JPH0864251A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0864251A
JPH0864251A JP6225539A JP22553994A JPH0864251A JP H0864251 A JPH0864251 A JP H0864251A JP 6225539 A JP6225539 A JP 6225539A JP 22553994 A JP22553994 A JP 22553994A JP H0864251 A JPH0864251 A JP H0864251A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
electrode
pas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6225539A
Other languages
Japanese (ja)
Inventor
Hajime Kinoshita
肇 木下
Nobuo Ando
信雄 安東
Akihiro Anegawa
彰博 姉川
Takeshi Hashimoto
武 橋本
Yukinori Hadou
之規 羽藤
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6225539A priority Critical patent/JPH0864251A/en
Publication of JPH0864251A publication Critical patent/JPH0864251A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide high capacity and high voltage by using metal oxide for a positive electrode, using insoluble and infusible substrate having a polyacene group skeletal structure for a negative electrode, properly controlling quantity of lithium in a battery, and selecting a carrying method for lithium derived from the negative electrode. CONSTITUTION: Metal oxide containing lithium is used for a positive electrode 1, while a substance composed of insoluble and infusible substrate (PAS) is used for a negative electrode 2. In other words, PAS used for the negative electrode 2 is prepared by heating aromatic group condensation polymer and is provided with an atomic ratio of hydrogen atoms to carbon atoms of 0.5-0.05 and a polyacene group skeletal structure. To the negative electrode 2PAS, total quantity of lithium contained in a battery is 500mAh/g or more, while quantity of lithium derived from the negative electrode 2 is 100mAh/g or more, and lithium derived from the negative electrode 2 is electrochemically carried by impressing potential equal to that of Li metal or less. According to proper control of quantity of lithium and proper selection of a carrying method for lithium derived from the electrode 2 PAS, production is facilitated while the battery provided with high capacity and high voltage can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極にポリアセン系骨
格構造を有する不溶不融性基体、正極に金属酸化物を用
いた、高容量かつ高電圧を有する有機電解質電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery having a high capacity and a high voltage, which uses an insoluble and infusible substrate having a polyacene skeleton structure for a negative electrode and a metal oxide for a positive electrode.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく実用
に問題が残されている。特に負極の劣化はデントライト
と呼ばれるこけ状のリチウム結晶の生成を伴い、充放電
の繰り返しにより終局的にはデントライトがセパレータ
ーを貫通し、電池内部でショートを引き起こし、場合に
よっては電池が破裂する等、安全面においても問題があ
った。
2. Description of the Related Art In recent years, secondary batteries using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode have a high energy density.
It has been proposed as an alternative to i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity decreases due to deterioration of the positive electrode or the negative electrode, and a problem remains for practical use. In particular, the deterioration of the negative electrode is accompanied by the generation of moss-like lithium crystals called dendrites, and the dendrites eventually penetrate the separator due to repeated charging and discharging, causing a short circuit inside the battery, and in some cases the battery bursts. There was also a problem in terms of safety.

【0003】近時、上記問題点を解決すべく、グラファ
イト等の炭素材料を負極に用い、正極にLiCoO2
のリチウム含有金属酸化物を用いた電池が提案されてい
る。該電池は、電池組立後、充電する事により正極のリ
チウム含有金属酸化物より負極にリチウムを供給し、更
に放電では負極リチウムを正極に戻すという、いわゆる
ロッキングチェア型電池である。該電池は高電圧、高容
量を特長とするものの、その容量は最大80〜90mA
h/cc(電極、セパレ−タ−、集電材の総体積基準)
程度であり、リチウム電池の特徴である高エネルギ−密
度を得るに至っていない。一方、芳香族系縮合ポリマ−
の熱処理物であって水素原子/炭素原子の原子比が0.
5〜0.05であるポリアセン系骨格構造を有する不溶
不融性基体は、一般の炭素材料に比べ大量にリチウムを
ド−プする事が可能であるが、該不溶不融性基体を負
極、正極にリチウム含有酸化物を用いた上記ロッキング
チェア型の電池を組み立てた場合、炭素材料に比べ高容
量が得られるものの、その容量には不満足な点が残され
ていた。上記問題点を解決する為に、本願と同一の出願
人に係る、特願平5ー259403号は未だ未公開なが
ら、正極,負極並びに電解液としてリチウム塩の非プロ
トン性有機溶媒溶液を備えた有機電解質電池であって、
(1)正極が金属酸化物を含み(2)負極が芳香族系縮
合ポリマ−の熱処理物であって水素原子/炭素原子の原
子比が0.5〜0.05であるポリアセン系骨格構造を
有する不溶不融性基体(以下PAS)であり、(3)負
極PASに対し、電池内に含まれる総リチウム量が50
0mAh/g以上であり、かつ負極由来のリチウムが1
00mAh/g以上である事を特徴とする有機電解質電
池が提案されている。該電池は高容量であるものの、負
極由来のリチウムの担持時間が長く、実用下には問題が
残されていた。
Recently, in order to solve the above problems, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. The battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and the negative electrode lithium is returned to the positive electrode by discharging. Although the battery is characterized by high voltage and high capacity, its capacity is 80 to 90 mA at maximum.
h / cc (based on the total volume of the electrode, separator, and current collector)
However, the high energy density characteristic of lithium batteries has not been obtained yet. On the other hand, aromatic condensation polymers
Which is a heat-treated product and has an atomic ratio of hydrogen atoms / carbon atoms of 0.
The insoluble infusible substrate having a polyacene-based skeleton structure of 5 to 0.05 is capable of doping lithium in a large amount as compared with a general carbon material. When the above-mentioned rocking chair type battery using a lithium-containing oxide for the positive electrode was assembled, a high capacity was obtained as compared with the carbon material, but the capacity was unsatisfactory. In order to solve the above-mentioned problems, Japanese Patent Application No. 5-259403 of the same applicant as the present application has not yet been published, but a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt are provided as an electrolytic solution. An organic electrolyte battery,
(1) A polyacene-based skeleton structure in which the positive electrode contains a metal oxide and (2) the negative electrode is a heat-treated product of an aromatic condensed polymer and the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05. The insoluble and infusible substrate (hereinafter referred to as PAS) having (3) the total amount of lithium contained in the battery is 50 relative to the negative electrode PAS.
0 mAh / g or more, and the lithium derived from the negative electrode is 1
An organic electrolyte battery has been proposed which is characterized in that it is at least 00 mAh / g. Although the battery has a high capacity, the time required for carrying the lithium derived from the negative electrode is long, and a problem remains in practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、本発明の目的は高容量かつ高電圧を有する二
次電池を提供するにある。本発明の他の目的は長期に亘
って充放電が可能で、安全性に優れた二次電池を提供す
るにある。本発明の更に他の目的は内部抵抗が低い二次
電池を提供するにある。本発明の更に他の目的は製造が
容易な二次電池を提供するにある。本発明の更に他の目
的は以下の説明から明らかにされよう。
The inventors of the present invention have completed the present invention as a result of intensive research in view of the above problems, and an object of the present invention is to provide a secondary battery having a high capacity and a high voltage. To provide batteries. Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety. Still another object of the present invention is to provide a secondary battery having a low internal resistance. Still another object of the present invention is to provide a secondary battery that is easy to manufacture. Still other objects of the present invention will be apparent from the following description.

