JP2011081960A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2011081960A
JP2011081960A JP2009231738A JP2009231738A JP2011081960A JP 2011081960 A JP2011081960 A JP 2011081960A JP 2009231738 A JP2009231738 A JP 2009231738A JP 2009231738 A JP2009231738 A JP 2009231738A JP 2011081960 A JP2011081960 A JP 2011081960A
Authority
JP
Japan
Prior art keywords
secondary battery
infusible substrate
insoluble
lithium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009231738A
Other languages
Japanese (ja)
Inventor
Tsuguro Mori
嗣朗 森
Hisashi Satake
久史 佐竹
Mayumi Kuriyama
真由美 久里山
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2009231738A priority Critical patent/JP2011081960A/en
Publication of JP2011081960A publication Critical patent/JP2011081960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery capable of doping/dedoping lithium and having an excellent capacity and moreover excellent in input/output characteristics even in a continuous discharging exceeding 10 seconds. <P>SOLUTION: In the nonaqueous secondary battery provided with a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte solution in which lithium salt is dissolved in a nonaqueous solvent, the positive electrode contains at least an active material which can store/desorb lithium and a fiber type conductive material, and the negative electrode has an atomic ratio of hydrogen to carbon of 0.60-0.05, and moreover, has a principal composition of an insoluble/infusible substrate (A) having a face interval of crystal faces (002) of 3.6 Å or more and an average grain diameter of the insoluble/infusible substrate (A) is 2.0 μm or less and moreover a specific surface area in the BET method is less than 150 m<SP>2</SP>/g, and lithium of 500 mAh/g or more per weight of the insoluble/infusible substrate (A) is carried. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高エネルギー密度かつ高入出力特性を有する非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery having high energy density and high input / output characteristics.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。その中、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システム側には高出力放電特性および/または高率充電特性が要求されている。この要求に対応するため、蓄電システムにおいてはリチウムイオン電池の高出力化あるいは電気二重層キャパシタに代表されるキャパシタの高エネルギー密度化が検討されている。   In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources. Yes. Among them, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), the engine or the fuel cell operates at maximum efficiency. In order to cope with output fluctuation or energy regeneration on the load side, high output discharge characteristics and / or high rate charging characteristics are required on the power storage system side. In order to meet this demand, in power storage systems, higher output of lithium ion batteries or higher energy density of capacitors typified by electric double layer capacitors are being studied.

高エネルギー密度二次電池の代表であるリチウムイオン電池は、負極にはリチウムイオンのドープ・脱ドープ可能な黒鉛などの炭素材料が用いられてきた。リチウムイオン電池用負極材料として適用可能な材料としては、黒鉛、非晶質炭素材料が一般的である。   In lithium ion batteries, which are representative of high energy density secondary batteries, carbon materials such as graphite capable of being doped / undoped with lithium ions have been used for the negative electrode. As a material applicable as a negative electrode material for a lithium ion battery, graphite and an amorphous carbon material are generally used.

一方、リチウムイオンのドープ・脱ドープ可能な材料として炭素六角網面の周縁に水素が結合している材料群(最近、非特許文献1においてハイドログラフェンと総称されている)があり、例えば特許文献1に記載されている、炭素、水素および酸素から成る芳香族系縮合ポリマーの熱処理物であって、水素/炭素原子比が0.60〜0.15であり、ポリアセン系骨格構造を含有する不溶不融性基体がある。ポリアセン系骨格構造を含有する不溶不融性基体は非特許文献2にてPASと呼ばれ(PASはPolyacenic Semiconductorの略)、その特徴は、黒鉛の3倍程度のリチウムイオンをドープ/脱ドープできることが非特許文献3に記載されている。また、このポリアセン系骨格構造を含有する不溶不融性基体を用い、リチウムを予め負極に担持(以下、プリドープと呼ぶこともある)させることにより、高電圧・高容量化した非水系二次電池が非特許文献4、特許文献2、非特許文献5、特許文献3に記載されているが、いずれもポリアセン系骨格構造を含有する不溶不融性基体(PAS)の特徴である高容量を活かした高エネルギー密度タイプの電池へのアプローチであり、高エネルギー密度かつ高出力を有する非水系リチウムイオン電池への適用に関する記載はない。   On the other hand, there is a material group (generally referred to as hydrographene in Non-Patent Document 1) in which hydrogen is bonded to the periphery of the carbon hexagonal network as a material capable of doping and dedoping lithium ions. 1. A heat-treated product of an aromatic condensation polymer composed of carbon, hydrogen, and oxygen described in 1, having a hydrogen / carbon atom ratio of 0.60 to 0.15 and containing a polyacene skeleton structure There is an infusible substrate. An insoluble and infusible substrate containing a polyacene-based skeleton structure is called PAS in Non-Patent Document 2 (PAS is an abbreviation for Polyacenic Semiconductor), and its feature is that it can be doped / undoped with lithium ions about 3 times that of graphite. Is described in Non-Patent Document 3. In addition, a non-aqueous secondary battery having a high voltage and a high capacity can be obtained by using lithium in an anode (hereinafter sometimes referred to as pre-doping) using an insoluble infusible substrate containing this polyacene skeleton structure. Are described in Non-Patent Document 4, Patent Document 2, Non-Patent Document 5, and Patent Document 3, but all take advantage of the high capacity that is characteristic of insoluble and infusible substrates (PAS) containing a polyacene-based skeleton structure. In addition, there is no description regarding application to a non-aqueous lithium ion battery having a high energy density and a high output.

炭素六角網面の周縁に水素が結合している材料(ハイドログラフェン)の他の例としては、ピッチを主成分とする原料を熱反応に供することにより得られ、水素/炭素原子比が0.35〜0.05である材料があり、上記PASを上回る1000mAh/g以上のリチウムをドープ・脱ドープ可能であることが記載されている(特許文献4、非特許文献6)。この材料について非特許文献6、非特許文献7ではPAHs(Polycyclic Aromatic Hydrocarbonsの略称)と呼び、代表的な炭素六角網面の形状が円盤状であることが記載されている。また、非特許文献8には、このPAHsを負極に用いたリチウム系二次電池が開示されており、市販リチウムイオン電池の2倍程度の容量を有する小型二次電池が得られているが、これもPAHsの特徴である高容量を活かした高エネルギー密度タイプの電池へのアプローチであり、高エネルギー密度かつ高出力を有する非水系リチウムイオン電池への適用に関する記載はない。   Another example of a material in which hydrogen is bonded to the periphery of the carbon hexagonal network surface (hydrographene) is obtained by subjecting a raw material mainly composed of pitch to a thermal reaction, and a hydrogen / carbon atomic ratio of 0. There is a material that is 35 to 0.05, and it is described that lithium of 1000 mAh / g or more exceeding the PAS can be doped / undoped (Patent Document 4, Non-Patent Document 6). Non-Patent Document 6 and Non-Patent Document 7 refer to this material as PAHs (abbreviation of Polycyclic Aromatic Hydrocarbons), which describes that the shape of a typical carbon hexagonal mesh surface is a disk shape. Non-Patent Document 8 discloses a lithium secondary battery using the PAHs as a negative electrode, and a small secondary battery having a capacity about twice that of a commercially available lithium ion battery is obtained. This is also an approach to a high energy density type battery utilizing the high capacity that is characteristic of PAHs, and there is no description regarding application to a non-aqueous lithium ion battery having high energy density and high output.

最近、キャパシタの高エネルギー密度化が検討され始め、正極に活性炭、負極にリチウムイオンのドープ・脱ドープ可能な材料、電解液にリチウム塩を含むリチウム型キャパシタの開発も進められている(特許文献5)。また、非特許文献9および非特許文献10には上記PASを負極に用い、この負極にリチウムを予め担持させたリチウム系電解液を用いたキャパシタが開示されているが、そのエネルギー密度は20Wh/L(12Wh/kg)程度であり、上記要求を満たすためには、更なる高エネルギー密度化、高出力化が必要である。   Recently, higher energy density of capacitors has begun to be studied, and development of lithium-type capacitors containing activated carbon for the positive electrode, materials capable of being doped / undoped with lithium ions for the negative electrode, and lithium salts in the electrolyte is also underway (Patent Literature). 5). Non-Patent Document 9 and Non-Patent Document 10 disclose capacitors using the above-mentioned PAS as a negative electrode and a lithium-based electrolyte in which lithium is supported on the negative electrode in advance. The energy density thereof is 20 Wh / L (about 12 Wh / kg), and in order to satisfy the above requirements, further higher energy density and higher output are required.

更に、特許文献6には、従来にない高エネルギー密度かつ高出力特性を有するデバイスの実現に向け、負極活物質重量に対して数10A/g程度の電流密度で放電可能であり、かつ電極密度が高く、負極活物質重量あたりの容量も高い非水系二次電池用負極およびそれを用いた高エネルギー密度・高出力非水系二次電池が開示されており、具体的には、水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体を主成分とする非水系二次電池用負極において、不溶不融性基体の平均粒子径が2.0μm以下であり、かつ不溶不融性基体の重量あたり500mAh/g以上のリチウムを予め担持させてあることを特徴とする非水系二次電池用負極が記載されている。   Further, Patent Document 6 discloses that discharge can be performed at a current density of about several tens of A / g with respect to the weight of the negative electrode active material and an electrode density for realizing a device having an unprecedented high energy density and high output characteristics. A negative electrode for a non-aqueous secondary battery having a high capacity and a high capacity per weight of the negative electrode active material and a high energy density / high-power non-aqueous secondary battery using the same are disclosed. Specifically, a hydrogen atom / carbon is disclosed. In an insoluble insoluble negative electrode for a non-aqueous secondary battery whose main component is an insoluble infusible substrate having an atomic ratio of 0.60 to 0.05 and a crystal plane 002 plane spacing of 3.6 mm or more. A negative electrode for a non-aqueous secondary battery characterized in that an average particle size of a fusible substrate is 2.0 μm or less and lithium of 500 mAh / g or more per weight of an insoluble and infusible substrate is previously supported. Has been.

リチウムイオン電池の正極には、リチウムをドープ・脱ドープ可能なもの、例えば、リチウム複合金属酸化物としてはリチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、リチウム複合燐酸鉄、あるいはこれらの混合物など種々の材料が提案されている。   The positive electrode of the lithium ion battery can be doped with lithium and dedope. For example, lithium composite metal oxides include lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, lithium composite iron phosphate, Or various materials, such as these mixtures, are proposed.

リチウムイオン電池の高出力化に向け、正極については、導電材による電極集電構造の改良がなされている。例えば特許文献7によれば、正極活物質に導電材として粉末状炭素材料および鱗片状炭素材料及び繊維状炭素材料が混合されている正極が開示されている。実施例によれば、当該正極を用い、負極に黒鉛電極を用いた場合、10秒間放電可能出力で2.3kW/kg程度の出力密度が得られることが記載されている。また特許文献8によれば、繊維径は、1μm〜15μmの繊維状の黒鉛よりなる導電材を用いた正極が開示されており、3C放電容量が1C放電容量に対して95%以上であることが記載されている。しかしながら、エネルギー密度が100Wh/L以上のリチウムイオン電池において、繊維状の導電材を用いて重量あたり7kW/kg以上(あるいは体積あたり10kW/L以上)の出力密度の記載は無い。   In order to increase the output of the lithium ion battery, the electrode current collection structure using a conductive material has been improved for the positive electrode. For example, Patent Document 7 discloses a positive electrode in which a positive electrode active material is mixed with a powdery carbon material, a scaly carbon material, and a fibrous carbon material as a conductive material. According to Examples, it is described that when the positive electrode is used and a graphite electrode is used for the negative electrode, an output density of about 2.3 kW / kg can be obtained with a dischargeable output for 10 seconds. According to Patent Document 8, a positive electrode using a conductive material made of fibrous graphite having a fiber diameter of 1 μm to 15 μm is disclosed, and the 3C discharge capacity is 95% or more of the 1C discharge capacity. Is described. However, in a lithium ion battery having an energy density of 100 Wh / L or more, there is no description of an output density of 7 kW / kg or more per weight (or 10 kW / L or more per volume) using a fibrous conductive material.

上述の如く、リチウムイオンを用いた非水系蓄電デバイス(電池、キャパシタ)の高エネルギー密度・高出力化が検討される中、その入出力評価法に関しても技術開発が進んでいる。非特許文献11、非特許文献12には「電流休止法」による直流内部抵抗(「電流休止法抵抗」)評価法および「電流休止法抵抗」を用いた入出力計算法が示されている。「電流休止法抵抗」は、従来の抵抗評価法(交流内部抵抗評価、充放電時のΔVから算出する直流内部抵抗評価)と異なり、直接デバイスの入出力カーブと関連づけることができる。すなわち、「電流休止法抵抗」の時間依存性を解析することにより、直接、デバイスの入出力カーブを計算により求めることができ、「電流休止法抵抗」の時間依存性を評価・解析することにより、デバイスの入出力特性評価が可能となる。   As described above, while studying high energy density and high output of non-aqueous storage devices (batteries and capacitors) using lithium ions, technological development is also progressing with respect to the input / output evaluation method. Non-Patent Document 11 and Non-Patent Document 12 show a DC internal resistance (“current quiescent method resistance”) evaluation method by “current quiescent method” and an input / output calculation method using “current quiescent method resistance”. Unlike the conventional resistance evaluation method (AC internal resistance evaluation, DC internal resistance evaluation calculated from ΔV during charge / discharge), the “current pause method resistance” can be directly related to the input / output curve of the device. In other words, by analyzing the time dependence of the “current pause method resistance”, the input / output curve of the device can be directly calculated, and by evaluating and analyzing the time dependency of the “current pause method resistance” The device input / output characteristics can be evaluated.

また、従来、例えば、優れた入出力特性を有する正極、負極を開発した場合、電池を組み評価しても、正極、負極の個別の入出力特性を正確に評価する(電池から抵抗を分離評価する)ことは困難を極めていた。このような課題を解決する評価法として、非特許文献11、非特許文献12には「四極セル」による抵抗分離手法が記載されている。この方法によれば、デバイスの正極抵抗、負極抵抗、セパレータ(電解液)抵抗を分離し、評価することができ、この「四極セル」による抵抗分離手法を用い、かつ、上述の「電流休止法抵抗」を適用すれば、簡便かつ正確に、正極あるいは負極の入出力特性を個別に分離評価可能である。     Conventionally, for example, when positive and negative electrodes having excellent input / output characteristics have been developed, the individual input / output characteristics of the positive and negative electrodes are accurately evaluated even if the battery is assembled (evaluation is performed by separating the resistance from the battery). It was extremely difficult to do. As an evaluation method for solving such a problem, Non-Patent Document 11 and Non-Patent Document 12 describe a resistance separation technique using a “quadrupole cell”. According to this method, the positive electrode resistance, the negative electrode resistance, and the separator (electrolyte) resistance of the device can be separated and evaluated, the resistance separation method using this “quadrupole cell” is used, and the above-described “current pause method” By applying “resistance”, it is possible to separate and evaluate the input / output characteristics of the positive electrode or the negative electrode easily and accurately.

特開昭59−3806号公報JP 59-3806 特開平3−233860号公報JP-A-3-233860 WO98/33227号公報WO98 / 33227 特開2000−251885号公報JP 2000-251885 A WO2002/41420号公報WO2002 / 41420 Publication 特開2007−294286号公報JP 2007-294286 A 特開2000−208147号公報JP 2000-208147 A 特開2000−133245号公報JP 2000-133245 A

T.Yamabe,M.Fujii,S.Mori,H.Kinoshita,S.Yata:Synth.Met.,145,31(2004)T.A. Yamabe, M .; Fujii, S .; Mori, H .; Kinoshita, S .; Yata: Synth. Met. , 145, 31 (2004) S.Yata,Y.Hato,K.Sakurai,T.Osaki,K.Tanaka,T.Yamabe:Synth.Met.,18,645(1987)S. Yata, Y. et al. Hato, K .; Sakurai, T .; Osaki, K .; Tanaka, T .; Yamabe: Synth. Met. , 18, 645 (1987) S.Yata,H.Kinoshita,M.Komori,N.Ando,T.Kashiwamura,T.Harada,K.Tanaka,T.Yamabe:Synth.Met.,62,153(1994)S. Yata, H .; Kinoshita, M .; Komori, N .; Ando, T .; Kashiwamura, T .; Harada, K .; Tanaka, T .; Yamabe: Synth. Met. 62, 153 (1994) 矢田静邦,工業材料,Vol.40,No.5,32(1992)Shigeru Yada, Industrial Materials, Vol. 40, no. 5, 32 (1992) S.Yata,Y.Hato,H.Kinoshita,N.Ando,A.Anekawa,T.Hashimoto,M.Yamaguchi,K.Tanaka,T.Yamabe:Synth.Met.,73,273(1995)S. Yata, Y. et al. Hato, H .; Kinoshita, N .; Ando, A .; Anekawa, T .; Hashimoto, M .; Yamaguchi, K .; Tanaka, T .; Yamabe: Synth. Met. 73, 273 (1995) S.Wang,S.Yata,J.Nagano,Y.Okano,H.Kinoshita,H.Kikuta,T.Yamabe:J.Electrochem.Soc.,147(7),2498(2000)S. Wang, S.W. Yata, J .; Nagano, Y .; Okano, H .; Kinoshita, H .; Kikuta, T .; Yamabe: J. et al. Electrochem. Soc. , 147 (7), 2498 (2000) 矢田静邦他:分子機能材料と素子開発、77(2004)Shigekuni Yada et al .: Molecular Functional Materials and Device Development, 77 (2004) 矢田静邦他:分子機能材料と素子開発、428(2004)Shigetaka Yada et al .: Functional molecular materials and device development, 428 (2004) 安東信雄他,リチウムイオンキャパシタの開発(1)「第46回電池討論会講演要旨集」、2005年11月、1C12、p294Nobuo Ando et al., Development of Lithium Ion Capacitor (1) “Abstracts of the 46th Battery Discussion Meeting”, November 2005, 1C12, p294 田崎信一他、リチウムイオンキャパシタの開発(2)「第46回電池討論会講演要旨集」、2005年11月、1C13、p296Shinichi Tazaki et al., Development of Lithium Ion Capacitors (2) “Abstracts of the 46th Battery Conference”, November 2005, 1C13, p296 矢田静邦、「リチウムイオン電池・キャパシタの実践評価技術」、技術情報協会(2006年)Shigekuni Yada, "Practical evaluation technology for lithium-ion batteries and capacitors", Technical Information Association (2006) 矢田静邦、「続・リチウムイオン電池・キャパシタの実践評価技術」、技術情報協会(2009年)Shigekuni Yada, “Practical Evaluation Technology for Lithium Ion Batteries and Capacitors”, Technical Information Association (2009)

特許文献6に記載のとおり、水素原子/炭素原子比が0.60〜0.05であり、結晶面002面の面間隔が3.6Å以上であり、平均粒子径が2.0μm以下である不溶不融性基体に、その重量あたり500mAh/g以上のリチウムを予め担持させることにより、高容量かつ高入出力を有する非水系二次電池用負極が得られ、この負極は次世代高入出力蓄電デバイス実現に貢献するものである。しかし、上述の「四極セル」による抵抗分離手法を用い、かつ、「電流休止法抵抗」を適用し、負極入出力特性を分離評価した場合、10秒までの「電流休止法抵抗」(充電あるいは放電開始10秒までの入出力特性に相当)は、従来の、黒鉛系材料、非晶炭素材料などに比べ、その抵抗は大幅に低減するものの、10秒以降において「電流休止法抵抗」が上昇するという課題が見出された。この場合、例えば、HEV用リチウムイオン電池に適用した場合、その連続充放電時間は10秒内であり、大きな問題は生じないが、30秒程度の連続充放電が要求されると考えられるプラグインハイブリッド用リチウムイオン電池などに適用としようとする場合、更なる改善が必要であった。   As described in Patent Document 6, the hydrogen atom / carbon atom ratio is 0.60 to 0.05, the interplanar spacing of the crystal plane 002 is 3.6 mm or more, and the average particle size is 2.0 μm or less. By supporting lithium of 500 mAh / g or more per weight on an insoluble infusible substrate in advance, a negative electrode for non-aqueous secondary batteries having high capacity and high input / output can be obtained. It contributes to the realization of electricity storage devices. However, when the resistance separation method by the above-mentioned “quadrupole cell” is used and the “current pause method resistance” is applied and the negative electrode input / output characteristics are separated and evaluated, the “current pause method resistance” (charging or Equivalent to the input / output characteristics up to 10 seconds after the start of discharge), the resistance is significantly reduced compared to conventional graphite-based materials and amorphous carbon materials, but the “current pause method resistance” increases after 10 seconds. The problem of doing was found. In this case, for example, when applied to a lithium-ion battery for HEV, the continuous charge / discharge time is within 10 seconds, and no major problem occurs, but a plug-in considered to require continuous charge / discharge of about 30 seconds. When trying to apply to a lithium-ion battery for hybrid, etc., further improvement was necessary.

