香
族系ポリマーを用いることもでき、またメラミン,尿素
で置換した変性芳香族系ポリマーを用いることもでき
る。さらにフラン樹脂も好適である。アルデヒドとして
はホルムアルデヒド,アセトアルデヒド,フルフラール
等を使用することができ、ホルムアルデヒドが好適であ
る。フェノール・アルデヒド縮合物としては、ノボラッ
ク型またはレゾール型あるいはそれらの複合物のいずれ
であってもよい。ベルパールR(商標:鐘紡株式会社
製)として市販されている球状フェノール系樹脂(球径
100μm以下程度)を用いることもできる。本発明に
おけるPASは、上記のごとき芳香族系化合物の熱処理
物であり、例えば次のようにして製造することができ
る。As the aromatic condensation polymer in the present invention, a part of the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group is an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline and the like. It is also possible to use a substituted modified aromatic polymer such as a modified aromatic polymer which is a condensation product of phenol, xylene and formaldehyde, or a modified aromatic polymer substituted with melamine or urea. Furan resins are also suitable. Formaldehyde, acetaldehyde, furfural and the like can be used as the aldehyde, and formaldehyde is preferable. The phenol / aldehyde condensate may be a novolac type, a resol type or a complex thereof. A spherical phenolic resin (sphere diameter of about 100 μm or less) commercially available as Bellpearl R (trademark: manufactured by Kanebo Co., Ltd.) can also be used. The PAS in the present invention is a heat-treated product of the aromatic compound as described above, and can be produced, for example, as follows.
【0008】前記した芳香族系縮合ポリマーに塩化亜
鉛,リン酸ナトリウム,水酸化ナトリウム,水酸化カリ
ウムあるいは硫化カリウム等の無機物を混入する。混入
方法としては、芳香族系縮合ポリマーをメタノール,ア
セトンあるいは水等の溶媒に溶解させた後、上記した無
機物を添加し、十分に混合すれば良い。また、芳香族系
縮合ポリマーがノボラックのように溶融性のものであれ
ば加熱状態下で混合しても良い。芳香族系縮合ポリマー
と前記した無機物の混合比は、混ぜ合わせるポリマーと
無機物の種類および形状によって異なるが、重量比で1
0/1〜1/7が好ましい。次に、上記混合物をフィル
ム状,板状,繊維状,布状,粒状またはそれらの混合の
形に硬化する。かくして得られた硬化体は、次いで非酸
性雰囲気中で350〜800℃、好ましくは350〜7
00℃、特に好ましくは400〜600℃の温度まで加
熱される。芳香族系縮合ポリマーのかかる熱処理が行わ
れる非酸化性雰囲気とは、例えば窒素,アルゴン,ヘリ
ウム,ネオン,二酸化炭素雰囲気、あるいは真空であ
り、窒素が好ましく用いられる。かかる非酸化性雰囲気
は静止していても流動していてもさしつかえない。得ら
れた熱処理体を水あるいは希塩酸等によって充分に洗浄
することによって、熱処理体中に含まれる無機塩を除去
することができ、その後これを乾燥すると比表面積の大
きなPASを得ることができる。Inorganic substances such as zinc chloride, sodium phosphate, sodium hydroxide, potassium hydroxide or potassium sulfide are mixed in the aromatic condensation polymer. As a mixing method, the aromatic condensation polymer may be dissolved in a solvent such as methanol, acetone, or water, and then the above-mentioned inorganic substance may be added and sufficiently mixed. Further, if the aromatic condensation polymer is a meltable one such as novolac, it may be mixed under heating. The mixing ratio of the aromatic condensation polymer and the above-mentioned inorganic substance varies depending on the type and shape of the polymer and the inorganic substance to be mixed, but the weight ratio is 1
0/1 to 1/7 is preferable. Next, the mixture is cured into a film, plate, fiber, cloth, granule or a mixture thereof. The cured product thus obtained is then 350 to 800 ° C., preferably 350 to 7 in a non-acidic atmosphere.