【0005】[0005]

【課題を解決するための手段】本発明者らは、正極に金
属酸化物を、負極にポリアセン系骨格構造を有する不溶
不融性基体を用い、かつ、電池内のリチウム量を適切に
制御すると共に、負極由来の担持法(ド−プ法)を選択
することにより本発明を完成した。すなわち、本発明
は、正極,負極並びに電解液としてリチウム塩の非プロ
トン性有機溶媒溶液を備えた有機電解質電池であって、
(1)正極が金属酸化物を含み(2)負極が芳香族系縮
合ポリマ−の熱処理物であって水素原子/炭素原子の原
子比が0.5〜0.05であるポリアセン系骨格構造を
有する不溶不融性基体(以下PAS)であり、(3)負
極PASに対し、電池内に含まれる総リチウム量が50
0mAh/g以上であり、かつ負極由来のリチウムが1
00mAh/g以上であり、負極由来のリチウムを、L
i金属の電位以下の電位を印加することにより電気化学
的に担持させる事を特徴とする有機電解質電池である。
The present inventors have used a metal oxide for the positive electrode and an insoluble and infusible substrate having a polyacene skeleton structure for the negative electrode, and appropriately control the amount of lithium in the battery. At the same time, the present invention was completed by selecting the supporting method (dope method) derived from the negative electrode. That is, the present invention is an organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution,
(1) A polyacene-based skeleton structure in which the positive electrode contains a metal oxide and (2) the negative electrode is a heat-treated product of an aromatic condensed polymer and the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05. The insoluble and infusible substrate (hereinafter referred to as PAS) having (3) the total amount of lithium contained in the battery is 50 relative to the negative electrode PAS.
0 mAh / g or more, and the lithium derived from the negative electrode is 1
Lithium derived from the negative electrode is
It is an organic electrolyte battery characterized in that it is electrochemically supported by applying a potential equal to or lower than the potential of i metal.

【0006】本発明における芳香族系縮合ポリマ−と
は、芳香族炭化水素化合物とアルデヒド類との縮合物で
ある。芳香族炭化水素化合物としては、例えば、フェノ
ール,クレゾール,キシレノール等の如き、いわゆるフ
ェノール類が好適である。例えば、下記式
The aromatic condensation polymer in the present invention is a condensation product of an aromatic hydrocarbon compound and aldehydes. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol and xylenol are suitable. For example, the following formula

【化1】 (ここで、xおよびyはそれぞれ独立に、0、1又は2
である)で表されるメチレン・ビスフェノール類である
ことができ、或いはヒドロキシ・ビフェニル類、ヒドロ
キシナフタレン類であることもできる。これらの内、実
用的にはフェノール類、特にフェノールが好適である。
本発明における芳香族系縮合ポリマ−として、上記のフ
ェノール性水酸基を有する芳香族炭化水素化合物の1部
をフェノール性水酸基を有さない芳香族炭化水素化合
物、例えば、キシレン、トルエン、アニリン等で置換し
た変成芳香族系縮合ポリマー例えばフェノールとキシレ
ンとホルムアルデヒドとの縮合物を用いることもでき、
また、メラミン、尿素で置換した変成芳香族系ポリマー
を用いることもできる。また、フラン樹脂も好適であ
る。また、アルデヒドとしては、ホルムアルデヒド、ア
セトアルデヒド、フルフラール等のアルデヒドを使用す
ることができるが、ホルムアルデヒドが好適である。フ
ェノールホルムアルデヒド縮合物としては、ノボラック
型又はレゾール型或はそれらの混合物のいずれであって
もよい。
Embedded image (Where x and y are each independently 0, 1 or 2
Methylene bisphenols represented by the formula), or hydroxy biphenyls and hydroxynaphthalenes. Of these, phenols, particularly phenol, are practically preferred.
As the aromatic condensation polymer in the present invention, a part of the above aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline and the like. It is also possible to use a modified aromatic condensation polymer such as a condensation product of phenol, xylene and formaldehyde.
Further, a modified aromatic polymer substituted with melamine or urea can also be used. Furan resin is also suitable. Aldehydes such as formaldehyde, acetaldehyde and furfural can be used as the aldehyde, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a mixture thereof.