また、上記10秒以降の「電流休止法抵抗」が上昇するという課題を解決し、高容量かつ高入出力を有する非水系二次電池用負極が得られても、その負極の高容量、高入出力特性を充分に引き出し、より性能の優れた高エネルギー密度かつ高入出力特性を有する非水系二次電池を得るためには、負極のみならず、その負極特性に応じた正極を設計する必要があった。   Moreover, even if the problem that the “current pause method resistance” after 10 seconds is increased and a negative electrode for a non-aqueous secondary battery having high capacity and high input / output is obtained, the high capacity, high It is necessary to design not only the negative electrode but also the positive electrode according to the negative electrode characteristic in order to obtain a non-aqueous secondary battery that fully draws out the input / output characteristic and has higher performance, higher energy density and higher input / output characteristic. was there.

従って、本発明は容量に優れ、かつ、10秒を超える連続充放電においても入出力特性に優れる非水系二次電池を提供することにある。   Accordingly, it is an object of the present invention to provide a non-aqueous secondary battery that is excellent in capacity and excellent in input / output characteristics even during continuous charge / discharge exceeding 10 seconds.

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、容量に優れ、かつ、高エネルギー密度かつ従来にない高い出力特性を兼ね備えた非水系二次電池を得るためには、(1)正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材を含むこと、および(2)負極に結晶面002面の面間隔が3.6Å以上である不溶不融性基体を用い、該不溶不融性基体の粒子径、比表面積、該不溶不融性基体に担持させるリチウム量を制御することにより達成できることを見出し、本発明を完成するに至った。   As a result of conducting research while paying attention to the problems of the prior art as described above, the present inventor has obtained a non-aqueous secondary battery that has excellent capacity, high energy density, and high output characteristics that have not been conventionally available. In order to obtain, (1) the positive electrode contains at least an active material capable of occluding and desorbing lithium, and a fibrous conductive material, and (2) the negative electrode has a crystal plane 002 plane spacing of 3.6 mm or more. The inventors have found that this can be achieved by using an insoluble and infusible substrate, and controlling the particle size, specific surface area, and amount of lithium supported on the insoluble and infusible substrate, and have completed the present invention. .

すなわち本発明は、以下の構成からなることを特徴とし、上記課題を解決するものである。   That is, the present invention is characterized by having the following configuration and solves the above problems.

〔1〕正極、負極、セパレータおよびリチウム塩が非水溶媒に溶解されてなる非水系電解液を具備する非水系二次電池において、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材を含み、負極が水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下かつBET法による比表面積が150m/g未満であり、不溶不融性基体(A)の重量あたり500mAh/g以上のリチウムを担持させてあることを特徴とする非水系二次電池。 [1] In a non-aqueous secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent, the positive electrode is an active material that can occlude and desorb at least lithium, a fibrous material An insoluble infusible substrate (A) containing a conductive material, in which the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, and the interplanar spacing of the crystal plane 002 is at least 3.6 mm. As an ingredient, the insoluble infusible substrate (A) has an average particle size of 2.0 μm or less and a specific surface area by the BET method of less than 150 m 2 / g, and is 500 mAh / g or more per weight of the insoluble infusible substrate (A). A non-aqueous secondary battery in which lithium is supported.

〔2〕前記非水系二次電池において、負極の主成分である不溶不融性基体(A)の20Å以下の細孔が0.05cc/g以下であることを特徴とする前記〔1〕に記載の非水系二次電池。   [2] In the above [1], in the non-aqueous secondary battery, the insoluble infusible substrate (A) as a main component of the negative electrode has a pore size of 20 cm or less being 0.05 cc / g or less. The nonaqueous secondary battery as described.

〔3〕前記非水系二次電池において、負極の主成分である不溶不融性基体(A)が、水素原子/炭素原子比が0.60〜0.05、BET法による比表面積が500m/g未満である不溶不融性基体(B)を粉砕して得られる平均粒子径が2.0μm以下の不溶不融性基体(B)粉砕物の細孔の一部あるいは全部を、炭素質材料で塞いだことを特徴とする前記〔1〕あるいは〔2〕に記載の非水系二次電池。 [3] In the non-aqueous secondary battery, the insoluble infusible substrate (A) as the main component of the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, and a specific surface area by the BET method of 500 m 2. Part or all of the pores of the pulverized insoluble infusible substrate (B) having an average particle size of 2.0 μm or less obtained by pulverizing the insoluble infusible substrate (B) less than / g The nonaqueous secondary battery according to [1] or [2], wherein the nonaqueous secondary battery is sealed with a material.

〔4〕前記非水系二次電池において、負極の主成分である不溶不融性基体(A)が、水素原子/炭素原子比が0.60〜0.05、BET法による比表面積が500m/g未満である不溶不融性基体(B)を粉砕して得られる平均粒子径が2.0μm以下の不溶不融性基体(B)粉砕物を、炭素前駆体の共存下熱処理することによって得ることを特徴とする前記〔1〕から〔3〕のいずれかに記載の非水系二次電池。 [4] In the non-aqueous secondary battery, the insoluble infusible substrate (A) as the main component of the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, and a specific surface area by the BET method of 500 m 2. By heat-treating the pulverized insoluble infusible substrate (B) having an average particle diameter of 2.0 μm or less obtained by pulverizing the insoluble infusible substrate (B) of less than / g in the presence of a carbon precursor. The nonaqueous secondary battery according to any one of [1] to [3], wherein the nonaqueous secondary battery is obtained.

〔5〕前記非水系二次電池において、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材及び非繊維状導電材を含むことを特徴とする前記〔1〕から〔4〕のいずれかに記載の非水系二次電池。   [5] In the non-aqueous secondary battery, the positive electrode includes at least an active material capable of inserting and extracting lithium, a fibrous conductive material, and a non-fibrous conductive material. The non-aqueous secondary battery according to any one of the above.

〔6〕前記非水系二次電池において、正極に含まれる繊維状導電材が2重量%以上13重量%以下であることを特徴とする前記〔1〕から〔5〕のいずれかに記載の非水系二次電池。   [6] The non-aqueous secondary battery according to any one of [1] to [5], wherein the fibrous conductive material contained in the positive electrode is 2 wt% or more and 13 wt% or less. Water-based secondary battery.

〔7〕前記非水系二次電池において、正極に含まれる繊維状導電材が2重量%以上13重量%以下であり、かつ、繊維状導電材と非繊維状導電材の総量が7重量%以上20重量%以下であることを特徴とする前記〔6〕に記載の非水系二次電池。   [7] In the non-aqueous secondary battery, the fibrous conductive material contained in the positive electrode is 2 wt% or more and 13 wt% or less, and the total amount of the fibrous conductive material and the non-fibrous conductive material is 7 wt% or more. The nonaqueous secondary battery as described in [6] above, which is 20% by weight or less.

〔8〕前記非水系二次電池において、正極に含まれるリチウムを吸蔵、脱離可能な活物質の平均粒子径が7μm以下であることを特徴とする前記〔1〕から〔7〕のいずれかに記載の非水系二次電池。   [8] In any one of the above [1] to [7], in the non-aqueous secondary battery, an average particle diameter of an active material capable of inserting and extracting lithium contained in the positive electrode is 7 μm or less. The non-aqueous secondary battery described in 1.

本発明の非水系二次電池では、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材を含み、負極が水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下であり、不溶不融性基体の重量あたり500mAh/g以上のリチウムを担持させてあり、その負極の不溶不融性基体(A)のBET法による比表面積が150m/g未満とすることを特徴とする非水系二次電池である。それゆえ、本発明の非水系二次電池における不溶不融性基体を用いた負極は、従来のリチウムイオン電池に用いられる黒鉛系炭素材料、難黒鉛性炭素材料(黒鉛炭素材料の理論容量でも372mAh/g)を用いる負極に比べ、高い放電容量(500mAh/g以上)を有する。更に、本発明の非水系二次電池における不溶不融性基体を用いた負極は、その不溶不融性基体のBET法による比表面積を150m/g未満とすることにより、特開2007−294286号公報(特許文献6)で提案される負極の10秒以降の「電流休止法抵抗」が上昇するという課題を大幅に改善することができ、従来のリチウムイオン電池に用いられる黒鉛系材料負極の1/2以下の「電流休止法抵抗」(60秒の抵抗値)を有し、10秒を超えるような連続充電あるいは放電においても、2倍以上の高い出力特性を有する。更に、この不溶不融性基体を用いた負極を、リチウムを吸蔵、脱離可能な活物質、繊維状導電材を含む正極と組み合わせることにより、従来にない高エネルギー密度(高容量)かつ高出力特性(低抵抗)を兼ね備えた非水系二次電池を得ることができる。 In the non-aqueous secondary battery of the present invention, the positive electrode includes at least an active material capable of inserting and extracting lithium, and a fibrous conductive material, and the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, In addition, the insoluble infusible substrate (A) whose crystal plane 002 plane spacing is 3.6 mm or more is a main component, and the insoluble infusible substrate (A) has an average particle size of 2.0 μm or less and is insoluble. 500 mAh / g or more of lithium is supported per weight of the infusible substrate, and the specific surface area by the BET method of the insoluble infusible substrate (A) of the negative electrode is less than 150 m 2 / g. It is an aqueous secondary battery. Therefore, the negative electrode using the insoluble and infusible substrate in the non-aqueous secondary battery of the present invention is a graphite-based carbon material, a non-graphitizable carbon material used in a conventional lithium ion battery (the theoretical capacity of the graphite carbon material is 372 mAh). / G) has a higher discharge capacity (500 mAh / g or more). Furthermore, the negative electrode using the insoluble and infusible substrate in the nonaqueous secondary battery of the present invention has a specific surface area of the insoluble and infusible substrate by BET method of less than 150 m 2 / g. The problem that the “current quiescent resistance” after 10 seconds of the negative electrode proposed in Japanese Patent Publication (Patent Document 6) increases can be greatly improved. It has a "current pause method resistance" of 1/2 or less (resistance value of 60 seconds) and has a high output characteristic more than twice even in continuous charging or discharging exceeding 10 seconds. Furthermore, combining a negative electrode using this insoluble and infusible substrate with a positive electrode containing an active material capable of occluding and desorbing lithium and a fibrous conductive material, it has an unprecedented high energy density (high capacity) and high output. A non-aqueous secondary battery having characteristics (low resistance) can be obtained.

本発明の正極の繊維状導電材および非繊維状導電材の配合比と、電気伝導度の関係を説明する図である。It is a figure explaining the relationship between the compounding ratio of the fibrous conductive material of a positive electrode of this invention, and a non-fibrous conductive material, and electrical conductivity. 本発明の実施例における四極セルの構成を説明する図である。It is a figure explaining the structure of the quadrupole cell in the Example of this invention. 本発明の実施例1における放電第一休止点の拡大図である。It is an enlarged view of the 1st discharge rest point in Example 1 of this invention.

本発明の一実施形態について、説明すれば以下の通りである。   An embodiment of the present invention will be described as follows.

本発明の非水系二次電池は、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材を含み、負極が水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下かつ不溶不融性基体のBET法による比表面積が150m/g未満であり、不溶不融性基体の重量あたり500mAh/g以上のリチウムを担持させてあることを特徴とする。 In the nonaqueous secondary battery of the present invention, the positive electrode includes at least an active material capable of inserting and extracting lithium, and a fibrous conductive material, and the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, In addition, the insoluble infusible substrate (A) whose crystal plane 002 plane spacing is 3.6 mm or more is a main component, the insoluble infusible substrate (A) has an average particle size of 2.0 μm or less and insoluble infusible. The specific surface area of the conductive substrate by the BET method is less than 150 m 2 / g, and 500 mAh / g or more of lithium is supported on the weight of the insoluble and infusible substrate.

本発明の非水系二次電池には、水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下であり、BET法による比表面積が150m/g未満であり、不溶不融性基体(A)の重量あたり500mAh/g以上のリチウムを担持させてあることを特徴とする負極を用いる。この不溶不融性基体(A)は、例えば、特開2007−294286号公報に記載されている水素原子/炭素原子比が0.60〜0.05、平均粒子径が2.0μm以下である不溶不融性基体(B)の粉砕物の比表面積を制御することにより得ることができる。以下、本発明の負極に適用可能な不溶不融性基体(B)、および、不溶不融性基体(B)の粉砕物(特開2007−294286号公報記載の平均粒子径が2.0μm以下である不溶不融性基体)について説明する。 In the non-aqueous secondary battery of the present invention, an insoluble infusible substrate having a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and an interval between crystal planes 002 of 3.6 mm or more ( The insoluble infusible substrate (A) has an average particle diameter of 2.0 μm or less, a specific surface area by the BET method of less than 150 m 2 / g, and the insoluble infusible substrate (A). A negative electrode characterized by supporting lithium of 500 mAh / g or more per weight is used. This insoluble infusible substrate (A) has, for example, a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and an average particle size of 2.0 μm or less described in JP-A-2007-294286. It can be obtained by controlling the specific surface area of the pulverized product of the insoluble infusible substrate (B). Hereinafter, an insoluble infusible substrate (B) applicable to the negative electrode of the present invention, and a pulverized product of the insoluble infusible substrate (B) (the average particle size described in JP-A-2007-294286 is 2.0 μm or less) The insoluble and infusible substrate) will be described.

不溶不融性基体(B)は、次の様な芳香族系縮合ポリマーを熱処理することにより得られる。芳香族系縮合ポリマーは芳香族炭化水素化合物の縮合物であり、例えば、芳香族炭化水素化合物とアルデヒド類の縮合物である。芳香族炭化水素化合物としては、例えば、フェノール、クレゾール、キシレノールなどの如き、いわゆるフェノール類が好適である。例えば、メチレン・ビスフェノール類であることができ、あるいはヒドロキシ・ビフェニル類、ヒドロキシナフタレン類であることもできる。これらの内、実用的にはフェノール類、特にフェノールが好適である。上記の芳香族系縮合ポリマーとしては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の一部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えば、キシレン、トルエン、アニリンなどで置換した変性芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもでき、メラミン、尿素で置換した変性芳香族系縮合ポリマーを用いることもできる。また、フラン樹脂も好適である。上記アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、フルフラールなどのアルデヒドを使用することができるが、ホルムアルデヒドが好適である。フェノールホルムアルデヒド縮合物としては、ノボラック型又はレゾール型あるはそれらの混合物のいずれであってもよい。また、エポキシ樹脂、不飽和ポリエステル、アルキド樹脂、ウレタン樹脂、エボナイトなどの熱硬化性樹脂、椰子ガラ、木屑、竹などのセルロース系原料、ポリイミドなどを熱処理することによっても得られる。本発明は不溶不融性基体の原料を限定するものではないが、本発明の不溶不融性基体は結晶面002面の面間隔が3.6Å以上と広いことを特徴とし、後述する熱反応時に液状化せずに、固相状態で不溶不融性基体(B)に到る原料を選択すると、この構造が得られやすい。   The insoluble infusible substrate (B) can be obtained by heat-treating the following aromatic condensation polymer. The aromatic condensation polymer is a condensate of an aromatic hydrocarbon compound, for example, a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, for example, so-called phenols such as phenol, cresol, xylenol and the like are suitable. For example, it can be methylene bisphenols, or it can be hydroxy biphenyls or hydroxynaphthalenes. Of these, phenols, particularly phenol, are suitable for practical use. As the aromatic condensation polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline, etc. A modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde can also be used, and a modified aromatic condensation polymer substituted with melamine or urea can also be used. Furan resins are also suitable. As the aldehyde, aldehydes such as formaldehyde, acetaldehyde and furfural can be used, but formaldehyde is preferable. The phenol formaldehyde condensate may be either a novolak type, a resol type or a mixture thereof. It can also be obtained by heat-treating thermosetting resins such as epoxy resins, unsaturated polyesters, alkyd resins, urethane resins and ebonites, cellulosic materials such as coconut shells, wood chips and bamboo, polyimides and the like. Although the present invention is not limited to the raw material of the insoluble and infusible substrate, the insoluble and infusible substrate of the present invention is characterized in that the crystal plane 002 has a wide interplanar spacing of 3.6 mm or more. When a raw material that reaches the insoluble and infusible substrate (B) in the solid phase without being liquefied is selected, this structure is easily obtained.

また、不溶不融性基体(B)は、例えば、上記に例示した原料を熱反応することにより得られ、特開昭59−3806号公報等に記載されているポリアセン系骨格構造を有する不溶不融性基体はその一例である。不溶不融性基体(B)は、例えば、次のようにして製造することができる。上記に例示した原料を、非酸化性雰囲気下(真空も含む)で、例えば、400℃〜800℃の適当な温度まで徐々に加熱することにより、水素原子/炭素原子比(以下、H/Cと記す)が0.60〜0.05の不溶不融性基体を得ることができる。   The insoluble infusible substrate (B) is obtained, for example, by thermally reacting the raw materials exemplified above and has an insoluble insoluble structure having a polyacene skeleton structure described in JP-A-59-3806. A fusible substrate is an example. The insoluble infusible substrate (B) can be produced, for example, as follows. The raw materials exemplified above are gradually heated to a suitable temperature of, for example, 400 ° C. to 800 ° C. in a non-oxidizing atmosphere (including a vacuum), whereby a hydrogen atom / carbon atom ratio (hereinafter referred to as H / C). Insoluble and infusible substrates having a value of 0.60 to 0.05 can be obtained.