It is heated to a temperature of 00 ° C, particularly preferably 400-600 ° C. The non-oxidizing atmosphere in which the heat treatment of the aromatic condensation polymer is performed is, for example, nitrogen, argon, helium, neon, carbon dioxide atmosphere, or vacuum, and nitrogen is preferably used. The non-oxidizing atmosphere may be stationary or flowing. By thoroughly washing the obtained heat-treated body with water, dilute hydrochloric acid or the like, the inorganic salt contained in the heat-treated body can be removed, and then, by drying this, PAS having a large specific surface area can be obtained.
【0009】本発明で使用するこのようなPASは、水
素原子/炭素原子の原子数比(以下H/C比という)が
0.05〜0.5、好ましくは0.1〜0.35のポリ
アセン系骨格構造を有している。X線回析(CuKα)
によれば、メイン・ピークの位置は2θで表して20.
5〜23.5°の間に存在し、またこのメイン・ピーク
の他に41〜46°の間にブロードな他のピークが存在
する。すなわち上記PASは、ポリアセン系のベンゼン
の多環構造がポリアセン系分子間に均一かつ適度に発達
したものであると理解される。H/C比が0.5を超え
る場合には、PASとリチウム酸化コバルトとの複合物
を電極として用いた二次電池の充放電の電荷効率が悪く
なる。一方、この値が0.05未満の場合には、電池の
容量が低下してしまう。本発明で使用するPASのBE
T法による比表面積値は600m2 /g以上である。6
00m2 /g未満の場合、本発明の電池用電極を用いた
電池において、充電電圧を高くする必要が生じるためエ
ネルギー効率が低下し、また電解液の劣化を招く。Such a PAS used in the present invention has a hydrogen atom / carbon atom atomic ratio (hereinafter referred to as H / C ratio) of 0.05 to 0.5, preferably 0.1 to 0.35. It has a polyacene skeleton structure. X-ray diffraction (CuKα)
According to, the position of the main peak is 20.
It exists between 5 and 23.5 °, and in addition to this main peak, there is another broad peak between 41 and 46 °. That is, it is understood that the PAS is a polyacene-based benzene polycyclic structure uniformly and moderately developed among polyacene-based molecules. If the H / C ratio exceeds 0.5, the charge / discharge charge efficiency of the secondary battery using the composite of PAS and lithium cobalt oxide as an electrode becomes poor. On the other hand, if this value is less than 0.05, the battery capacity will decrease. BE of PAS used in the present invention
The specific surface area value by the T method is 600 m 2 / g or more. 6
If it is less than 00 m 2 / g, it is necessary to increase the charging voltage in the battery using the battery electrode of the present invention, so that the energy efficiency is lowered and the electrolytic solution is deteriorated.
【0010】本発明においては、PASは上記の様に6
00m2 /g以上という高い比表面積を有するのでその
粒径にあまり関係なく活物質として十分な性能、すなわ
ち用いるPASの有する容量を十分引き出すことができ
る。しかしながらPASの粒径が大きすぎると、PAS
マトリックス中、つまりPAS粒子間に、二次凝集しや
すいリチウム酸化コバルトを分散させにくくなるので、
最終的に1μm以下の粒径であることが望ましい。In the present invention, the PAS is 6 as described above.
Since it has a high specific surface area of 00 m 2 / g or more, sufficient performance as an active material, that is, the capacity of PAS to be used can be sufficiently derived regardless of the particle size. However, if the PAS particle size is too large, the PAS
Since it becomes difficult to disperse lithium cobalt oxide, which is likely to be secondary aggregated, in the matrix, that is, between PAS particles,
Finally, it is desirable that the particle size is 1 μm or less.
【0011】本発明の電極においては上記のLiCoO
2 の平均粒径は、最終的に、すなわち電極になったとき
に1μm以下であることが必要である。これは、先に述
べた表面積の大きいPASが粒径に関係なくその持ち得
る容量を十分に引き出し得るのに対してLiCoO2 の
場合、粒径が大きすぎるとその持ち得る容量を十分引き
出すことが難しくなるためである。すなわち、粒径が1
μmより大きいLiCoO2 を用いた場合、後に述べる
電極中の細孔分布条件を満たしていたとしても、その容
量は十分なものとならない。In the electrode of the present invention, the above-mentioned LiCoO 2 is used.