【0007】本発明における不溶不融性基体は、上記芳
香族系ポリマ−を熱処理する事により得られ、特公平1
−44212号公報、特公平3−24024号公報等に
記載されているポリアセン系骨格構造を有する不溶不融
性基体は全て用いることができ、例えば、次のようにし
て製造することもできる。該芳香族系縮合ポリマ−を、
非酸化性雰囲気下(真空も含む)中で、400°C〜8
00°Cの適当な温度まで徐々に加熱する事により、水
素原子/炭素原子の原子比(以下H/Cと記す)が0.
50〜0.05、好ましくは0.35〜0.10の不溶
不融性基体を得ることができる。また、特公平3−24
024号公報等に記載されている方法で、600m2
g以上のBET法による比表面積を有する不溶不融性基
体を得ることもできる。例えば、芳香族系縮合ポリマ−
の初期縮合物と無機塩、例えば塩化亜鉛を含む溶液を調
製し、該溶液を加熱して型内で硬化する。かくして得ら
れた硬化体を、非酸化性雰囲気化(真空も含む)中で、
350°C〜800°Cの温度まで、好ましくは400
°C〜750°Cの適当な温度まで徐々に加熱した後、
水あるいは希塩酸等によって充分に洗浄することによ
り、上記H/Cを有し、かつ、例えば600m2 /g以
上のBET法による比表面積を有する不溶不融性基体を
得ることもできる。
The insoluble and infusible substrate in the present invention is obtained by heat-treating the above aromatic polymer.
All of the insoluble and infusible substrates having a polyacene-based skeleton structure described in JP-A-44212, JP-B-3-24024, etc. can be used. For example, they can be produced as follows. The aromatic condensation polymer is
400 ° C to 8 in a non-oxidizing atmosphere (including vacuum)
By gradually heating to an appropriate temperature of 00 ° C, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as H / C) is 0.
It is possible to obtain an insoluble and infusible substrate of 50 to 0.05, preferably 0.35 to 0.10. In addition, Japanese Examined Patent Publication 3-24
In the method described in Japanese Patent No. 024, etc., 600 m 2 /
It is also possible to obtain an insoluble and infusible substrate having a BET specific surface area of g or more. For example, an aromatic condensation polymer
A solution containing the precondensate and the inorganic salt such as zinc chloride is prepared, and the solution is heated and cured in a mold. The cured product thus obtained is subjected to a non-oxidizing atmosphere (including vacuum),
Up to a temperature of 350 ° C to 800 ° C, preferably 400
After gradually heating to an appropriate temperature of ° C to 750 ° C,
By sufficiently washing with water or dilute hydrochloric acid, an insoluble infusible substrate having the above H / C and having a specific surface area by the BET method of, for example, 600 m 2 / g or more can be obtained.

【0008】本発明に用いる不溶不融性基体は、X線回
折(CuKα)によれば、メイン・ピークの位置は2θ
で表して24°以下に存在し、また該メイン・ピークの
他に41〜46°の間にブロードな他のピークが存在す
る。すなわち、上記不溶不融性基体は芳香族系多環構造
が適度に発達したポリアセン系骨格構造を有し、かつア
モルファス構造をとると示唆され、リチウムを安定にド
−ピングできることから電池用活物質として有用であ
る。H/Cが0.50を越える場合、芳香族系多環構造
が充分に発達していないため、リチウムのド−ピング、
脱ド−ピングがスム−ズに行うことができず、電池を組
んだ時、充放電効率が低下する。また、H/Cが0.0
5以下の場合、本発明の電池の容量が低下し好ましくな
い。
The insoluble and infusible substrate used in the present invention has a main peak position of 2θ according to X-ray diffraction (CuKα).
In addition to the main peak, there is another broad peak between 41 and 46 °. That is, it is suggested that the insoluble and infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, and has an amorphous structure, and lithium can be stably doped so that an active material for a battery can be obtained. Is useful as When H / C exceeds 0.50, the aromatic polycyclic structure is not sufficiently developed, and therefore lithium doping,
The de-doping cannot be smoothly performed, and the charge / discharge efficiency is reduced when the battery is assembled. Also, H / C is 0.0
When it is 5 or less, the capacity of the battery of the present invention decreases, which is not preferable.