本発明の負極では、活性炭等の多孔質材料の細孔構造(10Å〜100Å)を制御することにより出力を得るのではなく(特許文献5に記載技術)、材料構造制御(分子構造:面間隔、粒子径)および500mAh/g以上のリチウムイオンドーピングによる電子伝導性の向上(半導体→金属遷移)により高出力を実現する。従って、本発明では材料の細孔構造は特に重要ではなく、また、多孔質材料を2μm以下に粉砕すること、BET法による比表面積を150m/g未満に制御することは困難となることから、塩化亜鉛などを芳香族系縮合ポリマーに混合し熱反応させる方法で得られる多孔性不溶不融性基体は、不溶不融性基体(B)としては好ましくない。 In the negative electrode of the present invention, the output is not obtained by controlling the pore structure (10 to 100 Å) of a porous material such as activated carbon (the technique described in Patent Document 5), but the material structure control (molecular structure: interplanar spacing). , Particle diameter) and improved electron conductivity (semiconductor → metal transition) by lithium ion doping of 500 mAh / g or more to achieve high output. Therefore, in the present invention, the pore structure of the material is not particularly important, and it becomes difficult to pulverize the porous material to 2 μm or less and to control the specific surface area by the BET method to less than 150 m 2 / g. A porous insoluble and infusible substrate obtained by mixing zinc chloride or the like with an aromatic condensation polymer and causing a thermal reaction is not preferable as the insoluble and infusible substrate (B).

通常、不溶不融性基体(B)は、板状、フィルム状、顆粒、5μm以上の粉末などの芳香族系縮合ポリマーを熱反応して得られるものであり、熱反応後、得られる不溶不融性基体(B)は2μm以上のサイズを持ち、通常、5μm程度の粒子で測定した場合のBET法による比表面積は、50m/g以上であり、これを2μm以下に粉砕した場合、BET法により測定される比表面積は150m/gを超える。 Usually, the insoluble and infusible substrate (B) is obtained by thermally reacting an aromatic condensation polymer such as a plate, film, granule, powder of 5 μm or more, and is obtained after the thermal reaction. The fusible substrate (B) has a size of 2 μm or more, and the specific surface area according to the BET method when measured with particles of about 5 μm is usually 50 m 2 / g or more. When this is pulverized to 2 μm or less, the BET The specific surface area measured by the method exceeds 150 m 2 / g.

本発明の負極に用いる不溶不融性基体(A)は、得られた不溶不融性基体(B)を平均粒子径2μm以下、好ましくは1μm以下まで粉砕した不溶不融性基体(B)の粉砕物を出発原料として得ることができる。不溶不融性基体(B)の粉砕方法は、所定の粒子径となるまで、常法に従って、不溶不融性基体(B)をボールミル、ジェットミル、ビーズミルなどの粉砕器で粉砕し、さらに必要ならば、分級する。この2μm以下、好ましくは1μm以下までの粉砕により、H/C値、結晶面002面の面間隔はほとんど変化しないが、BET法により測定される比表面積は増大する。例えば、1μm以下まで粉砕した場合、500m/gを超える比表面積値が測定される場合もあるが、その細孔構造はWO2002/41420号公報(特許文献6)記載の、活性炭等の多孔質材料と比べ、この細孔の一部あるいは全部を、炭素質材料で塞ぐ場合において、多くの炭素質材料を必要としない。 The insoluble infusible substrate (A) used in the negative electrode of the present invention is an insoluble infusible substrate (B) obtained by pulverizing the obtained insoluble infusible substrate (B) to an average particle size of 2 μm or less, preferably 1 μm or less. A pulverized product can be obtained as a starting material. The insoluble infusible substrate (B) is pulverized in accordance with a conventional method until the predetermined particle diameter is obtained, and the insoluble infusible substrate (B) is further pulverized with a pulverizer such as a ball mill, jet mill, or bead mill. If so, classify. By crushing to 2 μm or less, preferably 1 μm or less, the H / C value and the interplanar spacing of the crystal plane 002 are hardly changed, but the specific surface area measured by the BET method is increased. For example, when pulverized to 1 μm or less, a specific surface area value exceeding 500 m 2 / g may be measured, but the pore structure is a porous material such as activated carbon described in WO2002 / 41420 (Patent Document 6). Compared to the material, when part or all of the pores are closed with a carbonaceous material, a large amount of carbonaceous material is not required.

上述の方法で得られた平均粒子径2μm以下の不溶不融性基体(B)は特開2007−294286号公報に記載されているように、高容量を有し、不溶不融性基体(B)あたり500mAh/g以上のリチウムをドープすることにより、優れた入出力特性を示す非水系二次電池用負極材料となる。   The insoluble infusible substrate (B) having an average particle size of 2 μm or less obtained by the above method has a high capacity and is insoluble infusible substrate (B) as described in JP-A-2007-294286. ) Is doped with 500 mAh / g or more of lithium, and a negative electrode material for a non-aqueous secondary battery exhibiting excellent input / output characteristics is obtained.

最近、背景技術に記載したように、高出力蓄電デバイスの入出力特性の評価に関し、「電流休止法」により求まる「電流休止法抵抗」を評価することが提案されている。   Recently, as described in the background art, regarding the evaluation of input / output characteristics of a high-output power storage device, it has been proposed to evaluate the “current pause method resistance” obtained by the “current pause method”.

非特許文献12である、矢田静邦著「続・リチウムイオン電池・キャパシタの実践評価技術」技術情報協会(2009年)には、以下のように記載されている。「電池・キャパシタなどの蓄電デバイスの入力特性、出力特性は、使用される環境、電圧領域、電流によって決まるものであるが、全ての条件で充放電曲線を求めるのは大変である。そこで、内部抵抗を測定すれば、電流条件(レート)にかかわらず、計算により、入力特性、出力特性が予測できるとされてきた。確かに、従来、電池が使用されてきた1時間率(1Cレート)程度の遅い領域では、内部抵抗はその役目を果たした。ところが、秒〜数十秒の充放電に対応する極めて高いレート領域では、従来のインピーダンス測定法、直流内部抵抗法では対応できない。なぜならば,この短い時間内では直流内部抵抗は時間とともに大きく変化するのである」。ここで「電流休止法抵抗」は時間の関数であり、この時間依存性から入出力カーブを計算できることから、「電流休止法抵抗」を評価することが、すなわち、蓄電デバイスの入出力特性を評価することに等しい。   Non-Patent Document 12, Shizukuni Yada, “Practical Evaluation Technology for Lithium Ion Batteries and Capacitors”, Technical Information Association (2009), describes as follows. “The input and output characteristics of power storage devices such as batteries and capacitors are determined by the environment in which they are used, the voltage range, and the current, but it is difficult to determine the charge / discharge curves under all conditions. It has been said that the input characteristics and output characteristics can be predicted by calculation regardless of the current condition (rate) if the resistance is measured, and certainly about 1 hour rate (1C rate) in which the battery has been used conventionally. The internal resistance played a role in the slow region, but in the extremely high rate region corresponding to charge / discharge of seconds to several tens of seconds, the conventional impedance measurement method and DC internal resistance method cannot cope. Within this short time, the DC internal resistance changes significantly with time. " Here, the “current pause method resistance” is a function of time, and the input / output curve can be calculated from this time dependency. Therefore, it is possible to evaluate the “current pause method resistance”, that is, the input / output characteristics of the storage device. Is equivalent to

また、背景技術に記載したように、「四極セル」を用い、「電流休止法抵抗」を正極、負極、セパレータ(電解液)に分離評価することで、従来、明確に評価することが困難であった正極、負極の入出力特性を個別に評価できるようになってきている。   In addition, as described in the background art, by using a “quadrupole cell” and separately evaluating “current quiescent resistance” into a positive electrode, a negative electrode, and a separator (electrolyte), it has been difficult to make a clear evaluation in the past. It has become possible to individually evaluate the input / output characteristics of the positive and negative electrodes.

本発明者らは、上述の評価技術を用い、高容量かつ優れた入出力特性を示す非水系二次電池用負極(不溶不融性基体(B)の粉砕物を含む負極)の「電流休止法抵抗」を、「四極セル」で分離・評価したところ、10秒以降の「電流休止法抵抗」が時間と共に大きくなる、すなわち、10秒以上の連続放電あるいは充電において入出力が低下するという新たな課題が見出された。本発明はこの課題を、上記を不溶不融性基体(B)の粉砕物の比表面積を制御した不溶不融性基体(A)により解決するものであり、以下、不溶不融性基体(A)について記載する。   The inventors of the present invention have used the above-described evaluation technique to determine the “current pause of a negative electrode for a non-aqueous secondary battery (a negative electrode including a pulverized product of an insoluble and infusible substrate (B)) having high capacity and excellent input / output characteristics. When the “resistance” is separated and evaluated by the “quadrupole cell”, the “current resting resistance” after 10 seconds increases with time, that is, the input / output decreases during continuous discharge or charging for 10 seconds or more. A new problem was discovered. The present invention solves this problem with the insoluble infusible substrate (A) in which the specific surface area of the pulverized product of the insoluble infusible substrate (B) is controlled. ).

本発明の負極に用いる不溶不融性基体(A)は、水素原子/炭素原子比(H/C)が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体であり、その平均粒子径が2.0μm以下かつ不溶不融性基体のBET法による比表面積が150m/g未満であり、例えば、上記不溶不融性基体(B)の粉砕物の細孔の全部あるいは一部を炭素質材料で塞ぐことにより製造することができる。すなわち、不溶不融性基体(A)は、平均粒子径が2.0μm以下の不溶不融性基体(B)の粉砕物の粒子表面、および/又は細孔内に炭素質材料が存在する構造である。 The insoluble and infusible substrate (A) used for the negative electrode of the present invention has a hydrogen atom / carbon atom ratio (H / C) of 0.60 to 0.05 and a crystal plane 002 plane spacing of 3. An insoluble infusible substrate having an average particle size of 2.0 μm or less and a specific surface area of the insoluble infusible substrate by the BET method of less than 150 m 2 / g, for example, the insoluble infusible substrate It can be produced by closing all or part of the pores of the pulverized product (B) with a carbonaceous material. That is, the insoluble infusible substrate (A) has a structure in which a carbonaceous material exists on the particle surface and / or pores of the pulverized product of the insoluble infusible substrate (B) having an average particle size of 2.0 μm or less. It is.

その製造法の好ましい一例を説明するが、これに限定されるものではない。その方法としては、(1)400℃〜800℃まで加熱した場合、その加熱過程で炭素源となる炭化水素ガスなど(炭素前駆体)を発生する物質(例えば、ピッチ、メソフェーズピッチ、コークス、タールなど)と、平均粒子径が2.0μm以下の不溶不融性基体(B)を同時に非酸化性雰囲気で熱処理を行う方法(加熱過程でピッチなどから炭化水素ガスなどの炭素前駆体が発生することにより、不溶不融性基体(B)は炭素前駆体の共存下で熱処理することになる)、(2)ベンゼン、キシレン、トルエンなどの炭化水素のガス(炭素前駆体)を含む不活性雰囲気中(炭素前駆体の共存下)で不溶不融性基体(B)を熱処理する方法が挙げられる。ここで不溶不融性基体(B)を熱処理する場合、所定の水素原子/炭素原子比となるように熱処理温度を設定する必要があり、その温度は400℃〜800℃が好ましい。また、炭素質材料を蒸着する方法も可能である。この方法により得られる不溶不融性基体(A)は、不溶不融性基体(B)の粉砕物の粒子表面、および/又は、細孔内に、炭素前駆体由来の炭素質材料が存在することにより、その細孔の全部あるいは一部を塞ぐことができる。本発明では、活性炭などの多孔質材料の細孔構造(10Å〜100Å)を制御し出力を得るのではないことから(特許文献5)、不溶不融性基体(B)の粉砕物の有する細孔を炭素前駆体由来の炭素質材料で全部塞いでも差し支えない。不溶不融性基体(B)の粉砕物が有する細孔の全部あるいは一部を塞いだ場合、不溶不融性基体(A)の20Å以下の細孔量が0.05cc/g以下、好ましくは0.02cc/g以下であり、不溶不融性基体(A)の20Å以下の細孔量が多い場合、負極の10秒以降の抵抗上昇が大きくなり、本発明の効果が得にくくなる。ここで20Å以下の細孔量については、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法により解析することにより得られる。     A preferred example of the production method will be described but is not limited thereto. As the method, (1) when heated to 400 ° C. to 800 ° C., a substance that generates a hydrocarbon gas or the like (carbon precursor) as a carbon source in the heating process (for example, pitch, mesophase pitch, coke, tar) Etc.) and a method in which an insoluble infusible substrate (B) having an average particle size of 2.0 μm or less is simultaneously heat-treated in a non-oxidizing atmosphere (a carbon precursor such as hydrocarbon gas is generated from pitch or the like during the heating process). The insoluble infusible substrate (B) is heat-treated in the presence of the carbon precursor), (2) an inert atmosphere containing a hydrocarbon gas (carbon precursor) such as benzene, xylene and toluene Examples thereof include a method of heat-treating the insoluble and infusible substrate (B) in the middle (in the presence of a carbon precursor). Here, when heat-treating the insoluble infusible substrate (B), it is necessary to set the heat treatment temperature so as to have a predetermined hydrogen atom / carbon atom ratio, and the temperature is preferably 400 ° C to 800 ° C. Moreover, the method of vapor-depositing carbonaceous material is also possible. The insoluble infusible substrate (A) obtained by this method has a carbon precursor-derived carbonaceous material on the particle surface and / or in the pores of the pulverized product of the insoluble infusible substrate (B). Thus, all or part of the pores can be blocked. In the present invention, since the output is not obtained by controlling the pore structure (10 to 100%) of a porous material such as activated carbon (Patent Document 5), the finely divided material of the insoluble and infusible substrate (B) has The pores may be completely blocked with a carbonaceous material derived from a carbon precursor. When all or part of the pores of the pulverized product of the insoluble infusible substrate (B) is blocked, the amount of pores of 20 mm or less of the insoluble infusible substrate (A) is 0.05 cc / g or less, preferably When it is 0.02 cc / g or less and the amount of pores of 20 mm or less in the insoluble and infusible substrate (A) is large, the resistance increase of the negative electrode after 10 seconds becomes large, and it becomes difficult to obtain the effect of the present invention. Here, the amount of pores of 20 mm or less can be obtained by analyzing the isothermal adsorption curve with nitrogen gas at 77.4K by the QSDFT method.

かくして得られる不溶不融性基体(A)の水素原子/炭素原子比(H/C)は0.60〜0.05であり、好ましくは0.50〜0.05、より好ましくは0.35〜0.05、更に好ましくは0.35〜0.1である。H/Cが上限を越える場合、芳香族系多環構造が充分に発達していないため、リチウムのドーピング、脱ドーピングがスムーズに行うことができず、充放電効率も低下する。また、H/Cが下限以下の場合、平均面間隔が小さくなることから、本発明の目的である出力が充分に得られない、あるいは、負極容量低下により電池のエネルギー密度が低下する。   The hydrogen atom / carbon atom ratio (H / C) of the insoluble and infusible substrate (A) thus obtained is 0.60 to 0.05, preferably 0.50 to 0.05, more preferably 0.35. -0.05, More preferably, it is 0.35-0.1. When H / C exceeds the upper limit, since the aromatic polycyclic structure is not sufficiently developed, lithium doping and dedoping cannot be performed smoothly, and charge / discharge efficiency is also reduced. When H / C is less than or equal to the lower limit, the average interplanar spacing becomes small, so that the output that is the object of the present invention cannot be obtained sufficiently, or the energy density of the battery decreases due to a decrease in negative electrode capacity.

本発明の負極に用いる不溶不融性基体(A)は、X線回折(Cu−Kα)によれば、メイン・ピークの位置は2θで表して25°以下に存在し、また該メイン・ピークの他に41°〜46°の間にブロードな他のピークが存在する。25°以下に存在するメイン・ピークは結晶面002面に由来する。本発明に用いる不溶不融性基体の結晶面002面の面間隔は3.6Å以上であり、面間隔が3.6Å未満の場合では面間隔が狭いため、本発明の特徴である出力特性が得にくくなる。上限については特に限定しないが、面間隔4.5Å以下とすることが望ましく、4.5Åを超える場合、芳香族系多環構造が未発達であり、リチウムをドープすることが難しくなる。また、本発明の不溶不融性基体はアモルファス構造を有しており、メイン・ピークの半価幅から求まるC軸方向の結晶子長さは、好ましくは15Å以下であり、下限については5Å以上であることが好ましい。本発明の不溶不融性基体は上述の様なアモルファス構造を有しているため、リチウムを大量かつ安定にドーピングでき、高い出力特性を得ることができる。   According to the X-ray diffraction (Cu-Kα), the insoluble and infusible substrate (A) used for the negative electrode of the present invention has a main peak position of 25 ° or less represented by 2θ. In addition, there is another broad peak between 41 ° and 46 °. The main peak existing at 25 ° or less is derived from the crystal plane 002. The surface interval of the crystal plane 002 of the insoluble infusible substrate used in the present invention is 3.6 mm or more, and when the surface distance is less than 3.6 mm, the surface distance is narrow. It becomes difficult to obtain. Although the upper limit is not particularly limited, it is desirable to set the surface interval to 4.5 mm or less, and when it exceeds 4.5 mm, the aromatic polycyclic structure is undeveloped and it becomes difficult to dope lithium. The insoluble infusible substrate of the present invention has an amorphous structure, and the crystallite length in the C-axis direction obtained from the half-value width of the main peak is preferably 15 mm or less, and the lower limit is 5 mm or more. It is preferable that Since the insoluble and infusible substrate of the present invention has an amorphous structure as described above, lithium can be stably doped in a large amount and high output characteristics can be obtained.

本発明の負極に用いる不溶不融性基体(A)の平均粒子径は2μm以下であり、好ましくは1μm以下である。下限については、小さければ小さいほど好ましいが、集電や電極への成形を考慮した場合、実用的には0.05μm以上である。2μm以下の不溶不融性基体(A)を得る方法については、段落〔0036〕に記載の平均粒子径2μm以下、好ましくは1μm以下の不溶不融性基体(B)を段落〔0043〕に記載の方法で処理することにより得られる。段落〔0043〕に記載の方法で処理した場合、平均粒子径は2μm以下、好ましくは1μm以下の不溶不融性基体(A)の一次粒子が一部凝集すること、あるいは、意図的に二次結着させることもあるが、この場合、本発明でいう平均粒子径は、あくまでも一次粒子の粒子径である。平均粒子径は2μm以下、好ましくは1μm以下の不溶不融性基体(A)の一次粒子が一部凝集している場合、必要に応じ、解砕することが可能である。   The average particle diameter of the insoluble and infusible substrate (A) used for the negative electrode of the present invention is 2 μm or less, preferably 1 μm or less. The lower limit is preferably as small as possible, but is practically 0.05 μm or more when considering current collection or molding into an electrode. Regarding the method for obtaining an insoluble infusible substrate (A) of 2 μm or less, the insoluble infusible substrate (B) having an average particle diameter of 2 μm or less, preferably 1 μm or less described in Paragraph [0036] is described in Paragraph [0043]. It is obtained by processing by the method. When treated by the method described in paragraph [0043], the primary particles of the insoluble and infusible substrate (A) having an average particle diameter of 2 μm or less, preferably 1 μm or less are partially agglomerated, or intentionally secondary In this case, the average particle size referred to in the present invention is only the particle size of the primary particles. When the primary particles of the insoluble and infusible substrate (A) having an average particle size of 2 μm or less, preferably 1 μm or less are partially agglomerated, they can be crushed as necessary.