The average particle size of 2 needs to be 1 μm or less finally, that is, when it becomes an electrode. This is because PAS having a large surface area as described above can sufficiently bring out its capacity regardless of the particle size, whereas LiCoO 2 can sufficiently bring out its capacity if the particle size is too large. This is because it will be difficult. That is, the particle size is 1
When LiCoO 2 larger than μm is used, the capacity is not sufficient even if the pore distribution condition in the electrode described later is satisfied.
【0012】本発明の電極において、PAS/LiCo
O2 の比率はこれらを含む電極の用途によって変わり得
るが90/10〜10/90(重量比)、特に70/3
0〜30/70であることが好ましい。特にLiCoO
2 が増え過ぎると複合物の特長である急速充電性が失わ
れる傾向がある。PASとLiCoO2 の複合物を活物
質とする本発明の電池用電極は例えば次のようにして製
造することができる。すなわち、PASとLiCoO2
とを粉砕,混合した後、必要に応じ導電剤,結着剤を加
えて成形する。このときPASとLiCoO2 の形態は
粉体,短繊維等の混合し易い形態であればよいが粉体が
実用的である。使用される導電剤,結着剤等は本発明に
おいて特に限定されるものではなく、一般に電池用電極
に用いられるものから適宜選択して使用すればよい。P
ASとLiCoO2 は、あらかじめ所定の粒度まで個別
に粉砕した後混合しても、またPASとLiCoO2 と
を同時に粉砕混合してもよい。In the electrode of the present invention, PAS / LiCo
The ratio of O 2 may vary depending on the use of the electrode containing them, but is 90/10 to 10/90 (weight ratio), particularly 70/3.
It is preferably 0 to 30/70. Especially LiCoO
If 2 is increased too much, the rapid charging property, which is a feature of the composite, tends to be lost. The battery electrode of the present invention using a composite of PAS and LiCoO 2 as an active material can be manufactured, for example, as follows. That is, PAS and LiCoO 2
After crushing and mixing and, if necessary, a conductive agent and a binder are added to mold. At this time, the form of PAS and LiCoO 2 may be a form in which powder, short fibers, etc. can be easily mixed, but the powder is practical. The conductive agent, binder, etc. used are not particularly limited in the present invention, and may be appropriately selected and used from those generally used for battery electrodes. P
AS and LiCoO 2 may be individually pulverized to a predetermined particle size in advance and then mixed, or PAS and LiCoO 2 may be pulverized and mixed simultaneously.
【0013】粉砕法としては特に限定されるものではな
いが、ポットミル,振動ミル等のボールミルに代表され
る微粉砕機を用いることが好ましい。微細なPASと粒
度の小さいLiCoO2 とを混合により複合して電極を
作る場合、後述する細孔割合に制御することはLiCo
O2 の二次凝集(みかけの粒度増大)等の原因により難
しい。従ってLiCoO2 をPASによって作られるマ
トリックス中に均質に分散させるためにはPASとLi
CoO2 とを同時に粉砕混合する等の方法が望ましい。
成形方法は特に限定されず、粉体に用いる慣用の成形方
法、例えば加圧成形法等を用いることができる。The crushing method is not particularly limited, but it is preferable to use a fine crusher represented by a ball mill such as a pot mill or a vibration mill. When a fine PAS and LiCoO 2 having a small particle size are mixed to form an electrode, it is necessary to control the ratio of pores to be described later.
Difficult due to causes such as secondary aggregation of O 2 (apparent particle size increase). Therefore, in order to disperse LiCoO 2 uniformly in the matrix made by PAS, it is necessary to use PAS and Li
A method such as crushing and mixing CoO 2 at the same time is desirable.