【0009】本発明の負極は上記不溶不融性基体(以下
PAS)より成り、粉末状、粒状、短繊維状等の成形し
やすい形状にあるPASをバインダ−で成形したもので
ある。バインダ−としては、ポリ四フッ化エチレン、ポ
リフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレ
ン、ポリエチレン等の熱可塑性樹脂がを用いる事ができ
るが、好ましくフッ素系バインダ−が好ましく、更には
フッ素原子/炭素原子の原子比(以下、F/Cと記す)
が1.5未満0.75以上であるフッ素系バインダ−が
好ましく、特に、1.3未満0.75以上のフッ素系バ
インダ−が好ましい。上記フッ素系バインダ−として
は、例えば、ポリフッ化ビニリデン、フッ化ビニリデン
−3フッ化エチレン共重合体、エチレン−4フッ化エチ
レン共重合体、プロピレン−4フッ化エチレン共重合体
等が挙げられ、更に主鎖の水素をアルキル基で置換した
含フッ素系ポリマ−も用いることできる。ポリフッ化ビ
ニリデンの場合、F/Cは1であり、フッ化ビニリデン
−3フッ化エチレン共重合体の場合、フッ化ビニリデン
のモル分率が50%の時、80%の時それぞれF/Cは
1.25、1.1となり、更にプロピレン−4フッ化エ
チレン共重合体の場合、プロピレンのモル分率が50%
の時、F/Cは0.75となる。中でも、ポリフッ化ビ
ニリデン、フッ化ビニリデンのモル分率が50%以上の
フッ化ビニリデン−3フッ化エチレン共重合体が好まし
く、実用的にはポリフッ化ビニリデンが好ましい。これ
らバインダーを用いた場合、PASの有するリチウムの
ドープ能(容量)を充分に利用することができる。
The negative electrode of the present invention comprises the above-mentioned insoluble and infusible substrate (hereinafter referred to as PAS), and is formed from a PAS having a shape such as powder, granules, short fibers, etc., which can be easily molded, with a binder. As the binder, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, a thermoplastic resin such as polypropylene or polyethylene can be used, but a fluorine-based binder is preferable, and a fluorine atom / Atomic ratio of carbon atoms (hereinafter referred to as F / C)
Is preferably less than 1.5 and 0.75 or more, and particularly preferably less than 1.3 and 0.75 or more. Examples of the fluorine-based binder include polyvinylidene fluoride, vinylidene fluoride-3 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, propylene-4 fluoroethylene copolymer, and the like. Further, a fluorine-containing polymer in which hydrogen in the main chain is replaced with an alkyl group can also be used. In the case of polyvinylidene fluoride, the F / C is 1, and in the case of vinylidene fluoride-3 fluoroethylene copolymer, the F / C is 50% and 50%, respectively, when the vinylidene fluoride mole fraction is 50%. 1.25 and 1.1, and in the case of propylene-4 fluoroethylene copolymer, the propylene mole fraction is 50%.
At that time, the F / C is 0.75. Among them, polyvinylidene fluoride and a vinylidene fluoride-3 fluoroethylene copolymer having a molar fraction of vinylidene fluoride of 50% or more are preferable, and polyvinylidene fluoride is practically preferable. When these binders are used, the dope capacity (capacity) of lithium that PAS has can be fully utilized.

【0010】本発明の有機電解質電池の正極としては、
例えば、LiX CoO2 、 LiX NiO2 、 LiX Mn
2 、LiX FeO2 等のLiX y Z (Mは金属、
二種以上の金属でも良い)の一般式で表され得る、リチ
ウムを電気化学的にド−プ、脱ド−プが可能なリチウム
含有金属酸化物、あるいはコバルト、マンガン、ニッケ
ル等の遷移金属酸化物を用いる。特にリチウム金属に対
し4V以上の電圧を有するリチウム含有酸化物が好まし
い。中でも、リチウム含有コバルト酸化物、リチウム含
有ニッケル酸化物が好ましい。本発明における正極は、
上記活物質、及び必要に応じて導電材、バインダ−を加
え成形したものであり、導電材、バインダ−の種類、組
成等は適宜設定すればよい。
As the positive electrode of the organic electrolyte battery of the present invention,
For example, Li X CoO 2, Li X NiO 2, Li X Mn
O 2, Li X FeO 2, etc. Li X M y O Z (M is a metal,
Lithium-containing metal oxide capable of electrochemically doping or dedoping lithium, or a transition metal oxide such as cobalt, manganese, or nickel, which can be represented by the general formula Use things. Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Of these, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable. The positive electrode in the present invention is
The active material and, if necessary, a conductive material and a binder are added and molded, and the types and compositions of the conductive material and the binder may be appropriately set.

【0011】導電剤の種類は、金属ニッケル等の金属粉
末でもよいが、例えば、活性炭、カーボンブラック、ア
セチレンブラック、黒鉛等の炭素系のものが特に好まし
い。混合比は活物質の電気伝導度、電極形状等により異
なるが、活物質に対して2〜40%加えるのが適当であ
る。また、バインダーの種類は、後述の本発明にて用い
る電解液に不溶のものであればよく、例えば、SBR等
のゴム系バインダー、ポリ四フッ化エチレン、ポリフッ
化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂が好ましく、その混合比は
20%以下とするのが好ましい。
The kind of the conductive agent may be a metal powder such as metallic nickel, but carbon-based ones such as activated carbon, carbon black, acetylene black and graphite are particularly preferable. The mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, etc., but it is appropriate to add 2 to 40% to the active material. Further, the kind of binder may be one that is insoluble in the electrolytic solution used in the present invention described later, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio thereof is preferably 20% or less.

【0012】本発明に用いる正極、負極の電極形状は、
目的とする電池により、板状、フィルム状、円柱状、あ
るいは、金属箔上に成形するなど、種々の形状をとるこ
とが出来る。特に、金属箔上に成形したものは集電体一
体電極として、種々の電池に応用できることから好まし
い。
The shape of the positive and negative electrodes used in the present invention is as follows:
Depending on the intended battery, various shapes such as a plate shape, a film shape, a column shape, or molding on a metal foil can be adopted. In particular, the one formed on a metal foil is preferable as it can be applied to various batteries as a collector-integrated electrode.