平均粒子径が2μmを超える場合、本発明の目的である出力が充分に得られない。また、出力面から考えると不溶不融性基体(A)の粒度分布における90%粒子径を10μm以下、好ましくは5μm以下にすることが望ましい。これら平均粒子径および粒度値は市販のレーザー回折式粒度分布測定装置で測定することができる。また、一次粒子が一部凝集している場合などは、電子顕微鏡等などで直接観察することにより確認することができる。本発明における不溶不融性基体(A)の形状は特に限定されるものではなく、球状、繊維状、不定形粒子などから適宜選択されるものであり、繊維状などの場合、その繊維径を粒子径とする。   When the average particle diameter exceeds 2 μm, the output that is the object of the present invention cannot be sufficiently obtained. From the viewpoint of output, it is desirable that the 90% particle diameter in the particle size distribution of the insoluble and infusible substrate (A) is 10 μm or less, preferably 5 μm or less. These average particle diameter and particle size value can be measured with a commercially available laser diffraction particle size distribution analyzer. Further, when the primary particles are partially aggregated, it can be confirmed by direct observation with an electron microscope or the like. The shape of the insoluble and infusible substrate (A) in the present invention is not particularly limited, and is appropriately selected from spherical, fibrous, amorphous particles and the like. The particle size.

本発明の負極に用いる不溶不融性基体(A)のBET法による比表面積は150m/g未満であり、好ましくは、100m/g未満、更に好ましくは、50m/g未満である。この比表面積を超える場合、10秒以降の「電流休止法抵抗」が時間と共に大きくなり、本発明の目的を達成することができない。また、下限については、BET法による比表面積という観点では小さい程好ましいが(細孔を全部塞ぐことも可能であり、通常1m/g以上となる)、不溶不融性基体(B)の粉砕物の粒子表面、および/又は細孔内に存在する炭素質材料の比率が、例えば、不溶不融性基体(B)の重量に対し、20%を超えるような場合、この炭素質材料が、元来の不溶不融性基体(B)の入出力特性を阻害する場合もある。従って、不溶不融性基体(B)の重量に対する上記炭素質材料の比率が0.1%〜20%程度、更には5%〜20%であることが望ましい。 The specific surface area according to the BET method of the insoluble and infusible substrate (A) used for the negative electrode of the present invention is less than 150 m 2 / g, preferably less than 100 m 2 / g, and more preferably less than 50 m 2 / g. When this specific surface area is exceeded, the “current pause method resistance” after 10 seconds increases with time, and the object of the present invention cannot be achieved. The lower limit is preferably as small as possible in terms of the specific surface area according to the BET method (it is possible to block all the pores and is usually 1 m 2 / g or more), but the insoluble and infusible substrate (B) is pulverized. When the ratio of the carbonaceous material existing in the particle surface of the object and / or the pores exceeds 20% with respect to the weight of the insoluble and infusible substrate (B), for example, The input / output characteristics of the original insoluble and infusible substrate (B) may be hindered. Therefore, the ratio of the carbonaceous material to the weight of the insoluble and infusible substrate (B) is preferably about 0.1% to 20%, and more preferably 5% to 20%.

本発明の負極に用いるような面間隔が大きく、かつ、H/Cが0.1を超えるような材料は、電池用負極材料として通常使用する5〜30μm程度の粒子でも、50〜300m/g程度の比表面積を有し、2μm以下の粒子では、200m/gを超える比表面値が測定されるのが通常である。従って、平均粒子径が2μm以下で比表面積が150m/g未満の粒子の高出力負極材料としての特性については、本発明で初めて見出されたものである。 Large lattice spacing, such as is used for the negative electrode of the present invention, and materials such as H / C is more than 0.1, even 5~30μm about particles normally used as a negative electrode material for batteries, 50 to 300 m 2 / For particles having a specific surface area of about g and 2 μm or less, a specific surface value exceeding 200 m 2 / g is usually measured. Therefore, the characteristics of particles having an average particle diameter of 2 μm or less and a specific surface area of less than 150 m 2 / g as a high-power negative electrode material have been found for the first time in the present invention.

かくして得られる上記不溶不融性基体(A)は、例えば、500mAh/gを超えるリチウムを可逆的にドープすることが可能な高容量材料であり、特開2007−294286号公報(特許文献6)で提案される負極の、10秒以降の「電流休止法抵抗」が上昇するという課題を大幅に改善することができる。   The insoluble and infusible substrate (A) thus obtained is a high-capacity material capable of reversibly doping lithium exceeding 500 mAh / g, for example, Japanese Patent Application Laid-Open No. 2007-294286 (Patent Document 6). The problem that the “current resting method resistance” of the negative electrode proposed in 10 seconds after 10 seconds increases can be greatly improved.

本発明の非水系二次電池における負極は上記不溶不融性基体(A)を主成分とし、必要に応じ、導電材、バインダーを用いて成形する。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、不溶不融性基体(A)の平均粒子径、形状などにより適宜決定されるものであるが、例えば、不溶不融性基体(A)の重量の1%〜30%程度の割合とすることが好ましい。また、導電材の種類、量は、特に限定されるものではないが、不溶不融性基体(A)の平均粒子径、形状、H/Cなどにより適宜決定されるものであり、材料としては、カーボンブラック、アセチレンブラック、黒鉛が例示される。導電材量は、特に限定されず、例えば、不溶不融性基体(A)の重量の1%〜20%程度の割合とすることが好ましい。本発明の非水系二次電池に用いる負極は、上記不溶不融性基体(A)を、必要に応じ、導電材、バインダーを用いて、塗布成形、プレス成形、ロール成形など一般的な電極成形法を用いて、製造することが可能である。   The negative electrode in the non-aqueous secondary battery of the present invention contains the insoluble and infusible substrate (A) as a main component, and is molded using a conductive material and a binder as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited, and is appropriately determined depending on the average particle diameter, shape, etc. of the insoluble infusible substrate (A). For example, the amount of the binder is from 1% to 1% by weight of the insoluble infusible substrate (A). A ratio of about 30% is preferable. The type and amount of the conductive material are not particularly limited, but are appropriately determined depending on the average particle diameter, shape, H / C, etc. of the insoluble and infusible substrate (A). , Carbon black, acetylene black, and graphite. The amount of the conductive material is not particularly limited, and for example, a ratio of about 1% to 20% of the weight of the insoluble and infusible substrate (A) is preferable. The negative electrode used in the non-aqueous secondary battery of the present invention is a general electrode molding such as coating molding, press molding, roll molding, etc., using the above-mentioned insoluble and infusible substrate (A), if necessary, using a conductive material and a binder. Can be manufactured using the method.

本発明の非水系二次電池における負極の電極密度(電極合材層:集電体は含まない)は容量・出力を考慮し適宜決定されるものであるが、0.8g/cm以上であることが好ましい。電極密度が0.8g/cm未満の場合、この負極を用いた非水系二次電池において体積あたりのエネルギー密度が低下することから好ましくない。また上限については特に限定されるものではないが、不溶不融性基体の真密度から考えると、1.8g/cm以下、好ましくは、1.4g/cm以下である。 The electrode density of the negative electrode (electrode mixture layer: not including the current collector) in the non-aqueous secondary battery of the present invention is appropriately determined in consideration of capacity and output, but is 0.8 g / cm 3 or more. Preferably there is. When the electrode density is less than 0.8 g / cm 3 , the energy density per volume in the non-aqueous secondary battery using this negative electrode is not preferable. The upper limit is not particularly limited, but considering the true density of the insoluble and infusible substrate, it is 1.8 g / cm 3 or less, preferably 1.4 g / cm 3 or less.

本発明の非水系二次電池における負極の電極厚さ(電極合材層厚み:集電体は含まない、集電体の両面に形成される場合はその片面の厚み)は容量・出力を考慮し適宜決定されるものであるが、30μm以上であることが好ましい。電極厚さが30μm未満の場合、この負極を用いた非水系二次電池において集電体およびセパレータの占める体積比率が増加することによりエネルギー密度が低下することから好ましくない。また上限については特に限定されるものではないが、出力を考慮した場合、200μm以下である。   The electrode thickness of the negative electrode in the non-aqueous secondary battery of the present invention (electrode mixture layer thickness: does not include the current collector, and if it is formed on both sides of the current collector, the thickness of one surface) takes capacity and output into consideration Although it is appropriately determined, it is preferably 30 μm or more. When the electrode thickness is less than 30 μm, it is not preferable because the energy density is lowered by increasing the volume ratio of the current collector and the separator in the non-aqueous secondary battery using this negative electrode. Moreover, although it does not specifically limit about an upper limit, When an output is considered, it is 200 micrometers or less.

本発明の非水系二次電池における負極は、集電体上に形成する、あるいは、シート状に成形された電極を集電体に圧着あるいは導電層を介して接着することが可能である。また黒鉛などのカーボン、あるいはNiなどの金属粉を主成分とする導電層を、集電体上に10μm以下の厚さでコーティングした上に、正極電極層を形成することも可能である。この集電体の材質などは、特に限定されず、銅、鉄、ステンレスなどが使用できる。集電体の形状は、金属箔あるいは金属の隙間に電極が形成可能である構造体を用いることができ、例えば、エキスパンドメタル、網材、パンチングメタルなどを集電体として用いることもできる。   The negative electrode in the non-aqueous secondary battery of the present invention can be formed on a current collector, or an electrode formed in a sheet shape can be bonded to the current collector or bonded via a conductive layer. It is also possible to form a positive electrode layer after coating the current collector with a conductive layer mainly composed of carbon such as graphite or metal powder such as Ni on the current collector to a thickness of 10 μm or less. The material of the current collector is not particularly limited, and copper, iron, stainless steel and the like can be used. As the shape of the current collector, a metal foil or a structure capable of forming an electrode in a metal gap can be used. For example, an expanded metal, a netting material, a punching metal, or the like can be used as the current collector.

本発明において、負極活物質である上記不溶不融性基体(A)には500mAh/g以上のリチウムを担持させる。この担持量については、負極活物質である上記不溶不融性基体(A)に、予め担持(プリドープ)されるリチウム担持量(プリドープ量)をCn(mAh)とし、初期充電時に正極から放出されるリチウムなどでドーピングさせるリチウム量をCp(mAh)とし、負極の不溶不融性基体(A)の重量をW(g)とする時、(Cn+Cp)/Wがリチウム担持量となる。ここでのリチウム担持量は可逆でないリチウム量も含む。リチウム担持量は負極の初期クーロン効率により異なるが、不溶不融性基体(A)の重量あたり500mAh/g以上であり、好ましくは550mAh/g以上であり、更に好ましくは600mAh/g以上、特に、800mAh/g以上である。また、放電時、エネルギー密度の観点から、担持させたリチウム量の30%以上、好ましくは50%以上を脱ドープできるように不溶不融性基体(A)、不溶不融性基体(A)を用いた負極、あるいは、不溶不融性基体(A)を用いた負極を有する非水系二次電池を設計することが好ましい。リチウム担持量の上限については、特に限定しないが、リチウム金属の析出を考慮して1300mAh/g以下とするのが好ましい。正極から放出されてドーピング可能なリチウムとは、電池組立時に正極中に含まれるリチウムであって、充電操作中に放出されて負極に取りこまれるリチウム量を意味する。例えば、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物などが、リチウムを含有する正極材料の代表例である。 In the present invention, 500 mAh / g or more of lithium is supported on the insoluble infusible substrate (A) which is a negative electrode active material. As for the amount supported, the amount of lithium supported (pre-doped) in advance (pre-doped) on the insoluble infusible substrate (A), which is the negative electrode active material, is Cn (mAh), and is released from the positive electrode during initial charging. When the amount of lithium doped with lithium or the like is Cp (mAh) and the weight of the insoluble and infusible substrate (A) of the negative electrode is W (g), (Cn + Cp) / W is the amount of lithium supported. The amount of lithium supported here includes the amount of lithium that is not reversible. The amount of lithium supported varies depending on the initial Coulomb efficiency of the negative electrode, but is 500 mAh / g or more, preferably 550 mAh / g or more, more preferably 600 mAh / g or more, in particular, per weight of the insoluble and infusible substrate (A). 800 mAh / g or more. In addition, from the viewpoint of energy density during discharge, the insoluble infusible substrate (A) and the insoluble infusible substrate (A) are provided so that 30% or more, preferably 50% or more of the supported lithium amount can be dedoped. It is preferable to design a non-aqueous secondary battery having a negative electrode used or a negative electrode using an insoluble and infusible substrate (A). The upper limit of the amount of lithium supported is not particularly limited, but is preferably set to 1300 mAh / g or less in consideration of precipitation of lithium metal. The lithium that can be doped by being released from the positive electrode means the amount of lithium contained in the positive electrode during battery assembly and released during the charging operation and taken into the negative electrode. For example, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are representative examples of lithium-containing positive electrode materials.

本発明の非水系二次電池に用いる負極にリチウムを予め担持させる方法(プリドープの方法)は、本発明では特に限定されるものではないが、公知の方法を用いることができる。例えば、本発明の負極材料を電極に成形した後、電気化学的に行うことができる。本発明ではその方法について特に限定しないが、例えば、電池組立前に、対極としてリチウム金属を用いる電気化学システムを組み立て、後述の非水系電解液中においてプリドープする方法、電解液を含浸した負極にリチウム金属を貼り合わせる方法が挙げられる。また、電池組立後に、リチウムのプリドープを行うには、リチウム金属などのリチウム源と負極とを貼り合わせるなどの方法により、電気的に接触させておき、電池内に電解液を注液することにより、リチウムをプリドープすることが可能である。   The method for preliminarily supporting lithium on the negative electrode used in the non-aqueous secondary battery of the present invention (pre-doping method) is not particularly limited in the present invention, but a known method can be used. For example, the negative electrode material of the present invention can be formed electrochemically after being formed into an electrode. In the present invention, the method is not particularly limited. For example, before assembling the battery, an electrochemical system using lithium metal as a counter electrode is assembled and pre-doped in a non-aqueous electrolyte described later, and the negative electrode impregnated with the electrolyte is charged with lithium. The method of bonding a metal is mentioned. In addition, in order to pre-dope lithium after the battery is assembled, the lithium source such as lithium metal and a negative electrode are bonded together by a method such as bonding them together and injecting an electrolyte into the battery. It is possible to pre-dope lithium.

上記構成により、本発明における負極は、従来のリチウムイオン電池に用いられる黒鉛系材料を用いた負極の1/2以下の「電流休止法抵抗」(60秒の抵抗値)を有し、特開2007−294286号公報(特許文献6)で提案される負極の10秒以降の「電流休止法抵抗」が上昇するという課題を大幅に改善することができ、10秒を超えるような連続充電あるいは放電においても、2倍以上の高い出力特性を有する。以下、この負極に組み合わせる正極について記載する。   With the above configuration, the negative electrode in the present invention has a “current quiescent resistance” (resistance value of 60 seconds) that is 1/2 or less that of a negative electrode using a graphite-based material used in a conventional lithium ion battery. The problem that the “current pause method resistance” of the negative electrode proposed in 2007-294286 (Patent Document 6) increases after 10 seconds can be greatly improved, and continuous charging or discharging exceeding 10 seconds Also has a high output characteristic more than twice. Hereinafter, it describes about the positive electrode combined with this negative electrode.

本発明における正極は、少なくとも上記リチウムを吸蔵、脱離可能な活物質と繊維状導電材を含むことを特徴とする。リチウムを吸蔵、脱離可能な正極活物質としては、リチウムをドープ・脱ドープ可能なものであれば特に限定されるものではないが、例えば、金属酸化物、金属硫化物、リチウム複合金属酸化物などがあり、リチウム複合金属酸化物としてはリチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、リチウム複合燐酸鉄、あるいはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系などを用いることができる。本発明の目的である高エネルギー密度かつ高出力を有する非水系二次電池を得るためには、例えば平均粒子径の細かい酸化物を用いることが好ましく、好ましくは7μm以下であり、より好ましくは4μm以下、特に好ましくは2μm以下である。下限については、小さければ小さいほど好ましいが、集電や電極成形を考慮した場合、実用的には0.05μm以上である。一次粒子が結着した二次粒子である場合、本発明でいう粒子径とは、一次粒子径のことである。   The positive electrode in the present invention includes at least an active material capable of inserting and extracting lithium and a fibrous conductive material. The positive electrode active material capable of inserting and extracting lithium is not particularly limited as long as it can be doped and dedoped with lithium. For example, metal oxide, metal sulfide, lithium composite metal oxide Lithium composite metal oxides include lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, lithium composite iron phosphate, or a mixture thereof, and further to dissimilar metal elements in these composite oxides. One or more added systems can be used. In order to obtain a non-aqueous secondary battery having high energy density and high output, which is the object of the present invention, it is preferable to use an oxide having a small average particle diameter, for example, preferably 7 μm or less, more preferably 4 μm. Hereinafter, it is particularly preferably 2 μm or less. The lower limit is preferably as small as possible, but is 0.05 μm or more practically considering current collection and electrode forming. When the primary particles are secondary particles bound, the particle size referred to in the present invention is the primary particle size.

本発明における正極は、少なくとも上記リチウムを吸蔵、脱離可能な活物質と繊維状導電材を含むことを特徴とする。繊維状導電材にはカーボンナノチューブ、炭素繊維、気相成長炭素繊維が例示され、その繊維径は、好ましくは1μm以下、更に好ましくは0.5μm以下であり、繊維径については、小さいほどその添加量を低減できるが、実用的には、電極中での分散性を考慮し決定される。繊維状導電材の長さは、活物質の粒子数個分をつなげる長さが望ましく、適宜決定されるが、繊維状導電材の長さの下限は5μm以上が好ましく、より好ましくは8μm以上であり、上限は好ましくは100μm以下、より好ましくは50μm以下であり、更に好ましくは30μm以下であり、実用的には、電極中での分散性を考慮し決定される。   The positive electrode in the present invention includes at least an active material capable of inserting and extracting lithium and a fibrous conductive material. Examples of the fibrous conductive material include carbon nanotubes, carbon fibers, and vapor-grown carbon fibers, and the fiber diameter is preferably 1 μm or less, more preferably 0.5 μm or less. Although the amount can be reduced, it is practically determined in consideration of dispersibility in the electrode. The length of the fibrous conductive material is desirably a length connecting several particles of the active material, and is appropriately determined. The lower limit of the length of the fibrous conductive material is preferably 5 μm or more, more preferably 8 μm or more. The upper limit is preferably 100 μm or less, more preferably 50 μm or less, and further preferably 30 μm or less. Practically, the upper limit is determined in consideration of dispersibility in the electrode.

本発明における正極には、活物質と繊維状導電材に加え、非繊維状導電材を添加することが可能である。非繊維状導電材にはカーボンブラック、アセチレンブラック、黒鉛が例示される。   In addition to the active material and the fibrous conductive material, a non-fibrous conductive material can be added to the positive electrode in the present invention. Examples of the non-fibrous conductive material include carbon black, acetylene black, and graphite.