The molding method is not particularly limited, and a conventional molding method used for powder, such as a pressure molding method, can be used.
【0014】リチウム酸化コバルトは公知の適宜方法に
より容易に得られる。その一例を示すと、例えば炭酸リ
チウム(Li2 Co3 )と炭酸コバルト(CoCO3 )
とを900℃で加熱して得られる。リチウム酸コバルト
は一般的にLixCoO2 と表されるが、その合成法及
び電池系内での充放電等により、xの値は0≦x≦1の
範囲である。本発明におけるリチウム酸化コバルト(以
下LiCoO2 と略記す)は、xの値について特に限定
されるものではない。Lithium cobalt oxide can be easily obtained by a known method. As an example, for example, lithium carbonate (Li 2 Co 3 ) and cobalt carbonate (CoCO 3 )
And are heated at 900 ° C. Cobalt lithium oxide is generally represented as LixCoO 2 , but the value of x is in the range of 0 ≦ x ≦ 1 depending on its synthesis method and charge / discharge in the battery system. The lithium cobalt oxide (hereinafter abbreviated as LiCoO 2 ) in the present invention is not particularly limited in the value of x.
【0015】本発明の電池用電極においては、極めて微
細なLiCoO2 がPASマトリックス中に均質に分散
され、電極が細孔直径の小さいものを多く有するので、
これを用いた電池は容量が著しく大きくなり、また急速
充電が可能となる。以下実施例により本発明を具体的に
説明する。In the battery electrode of the present invention, extremely fine LiCoO 2 is homogeneously dispersed in the PAS matrix, and many electrodes have a small pore diameter.
A battery using this has a significantly large capacity and can be rapidly charged. The present invention will be specifically described below with reference to examples.
【0016】[0016]
実施例1 PAS及びLiCoO2 の製造:− (1)PASの製造 水溶性レゾール型フェノール樹脂(約60%濃度)/塩
化亜鉛/水を重量比で10/25/5の割合で混合した
スラリーを10cm×10cm×1cmの型に流し込
み、その上にガラス板を被せ水分の蒸発を抑止しながら
100℃で1時間加熱して硬化した。この硬化体をシリ
コニット電気炉中に入れ、窒素気流中で40℃/時間の
速度で昇温して500℃まで加熱し、熱処理を行った。
次にこの熱処理物を希塩酸で洗浄して塩化亜鉛を除去し
た後、水洗し、次いで乾燥することによって、板状のP
ASを得た。このPASのBET法による比表面積は2
000m2 /gと極めて大きな値であった。また元素分
析を行ったところ、水素原子/炭素原子の原子数比は
0.23であった。かくして得られたPASをナイロン
製のボールミルで10分間,24時間,及び48時間と
粉砕時間を変えて粉砕して平均粒径がそれぞれ、5.2
μm,0.7μm,及び0.4μmのPAS粉末を得
た。なお、PAS粉末の平均粒径は電子顕微鏡法(「粉
体」、久保輝一郎ら編、昭和54改訂2版 丸善株式会
社)により求めた。Example 1 PAS and LiCoO 2 in producing: - a (1) producing a water-soluble resol-type phenolic resin (about 60% strength) of PAS / zinc chloride / water mixed in a ratio of 10/25/5 by weight slurry It was poured into a mold of 10 cm × 10 cm × 1 cm, covered with a glass plate, and heated at 100 ° C. for 1 hour to be hardened while suppressing evaporation of water. This cured product was placed in a silicon knit electric furnace, heated in a nitrogen stream at a rate of 40 ° C./hour to 500 ° C., and heat treated.
Next, this heat-treated product is washed with dilute hydrochloric acid to remove zinc chloride, washed with water, and then dried to obtain a plate-shaped P
I got AS. The specific surface area of this PAS by the BET method is 2
It was an extremely large value of 000 m 2 / g. In addition, elemental analysis revealed that the atomic ratio of hydrogen atoms / carbon atoms was 0.23. The PAS thus obtained was ground in a nylon ball mill for 10 minutes, 24 hours, and 48 hours with different grinding times, and the average particle size was 5.2.