【0013】本発明の電池は、上記PASを負極に用
い、かつ電池内に含まれるリチウム量を適切に制御する
事により従来の電池に比べ、容量を大幅に向上すること
ができる。本発明において電池内の総リチウム量とは正
極由来のリチウム、電解液由来のリチウム、負極由来の
リチウムの総計である。正極由来のリチウムとは、電池
組立時、正極に含まれるリチウムであり、該リチウムの
一部もしくは全部は、外部回路から電流を通ずる操作
(充電等)により、負極に供給される。また、電解液由
来のリチウムとは、セパレ−タ、正極、負極等に含まれ
る電解液中のリチウムである。また、負極由来のリチウ
ムとは、本発明の負極PASに担持されているリチウム
である(正極由来のリチウム、電解液由来のリチウム以
外のリチウムである)。本発明において、リチウムを負
極PASに担持させる方法は、電池を組む前に例えば、
リチウム金属を対極とした電気化学セルにて、一定電流
を通電する事、あるいは、定電圧を印加えする事、ある
いはその組み合わせによりに、予め負極PASにリチウ
ムを担持させる事ができる。この時重要なことは、負極
PASにリチウム金属の電位に対して、少なくとも、一
回、リチウム金属の電位以下の電位を印加する事にあ
る。印加する電圧は、目標とする負極由来のリチウム
量、PAS、電極の種類、形状、電解セルの種類、形状
により異なるが、リチウム金属の電位に対して 0mV
から−1000mVが好ましく、更に好ましくは−10
mVから−300mVである。重要な事は、リチウム金
属が電析しない様な電位でかつより低い電圧を選択する
ことが寛容であり、場合によっては、最初、リチウム金
属の電位以下の電位で、リチウムを担持させ、徐々に電
圧を上昇させ、最終的に正の電位で終了する方法、ある
いは、最初、正の電位で担持させ、後にリチウム金属の
電位以下の電位で担持させる事もできる。
The battery of the present invention can be remarkably improved in capacity as compared with a conventional battery by using the above PAS as a negative electrode and appropriately controlling the amount of lithium contained in the battery. In the present invention, the total amount of lithium in the battery is the total amount of lithium derived from the positive electrode, lithium derived from the electrolytic solution, and lithium derived from the negative electrode. The lithium derived from the positive electrode is lithium contained in the positive electrode during battery assembly, and a part or all of the lithium is supplied to the negative electrode by an operation (charging or the like) of passing a current from an external circuit. The lithium derived from the electrolytic solution is lithium in the electrolytic solution contained in the separator, the positive electrode, the negative electrode and the like. In addition, the lithium derived from the negative electrode is lithium supported on the negative electrode PAS of the present invention (lithium derived from the positive electrode, lithium other than lithium derived from the electrolytic solution). In the present invention, the method of supporting lithium on the negative electrode PAS is, for example, before the battery is assembled,
Lithium can be preliminarily loaded on the negative electrode PAS by applying a constant current, applying a constant voltage, or a combination thereof in an electrochemical cell having a lithium metal counter electrode. At this time, what is important is that the potential of the lithium metal is applied to the negative electrode PAS at least once with respect to the potential of the lithium metal. The applied voltage depends on the target amount of lithium derived from the negative electrode, PAS, type and shape of electrode, type and shape of electrolytic cell, but is 0 mV with respect to the potential of lithium metal.
To -1000 mV are preferred, and -10 is more preferred.
mV to -300 mV. Importantly, it is permissible to choose a potential that is lower than that of the lithium metal, and in some cases, it is possible to initially support lithium at a potential below the potential of the lithium metal and gradually increase it. A method of increasing the voltage and finally ending at a positive potential, or a method of initially supporting at a positive potential and later supporting at a potential equal to or lower than the potential of lithium metal can be performed.

【0014】本発明において電池内の総リチウム量は、
負極PASに対し500mAh/g以上,好ましくは6
00mAh/g以上であり、500mAh/g未満の場
合、容量が充分に得られない。また、本発明における負
極由来のリチウムは負極PASに対し100mAh/g
以上、好ましくは150mAh/g以上であり、100
mAh/g未満の場合、たとえ総リチウム量が負極PA
Sに対し500mAh/g以上であったとしても充分な
容量が得られない。また、正極にリチウム含有酸化物を
用いる場合においては、負極由来のリチウムは負極PA
Sに対し600mAh/g以下にすることが、実用的で
ある。本発明における正極由来のリチウム、電解液由来
のリチウムは上記条件を満たしていればよいが、正極由
来のリチウムが負極PASに対し300mAh/g以上
であることが好ましい。
In the present invention, the total amount of lithium in the battery is
500 mAh / g or more, preferably 6 with respect to the negative electrode PAS
When the amount is 00 mAh / g or more and less than 500 mAh / g, sufficient capacity cannot be obtained. Further, the lithium derived from the negative electrode in the present invention is 100 mAh / g with respect to the negative electrode PAS.
Or more, preferably 150 mAh / g or more, and 100
If it is less than mAh / g, the total amount of lithium is negative electrode PA.
Even if it is 500 mAh / g or more with respect to S, a sufficient capacity cannot be obtained. Further, when a lithium-containing oxide is used for the positive electrode, the lithium derived from the negative electrode is the negative electrode PA.
It is practical to set S to 600 mAh / g or less. The lithium derived from the positive electrode and the lithium derived from the electrolytic solution in the present invention may satisfy the above conditions, but the lithium derived from the positive electrode is preferably 300 mAh / g or more based on the negative electrode PAS.

【0015】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えば、エチレンカーボネイト、プ
ロピレンカーボネイト、ジメチルカ−ボネ−ト、ジエチ
ルカ−ボネ−ト、γ−ブチロラクトン、アセトニトリ
ル、ジメトキシエタン、テトラヒドロフラン、ジオキソ
ラン、塩化メチレン、スルホラン等が挙げられ、更に、
これら非プロトン性有機溶媒の二種以上の混合液も用い
ることができる。
An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, and sulfolane. Furthermore,
Mixtures of two or more of these aprotic organic solvents can also be used.