正極に含まれる導電材量は、繊維状導電材が正極の重量の2重量%以上13重量%以下であることが好ましく、より好ましくは、繊維状導電材が正極の重量の2重量%以上8重量%以下であり、繊維状導電材のみを用いる場合、正極の重量の5重量%以上13重量%以下が好ましく、下限未満の場合、電極の電子伝導性を確保することが難しくなり、上限を超えると電極密度が低下し、十分なエネルギー密度が得られなくなる。また、繊維状導電材と非繊維状導電材を併用する場合、繊維状導電材は、正極の重量の2重量%以上13重量%以下であり、その総量(繊維状導電材と非繊維状導電材の合計量)は7重量%以上20重量%以下であることが好ましく、更に好ましくは、7重量%以上15重量%以下、特に好ましくは、8重量%以上14重量%以下であることであり、下限未満の場合、電極の電子伝導性を確保することが難しくなり、上限を超えると電極密度が低下し、十分なエネルギー密度が得られなくなる。   The amount of the conductive material contained in the positive electrode is preferably 2% by weight or more and 13% by weight or less of the weight of the positive electrode of the fibrous conductive material, and more preferably 2% by weight or more of the weight of the positive electrode of the fibrous conductive material. In the case of using only the fibrous conductive material, it is preferably 5% by weight or more and 13% by weight or less of the weight of the positive electrode, and if it is less than the lower limit, it becomes difficult to ensure the electron conductivity of the electrode, and the upper limit is set. If it exceeds, the electrode density decreases, and a sufficient energy density cannot be obtained. Further, when the fibrous conductive material and the non-fibrous conductive material are used in combination, the fibrous conductive material is 2 wt% or more and 13 wt% or less of the weight of the positive electrode, and the total amount (the fibrous conductive material and the non-fibrous conductive material). The total amount of the material is preferably 7% to 20% by weight, more preferably 7% to 15% by weight, and particularly preferably 8% to 14% by weight. If it is less than the lower limit, it becomes difficult to ensure the electron conductivity of the electrode, and if it exceeds the upper limit, the electrode density is lowered and a sufficient energy density cannot be obtained.

本発明の非水系二次電池に用いる正極は、上記正極活物質と、上記導電材を、必要に応じ、バインダーを用いて、塗布成形、プレス成形、ロール成形など一般的な電極成形法を用いて製造することが可能である。本発明における正極のバインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、正極活物質の平均粒子径、形状などにより適宜決定されるものであるが、例えば、正極活物質の重量の1%〜30%程度の割合とすることが好ましい。   The positive electrode used in the non-aqueous secondary battery of the present invention uses the above-described positive electrode active material and the above conductive material, if necessary, using a general electrode molding method such as coating molding, press molding, roll molding, etc. using a binder. Can be manufactured. The type of the binder for the positive electrode in the present invention is not particularly limited, but fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as fluororubber, SBR, acrylic resin, polyethylene, and polypropylene. Etc. are exemplified. The amount of the binder is not particularly limited, and is appropriately determined depending on the average particle diameter, shape, and the like of the positive electrode active material. For example, the binder amount is preferably about 1% to 30% of the weight of the positive electrode active material. .

本発明の非水系二次電池に用いる正極の電極電気伝導度は、電極活物質種、電極組成、電極密度、電極厚さなどから決定されるものであるが、出力を考慮した場合、7.0×10−2S/cm以上であることが好ましく、好ましくは1.0×10−1S/cm以上であり、より好ましくは2.0×10−1S/cm以上である。上限については特に限定されるものではない。 The electrode electrical conductivity of the positive electrode used in the non-aqueous secondary battery of the present invention is determined from the electrode active material species, the electrode composition, the electrode density, the electrode thickness, and the like. It is preferably 0 × 10 −2 S / cm or more, preferably 1.0 × 10 −1 S / cm or more, and more preferably 2.0 × 10 −1 S / cm or more. The upper limit is not particularly limited.

本発明の非水系二次電池に用いる正極の電極密度(電極合剤層:集電体は含まない)は容量・出力を考慮し適宜決定されるものであるが、正極酸化物の真密度の40%以上であり、その上限は75%以下であることが好ましい。具体的には、スピネル型のLiMn(真密度4.3g/cm)である場合、1.7g/cm以上であることが好ましく、より好ましくは2.0g/cm以上であり、上限については、3.2g/cm以下であることが好ましい。電極密度が下限未満の場合、この正極を用いた非水系二次電池においてエネルギー密度が低下する傾向にあり、上限を超えると、電極中の電解液量が低下し、十分な入出力特性が得られない。 The electrode density of the positive electrode used in the non-aqueous secondary battery of the present invention (electrode mixture layer: not including the current collector) is appropriately determined in consideration of capacity and output. It is 40% or more, and the upper limit is preferably 75% or less. Specifically, in the case of spinel type LiMn 2 O 4 (true density 4.3 g / cm 3 ), it is preferably 1.7 g / cm 3 or more, more preferably 2.0 g / cm 3 or more. Yes, and the upper limit is preferably 3.2 g / cm 3 or less. When the electrode density is less than the lower limit, the energy density tends to decrease in the non-aqueous secondary battery using this positive electrode, and when the upper limit is exceeded, the amount of the electrolyte in the electrode decreases and sufficient input / output characteristics are obtained. I can't.

本発明の非水系二次電池に用いる正極の電極厚さ(電極合剤層厚み:集電体は含まない、集電体の両面に形成される場合はその片面の厚み)は容量・出力を考慮し適宜決定されるものであるが、30μm以上であることが好ましく、より好ましくは50μm以上である。電極厚さが30μm未満の場合、この正極を用いた非水系二次電池において集電体およびセパレータの占める体積比率が増加することによりエネルギー密度が低下することから好ましくない。また上限については特に限定されるものではないが、出力を考慮した場合200μm以下である。   The electrode thickness of the positive electrode used in the non-aqueous secondary battery of the present invention (electrode mixture layer thickness: does not include the current collector, and if it is formed on both sides of the current collector, the thickness of one surface thereof) is the capacity / output. Although appropriately determined in consideration, it is preferably 30 μm or more, more preferably 50 μm or more. When the electrode thickness is less than 30 μm, the energy density is lowered by increasing the volume ratio of the current collector and the separator in the non-aqueous secondary battery using this positive electrode, which is not preferable. Moreover, although it does not specifically limit about an upper limit, when an output is considered, it is 200 micrometers or less.

本発明の非水系二次電池に用いる正極は、集電体上に形成する、あるいは、シート状に成形された電極を集電体に圧着あるいは導電層を介して接着することが可能である。また黒鉛などのカーボン、あるいはNiなどの金属粉を主成分とする導電層を、集電体上に10μm以下の厚さでコーティングした上に、正極電極層を形成することも可能である。この集電体の材質などは、特に限定されず、アルミニウム、鉄、ステンレスなどが使用できる。集電体の形状は、金属箔あるいは金属の隙間に電極が形成可能である構造体を用いることができ、例えば、エキスパンドメタル、網材、パンチングメタルなどを集電体として用いることもできる。   The positive electrode used in the non-aqueous secondary battery of the present invention can be formed on a current collector, or an electrode formed into a sheet shape can be bonded to the current collector or bonded via a conductive layer. It is also possible to form a positive electrode layer after coating the current collector with a conductive layer mainly composed of carbon such as graphite or metal powder such as Ni on the current collector to a thickness of 10 μm or less. The material of the current collector is not particularly limited, and aluminum, iron, stainless steel, etc. can be used. As the shape of the current collector, a metal foil or a structure capable of forming an electrode in a metal gap can be used. For example, an expanded metal, a netting material, a punching metal, or the like can be used as the current collector.

本発明の非水系二次電池は、リチウム塩が非水溶媒に溶解されてなる非水系電解液を用いる。本発明において用いる非水系電解液としては、リチウム塩を含む非水系電解液を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF、LiBF、LiClOなどのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの一種又は二種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。 The non-aqueous secondary battery of the present invention uses a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. As the non-aqueous electrolyte solution used in the present invention, a non-aqueous electrolyte solution containing a lithium salt can be used. According to the use conditions such as the type of the positive electrode material, the property of the negative electrode material, the charging voltage, etc. It is determined. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less.

本発明における非水系二次電池のセパレータは特に限定されるものではなく、ポリエチレン微多孔膜、ポリプロピレン微多孔膜、あるいはポリエチレンとポリプロピレンの積層膜、セルロース、ガラス繊維、ポリアラミド繊維、ポリアクリルニトリル繊維などからなる織布、あるいは不織布などがあり、その目的と状況に応じ、適宜決定することが可能である。   The separator of the non-aqueous secondary battery in the present invention is not particularly limited, and a polyethylene microporous film, a polypropylene microporous film, or a laminated film of polyethylene and polypropylene, cellulose, glass fiber, polyaramid fiber, polyacrylonitrile fiber, etc. There are woven fabrics, nonwoven fabrics, and the like, which can be appropriately determined according to the purpose and situation.

本発明の非水系二次電池の形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型など、その目的に応じ、適宜決定することが可能である。   The shape of the nonaqueous secondary battery of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin shape, a cylindrical shape, a square shape, and a film shape.

以下に実施例を示し、本発明の特徴とするところをさらに明確化するが、本発明は実施例により何ら限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.

(正極の作製)
正極活物質としては、平均粒子径が6.0μmのLiMnを、繊維状導電材としては、気相成長炭素繊維(昭和電工製:VGCF<登録商標>−H)を、非繊維状導電材としてはアセチレンブラック(電気化学工業製 デンカブラック<登録商標>)を用いた。正極作製は以下の方法で行なった。まず、表1に記載した配合比で、正極活物質、繊維状導電材、非繊維状導電材、バインダーであるPVDF(ポリフッ化ビニリデン)をNMP(N−メチル−2−ピロリドン)と混合し、正極合剤スラリーを得た。次に、20μmのアルミ箔の片面に黒鉛からなる導電性塗料を予め4μm厚さで塗布したものを用意し、集電体の導電性塗料が塗られた側の面上に、上記正極合剤スラリーを塗布し、乾燥した後、プレス加工して正極を得た。得られた正極の合剤層の厚さ、密度、電極電気伝導度を表1にあわせて示す。また、繊維状導電材、非繊維状導電材の配合比と電極電気伝導度の関係を図1に示す。
(Preparation of positive electrode)
The positive electrode active material is LiMn 2 O 4 having an average particle size of 6.0 μm, and the fibrous conductive material is vapor-grown carbon fiber (manufactured by Showa Denko: VGCF <registered trademark> -H), non-fibrous. As the conductive material, acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo) was used. The positive electrode was produced by the following method. First, in a mixing ratio described in Table 1, a positive electrode active material, a fibrous conductive material, a non-fibrous conductive material, PVDF (polyvinylidene fluoride) as a binder is mixed with NMP (N-methyl-2-pyrrolidone), A positive electrode mixture slurry was obtained. Next, a 20 μm aluminum foil with a conductive paint made of graphite applied in a thickness of 4 μm in advance is prepared. On the surface of the current collector on which the conductive paint is applied, the positive electrode mixture is prepared. The slurry was applied, dried, and then pressed to obtain a positive electrode. Table 1 shows the thickness, density, and electrode conductivity of the obtained positive electrode mixture layer. FIG. 1 shows the relationship between the blending ratio of the fibrous conductive material and the non-fibrous conductive material and the electrode electrical conductivity.

Figure 2011081960
Figure 2011081960

本発明の非水系二次電池は、負極が水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下かつBET法による比表面積が150m/g未満であり、不溶不融性基体(A)の重量あたり500mAh/g以上のリチウムを担持させてあり、正極に繊維状導電体を含んでいれば、10秒を超える連続放電においても入出力特性に優れる非水系二次電池を提供することが可能であるが、より高性能の非水系二次電池を提供するには、以下のような正極と前記負極を組み合わせるのが最も好ましい。
表1から明らかなように、正極の導電材として繊維状導電材と非繊維状導電材を併用する場合、高い入出力特性を得る上で十分な電気伝導度(例えば、1.0×10−1S/cmの電気伝導度)を得るためには、繊維状導電材は2%以上必要であり、かつ、繊維状導電材が13%を超えると電極密度が低下することがわかる。また、正極の導電材として繊維状導電材のみを使用する場合、5%以上必要となり、繊維状導電材と非繊維状導電材を併用する場合に比べ、繊維状導電材を多く使用する必要がある。更に、繊維状導電材と非繊維状導電材を併用する場合、その合計は7%以上必要であり、正極1、正極2、正極3がこれに相当する。正極3(繊維状導電材2.0%、非繊維状導電材5.7%)から繊維状導電材料を少なくした正極5、正極6においては、例え、非繊維状導電材を6%配合しても十分な電気伝導度は得られない(正極4、5)。また繊維状導電材が13%を超える正極9は電気伝導度が十分にあるが、電極密度が低下し、正極1、正極2、正極3に対し、体積当たりの容量が低下する。
以上、表1の正極の実施例の結果から、最も好ましい正極としては、正極の導電材として繊維状導電材のみを使用する場合は、正極に含まれる導電材が5重量%以上13重量%以下であり、正極の導電材として繊維状導電材と非繊維状導電材を併用する場合は、正極に含まれる繊維状導電材が2重量%以上13重量%以下であり、かつ、繊維状導電材と非繊維状導電材の総量が7重量%以上20重量%以下であることがわかる。
The non-aqueous secondary battery according to the present invention is an insoluble infusible substrate in which the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and the interplanar spacing of the crystal plane 002 is 3.6 mm or more. The insoluble infusible substrate (A) has an average particle diameter of 2.0 μm or less and a specific surface area by the BET method of less than 150 m 2 / g, the main component of (A), and the weight of the insoluble infusible substrate (A) It is possible to provide a non-aqueous secondary battery that has excellent input / output characteristics even in continuous discharge exceeding 10 seconds if a lithium conductor of 500 mAh / g or more is supported and the positive electrode contains a fibrous conductor. However, in order to provide a higher performance non-aqueous secondary battery, it is most preferable to combine the following positive electrode and the negative electrode.
As it is evident from Table 1, when used in combination fibrous conductive material and a non-fibrous conductive material as the conductive material of the positive electrode, sufficient electric conductivity for obtaining a high output characteristic (e.g., 1.0 × 10 - In order to obtain an electrical conductivity of 1 S / cm, it is understood that 2% or more of the fibrous conductive material is necessary, and that the electrode density decreases when the fibrous conductive material exceeds 13%. Further, when only the fibrous conductive material is used as the conductive material for the positive electrode, 5% or more is necessary, and it is necessary to use a larger amount of fibrous conductive material than when the fibrous conductive material and the non-fibrous conductive material are used in combination. is there. Furthermore, in the case where a fibrous conductive material and a non-fibrous conductive material are used in combination, a total of 7% or more is necessary, and the positive electrode 1, the positive electrode 2, and the positive electrode 3 correspond to this. In the positive electrode 5 and the positive electrode 6 in which the fibrous conductive material is reduced from the positive electrode 3 (fibrous conductive material 2.0%, non-fibrous conductive material 5.7%), for example, 6% of non-fibrous conductive material is blended. However, sufficient electrical conductivity cannot be obtained (positive electrodes 4, 5). In addition, the positive electrode 9 in which the fibrous conductive material exceeds 13% has sufficient electric conductivity, but the electrode density is decreased, and the capacity per volume of the positive electrode 1, the positive electrode 2, and the positive electrode 3 is decreased.
As described above, from the results of the positive electrode examples in Table 1, as the most preferable positive electrode, when only the fibrous conductive material is used as the positive electrode conductive material, the conductive material contained in the positive electrode is 5 wt% or more and 13 wt% or less. When the fibrous conductive material and the non-fibrous conductive material are used in combination as the positive electrode conductive material, the fibrous conductive material contained in the positive electrode is 2 wt% or more and 13 wt% or less, and the fibrous conductive material It can be seen that the total amount of the non-fibrous conductive material is 7 wt% or more and 20 wt% or less.

以下実施例1、2及び比較例1、2では、負極のみを変更し(同一の正極1、セパレータ、電解液を用いる)、四極セルにより負極抵抗を評価することにより本発明の非水系二次電池における負極性能の差異を明らかにした。   Hereinafter, in Examples 1 and 2 and Comparative Examples 1 and 2, only the negative electrode is changed (using the same positive electrode 1, separator, and electrolytic solution), and the negative electrode resistance is evaluated by a quadrupole cell, whereby the nonaqueous secondary of the present invention is used. The difference of the negative electrode performance in the battery was clarified.

(実施例1)
(不溶不融性基体(B−1)粉砕物の試作)
フェノール樹脂硬化体320gをステンレス製皿に入れ、この皿を角型炉(400×400×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。熱反応は、1℃/分の速度で、炉内温が室温から630℃となるまで昇温し、同温度で4時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出し、本発明の不溶不融性基体(B−1)を得た。収量は192gであった。
Example 1
(Prototype of insoluble infusible substrate (B-1) pulverized product)
320 g of the phenolic resin cured body was placed in a stainless steel dish, and the dish was placed in a square furnace (400 × 400 × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. The thermal reaction was performed at a rate of 1 ° C./minute until the furnace temperature was raised from room temperature to 630 ° C., held at that temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and the dish was removed from the furnace. Taking out, the insoluble infusible substrate (B-1) of the present invention was obtained. The yield was 192g.

得られた不溶不融性基体(B−1)をボールミルを用いて平均粒子径0.7μmまで粉砕した。得られた不溶不融性基体(B−1)粉砕物について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400シリーズII、CHNS/O」)、およびBET法による比表面積(測定使用機:Quantachrome社製「NOVA1200」)の測定を行った。また、XRD(X線回折)法(測定使用機:マックサイエンス社製全自動X線回折装置「MXP」、発生X線はCu−Kα線である)による結晶構造の解析を行った。H/Cは0.24、BET法による比表面積が594m/g、結晶面002面の面間隔が3.74Å、C軸方向の結晶子長さが12.3Åである不溶不融性基体(B−1)粉砕物であった。また、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法により解析した場合の、20Å以下の細孔量は0.18cc/gであった。 The obtained insoluble and infusible substrate (B-1) was pulverized to an average particle size of 0.7 μm using a ball mill. About the obtained insoluble infusible substrate (B-1) pulverized product, elemental analysis (measurement machine: elemental analyzer “PE2400 series II, CHNS / O” manufactured by PerkinElmer Co., Ltd.) and specific surface area (measurement) by BET method Used machine: “NOVA1200” manufactured by Quantachrome) was measured. In addition, the crystal structure was analyzed by an XRD (X-ray diffraction) method (measurement machine: fully automatic X-ray diffractometer “MXP 3 ” manufactured by Mac Science Co., Ltd., and generated X-rays are Cu—Kα rays). Insoluble infusible substrate having H / C of 0.24, specific surface area by BET method of 594 m 2 / g, crystal plane 002 plane spacing of 3.74 mm, and crystallite length in the C-axis direction of 12.3 mm (B-1) A pulverized product. Further, when the isothermal adsorption curve by nitrogen gas at 77.4 K was analyzed by the QSDFT method, the amount of pores of 20 mm or less was 0.18 cc / g.

(不溶不融性基体(A−1)の試作)
得られた不溶不融性基体(B−1)粉砕物10.1gをステンレススチールメッシュ製の籠に入れ、等方性ピッチ(軟化点:270℃)106.1gを入れたステンレス製皿の上に置き、角型炉(400×400×400mm)内に配置して、熱処理を行った。熱処理は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。加熱処理は、上記ピッチを680℃まで昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出した。若干の凝集が見られたので、乳鉢で解砕し、不溶不融性基体(A−1)を得た。収量は11.65g(15.3%の重量増加)であり、この重量増加は、上記加熱処理により、ピッチを680℃まで加熱昇温する過程において発生した炭化水素ガスなどの炭素前駆体が、不溶不融性基体(B−1)表面および/又は細孔内で炭素質材料となることによるものである。
(Prototype of insoluble and infusible substrate (A-1))
10.1 g of the obtained insoluble and infusible substrate (B-1) pulverized product was placed in a stainless steel mesh basket and placed on a stainless steel dish containing 106.1 g of isotropic pitch (softening point: 270 ° C.). And placed in a square furnace (400 × 400 × 400 mm) for heat treatment. The heat treatment was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. In the heat treatment, the pitch was raised to 680 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace. Since some aggregation was observed, it was crushed with a mortar to obtain an insoluble and infusible substrate (A-1). The yield is 11.65 g (15.3% weight increase), and this weight increase is caused by carbon precursors such as hydrocarbon gas generated in the process of heating the pitch to 680 ° C. by the heat treatment, This is because it becomes a carbonaceous material on the surface and / or pores of the insoluble and infusible substrate (B-1).

得られた不溶不融性基体(A−1)の平均粒子径は0.7μm、H/Cは0.16、BET法による比表面積は41m/g、結晶面002面の面間隔は3.76Å、C軸方向の結晶子長さは13.4Åであった。また、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法による解析した場合の、20Å以下の細孔量は0.02cc/gであり、熱処理前(0.18cc/g)に比べ大きく低下した。これは、炭素前駆体との共存下、不溶不融性基体(B−1)を熱処理することにより、不溶不融性基体(B−1)粉砕物の細孔が、炭素質材料で塞さがれたことによる。 The insoluble and infusible substrate (A-1) obtained had an average particle diameter of 0.7 μm, H / C of 0.16, a specific surface area by BET method of 41 m 2 / g, and a plane spacing of 002 crystal planes of 3 The crystallite length in the C-axis direction was 13.4 mm. In addition, when the isothermal adsorption curve by nitrogen gas at 77.4K was analyzed by the QSDFT method, the amount of pores of 20 mm or less was 0.02 cc / g, which was significantly lower than before heat treatment (0.18 cc / g). . This is because heat treatment is performed on the insoluble infusible substrate (B-1) in the presence of the carbon precursor so that the pores of the pulverized insoluble infusible substrate (B-1) are blocked with the carbonaceous material. It depends on being removed.

次いで、上記の不溶不融性基体(A−1)75重量部および導電材(アセチレンブラック)15重量部およびバインダー(ポリフッ化ビニリデン:PVDF)10重量部をNMP(N−メチル−2−ピロリドン)と混合し、負極合剤スラリーを得た。18μmの銅箔の片面に黒鉛からなる導電性塗料を予め4μm厚さで塗布したものを用意し、集電体の導電性塗料が塗られた側の面上に、上記負極合剤スラリーを塗布し、乾燥した後、プレス加工して電極を得た。   Next, 75 parts by weight of the insoluble and infusible substrate (A-1), 15 parts by weight of a conductive material (acetylene black) and 10 parts by weight of a binder (polyvinylidene fluoride: PVDF) were added to NMP (N-methyl-2-pyrrolidone). And a negative electrode mixture slurry was obtained. Prepare a 4 μm thick conductive paint made of graphite on one side of an 18 μm copper foil, and apply the negative electrode mixture slurry on the surface of the current collector on which the conductive paint is applied. After drying, press working was performed to obtain an electrode.

上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−1)重量あたり60mA/gの電流でリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は730mAh/gと高い容量を有している。 The electrode obtained above was used as a working electrode, lithium metal was used as a counter electrode, and LiPF 6 was added at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methylethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was made in a dry box using the dissolved solution. After applying a constant voltage of 1 mV to the lithium potential at a current of 60 mA / g per weight of the insoluble infusible substrate (A-1) for 12 hours, the capacity when discharged to 2.5 V at a current of 60 mA / g is It has a high capacity of 730 mAh / g.

上記で得られた厚さ43μm、密度1.0g/cmの負極(電極面積:14×20mm)を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−1)重量あたり60mA/gの電流で不溶不融性基体(A−1)重量あたり509mAh/gのリチウムをプリドープした。 The negative electrode (electrode area: 14 × 20 mm) having a thickness of 43 μm and a density of 1.0 g / cm 3 obtained as described above was used as a working electrode, lithium metal was used as a counter electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell was prepared in a dry box using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent mixed at 7 (volume ratio). 509 mAh / g of lithium per weight of insoluble infusible substrate (A-1) was pre-doped at a current of 60 mA / g per weight of insoluble infusible substrate (A-1).

このリチウムをプリドープした負極と、上記で得られた厚さ67μmかつ密度2.1g/cmの正極1(電極面積:14×20mm)を組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、負極の電流休止法抵抗の分離評価用の四極セル(非特許文献11、非特許文献12参考)をドライルーム中で作製した。作製した四極セルの構造を図2に示す。セパレータ5にはガラス繊維の不織布(厚み190μm,気孔率90%)を8枚用い、正参照極3、負参照極4は幅0.03mm、厚さ0.03mmのステンレス板にその両面からリチウムをセル内で電気化学的に析出させることにより得た。 The negative electrode predoped with lithium and the positive electrode 1 (electrode area: 14 × 20 mm) having a thickness of 67 μm and a density of 2.1 g / cm 3 obtained above were combined, and 3 ethylene carbonate and methyl ethyl carbonate were used as the electrolyte. : A quadrupole cell for separation evaluation of the current resting method resistance of the negative electrode using a solution obtained by dissolving LiPF 6 in a concentration of 1 mol / l in a solvent mixed at 7 (volume ratio) (Non-patent Documents 11 and 12) Reference) was prepared in a dry room. The structure of the produced quadrupole cell is shown in FIG. The separator 5 is made of 8 non-woven fabrics of glass fiber (thickness 190 μm, porosity 90%). The positive reference electrode 3 and the negative reference electrode 4 are made of lithium on both sides of a stainless steel plate having a width of 0.03 mm and a thickness of 0.03 mm. Was obtained by electrochemical deposition in the cell.

得られた四極セルの正負極間で、4.2V−8時間の定電流(0.71mA)・定電圧充電を8時間実施し、0.71mAの定電流で2.3Vまで放電した。充電容量は3.48mAhであり、初期充電で正極からドープされたリチウム量は、不溶不融性基体(A−1)重量あたり383mAh/gであり、プリドープ量と合計した不溶不融性基体(A−1)重量あたりのリチウム担持量は892mAh/gであった。放電容量は3.29mAhであった。   Between the positive and negative electrodes of the obtained quadrupole cell, a constant current (0.71 mA) / constant voltage charge of 4.2 V-8 hours was carried out for 8 hours, and discharged to 2.3 V with a constant current of 0.71 mA. The charge capacity is 3.48 mAh, the amount of lithium doped from the positive electrode in the initial charge is 383 mAh / g per weight of the insoluble infusible substrate (A-1), and the insoluble infusible substrate totaled with the pre-doping amount ( A-1) The amount of lithium supported per weight was 892 mAh / g. The discharge capacity was 3.29 mAh.

上記四極セルを「電流休止法」(非特許文献11、非特許文献12参考)により、25℃において、電流値1.65mA、電圧範囲2.3Vから4.2V間において、12分電流印加、60秒休止を繰り返すことにより、充電、放電を実施し、電流休止法抵抗を測定した。負極−負参照極間の電位の放電第一休止点の拡大図を図3に示す。休止直前の負極電位は0.1510Vで、休止1秒後の電位は0.1472V、休止10秒後の電位は0.1460V、休止60秒後の電位は0.1437Vと時間とともに低下していることがわかる。休止直前の負極電位と所定時間における負極電位の差分を印加電流値1.65mAで除することにより、負極の電流休止法抵抗(正参照極−負参照極の電位変化から求められるセパレータ抵抗は除く)を得た。四極セルにより分離した負極の電流休止法抵抗は、1秒までの電流休止法抵抗で1.11Ωであり、10秒までの電流休止法抵抗で1.84Ωであり、60秒までの電流休止法抵抗で3.24Ωであった。また同様に、正極の電流休止法抵抗(正参照極−負参照極の電位変化から求められるセパレータ抵抗は除く)を得た。四極セルにより分離した正極の電流休止法抵抗は、1秒までの電流休止法抵抗で1.35Ωであり、10秒までの電流休止法抵抗で1.84Ωであり、60秒までの電流休止法抵抗で2.81Ωであった。   By applying the above-mentioned quadrupole cell to a current value of 1.65 mA and a voltage range of 2.3 V to 4.2 V at 25 ° C. by a “current pause method” (see Non-Patent Document 11 and Non-Patent Document 12), By repeating the pause for 60 seconds, the battery was charged and discharged, and the current pause method resistance was measured. An enlarged view of the discharge first rest point of the potential between the negative electrode and the negative reference electrode is shown in FIG. The negative electrode potential immediately before the pause is 0.1510 V, the potential after 1 second of the pause is 0.1472 V, the potential after 10 seconds of the pause is 0.1460 V, and the potential after 60 seconds of the pause is 0.1437 V, which decreases with time. I understand that. By dividing the difference between the negative electrode potential immediately before the pause and the negative electrode potential at a predetermined time by the applied current value of 1.65 mA, the current pause method resistance of the negative electrode (excluding the separator resistance obtained from the potential change between the positive reference electrode and the negative reference electrode) ) The current quiescent resistance of the negative electrode separated by the quadrupole cell is 1.11Ω with a current quiescent resistance of up to 1 second, 1.84 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds The resistance was 3.24Ω. Similarly, a current quiescent resistance of the positive electrode (excluding the separator resistance obtained from the potential change between the positive reference electrode and the negative reference electrode) was obtained. The current quiescent resistance of the positive electrode separated by a quadrupole cell is 1.35Ω with a current quiescent resistance of up to 1 second, 1.84 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds. The resistance was 2.81Ω.

(実施例2)
(不溶不融性基体(B−2)粉砕物の試作)
フェノール樹脂硬化体367gをステンレス製皿に入れ、この皿を角型炉(400×400×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。熱反応は、1℃/分の速度で、炉内温が室温から680℃となるまで昇温し、同温度で4時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出し、本発明の不溶不融性基体(B−2)を得た。収量は226gであった。
(Example 2)
(Prototype of insoluble infusible substrate (B-2) pulverized product)
367 g of a cured phenol resin was placed in a stainless steel dish, and the dish was placed in a square furnace (400 × 400 × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. The thermal reaction was performed at a rate of 1 ° C./min until the temperature in the furnace reached from room temperature to 680 ° C., held at that temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and the dish was removed from the furnace. The insoluble and infusible substrate (B-2) of the present invention was obtained. The yield was 226g.

得られた不溶不融性基体(B−2)をボールミルを用いて平均粒子径0.8μmまで粉砕した。得られた不溶不融性基体(B−2)粉砕物について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400シリーズII、CHNS/O)、およびBET法による比表面積(測定使用機:Quantachrome社製「NOVA1200」)の測定を行った。また、XRD(X線回折)法(測定使用機:マックサイエンス社製全自動X線回折装置「MXP」、発生X線はCu−Kα線である)による結晶構造の解析を行った。H/Cは0.19、BET法による比表面積が385m/g、結晶面002面の面間隔が3.73Å、結晶面002面C軸方向の結晶子長さが13.4Åである不溶不融性基体(B−2)粉砕物であった。また、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法により解析した場合の、20Å以下の細孔量は0.14cc/gであった。 The resulting insoluble and infusible substrate (B-2) was pulverized to a mean particle size of 0.8 μm using a ball mill. About the obtained insoluble infusible substrate (B-2) pulverized product, elemental analysis (measurement use machine: elemental analysis device “PE2400 series II, CHNS / O” manufactured by PerkinElmer Co., Ltd.) and specific surface area by BET method (measurement use) Machine: “NOVA1200” manufactured by Quantachrome) was measured. In addition, the crystal structure was analyzed by an XRD (X-ray diffraction) method (measurement machine: fully automatic X-ray diffractometer “MXP 3 ” manufactured by Mac Science Co., Ltd., and generated X-rays are Cu—Kα rays). H / C is 0.19, specific surface area by BET method is 385 m 2 / g, crystal plane 002 plane spacing is 3.73 mm, crystal plane 002 plane crystallite length is 13.4 mm insoluble It was an infusible substrate (B-2) pulverized product. Further, when the isothermal adsorption curve by nitrogen gas at 77.4 K was analyzed by the QSDFT method, the amount of pores of 20 mm or less was 0.14 cc / g.

(不溶不融性基体(A−2)の試作)
得られた不溶不融性基体(B−2)粉砕物16.0gをステンレススチールメッシュ製の籠に入れ、等方性ピッチ(軟化点:270℃)17.6gを入れたステンレス製皿の上に置き、角型炉(400×400×400mm)内に配置して、加熱処理を行った。加熱処理は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。加熱処理は、上記ピッチを680℃まで昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、不溶不融性基体(A−2)を得た。収量は17.6g(10.0%の重量増加)であった。
(Prototype of insoluble and infusible substrate (A-2))
16.0 g of the pulverized product of the obtained insoluble and infusible substrate (B-2) was placed in a stainless steel mesh basket and placed on a stainless steel dish containing 17.6 g of isotropic pitch (softening point: 270 ° C.). And placed in a square furnace (400 × 400 × 400 mm) for heat treatment. The heat treatment was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. In the heat treatment, the pitch is raised to 680 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace to obtain an insoluble and infusible substrate (A-2). It was. Yield was 17.6 g (10.0% weight gain).

得られた不溶不融性基体(A−2)の平均粒子径は0.8μm、H/Cは0.13、BET法による比表面積は15m/g、結晶面002面の面間隔は3.70Å、C軸方向の結晶子長さは13.2Åであった。また、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法による解析した場合の、20Å以下の細孔量は0.005cc/gであった。 The insoluble and infusible substrate (A-2) obtained had an average particle size of 0.8 μm, H / C of 0.13, a specific surface area by BET method of 15 m 2 / g, and a plane spacing of the crystal plane 002 of 3 The crystallite length in the C-axis direction was 13.2 mm. Further, when the isothermal adsorption curve by nitrogen gas at 77.4K was analyzed by the QSDFT method, the amount of pores of 20 mm or less was 0.005 cc / g.

次いで、上記の不溶不融性基体(A−2)75重量部および導電材アセチレンブラック15重量部およびPVdF(ポリフッ化ビニリデン)10重量部をNMP(N−メチル−2−ピロリドン)と混合し、負極合剤スラリーを得た。18μmの銅箔の片面に黒鉛からなる導電性塗料を予め4μm厚さで塗布したものを用意し、集電体の導電性塗料が塗られた側の面上に、上記負極合剤スラリーを塗布し、乾燥した後、プレス加工して電極を得た。   Next, 75 parts by weight of the above insoluble and infusible substrate (A-2), 15 parts by weight of conductive material acetylene black and 10 parts by weight of PVdF (polyvinylidene fluoride) were mixed with NMP (N-methyl-2-pyrrolidone), A negative electrode mixture slurry was obtained. Prepare a 4 μm thick conductive paint made of graphite on one side of an 18 μm copper foil, and apply the negative electrode mixture slurry on the surface of the current collector on which the conductive paint is applied. After drying, press working was performed to obtain an electrode.

上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−2)重量あたり60mA/gの電流でリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は755mAh/gと高い容量を有している。 The electrode obtained above was used as a working electrode, lithium metal was used as a counter electrode, and LiPF 6 was added at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methylethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was made in a dry box using the dissolved solution. After applying a constant voltage of 1 mV to the lithium potential at a current of 60 mA / g per weight of the insoluble infusible substrate (A-2) for 12 hours, the capacity when discharged to 2.5 V at a current of 60 mA / g is It has a high capacity of 755 mAh / g.

上記で得られた厚さ44μm、密度0.94g/cmの負極(電極面積:14×20mm)を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−2)重量あたり60mA/gの電流で不溶不融性基体(A−2)重量あたり483mAh/gのリチウムをプリドープした。 The negative electrode (electrode area: 14 × 20 mm) having a thickness of 44 μm and a density of 0.94 g / cm 3 obtained above was used as a working electrode, lithium metal was used as a counter electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell was prepared in a dry box using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent mixed at 7 (volume ratio). Pre-doped 483 mAh / g lithium per insoluble infusible substrate (A-2) weight at a current of 60 mA / g per insoluble infusible substrate (A-2) weight.

このリチウムをプリドープした負極と、厚さ69μmかつ密度2.1g/cmの正極1(電極面積:14×20mm)を組み合わせ、実施例1と同様の四極セル(非特許文献11、非特許文献12参考)をドライルーム中で作製した。 This lithium pre-doped negative electrode and a positive electrode 1 (electrode area: 14 × 20 mm) having a thickness of 69 μm and a density of 2.1 g / cm 3 are combined, and the same quadrupolar cell as in Example 1 (Non-patent Documents 11 and Non-patent Documents) 12) was prepared in a dry room.

得られた四極セルの正負極間で、4.2V−8時間の定電流(0.73mA)・定電圧充電を8時間実施し、0.73mAの定電流で2.3Vまで放電した。充電容量は3.53mAhであり、初期充電で正極からドープされたリチウム量は、不溶不融性基体(A−2)重量あたり405mAh/gであり、プリドープ量と合計した不溶不融性基体(A−2)重量あたりのリチウム担持量は888mAh/gであった。放電容量は3.32mAhであった。   Between the positive and negative electrodes of the obtained quadrupole cell, a constant current (0.73 mA) / constant voltage charge of 4.2 V-8 hours was carried out for 8 hours, and discharged to 2.3 V with a constant current of 0.73 mA. The charge capacity is 3.53 mAh, and the amount of lithium doped from the positive electrode in the initial charge is 405 mAh / g per weight of the insoluble infusible substrate (A-2). A-2) The amount of lithium supported per weight was 888 mAh / g. The discharge capacity was 3.32 mAh.

上記四極セルを「電流休止法」(非特許文献11、非特許文献12参考)により、25℃において、電流値1.66mA、電圧範囲2.3Vから4.2V間において、12分電流印加、60秒休止を繰り返すことにより、充電、放電を実施し、休止法抵抗を測定した。負極―負参照極間の電位の放電第一休止点から実施例1同様、負極の電流休止法抵抗(正参照極―負参照極の電位変化から求められるセパレータ抵抗は除く)を求めた。四極セルにより分離した負極の電流休止法抵抗は、1秒までの電流休止法抵抗で0.71Ωであり、10秒までの電流休止法抵抗で1.37Ωであり、60秒までの電流休止法抵抗で2.64Ωであった。また同様に、正極の電流休止法抵抗(正参照極―負参照極の電位変化から求められるセパレータ抵抗は除く)を得た。四極セルにより分離した正極の電流休止法抵抗は、1秒までの電流休止法抵抗で1.25Ωであり、10秒までの電流休止法抵抗で1.79Ωであり、60秒までの電流休止法抵抗で2.70Ωであった。当然のことながら、同等の正極1を用いていることから、分離した正極の電流休止法抵抗は実施例1と同等である。   By applying the above-mentioned quadrupole cell to a current value of 1.66 mA and a voltage range of 2.3 V to 4.2 V at 25 ° C. by a “current pause method” (see Non-Patent Document 11 and Non-Patent Document 12), Charging and discharging were performed by repeating the pause for 60 seconds, and the pause method resistance was measured. From the first discharge point of discharge of the potential between the negative electrode and the negative reference electrode, the current pause method resistance of the negative electrode (excluding the separator resistance determined from the change in potential between the positive reference electrode and the negative reference electrode) was determined in the same manner as in Example 1. The current quiescent resistance of the negative electrode separated by the quadrupole cell is 0.71Ω with a current quiescent resistance of up to 1 second, 1.37 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds. The resistance was 2.64Ω. Similarly, a current quiescent resistance of the positive electrode (excluding the separator resistance obtained from the potential change between the positive reference electrode and the negative reference electrode) was obtained. The current quiescent resistance of the positive electrode separated by a quadrupole cell is 1.25 Ω with a current quiescent resistance of up to 1 second, 1.79 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds The resistance was 2.70Ω. As a matter of course, since the equivalent positive electrode 1 is used, the current quiescent resistance of the separated positive electrode is equivalent to that of Example 1.

(比較例1)
実施例で得られた不溶不融性基体(B−1)粉砕物を用い負極を試作した。不溶不融性基体(B−1)75重量部および導電材(アセチレンブラック)15重量部およびバインダー(ポリフッ化ビニリデン:PVDF)10重量部をNMP(N−メチル−2−ピロリドン)と混合し、負極合剤スラリーを得た。このスラリーを厚さ18μmの銅箔の片面に塗布し、乾燥した後、プレス加工して電極を得た。
(Comparative Example 1)
A negative electrode was prototyped using the pulverized product of the insoluble and infusible substrate (B-1) obtained in the examples. 75 parts by weight of an insoluble infusible substrate (B-1), 15 parts by weight of a conductive material (acetylene black) and 10 parts by weight of a binder (polyvinylidene fluoride: PVDF) were mixed with NMP (N-methyl-2-pyrrolidone), A negative electrode mixture slurry was obtained. This slurry was applied to one side of a 18 μm thick copper foil, dried, and then pressed to obtain an electrode.

上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(B−1)重量あたり60mA/gの電流でリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は540mAh/gと高い容量を有している。 The electrode obtained above was used as a working electrode, lithium metal was used as a counter electrode, and LiPF 6 was added at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methylethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was made in a dry box using the dissolved solution. After applying a constant voltage of 1 mV to the lithium potential at a current of 60 mA / g per weight of the insoluble infusible substrate (B-1) for 12 hours, the capacity when discharged to 2.5 V at a current of 60 mA / g is It has a high capacity of 540 mAh / g.

上記で得られた厚さ52μmかつ密度0.80g/cmの負極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(B−1)重量あたり60mA/gの電流で不溶不融性基体(B−1)重量あたり490mAh/gのリチウムをプリドープした。 The negative electrode obtained above with a thickness of 52 μm and a density of 0.80 g / cm 3 is used as a working electrode, lithium metal is used as a counter electrode, and ethylene carbonate and methyl ethyl carbonate are mixed as an electrolyte in a ratio of 3: 7 (volume ratio). An electrochemical cell was produced in a dry box using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. 490 mAh / g of lithium per weight of insoluble infusible substrate (B-1) was pre-doped at a current of 60 mA / g per weight of insoluble infusible substrate (B-1).

このリチウムをプリドープした負極と、上記厚さ69μmかつ密度2.1g/cmの正極1(電極面積:14×20mm)を組み合わせ、実施例1と同様の四極セル(非特許文献11、非特許文献12参考)をドライルーム中で作製した。 The lithium pre-doped negative electrode and the positive electrode 1 having a thickness of 69 μm and a density of 2.1 g / cm 3 (electrode area: 14 × 20 mm) were combined, and the same quadrupole cell as in Example 1 (Non-patent Document 11, Non-patent) Reference 12) was prepared in a dry room.

得られた四極セルの正負極間で、4.2V−8時間の定電流(0.71mA)・定電圧充電を8時間実施し、0.71mAの定電流で2.3Vまで放電した。充電容量は3.53mAhであり、初期充電で正極からドープされたリチウム量は、不溶不融性基体(B−1)重量あたり405mAh/gであり、プリドープ量と合計した不溶不融性基体(B−1)重量あたりのリチウム担持量は895mAh/gであった。放電容量は3.32mAhであった。   Between the positive and negative electrodes of the obtained quadrupole cell, a constant current (0.71 mA) / constant voltage charge of 4.2 V-8 hours was carried out for 8 hours, and discharged to 2.3 V with a constant current of 0.71 mA. The charge capacity is 3.53 mAh, and the amount of lithium doped from the positive electrode in the initial charge is 405 mAh / g per weight of the insoluble infusible substrate (B-1). B-1) The amount of lithium supported per weight was 895 mAh / g. The discharge capacity was 3.32 mAh.

上記四極セルを「電流休止法」(非特許文献11、非特許文献12参考)により、25℃において、電流値1.65mA、電圧範囲2.3Vから4.2V間において、12分電流印加、60秒休止を繰り返すことにより、充電、放電を実施し、電流休止法抵抗を測定した。負極−負参照極間の電位の放電第一休止点から実施例1同様、負極の電流休止法抵抗(正参照極−負参照極の電位変化から求められるセパレータ抵抗は除く)を求めた。四極セルにより分離した負極の電流休止法抵抗は、1秒までの電流休止法抵抗で1.69Ωであり、10秒までの電流休止法抵抗で2.61Ωであり、60秒までの電流休止法抵抗で4.59Ωであった。   By applying the above-mentioned quadrupole cell to a current value of 1.65 mA and a voltage range of 2.3 V to 4.2 V at 25 ° C. by a “current pause method” (see Non-Patent Document 11 and Non-Patent Document 12), By repeating the pause for 60 seconds, the battery was charged and discharged, and the current pause method resistance was measured. From the first discharge point of discharge of the potential between the negative electrode and the negative reference electrode, the current pause method resistance of the negative electrode (excluding the separator resistance determined from the potential change between the positive reference electrode and the negative reference electrode) was determined in the same manner as in Example 1. The current quiescent resistance of the negative electrode separated by the quadrupole cell is 1.69 Ω with a current quiescent resistance of up to 1 second, 2.61 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds The resistance was 4.59Ω.

(比較例2)
(不溶不融性基体(A−3比較)の試作)
実施例1で得られた不溶不融性基体(B−2)8.21gをステンレススチールメッシュ製の籠に入れ、等方性ピッチ(軟化点:270℃)1.25gを入れたステンレス製皿の上に置き、角型炉(400×400×400mm)内に配置して、加熱処理を行った。加熱処理は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。加熱処理は、上記ピッチを680℃まで昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出した。若干の凝集が見られたので、乳鉢で解砕し、不溶不融性基体(A−3比較)を得た。収量は8.34g(1.6%の重量増加)であった。
(Comparative Example 2)
(Prototype of insoluble infusible substrate (A-3 comparison))
A stainless steel dish in which 8.21 g of the insoluble and infusible substrate (B-2) obtained in Example 1 was placed in a stainless steel mesh basket and 1.25 g of an isotropic pitch (softening point: 270 ° C.) was added. And placed in a square furnace (400 × 400 × 400 mm) for heat treatment. The heat treatment was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. In the heat treatment, the pitch was raised to 680 ° C., held at the same temperature for 4 hours, subsequently cooled to 60 ° C. by natural cooling, and then taken out from the furnace. Since some agglomeration was observed, it was crushed in a mortar to obtain an insoluble and infusible substrate (A-3 comparison). Yield was 8.34 g (1.6% weight gain).

得られた不溶不融性基体(A−3比較)の平均粒子径は0.8μmであり、H/Cは0.13であり、BET法による比表面積は271m/g、結晶面002面の面間隔は3.77Å、C軸方向の結晶子長さは13.3Åであった。また、77.4Kにおける窒素ガスによる等温吸着曲線をQSDFT法により解析した場合の、20Å以下の細孔量は0.116cc/gであった。 The obtained insoluble and infusible substrate (A-3 comparison) has an average particle size of 0.8 μm, H / C of 0.13, a specific surface area by the BET method of 271 m 2 / g, and a crystal plane of 002. The interplanar spacing was 3.77 mm and the crystallite length in the C-axis direction was 13.3 mm. Further, when the isothermal adsorption curve by nitrogen gas at 77.4 K was analyzed by the QSDFT method, the amount of pores of 20 mm or less was 0.116 cc / g.

次いで、上記の不溶不融性基体(A−3比較)75重量部および導電材アセチレンブラック15重量部およびPVDF(ポリフッ化ビニリデン)10重量部をNMP(N−メチル−2−ピロリドン)と混合し、負極合材スラリーを得た。18μmの銅箔の片面に黒鉛からなる導電性塗料を予め4μm厚さで塗布したものを用意し、集電体の導電性塗料が塗られた側の面上に、上記負極合剤スラリーを塗布し、乾燥した後、プレス加工して電極を得た。   Next, 75 parts by weight of the above insoluble infusible substrate (A-3 comparison), 15 parts by weight of conductive material acetylene black and 10 parts by weight of PVDF (polyvinylidene fluoride) were mixed with NMP (N-methyl-2-pyrrolidone). A negative electrode mixture slurry was obtained. Prepare a 4 μm thick conductive paint made of graphite on one side of an 18 μm copper foil, and apply the negative electrode mixture slurry on the surface of the current collector on which the conductive paint is applied. After drying, press working was performed to obtain an electrode.

上記で得られた電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−3比較)重量あたり60mA/gの電流でリチウム電位に対して1mVの定電圧を12時間印加した後、60mA/gの電流で2.5Vまで放電した時の容量は630mAh/gと高い容量を有している。 The electrode obtained above was used as a working electrode, lithium metal was used as a counter electrode, and LiPF 6 was added at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methylethyl carbonate were mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was made in a dry box using the dissolved solution. Insoluble infusible substrate (A-3 comparison) Capacity when a constant voltage of 1 mV is applied to the lithium potential at a current of 60 mA / g per weight for 12 hours and then discharged to 2.5 V at a current of 60 mA / g Has a high capacity of 630 mAh / g.

上記で得られた厚さ44μm、密度0.95g/cmの負極(電極面積:14×20mm)を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。不溶不融性基体(A−3比較)重量あたり60mA/gの電流で不溶不融性基体(A−3比較)重量あたり489mAh/gのリチウムをプリドープした。 The negative electrode (electrode area: 14 × 20 mm) having a thickness of 44 μm and a density of 0.95 g / cm 3 obtained as described above was used as a working electrode, lithium metal was used as a counter electrode, and ethylene carbonate and methyl ethyl carbonate were used as electrolytes. An electrochemical cell was prepared in a dry box using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent mixed at 7 (volume ratio). The insoluble infusible substrate (A-3 comparison) was predoped with 489 mAh / g of lithium per weight of the insoluble infusible substrate (A-3 comparison) at a current of 60 mA / g.

このリチウムをプリドープした負極と、厚さ70μmかつ密度2.1g/cmの正極1(電極面積:14×20mm)を組み合わせ、実施例1と同様の四極セル(非特許文献11、非特許文献12参考)をドライルーム中で作製した。 This lithium pre-doped negative electrode and a positive electrode 1 (electrode area: 14 × 20 mm) having a thickness of 70 μm and a density of 2.1 g / cm 3 are combined, and the same quadrupole cell as in Example 1 (Non-patent Documents 11 and Non-patent Documents) 12) was prepared in a dry room.

得られた四極セルの正負極間で、4.2V−8時間の定電流(0.72mA)・定電圧充電を8時間実施し、0.72mAの定電流で2.3Vまで放電した。充電容量は3.48mAhであり、初期充電で正極からドープされたリチウム量は、不溶不融性基体(A−3比較)重量あたり394mAh/gであり、プリドープ量と合計した不溶不融性基体(A−3比較)重量あたりのリチウム担持量は884mAh/gであった。放電容量は3.30mAhであった。   Between the positive and negative electrodes of the obtained quadrupole cell, a constant current (0.72 mA) / constant voltage charge for 4.2 V-8 hours was performed for 8 hours, and the battery was discharged to 2.3 V with a constant current of 0.72 mA. The charge capacity is 3.48 mAh, the amount of lithium doped from the positive electrode in the initial charge is 394 mAh / g per weight of the insoluble infusible substrate (A-3 comparison), and the insoluble infusible substrate totaled with the pre-doping amount (A-3 comparison) The amount of lithium supported per weight was 884 mAh / g. The discharge capacity was 3.30 mAh.

上記四極セルを「電流休止法」(非特許文献11、非特許文献12参考)により、25℃において、電流値1.66mA、電圧範囲2.3Vから4.2V間において、12分電流印加、60秒休止を繰り返すことにより、充電、放電を実施し、電流休止法抵抗を測定した。負極−負参照極間の電位の放電第一休止点から実施例1同様、負極の電流休止法抵抗(正参照極−負参照極の電位変化から求められるセパレータ抵抗は除く)を求めた。四極セルにより分離した負極の電流休止法抵抗は、1秒までの電流休止法抵抗で1.25Ωであり、10秒までの電流休止法抵抗で2.10Ωであり、60秒までの電流休止法抵抗で3.86Ωであった。   By applying the above-mentioned quadrupole cell to a current value of 1.66 mA and a voltage range of 2.3 V to 4.2 V at 25 ° C. by a “current pause method” (see Non-Patent Document 11 and Non-Patent Document 12), By repeating the pause for 60 seconds, the battery was charged and discharged, and the current pause method resistance was measured. From the first discharge point of discharge of the potential between the negative electrode and the negative reference electrode, the current pause method resistance of the negative electrode (excluding the separator resistance determined from the potential change between the positive reference electrode and the negative reference electrode) was determined in the same manner as in Example 1. The current quiescent resistance of the negative electrode separated by the quadrupole cell is 1.25 Ω with a current quiescent resistance of up to 1 second, 2.10 Ω with a current quiescent resistance of up to 10 seconds, and a current quiescent method of up to 60 seconds The resistance was 3.86Ω.

ここまでの、実施例から明らかなように、本発明の非水系二次電池の負極に用いる不溶不融性基体(A)は、500mAh/gを超えるリチウムを可逆的にドープすることが可能である高容量材料であり、従来のリチウムイオン電池に用いられる黒鉛系炭素材料、難黒鉛性炭素材料(黒鉛炭素材料の理論容量でも372mAh/g)を用いる負極に比べ、高い放電容量を有しすることがわかる。また、不溶不融性基体(A)の構造(比表面積150m/g以下)に制御することにより、表2にから明らかなように、特開2007―294286号公報に記載されている材料(比較例1)の課題であった60秒での「電流休止法抵抗」を大幅に低減でき、黒鉛系材料を用いた負極の1/2以下の値とすることが可能である。なお、黒鉛系材料を用いた負極の四極セルで分離した「電流休止法抵抗」については、非特許文献12に記載されている値を参考値として表2に合わせて示している。以上に示すここまでの実施例は、本発明の非水系二次電池における負極の効果について明らかにした。更に、本発明の非水系二次電池の特徴とするところについて実施例3に示して、エネルギー密度および出力特性をさらに明確化する。 As is apparent from the examples so far, the insoluble and infusible substrate (A) used for the negative electrode of the nonaqueous secondary battery of the present invention can be reversibly doped with lithium exceeding 500 mAh / g. It is a high-capacity material, and has a higher discharge capacity than a negative electrode using a graphite-based carbon material and a non-graphitizable carbon material (theoretical capacity of graphite carbon material is 372 mAh / g) used in conventional lithium ion batteries. I understand that. Further, by controlling to the structure of the insoluble and infusible substrate (A) (specific surface area of 150 m 2 / g or less), as is apparent from Table 2, the materials described in JP-A-2007-294286 ( The “current quiescent resistance” at 60 seconds, which was a problem of Comparative Example 1), can be greatly reduced, and can be set to a value of ½ or less of a negative electrode using a graphite-based material. In addition, about the "current resting method resistance" isolate | separated with the quadrupole cell of the negative electrode using a graphite-type material, the value described in the nonpatent literature 12 is shown according to Table 2 as a reference value. The examples described so far have clarified the effect of the negative electrode in the nonaqueous secondary battery of the present invention. Further, the features of the nonaqueous secondary battery of the present invention will be described in Example 3 to further clarify the energy density and output characteristics.

Figure 2011081960
Figure 2011081960

(実施例3)
不溶不融性基体(A−1)を主成分とする実施例1で得られた厚さ43μmかつ密度1.0g/cmの電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。リチウムのドーピングは、リチウム電位に対して1mV以上において、不溶不融性基体(A−1)重量あたり54mA/gの電流で行い、不溶不融性基体(A−1)重量あたり544mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。
(Example 3)
An electrode having a thickness of 43 μm and a density of 1.0 g / cm 3 obtained in Example 1 mainly composed of an insoluble infusible substrate (A-1) was used as a working electrode, lithium metal was used as a counter electrode, and an electrolyte solution was used. An electrochemical cell was produced in a dry box using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a ratio of 3: 7 (volume ratio). Lithium doping is performed at a current of 54 mA / g per weight of the insoluble and infusible substrate (A-1) at 1 mV or more with respect to the lithium potential, and 544 mAh / g doping per weight of the insoluble and infusible substrate (A-1). The negative electrode which carried lithium beforehand was obtained.

上記でリチウムを予め担持させた負極と、厚さ67μmかつ密度2.1g/cmの正極1と、セルロース系セパレータ(厚さ:30μm)を組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、評価用リチウムイオン電池(単層セル:正極1枚、負極1枚)をドライボックス中で作製した。 The negative electrode on which lithium is previously supported, the positive electrode 1 having a thickness of 67 μm and a density of 2.1 g / cm 3 , and a cellulose-based separator (thickness: 30 μm) are combined, and ethylene carbonate and methyl ethyl carbonate are used as an electrolytic solution. A lithium ion battery for evaluation (single-layer cell: one positive electrode and one negative electrode) in a dry box using a solution in which LiPF 6 was dissolved in a solvent mixed at 3: 7 (volume ratio) to a concentration of 1 mol / l. It was produced with.

初期充電で正極からドープされたリチウム量は、不溶不融性基体(A−1)重量あたり、359mAh/gであり、プリドープ量と合計した不溶不融性基体(A−1)重量あたりのリチウム担持量は903mAh/gであった。   The amount of lithium doped from the positive electrode in the initial charge is 359 mAh / g per weight of the insoluble infusible substrate (A-1), and lithium per weight of the insoluble infusible substrate (A-1) combined with the pre-doping amount. The supported amount was 903 mAh / g.

上記電池を「電流休止法」により、25℃において、電流値1.5mA、電圧範囲2.5Vから4.2V間において、定期的に60秒の休止をしながら、電池の抵抗評価を行った。放電第一休止点の1秒までの休止法抵抗は、2.8cmあたり2.27Ωであり、10秒までの休止法抵抗は3.60Ωであり、60秒までの休止法抵抗は5.60Ωであった。 The resistance of the battery was evaluated by the “current pause method” at 25 ° C. with a current value of 1.5 mA and a voltage range of 2.5 V to 4.2 V while periodically pausing for 60 seconds. . The pause method resistance up to 1 second of the first discharge rest point is 2.27Ω per 2.8 cm 2 , the pause method resistance up to 10 seconds is 3.60Ω, and the pause method resistance up to 60 seconds is 5. It was 60Ω.

上記電池を電圧4.2V−2.5V間で電流0.7mAで充放電をしたところ、放電容量は3.25mAhであった。またこの放電時の平均電圧が3.45Vであった。この評価用リチウムイオン電池(単層セル:正極1枚、負極1枚)に使用した電極面積2.8cm、正極厚さ、負極厚さ、セパレータ厚さから電極ユニット体積0.0456ccを得た。ただし、集電体厚さは、実電池においては、両面塗工することから、厚さを半分とし、正極集電体10μm、負極集電体9μmで計算した。放電容量、放電時の平均電圧、電極ユニット体積から、電極ユニット体積あたりのエネルギー密度は245Wh/Lであった。 When the battery was charged and discharged at a current of 0.7 mA between a voltage of 4.2 V and 2.5 V, the discharge capacity was 3.25 mAh. Moreover, the average voltage at the time of this discharge was 3.45V. An electrode unit volume of 0.0456 cc was obtained from the electrode area 2.8 cm 2 , the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator used in this evaluation lithium ion battery (single layer cell: one positive electrode, one negative electrode). . However, the current collector thickness was calculated with a positive electrode current collector of 10 μm and a negative electrode current collector of 9 μm, because the thickness of the current collector was half-coated in an actual battery. From the discharge capacity, the average voltage during discharge, and the electrode unit volume, the energy density per electrode unit volume was 245 Wh / L.

上記充放電における電圧4.2V−2.5V間、電流0.7mAでの放電曲線を基本線として、非特許文献12に記載されている方法で、電流休止法抵抗の時間依存性から出力カーブを計算した。50CA相当の160mA電流での出力では電圧4.2V−3.0V間で24.9秒の出力が可能であり、100CA相当の320mA電流での出力では電圧4.2V−3.0V間で4.6秒の出力が可能であった。
(比較例3)
With the method described in Non-Patent Document 12, using the discharge curve at a voltage of 4.2 V to 2.5 V and a current of 0.7 mA in the charge / discharge as a basic line, the output curve from the time dependence of the current pause method resistance Was calculated. With an output at 160 mA current equivalent to 50 CA, output of 24.9 seconds is possible between a voltage of 4.2 V and 3.0 V, and at an output of 320 mA current equivalent to 100 CA, a voltage between 4.2 V and 3.0 V is 4 Output of 6 seconds was possible.
(Comparative Example 3)

不溶不融性基体(A−1)を主成分とする実施例1で得られた厚さ43μmかつ密度1.0g/cmの電極を作用極とし、リチウム金属を対極に用い、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルをドライボックス中で作製した。リチウムのドーピングは、リチウム電位に対して1mV以上において、不溶不融性基体(A−1)重量あたり54mA/gの電流で行い、不溶不融性基体(A−1)重量あたり544mAh/gドーピングを行い、リチウムを予め担持させた負極を得た。 An electrode having a thickness of 43 μm and a density of 1.0 g / cm 3 obtained in Example 1 mainly composed of an insoluble infusible substrate (A-1) was used as a working electrode, lithium metal was used as a counter electrode, and an electrolyte solution was used. An electrochemical cell was produced in a dry box using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a ratio of 3: 7 (volume ratio). Lithium doping is performed at a current of 54 mA / g per weight of the insoluble and infusible substrate (A-1) at 1 mV or more with respect to the lithium potential, and 544 mAh / g doping per weight of the insoluble and infusible substrate (A-1). The negative electrode which carried lithium beforehand was obtained.

上記でリチウムを予め担持させた負極と、厚さ52μmかつ密度2.3g/cmの正極4(繊維状導電材を含まない)と、セルロース系セパレータを組み合わせ、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、評価用リチウムイオン電池(単層セル:正極1枚、負極1枚)をドライボックス中で作製した。 The negative electrode preliminarily supporting lithium, the positive electrode 4 having a thickness of 52 μm and a density of 2.3 g / cm 3 (not including a fibrous conductive material), and a cellulose-based separator are combined, and ethylene carbonate and methyl ethyl are used as an electrolyte solution. A lithium ion battery for evaluation (single-layer cell: one positive electrode and one negative electrode) was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent mixed with carbonate at a ratio of 3: 7 (volume ratio). Made in a dry box.

初期充電で正極からドープされたリチウム量は、不溶不融性基体(A−1)重量あたり、345mAh/gであり、プリドープ量と合計した不溶不融性基体(A−1)重量あたりのリチウム担持量は889mAh/gであった。   The amount of lithium doped from the positive electrode in the initial charge is 345 mAh / g per weight of the insoluble infusible substrate (A-1), and lithium per weight of the insoluble infusible substrate (A-1) combined with the pre-doping amount. The supported amount was 889 mAh / g.

上記単層セルを「電流休止法」により、25℃において、電流値1.5mA、電圧範囲2.5Vから4.2V間において、定期的に60秒の休止をしながら、電池の抵抗評価を行った。放電第一休止点の1秒までの休止法抵抗(セパレータ含む)は、2.8cmあたり3.20Ωであり、10秒までの休止法抵抗(セパレータ含む)は4.80Ωであり、60秒までの休止法抵抗(セパレータ含む)は6.93Ωであった。 The single-layer cell was evaluated by the “current pause method” at 25 ° C., with a current value of 1.5 mA and a voltage range of 2.5 V to 4.2 V, while periodically pausing for 60 seconds while evaluating the battery resistance. went. The resting method resistance (including separator) up to 1 second of the first resting point of discharge is 3.20Ω per 2.8 cm 2 , and the resting method resistance (including separator) up to 10 seconds is 4.80Ω, 60 seconds. The resting method resistance until (including the separator) was 6.93Ω.

上記電池を電圧4.2V−2.5V間で電流0.7mAで充放電をしたところ、放電容量は3.14mAhであった。またこの放電時の平均電圧が3.45Vであった。この評価用リチウムイオン電池(単層セル:正極1枚、負極1枚)に使用した電極面積2.8cm、正極厚さ、負極厚さ、セパレータ厚さから電極ユニット体積0.0426ccを得た。ただし、集電体厚さは両面塗工の場合を考慮して、厚さを半分とし、正極集電体10μm、負極集電体9μmで計算した。放電容量、放電時の平均電圧、電極ユニット体積から、電極ユニット体積あたりのエネルギー密度は255Wh/Lであった。 When the battery was charged and discharged at a current of 0.7 mA between a voltage of 4.2 V and 2.5 V, the discharge capacity was 3.14 mAh. Moreover, the average voltage at the time of this discharge was 3.45V. An electrode unit volume of 0.0426 cc was obtained from the electrode area 2.8 cm 2 , the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator used in this evaluation lithium ion battery (single layer cell: one positive electrode, one negative electrode). . However, the thickness of the current collector was calculated by taking the case of double-sided coating into half the thickness and using a positive electrode current collector of 10 μm and a negative electrode current collector of 9 μm. From the discharge capacity, the average voltage during discharge, and the electrode unit volume, the energy density per electrode unit volume was 255 Wh / L.

上記充放電における電圧4.2V−2.5V間、電流0.7mAでの放電を基本線として、実施例3同様、電流休止法抵抗から出力を計算した(非特許文献12参考)。50CA相当の160mA電流での出力では電圧4.2V−3.0V間で16.6秒の出力が可能であり、100CA相当の320mA電流での出力では電圧4.2V−3.0V間で1.6秒の出力が可能であった。実施例3と比較し、繊維状導電材を含まない正極を用いた場合、連続放電における持続時間が低下することがわかる。   The output was calculated from the current pause method resistance as in Example 3 using the discharge at a voltage of 4.2 V to 2.5 V in the charging / discharging at a current of 0.7 mA as a basic line (see Non-Patent Document 12). With an output at 160 mA current equivalent to 50 CA, an output of 16.6 seconds is possible at a voltage between 4.2 V and 3.0 V, and at an output at 320 mA current equivalent to 100 CA, it is 1 between 4.2 V and 3.0 V. Output of 6 seconds was possible. Compared with Example 3, when the positive electrode which does not contain a fibrous conductive material is used, it turns out that the duration in continuous discharge falls.

本発明の非水系二次電池の用途としては、例えば、ハイブリッド電気自動車、燃料電池電気自動車などにおける出力蓄電デバイスの用途が挙げられる。特に、本非水系二次電池は高エネルギー密度と従来にない高出力の両立を可能とすることができ、出力蓄電デバイスの小型、軽量化に貢献するものである。   Examples of the use of the non-aqueous secondary battery of the present invention include use of an output storage device in a hybrid electric vehicle, a fuel cell electric vehicle, and the like. In particular, this non-aqueous secondary battery can achieve both high energy density and unprecedented high output, and contributes to the reduction in size and weight of the output power storage device.

1 正極層
1’ 正極集電体
2 負極層
2’ 負極集電体
3 正参照極
3’ 正参照極リード
4 負参照極
4’ 負参照極リード
5 セパレータ(電解液を含む)
DESCRIPTION OF SYMBOLS 1 Positive electrode layer 1 'Positive electrode collector 2 Negative electrode layer 2' Negative electrode collector 3 Positive reference electrode 3 'Positive reference electrode lead 4 Negative reference electrode 4' Negative reference electrode lead 5 Separator (including electrolyte)

Claims (8)

正極、負極、セパレータおよびリチウム塩が非水溶媒に溶解されてなる非水系電解液を具備する非水系二次電池において、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材を含み、負極が水素原子/炭素原子比が0.60〜0.05であり、かつ、結晶面002面の面間隔が3.6Å以上である不溶不融性基体(A)を主成分とし、不溶不融性基体(A)の平均粒子径が2.0μm以下かつBET法による比表面積が150m/g未満であり、不溶不融性基体(A)の重量あたり500mAh/g以上のリチウムを担持させてあることを特徴とする非水系二次電池。 In a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent, the positive electrode contains at least an active material capable of inserting and extracting lithium, and a fibrous conductive material. And the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05 and an insoluble infusible substrate (A) having a crystal plane 002 plane spacing of 3.6 mm or more as a main component, The insoluble infusible substrate (A) has an average particle size of 2.0 μm or less, a specific surface area by the BET method of less than 150 m 2 / g, and lithium of 500 mAh / g or more per weight of the insoluble infusible substrate (A). A non-aqueous secondary battery, which is supported. 前記非水系二次電池において、負極の主成分である不溶不融性基体(A)の20Å以下の細孔が0.05cc/g以下であることを特徴とする請求項1に記載の非水系二次電池。   2. The non-aqueous secondary battery according to claim 1, wherein in the non-aqueous secondary battery, pores of 20 μm or less of the insoluble infusible substrate (A) which is a main component of the negative electrode are 0.05 cc / g or less. Secondary battery. 前記非水系二次電池において、負極の主成分である不溶不融性基体(A)が、水素原子/炭素原子比が0.60〜0.05、BET法による比表面積が500m/g未満である不溶不融性基体(B)を粉砕して得られる平均粒子径が2.0μm以下の不溶不融性基体(B)粉砕物の細孔の一部あるいは全部を、炭素質材料で塞いだことを特徴とする請求項1あるいは2に記載の非水系二次電池。 In the non-aqueous secondary battery, the insoluble infusible substrate (A) which is the main component of the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, and a specific surface area by the BET method of less than 500 m 2 / g. Part or all of the pores of the pulverized insoluble infusible substrate (B) having an average particle size of 2.0 μm or less obtained by crushing the insoluble infusible substrate (B) is filled with a carbonaceous material. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is a non-aqueous secondary battery. 前記非水系二次電池において、負極の主成分である不溶不融性基体(A)が、水素原子/炭素原子比が0.60〜0.05、BET法による比表面積が500m/g未満である不溶不融性基体(B)を粉砕して得られる平均粒子径が2.0μm以下の不溶不融性基体(B)粉砕物を、炭素前駆体の共存下熱処理することによって得ることを特徴とする請求項1から3のいずれかに記載の非水系二次電池。 In the non-aqueous secondary battery, the insoluble infusible substrate (A) which is the main component of the negative electrode has a hydrogen atom / carbon atom ratio of 0.60 to 0.05, and a specific surface area by the BET method of less than 500 m 2 / g. The insoluble infusible substrate (B) pulverized product having an average particle size of 2.0 μm or less obtained by pulverizing the insoluble infusible substrate (B) is obtained by heat treatment in the presence of a carbon precursor. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is a non-aqueous secondary battery. 前記非水系二次電池において、正極が少なくともリチウムを吸蔵、脱離可能な活物質、繊維状導電材及び非繊維状導電材を含むことを特徴とする請求項1から4のいずれかに記載の非水系二次電池。   5. The non-aqueous secondary battery according to claim 1, wherein the positive electrode includes at least an active material capable of inserting and extracting lithium, a fibrous conductive material, and a non-fibrous conductive material. Non-aqueous secondary battery. 前記非水系二次電池において、正極に含まれる繊維状導電材が2重量%以上13重量%以下であることを特徴とする請求項1から請求項5のいずれかに記載の非水系二次電池。   6. The non-aqueous secondary battery according to claim 1, wherein the fibrous conductive material contained in the positive electrode is 2 wt% or more and 13 wt% or less in the non-aqueous secondary battery. . 前記非水系二次電池において、正極に含まれる繊維状導電材が2重量%以上13重量%以下であり、かつ、繊維状導電材と非繊維状導電材の総量が7重量%以上20重量%以下であることを特徴とする請求項6に記載の非水系二次電池。   In the non-aqueous secondary battery, the fibrous conductive material contained in the positive electrode is 2 wt% or more and 13 wt% or less, and the total amount of the fibrous conductive material and the non-fibrous conductive material is 7 wt% or more and 20 wt%. The nonaqueous secondary battery according to claim 6, wherein: 前記非水系二次電池において、正極に含まれるリチウムを吸蔵、脱離可能な活物質の平均粒子径が7μm以下であることを特徴とする請求項1から請求項7のいずれかに記載の非水系二次電池。   8. The non-aqueous secondary battery according to claim 1, wherein the active material capable of occluding and desorbing lithium contained in the positive electrode has an average particle size of 7 μm or less. 9. Water-based secondary battery.
JP2009231738A 2009-10-05 2009-10-05 Nonaqueous secondary battery Pending JP2011081960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231738A JP2011081960A (en) 2009-10-05 2009-10-05 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231738A JP2011081960A (en) 2009-10-05 2009-10-05 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2011081960A true JP2011081960A (en) 2011-04-21

Family

ID=44075825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231738A Pending JP2011081960A (en) 2009-10-05 2009-10-05 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2011081960A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065554A (en) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd Negative electrode for power storage device, and power storage device
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119923A (en) * 1992-08-20 1994-04-28 Osaka Gas Co Ltd Carbon electrode, its manufacture, and lithium secondary battery
JPH0864251A (en) * 1994-08-26 1996-03-08 Kanebo Ltd Organic electrolyte battery
JPH08162163A (en) * 1994-12-06 1996-06-21 Kanebo Ltd Organic electrolytic battery
JPH0927344A (en) * 1995-07-11 1997-01-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
JPH10284122A (en) * 1997-04-10 1998-10-23 Kanebo Ltd Organic electrolyte battery
JPH11312523A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Electrode for battery and nonaqueous electrolyte battery
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2001229926A (en) * 2000-02-17 2001-08-24 Kansai Research Institute Negative electrode material for lithium-based secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2004095204A (en) * 2002-08-29 2004-03-25 Electric Power Dev Co Ltd Nonaqueous secondary battery
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2006324237A (en) * 2005-04-21 2006-11-30 Hitachi Chem Co Ltd Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
JP2007103040A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007265944A (en) * 2006-03-30 2007-10-11 Kri Inc Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2007294286A (en) * 2006-04-26 2007-11-08 Kri Inc Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119923A (en) * 1992-08-20 1994-04-28 Osaka Gas Co Ltd Carbon electrode, its manufacture, and lithium secondary battery
JPH0864251A (en) * 1994-08-26 1996-03-08 Kanebo Ltd Organic electrolyte battery
JPH08162163A (en) * 1994-12-06 1996-06-21 Kanebo Ltd Organic electrolytic battery
JPH0927344A (en) * 1995-07-11 1997-01-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
JPH10284122A (en) * 1997-04-10 1998-10-23 Kanebo Ltd Organic electrolyte battery
JPH11312523A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Electrode for battery and nonaqueous electrolyte battery
JPH11345607A (en) * 1998-06-03 1999-12-14 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2001229926A (en) * 2000-02-17 2001-08-24 Kansai Research Institute Negative electrode material for lithium-based secondary battery
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2004095204A (en) * 2002-08-29 2004-03-25 Electric Power Dev Co Ltd Nonaqueous secondary battery
JP2006324237A (en) * 2005-04-21 2006-11-30 Hitachi Chem Co Ltd Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
JP2007103040A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007265944A (en) * 2006-03-30 2007-10-11 Kri Inc Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2007294286A (en) * 2006-04-26 2007-11-08 Kri Inc Negative electrode for nonaqueous system secondary battery and nonaqueous system secondary battery using it
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
JP2017027947A (en) * 2011-05-23 2017-02-02 エルジー ケム. エルティーディ. High output lithium secondary battery with enhanced output density characteristics
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JP2016213205A (en) * 2011-07-13 2016-12-15 エルジー・ケム・リミテッド High-energy lithium secondary battery improved in energy density characteristic
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JP2013065554A (en) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd Negative electrode for power storage device, and power storage device
US10614967B2 (en) 2011-08-31 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Negative electrode of power storage device and power storage device
US10998141B2 (en) 2011-08-31 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Negative electrode of power storage device and power storage device

Similar Documents

Publication Publication Date Title
KR101919470B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
KR101396521B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
KR101504614B1 (en) Graphite active anode material for a lithium secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011081960A (en) Nonaqueous secondary battery
JP2005158721A (en) Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material
JP6946781B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
KR20150139154A (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
KR20180074607A (en) An anode active material and an anode for an electrochemical device comprising the same
KR20230009434A (en) Anode material and manufacturing method thereof, lithium ion battery
JPWO2011105444A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JP6580297B2 (en) ELECTRODE PARTICLE, ELECTRODE AND ELECTRIC STORAGE DEVICE
JP5192657B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP4234356B2 (en) Method for producing negative electrode material
JP2012138375A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
KR102439849B1 (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218