PAS powders of μm, 0.7 μm, and 0.4 μm were obtained. The average particle size of the PAS powder was determined by electron microscopy (“powder”, edited by Teruichiro Kubo et al., Ed. 2nd edition of Showa 54, Maruzen Co., Ltd.).
【0017】(2)LiCoO2 の製造 市販のLiCoO2 をアルミナ製ボールミルを用いて粉
砕時間10分間,48時間,72時間で粉砕し、平均粒
径がそれぞれ6.5μm,0.6μm,0.4μmのL
iCoO2 粉末を得た。平均粒径はPASと同様に電子
顕微鏡法により測定した。いずれの場合にもLiCoO
2 粒子は二次凝集していたが、一次粒子の大きさで測定
した。[0017] (2) LiCoO 2 in producing commercially available LiCoO 2 the grinding time 10 minutes using a ball mill made of alumina for 48 hours, then milled for 72 hours, an average particle diameter of each of 6.5 [mu] m, 0.6 .mu.m, 0. 4 μm L
iCoO 2 powder was obtained. The average particle size was measured by electron microscopy as in PAS. In any case, LiCoO
The two particles were secondarily aggregated, but they were measured by the size of the primary particles.
【0018】実施例2 平均粒径5.2μmのPASと平均粒径6.5μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)でアルミナ製ボールミルに入れ、24時間(実施例
2a)および48時間(実施例2b)粉砕した。得られ
たPAS及びLiCoO2 の複合物を電子顕微鏡で観察
したところPASの平均粒径はそれぞれ0.5μm及び
0.4μmであった。LiCoO2 は粉砕され、かつP
AS粒子と均質に混合されていたため、LiCO2 粒子
直径の正確な測定は困難であったが、いずれも平均粒径
は0.5μm程度であった。Example 2 PAS having an average particle size of 5.2 μm and L having an average particle size of 6.5 μm
iCoO 2 was put into an alumina ball mill with PAS / LiCoO 2 = 40/60 (weight ratio) and pulverized for 24 hours (Example 2a) and 48 hours (Example 2b). When the obtained composite of PAS and LiCoO 2 was observed with an electron microscope, the average particle size of PAS was 0.5 μm and 0.4 μm, respectively. LiCoO 2 is ground and P
It was difficult to measure the LiCO 2 particle diameter accurately because the particles were homogeneously mixed with the AS particles, but the average particle diameter was about 0.5 μm in each case.
【0019】得られた複合物100重量部に対し、導電
剤としてカーボンブラックを75重量部及び結着剤とし
てポリ四フッ化エチレン8重量部を添加し、乳鉢により
混合,混練後ローラーによりシート成形を行い、厚さ7
50μmの電極シートを得た。この電極シートの細孔分
布を水銀ポロシメーター(島津製作所製,ポアサイザ
ー)により、(0.006μm以上0.1μm以下の細
孔直径を有する細孔体積)/(0.006μm以上10
0μm以下の細孔直径を有する細孔体積)の比を求めた
ところそれぞれ78%及び81%であった。この電極シ
ートを15mmφに打ち抜いて正極とし、負極としてリ
チウム電解液に1MのLiClO4 プロピレンカーボネ
ート溶液セパレータとしてガラス不織布を用いた図1に
示すような電池を組み立てた。起電圧は2.90Vであ
った。この電池を4.1Vで2時間定電圧充電した後2
mAの電流で2.5Vまで放電し容量を測定することに
より電極性能を評価した。結果を表1に示す。To 100 parts by weight of the obtained composite, 75 parts by weight of carbon black as a conductive agent and 8 parts by weight of polytetrafluoroethylene as a binder were added, mixed in a mortar and kneaded, and then formed into a sheet by a roller. And thickness 7
An electrode sheet of 50 μm was obtained. The pore distribution of this electrode sheet was measured by a mercury porosimeter (Poresizer, manufactured by Shimadzu Corporation) (pore volume having a pore diameter of 0.006 μm or more and 0.1 μm or less) / (0.006 μm or more 10
The ratio of the volume of pores having a pore diameter of 0 μm or less) was 78% and 81%, respectively. This electrode sheet was punched out into 15 mmφ to make a positive electrode, and a battery as shown in FIG. 1 was assembled using a glass nonwoven fabric as a 1 M LiClO 4 propylene carbonate solution separator in a lithium electrolyte as a negative electrode. The electromotive voltage was 2.90V. After charging this battery with a constant voltage of 4.1V for 2 hours, 2
The electrode performance was evaluated by discharging to 2.5 V with a current of mA and measuring the capacity. The results are shown in Table 1.