【0016】また、上記の混合又は単一の溶媒に溶解さ
せる電解質は、リチウムイオンを生成しうる電解質のい
ずれでも良い。このような電解質としては、例えばLi
I、LiClO4 、LiAsF6 、LiBF4 、LiP
6 、又はLiHF2 等が挙げられる。上記の電解質及
び溶媒は充分に脱水された状態で混合され、電解液とす
るのであるが、電解液中の電解質の濃度は電解液による
内部抵抗を小さくするため少なくとも0.1モル/l以
上とするのが好ましく、通常0.2〜1.5モル/lと
するのが更に好ましい。
The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of producing lithium ions. As such an electrolyte, for example, Li
I, LiClO 4 , LiAsF 6 , LiBF 4 , LiP
F 6 or LiHF 2 may, for example, be mentioned. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / l or more in order to reduce the internal resistance of the electrolytic solution. It is preferable that the amount is usually 0.2 to 1.5 mol / l.

【0017】電池外部に電流を取り出すための集電体と
しては、例えば、炭素、白金、ニッケル、ステンレス、
アルミニウム、銅等を用いることが出来、箔状、ネット
状の集電体を用いる場合、電極を集電体上に成形するこ
とにより集電体一体型電極として用いることもできる。
Examples of the current collector for extracting the electric current to the outside of the battery include carbon, platinum, nickel, stainless steel,
Aluminum, copper or the like can be used, and when a foil-shaped or net-shaped current collector is used, it can be used as a current collector-integrated electrode by molding the electrode on the current collector.

【0018】次に図面により本発明の実施態様の一例を
説明する。図1は本発明に係る電池の基本構成説明図で
ある。図1において、(1)は正極であり、(2)は負
極である。(3),(3′)は集電体であり、各電極及
び外部端子(7),(7′)に電圧降下を生じないよう
に接続されている。(4)は電解液であり、ドーピング
されうるイオンを生成し得る前述の化合物が非プロトン
性有機溶媒に溶解されている。電解液は通常液状である
が漏液を防止するためゲル状又は固体状にして用いるこ
ともできる。(5)は正負両極の接触を阻止する事及び
電解液を保持する事を目的として配置されたセパレータ
ーである。
Next, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the basic configuration of a battery according to the present invention. In FIG. 1, (1) is a positive electrode and (2) is a negative electrode. Current collectors (3) and (3 ') are connected to the electrodes and the external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the above-mentioned compound capable of generating a dopable ion is dissolved in an aprotic organic solvent. The electrolytic solution is usually liquid, but it may be used in the form of gel or solid to prevent liquid leakage. (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution.

【0019】該セパレーターは、電解液或は電極活物質
等に対し、耐久性のある連通気孔を有する電子伝導性の
ない多孔体であり、通常ガラス繊維、ポリエチレン或は
ポリプロピレン等からなる布、不織布或は多孔体が用い
られる。セパレータの厚さは電池の内部抵抗を小さくす
るため薄い方が好ましいが、電解液の保持量、流通性、
強度等を勘案して決定される。正負極及びセパレータは
電池ケース(6)内に実用上問題が生じないように固定
される。電極の形状、大きさ等は目的とする電池の形
状、性能により適宜決められる。本発明の電池形状は上
記基本構成を満足する、コイン型、円筒型、角形、箱型
等が挙げられ、その形状は特に限定されない。
The separator is a porous body having no continuous electron-permeation holes, which has durability to the electrolytic solution or the electrode active material, and is usually a cloth or non-woven fabric made of glass fiber, polyethylene or polypropylene. Alternatively, a porous body is used. The thickness of the separator is preferably thin to reduce the internal resistance of the battery, but the amount of electrolyte retained, flowability,
It is decided in consideration of strength etc. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery. Examples of the battery shape of the present invention include a coin shape, a cylinder shape, a square shape, and a box shape, which satisfy the above basic configuration, and the shape thereof is not particularly limited.

【0020】[0020]

【発明の効果】本発明の有機電解質電池は、負極にPA
S、正極に金属酸化物を用い、かつ電池内のリチウム
量、負極PAS由来のリチウム量の両者を適切に制御
し、かつ負極PAS由来のリチウムの担持方法を選択す
る事により、製造が容易な高容量かつ高電圧の電池であ
る。以下、実施例を挙げて本発明を具体的に説明する。
INDUSTRIAL APPLICABILITY The organic electrolyte battery of the present invention uses PA as the negative electrode.
S, a metal oxide is used for the positive electrode, both the amount of lithium in the battery and the amount of lithium derived from the negative electrode PAS are appropriately controlled, and a method for supporting lithium derived from the negative electrode PAS is selected to facilitate production. It is a high capacity and high voltage battery. Hereinafter, the present invention will be specifically described with reference to examples.

【0021】[0021]

【実施例1】厚さ0.5mmのフェノ−ル樹脂成形板を
シリコニット電気炉中に入れ窒素雰囲気下で10℃/時
間の速度で昇温し、650℃まで熱処理し、不溶不融性
基体(PASと記す)を合成した。かくして得られたP
AS板をディスクミルで粉砕することにより平均粒径約
15μmのPAS粉体を得た。H/C比は0.22であ
った。次に上記PAS粉末100重量部と、ポリフッ化
ビニリデン粉末10重量部をN,N−ジメチルホルムア
ミド90重量部に溶解した溶液100重量部とを充分に
混合する事によりスラリ−を得た。該スラリ−をアプリ
ケ−タ−を用い厚さ10μmの銅箔(負極集電体)上に
塗布し、乾燥、プレスし、両面にPASを塗布した厚さ
210μmのPAS負極を得た。市販のLiCoO
2 (ストレム社製)100部、グラファイト5部対し、
ポリフッ化ビニリデン粉末10重量部、、N,N−ジメ
チルホルムアミド90重量部に溶解した溶液50重量部
を充分に混合する事によりスラリ−を得た。該スラリ−
をアプリケ−タ−を用い厚さ20μmのアルミ箔(正極
集電体)上に塗布し、乾燥、プレスし、両面にLiCo
2 を塗布した厚さ280μmの正極1を得た。
Example 1 A phenol resin molded plate having a thickness of 0.5 mm was placed in a silicon knit electric furnace, heated in a nitrogen atmosphere at a rate of 10 ° C./hour, and heat-treated to 650 ° C. to form an insoluble and infusible substrate. (Denoted as PAS) was synthesized. P thus obtained
A PAS powder having an average particle size of about 15 μm was obtained by grinding the AS plate with a disk mill. The H / C ratio was 0.22. Next, 100 parts by weight of the above PAS powder and 100 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a copper foil (negative electrode current collector) having a thickness of 10 μm using an applicator, dried and pressed to obtain a PAS negative electrode having a thickness of 210 μm in which PAS was applied on both sides. Commercial LiCoO
2 to 100 parts (made by Strem Co.) and 5 parts of graphite,
A slurry was obtained by sufficiently mixing 10 parts by weight of polyvinylidene fluoride powder and 50 parts by weight of a solution dissolved in 90 parts by weight of N, N-dimethylformamide. The slurry
Is coated on an aluminum foil (positive electrode current collector) having a thickness of 20 μm using an applicator, dried and pressed, and LiCo is coated on both sides.
A positive electrode 1 having a thickness of 280 μm coated with O 2 was obtained.

【0022】上記負極をリチウムを対極とし、電解液に
プロピレンカ−ボネ−トとジエチルカ−ボネ−トの1:
1(重量比)混合液に、1モル/lの濃度にLiPF6
を溶解した溶液を用い、リチウム参照極を有する電解セ
ルを組んだ。リチウム参照極に対して、PAS負極が、
+20mV,0mV,−20mV,−50mV,−10
0mVとなるように、定電圧を印加し、300mAh/
g(負極由来のリチウム)が担持できる時間を測定し
た。結果を表1に示す。上記正極1,負極(いずれも1
×1cm2 )とを用い、図1のような電池を組んだ。セ
パレーターとしては、厚さ25μmのポリプロピレンセ
パレ−タ用いた。電池内の負極PASに対する総リチウ
ム量は、1040mAh/gであった。上記電池に0.
25mAhの定電流で電池電圧が4.3Vになるまで充
電し、続いて0.25mAhの定電流で電池電圧が2.
5Vになるまで放電した。この4.3V−2.5Vのサ
イクルを繰り返し、3回目の放電において、体積容量
(mAh/cc)にて評価した。体積基準としては、電
極体積、セパレ−タ体積、集電体体積の総計を用いた。
結果を表1に示す。
Lithium is used as a counter electrode for the negative electrode, and the electrolyte solution contains propylene carbonate and diethyl carbonate at a ratio of 1 :.
1 (weight ratio) liquid mixture to a concentration of 1 mol / l LiPF 6
An electrolytic cell having a lithium reference electrode was assembled using a solution in which was dissolved. For the lithium reference electrode, the PAS negative electrode is
+20 mV, 0 mV, -20 mV, -50 mV, -10
A constant voltage is applied so that it becomes 0 mV, and 300 mAh /
The time during which g (lithium derived from the negative electrode) can be supported was measured. The results are shown in Table 1. The above positive electrode 1 and negative electrode (both are 1
× 1 cm 2 ) and a battery as shown in FIG. 1 was assembled. A 25 μm thick polypropylene separator was used as the separator. The total amount of lithium with respect to the negative electrode PAS in the battery was 1040 mAh / g. 0.
It is charged at a constant current of 25 mAh until the battery voltage reaches 4.3 V, and then at a constant current of 0.25 mAh, the battery voltage is 2.
It discharged until it became 5V. This 4.3V-2.5V cycle was repeated, and the volume capacity (mAh / cc) was evaluated in the third discharge. As the volume reference, the total of the electrode volume, the separator volume, and the current collector volume was used.
The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【比較例1】実施例1において、リチウム金属(約20
0μm)を、負極PASに、はりつけ、厚さ2mmのポ
リプロピレン板に挟み、実施例1と同様の電解液中に
て、負極由来のリチウムを担持させた。約40分間でリ
チウム金属をPAS負極からはがしたところ、、300
mAh/gのリチウムをド−プすることができた。負の
電圧を印加した場合に比べ時間がかかる。
Comparative Example 1 In Example 1, lithium metal (about 20
0 μm) was attached to a negative electrode PAS, sandwiched between polypropylene plates having a thickness of 2 mm, and lithium derived from the negative electrode was supported in the same electrolytic solution as in Example 1. When the lithium metal was peeled off from the PAS negative electrode in about 40 minutes, 300
It was possible to dope mAh / g of lithium. It takes more time than when a negative voltage is applied.

【0025】[0025]

【比較例2】実施例1において、対極リチウム金属(約
200μm)と負極PASを短絡することにより、負極
PASに、負極由来のリチウムを担持させた。約35分
間で300mAh/gのリチウムをド−プすることがで
きた。負の電圧を印加した場合に比べ時間がかかる。
Comparative Example 2 In Example 1, the negative electrode PAS was made to carry lithium derived from the negative electrode by short-circuiting the counter electrode lithium metal (about 200 μm) and the negative electrode PAS. It was possible to dope 300 mAh / g lithium in about 35 minutes. It takes more time than when a negative voltage is applied.

【0026】[0026]

【比較例3】厚さ0.5mmのフェノ−ル樹脂成形板を
シリコニット電気炉中に入れ窒素雰囲気下で10℃/時
間の速度で昇温し、1000℃まで熱処理し、炭素質材
料を得た。かくして得られたPAS板をディスクミルで
粉砕することにより平均粒径約13μmの炭素質材料粉
末を得た。H/C比は0.02であった。該炭素質材料
を実施例1と同様の方法で電極とし、負極由来のリチウ
ムを、実施例1と同様の方法でリチウムを担持させた。
+20mVの場合、担持にかかった時間は50分,、0
mVの場合、担持にかかった時間は45分であり−20
mV,−50mV,−100mVを印加した場合、負極
炭素材料上にリチウム金属が析出した。そのまま、放置
したところ、リチウム金属は約30時間後には消えてい
たが、負極由来のリチウムの担持方法として実用的であ
るとはいえない。また、+20mVで作成した負極を用
い実施例1と同様の電池を組み、評価したところ、3サ
イクル終了後、負極上に大量のリチウム金属が析出して
いた。
[Comparative Example 3] A 0.5 mm-thick phenol resin molded plate was placed in a siliconit electric furnace, heated at a rate of 10 ° C / hour in a nitrogen atmosphere, and heat-treated to 1000 ° C to obtain a carbonaceous material. It was The PAS plate thus obtained was pulverized with a disc mill to obtain a carbonaceous material powder having an average particle size of about 13 μm. The H / C ratio was 0.02. The carbonaceous material was used as an electrode in the same manner as in Example 1, and lithium derived from the negative electrode was loaded with lithium in the same manner as in Example 1.
+20 mV, loading time is 50 minutes, 0
In the case of mV, the time required for loading is 45 minutes and is -20
When mV, -50 mV, and -100 mV were applied, lithium metal was deposited on the negative electrode carbon material. When left as it was, the lithium metal disappeared after about 30 hours, but it cannot be said to be practical as a method for supporting lithium derived from the negative electrode. A battery similar to that of Example 1 was assembled using the negative electrode prepared at +20 mV and evaluated. After 3 cycles, a large amount of lithium metal was deposited on the negative electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電池の基本構成説明図。FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3、3’集電体 4 電解液 5 セパレ−タ− 6 電池ケ−ス 7、7’ 外部端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3, 3'collector 4 Electrolyte solution 5 Separator 6 Battery case 7, 7'External terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 之規 大阪市都島区友渕町1丁目6番2−305号 (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6番13号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Noriyuki Hato, No. 6 2-305, Tomobuchi-cho, Miyakojima-ku, Osaka (72) Inventor Shizuka Yada 2-6-13 Miyanishi, Harima-cho, Kako-gun, Hyogo Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極,負極並びに電解液としてリチウム
塩の非プロトン性有機溶媒溶液を備えた有機電解質電池
であって、(1)正極が金属酸化物を含み(2)負極が
芳香族系縮合ポリマ−の熱処理物であって水素原子/炭
素原子の原子比が0.5〜0.05であるポリアセン系
骨格構造を有する不溶不融性基体であり、(3)負極P
ASに対し、電池内に含まれる総リチウム量が500m
Ah/g以上であり、かつ負極由来のリチウムが100
mAh/g以上であり負極由来のリチウムを、Li金属
の電位以下の電位を印加することにより電気化学的に担
持させる事を特徴とする有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein (1) the positive electrode contains a metal oxide and (2) the negative electrode is an aromatic condensation. (3) Negative electrode P, which is a heat-treated polymer and is an insoluble and infusible substrate having a polyacene-based skeleton structure in which the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05.
The total amount of lithium contained in the battery is 500 m compared to AS
Ah / g or more and the amount of lithium derived from the negative electrode is 100
An organic electrolyte battery characterized in that lithium derived from a negative electrode, which is mAh / g or more, is electrochemically supported by applying a potential lower than that of Li metal.
【請求項2】 リチウム含有金属酸化物を正極とするも
のである請求項1記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein a lithium-containing metal oxide is used as a positive electrode.
JP6225539A 1994-08-26 1994-08-26 Organic electrolyte battery Pending JPH0864251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6225539A JPH0864251A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6225539A JPH0864251A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0864251A true JPH0864251A (en) 1996-03-08

Family

ID=16830885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6225539A Pending JPH0864251A (en) 1994-08-26 1994-08-26 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0864251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063892A (en) * 2000-08-14 2002-02-28 Kansai Research Institute Nonaqueous secondary battery
JP2003022803A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2017011068A (en) * 2015-06-19 2017-01-12 日本電気株式会社 Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063892A (en) * 2000-08-14 2002-02-28 Kansai Research Institute Nonaqueous secondary battery
JP2003022803A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2017011068A (en) * 2015-06-19 2017-01-12 日本電気株式会社 Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode

Similar Documents

Publication Publication Date Title
KR100280252B1 (en) Organic electrolyte battery
JP3218285B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JPH0864251A (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH08162159A (en) Organic elctrolytic battery
JP3002123B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP2869355B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JPH09102301A (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP3403857B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JPH0864249A (en) Organic electrolyte battery
JPH0864252A (en) Organic electrolyte battery
JPH0864250A (en) Organic electrolyte battery
JPH0864248A (en) Organic electrolyte battery
JP2920069B2 (en) Organic electrolyte battery
JP2781725B2 (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery
JP2574731B2 (en) Organic electrolyte battery
JPH0864247A (en) Organic electrolyte battery