【0020】実施例3 平均粒径0.4μmのPASと平均粒径0.4μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)でナイロン製ボールミルで1時間混合した。なおナ
イロン製ボールミルを用いたので、PASおよびLiC
oO2 の粒径に大きな変化はなかった。この複合物を用
いて実施例1と同様にして電極を製造し次いで電池を組
み立てた。この電池について、実施例1と同様の方法で
電極の評価を行った。結果を表1に示す。Example 3 PAS having an average particle size of 0.4 μm and L having an average particle size of 0.4 μm
iCoO 2 was mixed with PAS / LiCoO 2 = 40/60 (weight ratio) in a nylon ball mill for 1 hour. Since nylon ball mill was used, PAS and LiC
There was no significant change in the particle size of oO 2 . An electrode was produced using this composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0021】実施例4 平均粒径0.7μmのPASと平均粒径0.6μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)で乳鉢にて混合し、複合物を得た。この条件におい
ては、PASおよびLiCoO2 共にその粒径に大きな
変化はなかった。この複合物を用いて実施例1と同様に
して電極を製造し、次いで電池を組み立てた。この電池
について実施例1と同様の方法で電極の評価を行った。
結果を表1に示す。Example 4 PAS having an average particle size of 0.7 μm and L having an average particle size of 0.6 μm
iCoO 2 was mixed with PAS / LiCoO 2 = 40/60 (weight ratio) in a mortar to obtain a composite. Under these conditions, the particle size of PAS and LiCoO 2 did not change significantly. An electrode was manufactured using this composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1.
The results are shown in Table 1.
【0022】比較例1 平均粒径5.2μmのPASと平均粒径6.5μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)で乳鉢にて混合した。得られた複合物を用いて実施
例1と同様にして電極を製造し、次いで電池を組み立て
た。この電池について、実施例1と同様の方法で電極の
評価を行った。結果を表1に示す。Comparative Example 1 PAS having an average particle size of 5.2 μm and L having an average particle size of 6.5 μm
iCoO 2 was mixed in a mortar with PAS / LiCoO 2 = 40/60 (weight ratio). An electrode was manufactured using the obtained composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0023】比較例2 平均粒径0.4μmのPASと平均粒径6.5μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)で乳鉢にて混合した。得られた複合物を用いて実施
例1と同様にして電極を製造し、次いで電池を組み立て
た。この電池について、実施例1と同様の方法で電極の
評価を行った。結果を表1に示す。Comparative Example 2 PAS having an average particle size of 0.4 μm and L having an average particle size of 6.5 μm
iCoO 2 was mixed in a mortar with PAS / LiCoO 2 = 40/60 (weight ratio). An electrode was manufactured using the obtained composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0024】比較例3 平均粒径0.4μmのPASと平均粒径0.6μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)で、ナイロン製ボールミルで1時間混合した。得ら
れた複合物を用いて実施例1と同様にして電極を製造
し、次いで電池を組み立てた。この電池について、実施
例1と同様の方法で電極の評価を行った。結果を表1に
示す。Comparative Example 3 PAS having an average particle size of 0.4 μm and L having an average particle size of 0.6 μm
iCoO 2 was mixed with PAS / LiCoO 2 = 40/60 (weight ratio) in a nylon ball mill for 1 hour. An electrode was manufactured using the obtained composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0025】比較例4 平均粒径5.2μmのPASと平均粒径0.6μmのL
iCoO2 をPAS/LiCoO2 =40/60(重量
比)で、ナイロン製ボールミルで1時間混合した。得ら
れた複合物を用いて実施例1と同様にして電極を製造
し、次いで電池を組み立てた。この電池について、実施
例1と同様の方法で電極の評価を行った。結果を表1に
示す。Comparative Example 4 PAS having an average particle size of 5.2 μm and L having an average particle size of 0.6 μm
iCoO 2 was mixed with PAS / LiCoO 2 = 40/60 (weight ratio) in a nylon ball mill for 1 hour. An electrode was manufactured using the obtained composite in the same manner as in Example 1, and then a battery was assembled. The electrodes of this battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0026】実施例5 実施例1bにおいて、PAS/LiCoO2 =60/4
0(重量比)とする以外は、同様の方法で電極を評価し
た。Example 5 In Example 1b, PAS / LiCoO 2 = 60/4
The electrodes were evaluated by the same method except that the weight ratio was 0.
【0027】比較例5 実施例4において、混合を乳鉢を用いる以外は、同じく
して電極を評価した。上記実施例,比較例における電極
評価の結果をまとめて表1に示す。Comparative Example 5 The electrodes were evaluated in the same manner as in Example 4, except that the mixing was performed using a mortar. Table 1 collectively shows the results of the electrode evaluation in the above Examples and Comparative Examples.
【0028】[0028]
【表1】 [Table 1]
【0029】LiCoO2 の平均粒径が1μm以下でか
つ電極における0.1μm以下の細孔割合が70%以上
である実施例では全て電池の容量が高いことが明らかで
ある。また比較例2においては、細孔割合が74%であ
るにもかかわらず、LiCoO2 の平均粒径が大きいの
で電池の容量が低い。It is apparent that the capacity of the battery is high in all the examples in which the average particle size of LiCoO 2 is 1 μm or less and the ratio of pores of 0.1 μm or less in the electrode is 70% or more. Further, in Comparative Example 2, the capacity of the battery is low because the average particle size of LiCoO 2 is large even though the pore ratio is 74%.
【0030】[0030]
【発明の効果】本発明によれば、単位体積当たりの容量
が大きい電池用電極を提供することができる。本発明の
電極を用いた電池は長期に亘って充電,放電が可能であ
り、しかも製造が容易且つ経済的である。According to the present invention, a battery electrode having a large capacity per unit volume can be provided. A battery using the electrode of the present invention can be charged and discharged for a long period of time, and is easy and economical to manufacture.
【図1】本発明にかかる電池の基本構成を示したもので
ある。FIG. 1 shows a basic configuration of a battery according to the present invention.
1 正極 2 負極 3 集電体 3′ 集電体 4 電解液 5 セパレーター 6 電池ケース 7 外部端子 7′ 外部端子 1 Positive electrode 2 Negative electrode 3 Current collector 3'Current collector 4 Electrolyte 5 Separator 6 Battery case 7 External terminal 7'External terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6−13 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shizukuni Yada 2-6-13 Miyanishi, Harima-cho, Kako-gun, Hyogo Prefecture
Claims (2)
族縮合ポリマ−の熱処理物であって、水素原子/炭素原
子の原子数比が0.05〜0.5であるポリアセン系骨
格構造を有し、かつBET法による比表面積が600m
2 /g以上である不溶不融性基体と、(b)リチウム酸
化コバルトとの複合物を活物質とする電池用電極であっ
て、(1)該リチウム酸化コバルトの平均粒径が1μm
以下であり、かつ(2)該電極における0.1μm以下
の細孔直径を有する細孔体積が全細孔体積に対して70
%以上を占めることを特徴とする電池用電極。1. A heat-treated product of (a) an aromatic condensed polymer consisting of carbon, hydrogen and oxygen, wherein the atomic number ratio of hydrogen atoms / carbon atoms is 0.05 to 0.5. And has a specific surface area of 600 m according to the BET method.
A battery electrode comprising, as an active material, a composite of an insoluble and infusible substrate of 2 / g or more and (b) lithium cobalt oxide, wherein (1) the average particle diameter of the lithium cobalt oxide is 1 μm.
And (2) the pore volume having a pore diameter of 0.1 μm or less in the electrode is 70 with respect to the total pore volume.
% Or more of the battery electrode.
粒子から成る請求項1記載の電池用電極。2. The battery electrode according to claim 1, wherein the insoluble and infusible substrate comprises particles having an average particle size of 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4202928A JP2744555B2 (en) | 1992-07-06 | 1992-07-06 | Battery electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4202928A JP2744555B2 (en) | 1992-07-06 | 1992-07-06 | Battery electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0620679A true JPH0620679A (en) | 1994-01-28 |
JP2744555B2 JP2744555B2 (en) | 1998-04-28 |
Family
ID=16465484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4202928A Expired - Fee Related JP2744555B2 (en) | 1992-07-06 | 1992-07-06 | Battery electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2744555B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0880186A1 (en) * | 1996-02-09 | 1998-11-25 | Japan Storage Battery Co., Ltd. | Electrode for nonaqueous electrolyte battery |
US6821679B2 (en) * | 2002-10-29 | 2004-11-23 | Korea Institute Of Science And Technology | Fabrication method of LiCoO2 nano powder by surface modification of precursor |
KR100816116B1 (en) * | 2000-06-19 | 2008-03-24 | 나노그램 코포레이션 | Lithium metal oxides |
-
1992
- 1992-07-06 JP JP4202928A patent/JP2744555B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0880186A1 (en) * | 1996-02-09 | 1998-11-25 | Japan Storage Battery Co., Ltd. | Electrode for nonaqueous electrolyte battery |
EP0880186A4 (en) * | 1996-02-09 | 2003-05-02 | Japan Storage Battery Co Ltd | Electrode for nonaqueous electrolyte battery |
KR100816116B1 (en) * | 2000-06-19 | 2008-03-24 | 나노그램 코포레이션 | Lithium metal oxides |
US6821679B2 (en) * | 2002-10-29 | 2004-11-23 | Korea Institute Of Science And Technology | Fabrication method of LiCoO2 nano powder by surface modification of precursor |
Also Published As
Publication number | Publication date |
---|---|
JP2744555B2 (en) | 1998-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2744555B2 (en) | Battery electrode | |
WO1995008852A1 (en) | Organic electrolyte cell | |
JP2627033B2 (en) | Manufacturing method of organic electrolyte battery | |
JP2704688B2 (en) | Battery electrode | |
JP2703696B2 (en) | Organic electrolyte battery | |
JP2556408B2 (en) | Organic electrolyte battery | |
JP2649298B2 (en) | Manufacturing method of battery electrode | |
JP2920079B2 (en) | Organic electrolyte battery | |
JP2556407B2 (en) | Organic electrolyte battery | |
JP2704689B2 (en) | Manufacturing method of battery electrode | |
JP2003068307A (en) | Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode | |
JPH0864251A (en) | Organic electrolyte battery | |
JPS63301460A (en) | Manufacture of electrode for battery | |
JP2524184B2 (en) | Organic electrolyte battery containing composite electrodes | |
JP2646461B2 (en) | Organic electrolyte battery | |
JP2869191B2 (en) | Organic electrolyte battery | |
JP3280520B2 (en) | Battery electrode | |
JP2869355B2 (en) | Organic electrolyte battery | |
JP2601777B2 (en) | Electrodes for organic electrolyte batteries | |
JP2614724B2 (en) | Organic electrolyte battery with metal sulfide composite as positive electrode | |
JP2646462B2 (en) | Organic electrolyte battery | |
JP2616774B2 (en) | Organic electrolyte battery using metal oxide composite as positive electrode | |
JPH0864248A (en) | Organic electrolyte battery | |
JPH087928A (en) | Organic electrolytic cell | |
JPS6231961A (en) | Organic electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |