JP2007103040A - Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007103040A
JP2007103040A JP2005287785A JP2005287785A JP2007103040A JP 2007103040 A JP2007103040 A JP 2007103040A JP 2005287785 A JP2005287785 A JP 2005287785A JP 2005287785 A JP2005287785 A JP 2005287785A JP 2007103040 A JP2007103040 A JP 2007103040A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
secondary battery
material layer
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287785A
Other languages
Japanese (ja)
Other versions
JP4848723B2 (en
Inventor
Yuichi Miyazaki
祐一 宮崎
Shiyo Kikuchi
史陽 菊地
Naoyuki Mitsuyasu
直之 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005287785A priority Critical patent/JP4848723B2/en
Publication of JP2007103040A publication Critical patent/JP2007103040A/en
Application granted granted Critical
Publication of JP4848723B2 publication Critical patent/JP4848723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode plate for a nonaqueous electrolyte secondary battery exerting excellent high-output characteristics even at quick charge/discharge such as a large-current discharge through efficient reaction of an electrode active material layer, concerning one equipped with a current collector and an electrode active layer at least on one face of the current collector. <P>SOLUTION: Of the electrode plate for a nonaqueous electrolyte battery equipped with a current collector and an electrode active material layer at least on one face of the current collector, the electrode active material layer contains an active material with an average primary particle size of 0.1 to 5 μm, carbon black, and a fibrous conductive material at a ratio of 7 to 25 weight parts of the carbon black and 0.5 to 6.5 weight parts of the fibrous conductive material to 100 weight parts of the active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水電解液二次電池用電極板、及びそれを用いた非水電解液二次電池に関する。   The present invention relates to an electrode plate for a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and a non-aqueous electrolyte secondary battery using the same.

リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果(完全に放電させる前に電池の充電を行なうと次第に電池容量が減少していく現象)が無いことから、携帯機器、大型機器など様々な分野で用いられている。
一般的な非水電解液二次電池の構成を単純化すると、正極板、負極板、セパレータ及び電解液からなり、該正極板及び負極板としては、金属箔等の集電体の上に、電極活物質層として塗工膜を形成したものが用いられている。
電極活物質層は通常、活物質、結着剤、必要に応じて導電材、及びその他の材料を溶媒中で混練及び分散してスラリー状の電極活物質層材料に調製し、該電極活物質層材料を集電体上に塗布及び乾燥して形成される。
A non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high voltage, and also has a memory effect during charging / discharging (when the battery is charged before it is completely discharged, Since there is no phenomenon in which the capacity decreases, it is used in various fields such as portable devices and large devices.
When the structure of a general non-aqueous electrolyte secondary battery is simplified, it consists of a positive electrode plate, a negative electrode plate, a separator, and an electrolyte solution, and the positive electrode plate and the negative electrode plate are on a current collector such as a metal foil, What formed the coating film as an electrode active material layer is used.
The electrode active material layer is usually prepared as a slurry-like electrode active material layer material by kneading and dispersing an active material, a binder, if necessary, a conductive material, and other materials in a solvent. The layer material is formed by applying and drying on a current collector.

近年では特に電気自動車、ハイブリッド自動車、パワーツール等のような高出力特性が必要とされる分野に向けて非水電解液二次電池の開発が進んでいる。
従来広く開発されてきた一般に携帯電話、パソコン等に用いられる小型の非水電解液二次電池は、通常10μm付近の平均一次粒径を有する活物質を使用し、電池をより小さく軽くすることを追求すると共に、電池の重量エネルギー密度および体積エネルギー密度を重視する。そのため、このような電池の電極活物質層における活物質の配合比率は概して大きく、導電材や結着剤の配合比率は小さい。また、電極活物質層のプレス密度(プレスした後の電極活物質層の密度)は高く、このような電極活物質層の空隙は比較的少ない。
これに対して、上記の高出力特性を要する非水電解液二次電池は、電池のコンパクトさよりも高出力特性を重視する。また、高出力特性を要する非水電解液二次電池は、小型の非水電解液二次電池と比べて、著しく大きな電流で放電するため、小型の非水電解液二次電池と同様の電極活物質層を用いても、優れた出力特性を得ることは難しかった。
In recent years, development of non-aqueous electrolyte secondary batteries has been progressing especially for fields that require high output characteristics such as electric vehicles, hybrid vehicles, power tools and the like.
Small non-aqueous electrolyte secondary batteries generally used for mobile phones, personal computers, etc., which have been widely developed in the past, use an active material having an average primary particle size of usually around 10 μm to make the batteries smaller and lighter. In addition to the pursuit, the weight energy density and volume energy density of the battery are emphasized. Therefore, the mixing ratio of the active material in the electrode active material layer of such a battery is generally large, and the mixing ratio of the conductive material and the binder is small. Moreover, the press density of the electrode active material layer (the density of the electrode active material layer after pressing) is high, and the voids in such an electrode active material layer are relatively small.
On the other hand, the non-aqueous electrolyte secondary battery that requires the above-described high output characteristics places more importance on the high output characteristics than the compactness of the battery. In addition, non-aqueous electrolyte secondary batteries that require high output characteristics discharge at a significantly higher current than small non-aqueous electrolyte secondary batteries, so the same electrodes as small non-aqueous electrolyte secondary batteries Even if an active material layer was used, it was difficult to obtain excellent output characteristics.

一般に、活物質の粒径を小さくすることで、活物質の反応を効率よくする方法が知られている。つまり、活物質の粒径を小さくすると、活物質の比表面積が大きくなると共に、イオン及び電子の活物質粒子内における移動距離が短くなり、同質量の通常の粒径の活物質と比較した場合に、短時間で多くの活物質を反応させることが可能である。このとき、各活物質粒子への導通を確保し電極活物質層の抵抗を下げるためには、小粒径の活物質を満遍なく導電材で網羅する必要がある。しかし、小粒径の活物質は、同質量の通常の粒径の活物質に比べると粒子数及び比表面積が増加しているため、活物質に対する導電材の添加量を増やす必要がある。また、活物質表面を満遍なく網羅するためには必然的に導電材の粒子径も小さくする必要がある。   In general, a method is known in which the active material reaction is efficiently performed by reducing the particle size of the active material. In other words, when the particle size of the active material is reduced, the specific surface area of the active material is increased, and the moving distance of ions and electrons in the active material particle is shortened. In addition, it is possible to react many active materials in a short time. At this time, in order to ensure conduction to each active material particle and lower the resistance of the electrode active material layer, it is necessary to cover the active material having a small particle size uniformly with a conductive material. However, an active material having a small particle size has an increased number of particles and a specific surface area as compared with an active material having a normal particle size of the same mass. Therefore, it is necessary to increase the amount of conductive material added to the active material. Moreover, in order to cover the active material surface evenly, it is inevitably necessary to reduce the particle diameter of the conductive material.

しかしながら、従来より広く用いられている比較的球形に近い微粉形状のカーボンブラックなどの導電材(以下、球状導電材という。)の量を増やしていくと、次第に電極活物質層の高出力特性は向上するが、ある程度の添加量に達すると高出力特性の伸びは頭打ちになってしまう。これは、導電材はストラクチャー(連結)を形成するため、電極活物質層材料中に均一に分散することが難しいことが影響している。したがって、必要以上に多くの導電材を電極活物質層材料に添加しても、期待される効果とは逆に導電材の凝集につながり、高出力特性の向上には限界があった。
また、電極活物質層は一般にプレスにより高密度化されるが、その際、球状導電材粒子及び小粒径の活物質粒子の間隔が空隙を詰めるように狭くなること(パッキング)によって電極活物質層中の空隙量及び細孔径が小さくなり、充分な電解液の浸透経路が確保できず、急速充放電時には、電極活物質層におけるイオンの供給能力が乏しくなり、作動時間の経過につれて急激に電池電圧が低下し、電池容量が落ち込むという問題があった。
However, as the amount of conductive material such as carbon black, which is relatively close to a spherical shape, which has been widely used in the past (hereinafter referred to as a spherical conductive material) is increased, the high output characteristics of the electrode active material layer gradually increase. Although it improves, the growth of the high output characteristics reaches its peak when a certain amount of additive is reached. This is because the conductive material forms a structure (connection), and thus it is difficult to uniformly disperse in the electrode active material layer material. Therefore, adding more conductive material than necessary to the electrode active material layer material leads to aggregation of the conductive material, contrary to the expected effect, and there is a limit to improving the high output characteristics.
In addition, the electrode active material layer is generally densified by pressing, and at this time, the electrode active material is reduced by narrowing the space between the spherical conductive material particles and the small active material particles so as to fill the gap (packing). The amount of voids and pore size in the layer is reduced, so that a sufficient electrolyte permeation route cannot be secured. During rapid charge / discharge, the ability to supply ions in the electrode active material layer becomes poor, and the battery rapidly increases as the operating time elapses. There was a problem that the voltage dropped and the battery capacity dropped.

特許文献1及び特許文献2などにおいて、小型の非水電解液二次電池の導電材として、上記球状導電材と共に繊維状導電材を添加する方法が開示されている。
特許文献1には、導電材としてカーボンブラックと黒鉛化カーボンファイバーを用いた非水電解質電池が開示されている。前記カーボンブラックと前記カーボンファイバーとの混合物の割合が、正極活物質層全体の0.5重量%〜20重量%の範囲であることが特徴であった。しかしながら、カーボンブラックとカーボンファイバーの配合割合は、実施例においてカーボンファイバーの割合の方が多い。
Patent Document 1 and Patent Document 2 disclose a method of adding a fibrous conductive material together with the spherical conductive material as a conductive material for a small non-aqueous electrolyte secondary battery.
Patent Document 1 discloses a nonaqueous electrolyte battery using carbon black and graphitized carbon fiber as a conductive material. The ratio of the mixture of the carbon black and the carbon fiber is in the range of 0.5 wt% to 20 wt% of the whole positive electrode active material layer. However, the blending ratio of carbon black and carbon fiber is larger in the ratio of carbon fiber in the examples.

特許文献2には、正極活物質に導電材として粉末状炭素材料及び片状炭素材料及び繊維状炭素材料が混合されている正極を有するリチウムイオン二次電池が開示されている。前記正極活物質に対して、前記粉末状炭素材料は0.2〜2%、前記片状炭素材料は1〜10%、前記繊維状炭素材料は1〜8%の割合で混合されていることが特徴であった。しかしながら、この文献の実施例においては、導電材として平均粒径0.05μmのカーボンブラックを2%、黒鉛化炭素繊維を2%、平均粒径5μmの天然黒鉛を4%混合し、実際には、小粒径の活物質を満遍なく網羅できるカーボンブラックは2%程度しか使用されていない。また、実際には、分散性を低下させるカーボンブラック及び炭素繊維は合計4%しか使用されていないため、凝集の問題はそれほど顕著ではなかった。
このように繊維状導電材を添加することは、電極活物質層の体積抵抗率の低減には効果的であるが、電極活物質層材料中に均一に分散することが難しく、また、その形状から小粒径の活物質粒子の表面を効果的に網羅することができないため、高出力特性を要する非水電解液二次電池においては、単純に球状導電材の一部を繊維状導電材に置き換えるだけでは、出力特性の改善にはつながり難かった。
また、特許文献3には、導電助剤が、炭素材料であり、繊維状炭素材料と粒状炭素を含み構成されているリチウム二次電池が開示されているが、炭素繊維と混合する粒状炭素として、粒状炭素中の鱗片状黒鉛に代表される結晶性炭素を使用する。
Patent Document 2 discloses a lithium ion secondary battery having a positive electrode in which a powdery carbon material, a flake carbon material, and a fibrous carbon material are mixed as a conductive material in a positive electrode active material. The powdery carbon material is mixed in a proportion of 0.2 to 2%, the flake carbon material is 1 to 10%, and the fibrous carbon material is 1 to 8% with respect to the positive electrode active material. Was a feature. However, in the examples of this document, 2% of carbon black having an average particle diameter of 0.05 μm, 2% of graphitized carbon fiber, and 4% of natural graphite having an average particle diameter of 5 μm are mixed as a conductive material. Only about 2% of carbon black that can cover all the active materials with small particle diameters is used. Further, in reality, only 4% in total of carbon black and carbon fiber that lower the dispersibility is used, so the problem of aggregation was not so remarkable.
Adding a fibrous conductive material in this way is effective in reducing the volume resistivity of the electrode active material layer, but it is difficult to uniformly disperse in the electrode active material layer material, and its shape In the non-aqueous electrolyte secondary battery that requires high output characteristics, it is not possible to effectively cover the surface of the active material particles having a small particle diameter. Replacing it was difficult to improve the output characteristics.
Patent Document 3 discloses a lithium secondary battery in which the conductive auxiliary agent is a carbon material and includes a fibrous carbon material and granular carbon. Crystalline carbon typified by scaly graphite in granular carbon is used.

特開2001−126733号JP 2001-126733 A 特開2000−208147号JP 2000-208147 A 特開平11−176446号JP-A-11-176446

本発明は、上記の実状に鑑みて成し遂げられたものであり、その第1の目的は、集電体と該集電体の少なくとも一面に電極活物質層を備える非水電解液二次電池用電極板において、該電極活物質層の活物質を効率的に反応させて、大電流の放電など急速な充放電時においても優れた高出力特性を発揮する非水電解液二次電池用電極板を提供することにある。
本発明の第2の目的は、上述したような非水電解液二次電池用電極板を備えた、大電流の放電など急速な充放電時においても高出力特性に優れた非水電解液二次電池を提供することにある。
The present invention has been accomplished in view of the above-described circumstances, and a first object thereof is for a non-aqueous electrolyte secondary battery including a current collector and an electrode active material layer on at least one surface of the current collector. Electrode plate for non-aqueous electrolyte secondary battery that exhibits excellent high output characteristics even during rapid charge and discharge such as large current discharge by efficiently reacting the active material of the electrode active material layer in the electrode plate Is to provide.
A second object of the present invention is to provide a nonaqueous electrolyte secondary battery having an electrode plate for a nonaqueous electrolyte secondary battery as described above, which is excellent in high output characteristics even during rapid charge and discharge such as large current discharge. The next battery is to provide.

本発明者らは前記の課題を解決するために鋭意検討を重ねた結果、特定の配合割合の電極活物質層が小粒径の活物質粒子への効果的な導電経路の確保、及び電極活物質層中のイオン伝導経路を確保することができ、該電極活物質層の活物質を効率的に反応させて、大電流の放電など急速な充放電時においても優れた出力特性を発揮することの知見を得て、本発明を完成するに至った。
すなわち、本発明に係る非水電解液二次電池用電極板は、集電体の少なくとも一面に、電極活物質層を備える非水電解液二次電池用電極板であって、該電極活物質層は、平均一次粒径が0.1〜5μmである活物質、カーボンブラック及び繊維状導電材を、該活物質100重量部に対して、カーボンブラックを7〜25重量部、繊維状導電材を0.5〜6.5重量部の割合で含有することを特徴とする。
As a result of intensive studies in order to solve the above problems, the present inventors have ensured that an electrode active material layer having a specific mixing ratio has an effective conductive path to active material particles having a small particle diameter, and that The ion conduction path in the material layer can be secured, and the active material of the electrode active material layer can be efficiently reacted to exhibit excellent output characteristics even during rapid charge / discharge such as large current discharge. As a result, the present invention has been completed.
That is, the electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is an electrode plate for a non-aqueous electrolyte secondary battery including an electrode active material layer on at least one surface of a current collector, and the electrode active material The layer is composed of an active material having an average primary particle size of 0.1 to 5 μm, carbon black and a fibrous conductive material, and 7 to 25 parts by weight of carbon black and 100% by weight of the active material. In an amount of 0.5 to 6.5 parts by weight.

上記非水電解液二次電池用電極板においては、前記カーボンブラックと前記繊維状導電材の配合重量比が10:0.5〜10:5であることが好ましい。   In the said electrode plate for non-aqueous electrolyte secondary batteries, it is preferable that the mixing | blending weight ratio of the said carbon black and the said fibrous electrically conductive material is 10: 0.5-10: 5.

また、上記非水電解液二次電池用電極板においては、さらに結着剤を活物質100重量部に対して6.5〜25重量部の割合で含有することが好ましい。   Moreover, in the said electrode plate for nonaqueous electrolyte secondary batteries, it is preferable to contain a binder in the ratio of 6.5-25 weight part with respect to 100 weight part of active materials further.

前記電極活物質層の細孔径が1μm以下の領域についての空隙率は、12〜35容量%であることが好ましい。   The porosity of the electrode active material layer having a pore diameter of 1 μm or less is preferably 12 to 35% by volume.

また、前記電極活物質層の細孔径が1μm以下の領域における細孔の体積メディアン径は、100nm以上であることが好ましい。   The volume median diameter of the pores in the region where the pore diameter of the electrode active material layer is 1 μm or less is preferably 100 nm or more.

また、測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、測定開始から1分間の間で、超音波透過強度の立ち上がりから飽和するまでの間の超音波透過強度増加率の最大値は、1db/sec以上であることが好ましい。   Also, when the electrode plate is immersed in the measurement solvent and the change over time of the ultrasonic transmission intensity immediately after the immersion is measured, the time between the start of the measurement and the saturation of the ultrasonic transmission intensity is measured for 1 minute. The maximum value of the ultrasonic transmission intensity increase rate is preferably 1 db / sec or more.

また、測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、超音波透過強度が大きく上昇を始める時点の超音波透過強度をIs(db)、測定開始60秒後の超音波透過強度をIe(db)、測定開始t秒後の超音波透過強度をIt(db)としたとき、超音波透過強度の上昇分(It−Is)が最終的な上昇分(Ie−Is)の98%に達する時点のtの値は、10(秒)以下であることが好ましい。   In addition, when the electrode plate is immersed in the measurement solvent and the change in the ultrasonic transmission intensity over time immediately after the immersion is measured, the ultrasonic transmission intensity at the time when the ultrasonic transmission intensity starts to increase greatly is measured as Is (db). When the ultrasonic transmission intensity 60 seconds after the start is Ie (db) and the ultrasonic transmission intensity t seconds after the start of measurement is It (db), the increase in the ultrasonic transmission intensity (It-Is) is final. The value of t when reaching 98% of the increase (Ie-Is) is preferably 10 (seconds) or less.

本発明に係る非水電解液二次電池用電極板は、正極板であってもよい。   The electrode plate for a non-aqueous electrolyte secondary battery according to the present invention may be a positive electrode plate.

前記正極板の電極活物質層の密度(プレス密度)は、1.8〜3g/cmであることが好ましい。 The density (press density) of the electrode active material layer of the positive electrode plate is preferably 1.8 to 3 g / cm 3 .

前記電極活物質層の体積抵抗率は、4Ω・cm以下であることが好ましい。   The volume resistivity of the electrode active material layer is preferably 4 Ω · cm or less.

本発明における非水電解液二次電池は、少なくとも正極板、負極板、及び電解液を含む非水電解液二次電池であって、該正極板及び該負極板の少なくとも一方が、上記非水電解液二次電池用電極板であることを特徴とする。   The non-aqueous electrolyte secondary battery in the present invention is a non-aqueous electrolyte secondary battery including at least a positive electrode plate, a negative electrode plate, and an electrolytic solution, and at least one of the positive electrode plate and the negative electrode plate is the non-aqueous electrolyte. It is an electrode plate for electrolyte secondary batteries.

前記非水電解液二次電池の正極板は、上記正極板であってもよい。   The positive electrode plate of the non-aqueous electrolyte secondary battery may be the positive electrode plate.

本発明にかかる非水電解液二次電池用電極板は、小粒径の活物質(平均一次粒径0.1〜5μm)を用いるので、活物質の反応できる比表面積が大きく、イオンや電子が活物質粒子内において移動する距離が短くなり、イオン及び電子に対して活物質を素早く反応させることができる。
また、本発明によれば、小粒径の活物質に対して多量のカーボンブラックを含有するため、小粒径の活物質粒子の表面に効率的に導電材を配置することができ、小粒径の活物質の性能を効果的に引き出すことができる。また、同時に繊維状導電材が含まれているため、該繊維状導電材がカーボンブラック粒子間を橋渡しすることにより、カーボンブラックを単独で使用した場合に比べてより効果的な電子のパスを形成することができる。該電子のパスによって集電体から活物質への電子の流れが確保され、活物質の反応を促進することができる。特に、非水電解液二次電池用電極板が正極板である場合、当該正極板は一般的に半導体のような比較的導電性の小さい材料を用いる場合が多いため、活物質の小粒径化、および効果的な電子のパスの形成によって得られる効果は高い。
Since the electrode plate for a non-aqueous electrolyte secondary battery according to the present invention uses a small particle size active material (average primary particle size 0.1 to 5 μm), the specific surface area with which the active material can react is large, and ions and electrons However, the distance traveled in the active material particles is shortened, and the active material can be reacted quickly with ions and electrons.
In addition, according to the present invention, since a large amount of carbon black is contained with respect to the active material having a small particle size, the conductive material can be efficiently disposed on the surface of the active material particle having a small particle size. The performance of the active material having a diameter can be effectively extracted. In addition, since the fibrous conductive material is included at the same time, the fibrous conductive material bridges the carbon black particles, thereby forming a more effective electron path than when carbon black is used alone. can do. The electron path ensures the flow of electrons from the current collector to the active material, and can promote the reaction of the active material. In particular, when the electrode plate for a non-aqueous electrolyte secondary battery is a positive electrode plate, since the positive electrode plate generally uses a material with relatively low conductivity such as a semiconductor, the active material has a small particle size. The effect obtained by the formation of an effective electron path is high.

さらに、カーボンブラックと繊維状導電材が所定の割合で配合されているため、多量の導電材及び小粒径の活物質を含有し、かつプレスにより充填密度を上げるにもかかわらず、繊維状導電材によって電極活物質層中への電解液の浸透経路が効果的に確保され、その経路を通じて活物質の反応に必要なイオンが素早く活物質へ供給又は放出され、活物質の反応を促進することができる。
従って、本発明によれば、活物質を効率的に反応させることができ、大電流の放電など急速な充放電時においても優れた高出力特性を発揮することができる非水電解液二次電池用電極板を得ることができる。
また、本発明によれば、電極活物質層で活物質を効率的に反応させることができ、大電流の放電など急速な充放電時においても優れた高出力特性を発揮することができる非水電解液二次電池を得ることができる。
Furthermore, since carbon black and fibrous conductive material are blended at a predetermined ratio, the fibrous conductive material contains a large amount of conductive material and an active material with a small particle size, and the packing density is increased by pressing. The material effectively secures the electrolyte permeation path into the electrode active material layer, and ions necessary for the reaction of the active material are quickly supplied to or released from the active material through the path to promote the reaction of the active material. Can do.
Therefore, according to the present invention, a non-aqueous electrolyte secondary battery that can efficiently react an active material and can exhibit excellent high output characteristics even during rapid charge and discharge such as large current discharge. An electrode plate can be obtained.
In addition, according to the present invention, the active material can be reacted efficiently in the electrode active material layer, and excellent high output characteristics can be exhibited even during rapid charge and discharge such as large current discharge. An electrolyte secondary battery can be obtained.

本発明に係る非水電解液二次電池用電極板は、集電体の少なくとも一面に、電極活物質層を備える非水電解液二次電池用電極板であって、該電極活物質層は、平均一次粒径が0.1〜5μmである活物質、カーボンブラック及び繊維状導電材を、該活物質100重量部に対して、カーボンブラックを7〜25重量部、繊維状導電材を0.5〜6.5重量部の割合で含有することを特徴とするものである。   An electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is an electrode plate for a non-aqueous electrolyte secondary battery comprising an electrode active material layer on at least one surface of a current collector, the electrode active material layer comprising: , Active material having an average primary particle size of 0.1 to 5 μm, carbon black and fibrous conductive material, and 7 to 25 parts by weight of carbon black and 0 to fibrous conductive material with respect to 100 parts by weight of the active material. It is contained at a ratio of 0.5 to 6.5 parts by weight.

本発明に係る非水電解液二次電池用電極板は、上記活物質、並びに導電材としてカーボンブラック及び繊維状導電材を少なくとも含有する電極活物質層材料を用いて集電体上に塗布等の手段により電極活物質層を形成することによって作製される。本発明に係る非水電解液二次電池用電極板は、正極板であっても負極板であってもいずれでも良い。   An electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is coated on a current collector using the above active material and an electrode active material layer material containing at least carbon black and a fibrous conductive material as a conductive material. The electrode active material layer is formed by the above means. The electrode plate for a non-aqueous electrolyte secondary battery according to the present invention may be a positive electrode plate or a negative electrode plate.

まず、電極活物質層材料について説明する。正極活物質としては、従来から非水電解液二次電池の正極活物質として用いられている材料を用いることができ、例えば、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)若しくはLiNiO(ニッケル酸リチウム)等のリチウム含有金属酸化物、または、TiS、MnO、MoO若しくはV等のカルコゲン化合物を例示することができる。特に、LiCoO、LiMn等のリチウム含有金属酸化物を正極用活物質として用い、炭素質材料を負極用活物質として用い、非水電解液を電解液として用いることにより4ボルト程度の高い放電電圧を有するリチウム系二次電池が得られる。
一方、負極活物質としては、従来から非水電解液二次電池の負極活物質として用いられている材料を用いることができ、例えば、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、または、これらの成分に異種元素を添加したもののような炭素質材料が好んで用いられる。また、金属リチウム及びその合金、スズ、シリコン、及びそれらの合金等、リチウムイオンを吸蔵放出可能な材料が一般的に使用可能である。
First, the electrode active material layer material will be described. As a positive electrode active material, the material conventionally used as a positive electrode active material of a nonaqueous electrolyte secondary battery can be used. For example, LiCoO 2 (lithium cobaltate), LiMn 2 O 4 (lithium manganate) Alternatively, lithium-containing metal oxides such as LiNiO 2 (lithium nickelate) or chalcogen compounds such as TiS 2 , MnO 2 , MoO 3, or V 2 O 5 can be exemplified. In particular, a lithium-containing metal oxide such as LiCoO 2 or LiMn 2 O 4 is used as an active material for a positive electrode, a carbonaceous material is used as an active material for a negative electrode, and a nonaqueous electrolytic solution is used as an electrolytic solution. A lithium secondary battery having a high discharge voltage can be obtained.
On the other hand, as the negative electrode active material, materials conventionally used as the negative electrode active material of non-aqueous electrolyte secondary batteries can be used. For example, natural graphite, artificial graphite, amorphous carbon, carbon black, or these Carbonaceous materials such as those obtained by adding different elements to these components are preferably used. In addition, materials that can occlude and release lithium ions, such as metallic lithium and its alloys, tin, silicon, and their alloys can be generally used.

活物質は、比表面積を大きくするために、平均一次粒径が0.1〜5μmの粉体であることが好ましく、より好ましい平均一次粒径は、0.1〜3μmである。活物質の平均一次粒径を0.1μm以上とする理由は、現実的な入手の容易さだけでなく、導電材の必要量が過大になるという問題があるからである。つまり、本発明においては、活物質の平均一次粒径が0.1μmよりも小さくなると、単位重量あたりの活物質の粒子数及び比表面積が著しく増える。それに伴い、各活物質粒子の表面に電気的導通を取るための導電材も、大幅に増量する必要が生じる。この場合、電極活物質層の機械的強度の低下、電極活物質層材料の塗工適性の悪化、体積(重量)エネルギー密度の低下などの問題が生じ、電極板の高出力化とこれらの他の性能とのバランスを取ることが困難になってしまう。   In order to increase the specific surface area, the active material is preferably a powder having an average primary particle size of 0.1 to 5 μm, and a more preferable average primary particle size is 0.1 to 3 μm. The reason why the average primary particle size of the active material is set to 0.1 μm or more is that there is a problem that not only is it easy to obtain practically, but the necessary amount of the conductive material becomes excessive. That is, in the present invention, when the average primary particle size of the active material is smaller than 0.1 μm, the number of active material particles per unit weight and the specific surface area are remarkably increased. Along with this, it is necessary to significantly increase the amount of conductive material for establishing electrical continuity on the surface of each active material particle. In this case, problems such as a decrease in the mechanical strength of the electrode active material layer, a decrease in the coating suitability of the electrode active material layer material, and a decrease in volume (weight) energy density occur. It becomes difficult to balance with the performance.

また、活物質の平均一次粒径を5μm以下とする理由は、電子やイオンが活物質に出入りするために充分な表面積を確保すると共に、活物質粒子の表面から中心までの距離を短くすることによって、活物質粒子の中心の領域(あるいは、活物質粒子の導電材が付着した表面部分から離れている領域)における電池反応に必要なイオン及び電子が、活物質粒子内を移動する時の抵抗を小さくするためである。平均一次粒径を測定する方法としては、例えばレーザー回折/散乱式粒度分布測定装置や電子顕微鏡観察による測定などがある。活物質の測定を行なう場合は、レーザー回折/散乱式を用いることが多く、この場合の平均一次粒径は体積平均粒径をいう。また、カーボンブラックの測定を行う場合は、一般に電子顕微鏡による実測から計算し、この場合の平均一次粒径は個数平均(算術平均)粒径をいう。
これらの活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。尚、電池反応は、集電体を通して授受される電子と電解液を通して授受されるイオンの存在下、活物質の化学反応によって起きるため、電解液が活物質を含む電極活物質層にしみ込めるような空隙(活物質及び後述する結着剤及び導電材等が存在しない空間)が、電極活物質層を形成した時にできるようにすることも考慮して、活物質の粒径、形状等を選択する。
The reason why the average primary particle size of the active material is 5 μm or less is to secure a sufficient surface area for electrons and ions to enter and exit the active material and to shorten the distance from the surface to the center of the active material particles. Therefore, the resistance when ions and electrons necessary for the battery reaction in the central region of the active material particle (or the region away from the surface portion where the conductive material of the active material particle is attached) moves in the active material particle. This is to reduce the size. As a method for measuring the average primary particle size, for example, there are a laser diffraction / scattering type particle size distribution measuring device and a measurement by observation with an electron microscope. When measuring an active material, the laser diffraction / scattering method is often used, and the average primary particle size in this case refers to the volume average particle size. Moreover, when measuring carbon black, generally it calculates from the actual measurement with an electron microscope, and the average primary particle diameter in this case means a number average (arithmetic average) particle diameter.
These active materials may be used alone or in combination of two or more. The battery reaction is caused by the chemical reaction of the active material in the presence of electrons transferred through the current collector and ions transferred through the electrolytic solution, so that the electrolytic solution can penetrate into the electrode active material layer containing the active material. The particle size, shape, etc. of the active material are selected in consideration of the fact that a void (space where no active material, a binder and a conductive material, which will be described later) are present, is formed when the electrode active material layer is formed. To do.

電極活物質層材料中の活物質の配合割合は、溶剤を除く配合成分を基準(固形分基準)とした時に通常は70〜90重量%とする。   The blending ratio of the active material in the electrode active material layer material is usually 70 to 90% by weight when the blending component excluding the solvent is used as a standard (solid content standard).

導電材としては、比較的球形に近い形状の導電材(以下、球状導電材という。)であるカーボンブラック及び繊維状導電材を用いる。導電材は、電極活物質層中に分散した導電材粒子同士が互いに接触して集電体と活物質の間の電子のパス(導電パスともいう。)を形成し、導通を確保する働きをし、電極板の抵抗を下げる役割を果たす。
本発明においては、球状導電材であるカーボンブラックを多量添加することにより、活物質を小粒径化して活物質の粒子数や比表面積が増大しても、各活物質粒子の表面を満遍なく導電材で網羅することができ、効果的な導電パスを形成して小粒径の活物質の性能をより引き出すことができる。
As the conductive material, carbon black and a fibrous conductive material, which are conductive materials having a relatively nearly spherical shape (hereinafter referred to as a spherical conductive material), are used. The conductive material functions to ensure conduction by forming conductive paths between the current collector and the active material by contacting the conductive material particles dispersed in the electrode active material layer with each other. And lowers the resistance of the electrode plate.
In the present invention, by adding a large amount of carbon black which is a spherical conductive material, even if the active material is reduced in particle size and the number of active material particles and the specific surface area are increased, the surface of each active material particle is uniformly conductive. The material can be covered, and an effective conductive path can be formed to further enhance the performance of the active material having a small particle diameter.

球状導電材をむやみに多量添加すると凝集しやすく、また空隙を塞ぎやすいが、球状導電材であるカーボンブラックを適量添加し、さらに、繊維状導電材を用いることによって、電極活物質層に連続した空隙が形成されやすくなり、イオンの出入りが改善されるため、活物質における反応が速やかになる。つまり、繊維状導電材が球状導電材とは異なる比較的長い形状を有するため、粒子間を橋かけるように配置され、電極活物質層中に連続した空隙が形成される。これによって、充填密度を上げるために電極活物質層をプレスしても、電極活物質層の表面から内部へ電解液が浸透していく際の経路が確保され、電極活物質層への電解液の浸透性が向上する。ここで、反対に、電解液の浸透性が悪いということは、電極活物質層の表面から内部に向けて電解液が浸透していく際の経路が狭い、又は分断されていることを意味する。このようにして確保された電解液の浸透しやすい経路(イオン移動パス)を通って電極活物質層中にしみ込む電解液によって、充放電に伴い活物質が吸蔵又は放出するイオンの移動が行なわれる。したがって、イオンの移動がスムーズに行われ、活物質における電池反応が速やかに行われるようになる。   If a large amount of spherical conductive material is added excessively, it tends to agglomerate and easily close the gap. Since voids are easily formed and ion entry / exit is improved, the reaction in the active material is accelerated. That is, since the fibrous conductive material has a relatively long shape different from the spherical conductive material, the fibrous conductive material is arranged so as to bridge the particles, and a continuous void is formed in the electrode active material layer. As a result, even when the electrode active material layer is pressed to increase the packing density, a path for the electrolyte solution to penetrate from the surface of the electrode active material layer to the inside is secured, and the electrolyte solution to the electrode active material layer is secured. Improves permeability. Here, on the contrary, the poor permeability of the electrolytic solution means that the path through which the electrolytic solution penetrates from the surface of the electrode active material layer toward the inside is narrow or divided. . The electrolyte that is soaked into the electrode active material layer through a path (ion movement path) through which the electrolyte is easily permeated as described above moves ions that are absorbed or released by the active material during charge / discharge. . Therefore, the movement of ions is performed smoothly, and the battery reaction in the active material is quickly performed.

また、繊維状導電材は1つの繊維状導電材で長い電子のパスを形成するため、繊維状導電材が所々で球状導電材粒子を橋かけすることにより、カーボンブラックを単独で使用した場合に比べてより効果的な電子のパスを形成することができる。したがって、該電子のパスによって電極活物質層の体積抵抗率を効果的に低下させることができ、さらに、充分な量の球状導電材によって、各活物質粒子への電子の流れが確保され、活物質の反応を促進することができる。
これらの複合した効果によって、大電流の放電など急速な充放電時における電極活物質層の高出力特性が改善される。
Also, since the fibrous conductive material forms a long electron path with one fibrous conductive material, the fibrous conductive material bridges the spherical conductive material particles in some places, so that when carbon black is used alone Compared with this, a more effective electron path can be formed. Therefore, the volume resistivity of the electrode active material layer can be effectively reduced by the electron path, and furthermore, a sufficient amount of the spherical conductive material ensures the flow of electrons to each active material particle, and the active material layer has an active flow. The reaction of the substance can be promoted.
These combined effects improve the high output characteristics of the electrode active material layer during rapid charge and discharge such as large current discharge.

カーボンブラックとしては、通常、非水電解液二次電池用電極板に用いられているものを使用することができ、アセチレンブラック、ケッチェンブラック等の炭素材料が挙げられる。カーボンブラックの平均一次粒径は20〜50nmであることが好ましい。中でも、比較的分散しやすく、不純物が少ない上、導電性が高いアセチレンブラックを用いることが好ましい。これらのカーボンブラックは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
繊維状導電材とは、繊維径が1〜1000nm、繊維長が1〜50μmであるピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどの炭素材料であり、特に気相成長炭素繊維が好ましい。繊維状導電材のアスペクト比は、10以上であることが好ましい。極端に繊維長の長い繊維状導電材はスラリーへの分散が難しい、塗工が難しい等の問題がある。また、本発明の目的からすると、活物質の粒径よりも繊維長が短い繊維状導電材は、電極活物質層の空隙率の向上に貢献することができず、効果的なしみ込み(浸透性)の改善を行なえない恐れがある。これらの繊維状導電材は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As carbon black, what is normally used for the electrode plate for nonaqueous electrolyte secondary batteries can be used, and carbon materials, such as acetylene black and ketjen black, are mentioned. The average primary particle size of carbon black is preferably 20 to 50 nm. Among them, it is preferable to use acetylene black which is relatively easy to disperse, has few impurities, and has high conductivity. These carbon blacks may be used alone or in combination of two or more.
The fibrous conductive material is a carbon material such as a pitch-based carbon fiber having a fiber diameter of 1 to 1000 nm and a fiber length of 1 to 50 μm, a vapor-grown carbon fiber, and a carbon nanotube, and a vapor-grown carbon fiber is particularly preferable. . The aspect ratio of the fibrous conductive material is preferably 10 or more. A fibrous conductive material having an extremely long fiber length has problems such as difficulty in dispersion in slurry and difficulty in coating. Further, for the purpose of the present invention, the fibrous conductive material having a fiber length shorter than the particle size of the active material cannot contribute to the improvement of the porosity of the electrode active material layer, so that effective penetration (penetration) May not be able to improve the sex). These fibrous conductive materials may be used alone or in combination of two or more.

電極活物質層材料中のカーボンブラック及び繊維状導電材の配合割合は、上記活物質100重量部に対して、カーボンブラックを7〜25重量部、繊維状導電材を0.5〜6.5重量部の割合、好ましくは、カーボンブラックを11〜18重量部、繊維状導電材を1〜4重量部の割合とする。また、カーボンブラックと繊維状導電材の配合重量比は、10:0.5〜10:5、好ましくは10:1〜10:4であることによって、本発明の効果が得られやすい。
上記繊維状導電材の配合割合が小さすぎると、電極活物質層における電解液の浸透性が改善される効果が充分に発揮されない。一方、繊維状導電材の配合割合が大きすぎると、プレス密度(プレス後の電極活物質層の密度)を上げることが難しい。プレス密度が低い場合には、電極活物質層内での活物質と導電材の接触が不十分になり、集電体と活物質の間の効果的な導電パスが形成されにくい。また、繊維状導電材の配合割合が大きすぎると、電極活物質層材料の分散性が著しく低下し、その結果、電極活物質層材料の塗工が困難になると同時に、小粒径の活物質に導電材を効果的に配置することが難しくなる。
The mixing ratio of carbon black and fibrous conductive material in the electrode active material layer material is 7 to 25 parts by weight of carbon black and 0.5 to 6.5 parts of fibrous conductive material with respect to 100 parts by weight of the active material. The ratio of parts by weight, preferably 11 to 18 parts by weight of carbon black and 1 to 4 parts by weight of the fibrous conductive material. The blending weight ratio of carbon black and fibrous conductive material is 10: 0.5 to 10: 5, preferably 10: 1 to 10: 4, so that the effects of the present invention can be easily obtained.
When the blending ratio of the fibrous conductive material is too small, the effect of improving the permeability of the electrolytic solution in the electrode active material layer is not sufficiently exhibited. On the other hand, if the blending ratio of the fibrous conductive material is too large, it is difficult to increase the press density (the density of the electrode active material layer after pressing). When the press density is low, contact between the active material and the conductive material in the electrode active material layer becomes insufficient, and it is difficult to form an effective conductive path between the current collector and the active material. Further, if the blending ratio of the fibrous conductive material is too large, the dispersibility of the electrode active material layer material is remarkably lowered, and as a result, it becomes difficult to apply the electrode active material layer material, and at the same time, the active material having a small particle size It becomes difficult to dispose the conductive material effectively.

電極活物質層には、通常、結着材が用いられる。結着材としては従来から用いられているもの、例えば、熱可塑性樹脂、より具体的にはポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂またはポリイミド樹脂等を使用することができる。この際、反応性官能基を導入したアクリレートモノマーまたはオリゴマーを結着材中に混入させることも可能である。そのほかにも、ゴム系の樹脂や、アクリル樹脂、ウレタン樹脂等の熱硬化性樹脂、アクリレートモノマー、アクリレートオリゴマー或いはそれらの混合物からなる電離放射線硬化性樹脂、上記各種の樹脂の混合物を使用することもできる。   Usually, a binder is used for the electrode active material layer. Conventionally used binders such as thermoplastic resins, more specifically polyester resins, polyamide resins, polyacrylate resins, polycarbonate resins, polyurethane resins, cellulose resins, polyolefin resins, polyvinyl resins. Fluorine resin or polyimide resin can be used. At this time, an acrylate monomer or oligomer into which a reactive functional group has been introduced can be mixed in the binder. In addition, rubber resins, thermosetting resins such as acrylic resins and urethane resins, ionizing radiation curable resins made of acrylate monomers, acrylate oligomers or mixtures thereof, and mixtures of the above various resins may be used. it can.

電極活物質層材料中の結着材の配合割合は、活物質100重量部に対して6.5〜25重量部、好ましくは8〜17重量部の割合とする。結着剤の配合割合が大きすぎると、結着剤が活物質粒子及び導電材の表面を被覆して電子のパスの形成や電池反応を困難にしたり、電極活物質層中の空隙を塞いでイオンの移動を妨げることがあり、充放電時の抵抗を増加させる。また、必要以上の結着剤の添加は、電極の重量(体積)エネルギー密度を低下させる。
一方、結着剤の配合割合が小さすぎると、電極活物質層の充分な結着強度及び密着性が確保されない。その場合、導電材粒子同士及び導電材と活物質粒子及び/又は集電体間の強固な接触が保たれず、導電パスが分断しやすいため、電極活物質層の抵抗の増加につながる。また、充放電の繰り返しによる電極活物質層の脱落若しくは剥離による抵抗の増加、又は電極製造工程での脱落若しくは剥離による歩留の低下などの原因になる。
The mixing ratio of the binder in the electrode active material layer material is 6.5 to 25 parts by weight, preferably 8 to 17 parts by weight with respect to 100 parts by weight of the active material. If the blending ratio of the binder is too large, the binder coats the surface of the active material particles and the conductive material, making it difficult to form an electron path and a battery reaction, or to block the voids in the electrode active material layer. It may hinder the movement of ions, increasing the resistance during charging and discharging. Moreover, the addition of a binder more than necessary reduces the weight (volume) energy density of the electrode.
On the other hand, if the blending ratio of the binder is too small, sufficient binding strength and adhesion of the electrode active material layer cannot be ensured. In that case, the conductive material particles and the conductive material and the active material particles and / or the current collector are not kept in strong contact, and the conductive path is easily divided, leading to an increase in the resistance of the electrode active material layer. In addition, it causes an increase in resistance due to dropping or peeling of the electrode active material layer due to repeated charge / discharge, or a decrease in yield due to dropping or peeling in the electrode manufacturing process.

結着剤の配合割合は、活物質と導電材の配合量における、所望の電極活物質層の剥離強度を目安にして決めることができる。剥離強度を目安にする理由は、活物質粒子が小粒径になるほど、又は微粒子であるカーボンブラックの添加量が増えるほど、電極活物質層に含まれる粒子の数が増え、それに伴い各粒子を結着するのに必要な結着剤の量も増やす必要があるため、電極活物質層が必要な剥離強度を有する範囲で結着剤の配合割合を決めるからである。
一般に、高出力特性を要する非水電解液二次電池の電極活物質層の剥離強度は、約10〜100N/mであることが好ましい。ここで、剥離強度はJIS−K6854に記載の90度剥離試験方法に準じて測定する。この場合の剥離強度は、電極活物質層中の粒子同士及び粒子と集電体との凝集力(結着力)の目安になる。
The blending ratio of the binder can be determined based on the desired peel strength of the electrode active material layer in the blending amount of the active material and the conductive material. The reason why the peel strength is used as a guide is that the number of particles contained in the electrode active material layer increases as the size of the active material particles becomes smaller or the amount of fine carbon black added increases. This is because it is necessary to increase the amount of the binder necessary for binding, and therefore the blending ratio of the binder is determined within a range in which the electrode active material layer has a necessary peel strength.
In general, the peel strength of the electrode active material layer of a non-aqueous electrolyte secondary battery that requires high output characteristics is preferably about 10 to 100 N / m. Here, the peel strength is measured according to the 90-degree peel test method described in JIS-K6854. The peel strength in this case is a measure of the cohesive force (binding force) between the particles in the electrode active material layer and between the particles and the current collector.

また、必要に応じて、増粘剤、界面活性剤及び分散剤を用いてもよい。これらは従来から用いられているものを好適に用いることができる。また、電解液が電極活物質層に染み込むための空隙を効果的に確保するためのフィラーを添加してもよい。該フィラーは電池を作製した時に電気化学的に安定であれば特に制限はなく、またフィラーの材質は無機、有機材料から選択できるが、電極活物質層のインピーダンスを下げるという意味では、導電性を有する材料であることが望ましい。導電性を有するフィラーとしては、例えば、金属微粒子、金属酸化物粒子、炭素粒子、炭素繊維などが挙げられる。該フィラーの形状は、粒子状、繊維状などから任意に選択することができる。効果的に空隙を確保するために、複数の形状のフィラーを混合してもよい。   Moreover, you may use a thickener, surfactant, and a dispersing agent as needed. Those conventionally used can be preferably used. Moreover, you may add the filler for ensuring the space | gap for electrolyte solution to soak into an electrode active material layer effectively. The filler is not particularly limited as long as it is electrochemically stable when the battery is manufactured, and the material of the filler can be selected from inorganic and organic materials. However, in terms of reducing the impedance of the electrode active material layer, the filler is not conductive. It is desirable that the material has. Examples of the conductive filler include metal fine particles, metal oxide particles, carbon particles, and carbon fibers. The shape of the filler can be arbitrarily selected from particulates, fibers and the like. In order to effectively secure the voids, fillers having a plurality of shapes may be mixed.

電極活物質層材料を調製する溶剤としては、トルエン、メチルエチルケトン、N−メチル−2−ピロリドン或いはこれらの混合物、又はイオン交換水のような結着剤を溶解及び分散可能な溶剤を用いることができる。電極活物質層材料中の溶剤の割合は、使用する材料の比重や分散のし易さにもよるが、通常は30〜75重量%、好ましくは45〜65重量%とし、電極活物質層材料をスラリー状に調製する。
電極活物質層材料は、適宜選択した活物質、導電材及び結着剤など他の配合成分を適切な溶剤中にいれ、ホモジナイザー、ボールミル、サンドミル、ロールミルまたはプラネタリーミキサー等の分散機により混合分散して、スラリー状に調製できる。
As a solvent for preparing the electrode active material layer material, toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone or a mixture thereof, or a solvent capable of dissolving and dispersing a binder such as ion-exchanged water can be used. . The ratio of the solvent in the electrode active material layer material is usually 30 to 75% by weight, preferably 45 to 65% by weight, although it depends on the specific gravity and ease of dispersion of the material used. Is prepared in a slurry state.
The electrode active material layer material is prepared by mixing other ingredients such as an active material, a conductive material, and a binder appropriately selected in a suitable solvent, and mixing and dispersing with a disperser such as a homogenizer, ball mill, sand mill, roll mill, or planetary mixer. Thus, it can be prepared in the form of a slurry.

このようにして調製された電極活物質層材料を用いて、基体である集電体の上に電極活物質層を形成する。
正極板の集電体としては通常、アルミニウム箔が好ましく用いられる。一方、負極板の集電体としては、電解銅箔や圧延銅箔等の銅箔が好ましく用いられる。集電体の厚さは通常、5〜50μm程度とする。
Using the electrode active material layer material thus prepared, an electrode active material layer is formed on a current collector as a substrate.
In general, an aluminum foil is preferably used as the current collector of the positive electrode plate. On the other hand, as the current collector of the negative electrode plate, a copper foil such as an electrolytic copper foil or a rolled copper foil is preferably used. The thickness of the current collector is usually about 5 to 50 μm.

電極活物質層をコーティングにより形成する場合、電極活物質層材料の塗布方法は、特に限定されないが、例えば、ダイコート、コンマコート等が適している。電極活物質層材料の粘度が低い場合には、グラビアコート、スプレーコート、ディップコート等によって塗布することもできる。塗布形状は、必要に応じて間欠塗工などパターンを形成してもよい。尚、電極活物質層は、複数回塗工、乾燥を繰り返すことにより形成してもよく、2層以上を塗工した後、該2層以上を一度に乾燥させてもよい。また、各塗工工程の間に、プレス工程や空隙付与工程等、他の工程を実施することもできる。   When the electrode active material layer is formed by coating, the method for applying the electrode active material layer material is not particularly limited. For example, die coating, comma coating, and the like are suitable. When the viscosity of the electrode active material layer material is low, it can be applied by gravure coating, spray coating, dip coating, or the like. The application shape may form a pattern such as intermittent coating as necessary. The electrode active material layer may be formed by repeating coating and drying a plurality of times, or after coating two or more layers, the two or more layers may be dried at once. Moreover, other processes, such as a press process and a space | gap provision process, can also be implemented between each coating process.

塗工された電極活物質層材料は、溶剤を除去するために、通常乾燥される。溶剤の除去方法は特に限定されないが、電極活物質層材料の耐熱性、溶媒除去効率、乾燥後の活物質層中での導電材の分布状態などを考慮して、温風乾燥、遠赤外線乾燥、接触乾燥、減圧乾燥、フリーズドライ乾燥などの一般的な手法の中から適宜選択又は組み合わせることができる。
また、乾燥後、必要に応じて熱処理や電子線処理などを加え、材料の変質による導電性向上、強度向上、耐電解液性の向上などを行なってもよい。この操作により、熱処理によって導電性を発現するタイプの材料を使用することができる。
The coated electrode active material layer material is usually dried in order to remove the solvent. The method for removing the solvent is not particularly limited, but taking into account the heat resistance of the electrode active material layer material, the solvent removal efficiency, the distribution of the conductive material in the active material layer after drying, etc., warm air drying, far infrared drying , Contact drying, reduced pressure drying, freeze drying drying, and other general techniques can be appropriately selected or combined.
Further, after drying, heat treatment, electron beam treatment, or the like may be added as necessary to improve conductivity, improve strength, and improve electrolytic solution resistance due to material alteration. By this operation, a material of a type that develops conductivity by heat treatment can be used.

尚、選択した材料にもよるが、電極活物質層の塗工量又は形成量は、正極活物質層の場合には、通常20〜300g/m(片面)、好ましくは30〜250g/m(片面)であり、負極活物質層の場合には、通常10〜200g/m(片面)、好ましくは20〜150g/m(片面)である。 Although depending on the selected material, the coating amount or formation amount of the electrode active material layer is usually 20 to 300 g / m 2 (single side), preferably 30 to 250 g / m in the case of the positive electrode active material layer. 2 (single side), and in the case of the negative electrode active material layer, it is usually 10 to 200 g / m 2 (single side), preferably 20 to 150 g / m 2 (single side).

このように形成された電極活物質層は、更に、該電極活物質層をプレス加工することにより、電極活物質層の密度、集電体に対する密着性、均質性を向上させ、さらに、電極活物質層内での粒子間の接触を十分にし、集電体と活物質の間の効果的な導電パスの形成を向上させることができる。
プレス加工は、例えば、金属ロール、弾性ロール、加熱ロールまたはシートプレス機等を用いて行う。本発明においてプレス温度は、活物質層の塗工膜を乾燥させる温度よりも低い温度とする限り、室温で行ってもよいし又は加温して行ってもよいが、通常は室温(室温の目安としては15〜35℃である。)で行う。
ロールプレスは、ロングシート状の電極板を連続的にプレス加工できる。ロールプレスを行う場合には定位プレス、定圧プレスのいずれを行ってもよい。プレスのライン速度は通常、5〜50m/min.とする。ロールプレスの圧力を線圧で管理する場合、加圧ロールの直径に応じて調節するが、通常は線圧を0.5kgf/cm〜1tf/cmとする。
また、シートプレスを行う場合には通常、4903〜73550N/cm(500〜7500kgf/cm)、好ましくは29420〜49033N/cm(3000〜5000kgf/cm)の範囲に圧力を調節する。プレス圧力が小さすぎると電極活物質層内での活物質と導電材の接触が不十分になったり、集電体と活物質の間の効果的な導電パスの形成を向上させられない場合がある。一方、プレス圧力が大きすぎると電極活物質層内の空隙を潰してしまったり、集電体を含めて電極板自体が破損してしまう場合がある。電極活物質層は、一回のプレスで所定の厚さにしてもよく、均質性を向上させる目的で数回に分けてプレスしてもよい。
The electrode active material layer thus formed is further pressed to improve the density of the electrode active material layer, the adhesion to the current collector, and the homogeneity. Contact between the particles in the material layer can be made sufficient, and formation of an effective conductive path between the current collector and the active material can be improved.
The press working is performed using, for example, a metal roll, an elastic roll, a heating roll, a sheet press machine, or the like. In the present invention, the pressing temperature may be performed at room temperature or may be performed as long as the temperature is lower than the temperature at which the coated film of the active material layer is dried. As a guide, it is 15 to 35 ° C.).
The roll press can continuously press a long sheet electrode plate. When performing a roll press, either a stereotaxic press or a constant pressure press may be performed. The line speed of the press is usually 5 to 50 m / min. And When the pressure of the roll press is managed by the linear pressure, the pressure is adjusted according to the diameter of the pressure roll, but the linear pressure is usually 0.5 kgf / cm to 1 tf / cm.
Also, normally when performing sheet pressing, 4903~73550N / cm 2 (500~7500kgf / cm 2), preferably to adjust the pressure in the range of 29420~49033N / cm 2 (3000~5000kgf / cm 2). If the pressing pressure is too low, contact between the active material and the conductive material in the electrode active material layer may be insufficient, or the formation of an effective conductive path between the current collector and the active material may not be improved. is there. On the other hand, if the pressing pressure is too high, voids in the electrode active material layer may be crushed or the electrode plate itself including the current collector may be damaged. The electrode active material layer may have a predetermined thickness by a single press, or may be pressed in several steps for the purpose of improving homogeneity.

以上のような方法で作製した本発明における非水電解液二次電池用電極板の電極活物質層は、以下のような特徴を有する。
1)電極活物質層の細孔径が1μm以下の領域についての空隙率を、12〜35容量%とすることができる。電極活物質層において充分な電解液の浸透性(イオンの取り込み量)を確保するために、12容量%以上であることが好ましい。一方、充分な電極活物質層の強度を確保するために、35容量%以下であることが好ましい。ここで、細孔径とは、電解液が通過する電極活物質層中の活物質、導電材等の電極活物質層材料の粒子が存在しない空間(空隙)の大きさをいい、水銀ポロシメータ等を用いて測定することができる。また、空隙率とは、(空隙率)=(電極活物質層中の空間が占める体積)/(該電極活物質層の見掛けの体積)から算出され、これも水銀ポロシメータ等を用いて測定することができる。通常、広範囲(ワイドレンジ)で電極活物質層のサンプルを測定すると、該サンプルの表面や断面の凹凸を測定器が感知し、10μm以上の細孔が多数存在するように見え、例えば本発明の実施例に記載のサンプルにおける空隙率は約40〜50%と測定される。しかし、そのようなサンプルの表面や断面の凹凸は、実際の電極活物質層内の細孔ではない。したがって、実際の電極活物質層内の細孔ではないものを除いて測定誤差を減らすために、活物質の粒径よりも大きな細孔径を本発明の空隙率の測定対象から排除し、細孔径が1μm以下の領域についての空隙率とした。
The electrode active material layer of the electrode plate for a non-aqueous electrolyte secondary battery in the present invention produced by the method as described above has the following characteristics.
1) The porosity for the region where the pore diameter of the electrode active material layer is 1 μm or less can be 12 to 35% by volume. In order to ensure sufficient electrolyte permeability (ion uptake amount) in the electrode active material layer, it is preferably 12% by volume or more. On the other hand, in order to ensure sufficient strength of the electrode active material layer, it is preferably 35% by volume or less. Here, the pore diameter refers to the size of the space (void) in which the particles of the electrode active material layer material such as the active material and the conductive material in the electrode active material layer through which the electrolyte passes, such as a mercury porosimeter. Can be measured. The porosity is calculated from (porosity) = (volume occupied by the space in the electrode active material layer) / (apparent volume of the electrode active material layer), and this is also measured using a mercury porosimeter or the like. be able to. Usually, when a sample of an electrode active material layer is measured in a wide range (wide range), the measuring device senses the unevenness of the surface and cross section of the sample, and it appears that there are many pores of 10 μm or more. The porosity in the sample described in the examples is measured to be about 40-50%. However, the unevenness of the surface and cross section of such a sample is not a pore in the actual electrode active material layer. Therefore, in order to reduce measurement errors except those that are not pores in the actual electrode active material layer, pore diameters larger than the particle diameter of the active material are excluded from the porosity measurement target of the present invention, and the pore diameter Is the porosity for a region of 1 μm or less.

2)電極活物質層の細孔径が1μm以下の領域における細孔の体積メディアン径を100nm以上とすることができる。細孔の体積メディアン径が小さすぎると、細孔中の電解液を通したイオン移動が阻害されるので、イオンが容易に通過できる大きさの移動パスを確保するためである。ここで、細孔径が1μm以下の領域における細孔の体積メディアン径とは、電極活物質層の空隙に水銀を圧入した時、細孔径が1μm以下の領域における全圧入体積の50%の量を圧入した時の細孔径を意味し、水銀ポロシメータ等を用いて測定することができる。   2) The volume median diameter of the pores in the region where the pore diameter of the electrode active material layer is 1 μm or less can be 100 nm or more. If the volume median diameter of the pores is too small, ion movement through the electrolyte in the pores is hindered, so that a movement path having a size that allows ions to easily pass through is ensured. Here, the volume median diameter of the pores in the region where the pore diameter is 1 μm or less is the amount of 50% of the total injection volume in the region where the pore diameter is 1 μm or less when mercury is injected into the gap of the electrode active material layer. It means the pore diameter when pressed in, and can be measured using a mercury porosimeter or the like.

3)測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、測定開始から1分間の間で、超音波透過強度の立ち上がりから飽和するまでの間の超音波透過強度増加率の最大値を、1db/sec以上とすることができる。ここで、超音波透過強度は、例えば、動的浸透性テスターDPM(Dynamic Penetration Measurement、emco社製)を用いて測定する。詳しくは、以下の通りである。測定溶媒としてジエチルカーボネート、電極板として集電体の片面に電極活物質層が形成された電極板を用意し、該測定溶媒中に該電極板を浸漬して、浸漬直後からの超音波透過強度の経時変化を測定する。尚、両面に電極活物質層が形成されている電極の場合、片面の電極活物質層を溶剤で除去して測定する。
測定開始と同時に電極板が超音波の透過経路を遮り、その後数秒以内に超音波透過強度は増加を始め、通常は1分以内に飽和する。これは、溶媒の浸透が進むにしたがい、電極板における電極活物質層の空隙中にある超音波を通しにくい空気が、超音波を通しやすい溶媒に置換されていくためであり、図1に示すように、測定結果を横軸に時間、縦軸に超音波透過強度(db)としてプロットした時の、グラフの立ち上がりから飽和するまでが電解液の浸透性の度合いを表す。ここで、超音波透過強度の増加速度が速いほど(超音波透過強度増加率が高いほど)、電極活物質層への電解液の浸透速度が速く、すなわち、急速充放電時のイオンの移動が阻害されず、効率的に活物質を反応させ、大電流の放電などにおいても優れた高出力特性を発揮する電極板であるといえる。尚、図1は、60秒後の透過強度を0になるようシフトさせて表示している。
3) When the electrode plate is immersed in the measurement solvent and the time-dependent change in the ultrasonic transmission intensity immediately after the immersion is measured, the time between the start of the ultrasonic transmission intensity and the saturation is reached within 1 minute from the start of the measurement. The maximum value of the ultrasonic transmission intensity increase rate can be 1 db / sec or more. Here, the ultrasonic transmission intensity is measured using, for example, a dynamic permeability tester DPM (Dynamic Penetration Measurement, manufactured by emco). Details are as follows. Prepare an electrode plate with an electrode active material layer formed on one side of the current collector as the measurement solvent, diethyl carbonate as an electrode plate, and immerse the electrode plate in the measurement solvent to obtain ultrasonic transmission intensity immediately after immersion. Measure the time course of. In the case of an electrode in which an electrode active material layer is formed on both sides, the measurement is performed by removing the electrode active material layer on one side with a solvent.
Simultaneously with the start of measurement, the electrode plate blocks the ultrasonic transmission path, and within a few seconds thereafter, the ultrasonic transmission intensity begins to increase and normally saturates within one minute. This is because, as the permeation of the solvent proceeds, air that is difficult to pass ultrasonic waves in the gaps of the electrode active material layer in the electrode plate is replaced with a solvent that easily passes ultrasonic waves, as shown in FIG. Thus, when the measurement result is plotted as time on the horizontal axis and ultrasonic transmission intensity (db) on the vertical axis, the degree of permeability of the electrolytic solution is expressed from the rise of the graph to saturation. Here, the faster the rate of increase in ultrasonic transmission intensity (the higher the rate of increase in ultrasonic transmission intensity), the faster the rate of penetration of the electrolyte solution into the electrode active material layer, that is, the movement of ions during rapid charge / discharge It can be said that this is an electrode plate that is not hindered and efficiently reacts with an active material and exhibits excellent high output characteristics even in a large current discharge. In FIG. 1, the transmission intensity after 60 seconds is shifted to zero and displayed.

4)測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、超音波透過強度が大きく上昇を始める時点の超音波透過強度をIs(db)、測定開始60秒後の超音波透過強度をIe(db)、測定開始t秒後の超音波透過強度をIt(db)としたとき、超音波透過強度の上昇分(It−Is)が最終的な上昇分(Ie−Is)の98%に達する時点のtの値を、10(秒)以下とすることができる(図2に示す)。ここで、Ie−Isの大きさは、電解液が実際にしみ込むことが可能な電極活物質層中の空隙量に対応すると考えられる。また、tの値が小さいということは、電極活物質層の表面からしみ込んだ電解液が、短時間で集電体界面付近まで到達できるということであり、電極活物質層の表面から集電体との界面付近に位置する活物質へ効果的にイオン移動パスが形成されていることを意味する。
尚、浸透速度(傾き)が大きくても、電極活物質層の表面から集電体との界面付近まで電解液が移動する時間がかかるような場合には、結果的に急速充放電時のイオンの移動が追いつかない。このような場合の例としては、集電体の片面あたりの電極活物質層の厚さが著しく厚い電極板などが挙げられる。従って、片面あたりの電極活物質層の厚さは100μm以下とすることが好ましく、更に好ましくは70μm以下である。もちろん、電極活物質層の厚さが薄くても、効果的なイオン移動パスが形成されていなければtの値は大きくなる。
4) When the electrode plate is immersed in the measurement solvent and the time-dependent change in the ultrasonic transmission intensity immediately after the immersion is measured, the ultrasonic transmission intensity at the time when the ultrasonic transmission intensity starts to increase greatly is measured as Is (db). When the ultrasonic transmission intensity 60 seconds after the start is Ie (db) and the ultrasonic transmission intensity t seconds after the start of measurement is It (db), the increase in the ultrasonic transmission intensity (It-Is) is final. The value of t when reaching 98% of the increase (Ie-Is) can be 10 (seconds) or less (shown in FIG. 2). Here, it is considered that the magnitude of Ie-Is corresponds to the amount of voids in the electrode active material layer that the electrolyte solution can actually penetrate. In addition, the small value of t means that the electrolyte soaked from the surface of the electrode active material layer can reach the vicinity of the current collector interface in a short time. This means that an ion transfer path is effectively formed in the active material located in the vicinity of the interface.
Even when the permeation rate (gradient) is large, if it takes time for the electrolytic solution to move from the surface of the electrode active material layer to the vicinity of the interface with the current collector, the resulting ion during rapid charge / discharge Ca n’t keep up. As an example of such a case, an electrode plate having a remarkably thick electrode active material layer per one side of the current collector can be cited. Therefore, the thickness of the electrode active material layer per side is preferably 100 μm or less, and more preferably 70 μm or less. Of course, even if the thickness of the electrode active material layer is small, the value of t is increased unless an effective ion transfer path is formed.

5)本発明における非水電解液二次電池用電極板が正極板の場合、電極活物質層の密度(プレス密度)を、1.8〜3g/cm、好ましくは2.0〜2.7g/cmとすることができる。電極活物質層は、通常、電極活物質層の体積エネルギー密度の向上、電極活物質層の凝集力(集電体への密着性)の改善、及び導電性を向上させるためにプレスされる。特にカーボンブラックのような微粒子状の導電材を使用する場合は、導電材粒子及び活物質粒子の効果的な接触を保つために圧延して電極活物質層を緻密化することが重要である。従って、急速充放電に必要な高い導電性を得るためにプレス密度は1.8g/cm以上とすることが望ましい。一方、必要以上に電極活物質層を圧延すると、電極活物質層中の空隙が潰れ、電極活物質層への電解液の浸透性が低下し、急速充放電時のイオンの移動が阻害されるため、プレス密度は3g/cm以下とすることが好ましい。尚、急速充放電を必要としない小型電池の正極板のプレス密度は、通常3g/cmよりも大きい。 5) When the electrode plate for nonaqueous electrolyte secondary batteries in the present invention is a positive electrode plate, the density (press density) of the electrode active material layer is 1.8 to 3 g / cm 3 , preferably 2.0 to 2. It can be 7 g / cm 3 . The electrode active material layer is usually pressed to improve the volume energy density of the electrode active material layer, improve the cohesive force (adhesiveness to the current collector) of the electrode active material layer, and improve conductivity. In particular, when a fine conductive material such as carbon black is used, it is important to densify the electrode active material layer by rolling in order to maintain effective contact between the conductive material particles and the active material particles. Accordingly, it is desirable that the press density is 1.8 g / cm 3 or more in order to obtain high conductivity necessary for rapid charge / discharge. On the other hand, if the electrode active material layer is rolled more than necessary, the voids in the electrode active material layer are crushed, the permeability of the electrolyte solution to the electrode active material layer is reduced, and the movement of ions during rapid charge / discharge is inhibited. Therefore, the press density is preferably 3 g / cm 3 or less. In addition, the press density of the positive electrode plate of the small battery which does not require quick charge / discharge is usually larger than 3 g / cm 3 .

6)本発明における非水電解液二次電池用電極板が正極板の場合、電極活物質層の体積抵抗率を、4Ω・cm以下とすることができる。ここで、電極活物質層の体積抵抗率とは、乾燥、プレス等が行われた後の電極活物質層の体積抵抗率をいう。小粒径の活物質を用いる場合には、同質量のより大きな粒径の活物質と比較して活物質の粒子数及び比表面積が増えるため、必要となる導電材の量も増える。この時、導電材の量が活物質の量に対して不足している場合には、導電材粒子同士の良好な接触が保たれず電極活物質層の体積抵抗率が増大し、充放電時の電圧降下やエネルギーロスなどにより急速充放電時の性能が低下する。しかし、本発明のように活物質に対して充分な量の導電材を添加することで、活物質粒子を網羅する形で電子のパスが形成され、体積抵抗率を低減することができる。また、繊維状導電材を添加すると、球状導電材に比べて1つの繊維状導電材で長い電子のパスを形成する繊維状導電材が活物質及び球状導電材の間を繋ぐように分散されることにより、効果的に体積抵抗率を低減することができる。   6) When the electrode plate for nonaqueous electrolyte secondary batteries in the present invention is a positive electrode plate, the volume resistivity of the electrode active material layer can be 4 Ω · cm or less. Here, the volume resistivity of the electrode active material layer refers to the volume resistivity of the electrode active material layer after being dried, pressed or the like. In the case of using an active material having a small particle size, the number of active materials and the specific surface area of the active material are increased as compared with an active material having a larger particle size of the same mass. At this time, when the amount of the conductive material is insufficient with respect to the amount of the active material, good contact between the conductive material particles is not maintained, and the volume resistivity of the electrode active material layer is increased, and during charge and discharge The performance at the time of rapid charge / discharge deteriorates due to voltage drop or energy loss. However, by adding a sufficient amount of conductive material to the active material as in the present invention, an electron path is formed so as to cover the active material particles, and the volume resistivity can be reduced. In addition, when a fibrous conductive material is added, the fibrous conductive material forming a long electron path with one fibrous conductive material is dispersed so as to connect between the active material and the spherical conductive material as compared with the spherical conductive material. Thus, the volume resistivity can be effectively reduced.

但し、カーボンブラックの大部分を繊維状導電材で置き換えると体積抵抗率は著しく低下するが、急速充放電時における電池反応の抵抗はそれ程低減しない。これは、繊維状導電材は、直線的な導通路を確保する能力は高いが、活物質粒子間の隙間又は活物質の表面を満遍なく網羅することは難しいからである。したがって、カーボンブラックと繊維状導電材を適量ずつ配合することが重要である。尚、電極活物質層の体積抵抗率の測定は、絶縁性のシート上に電極活物質層を形成し、JIS K7194に準じて四探針法にて測定する方法が簡便である。また、集電体の上に電極活物質層が形成された状態で電極活物質層の体積抵抗率を測定する場合は、所定の面積に切り出した電極板及び集電体単体について厚さ方向の抵抗を測定し、計算によって電極活物質層単体の体積抵抗率を求める。
7)急速放電時において、放電容量を維持することができる。すなわち、高出力特性を有することが分かる。
However, when most of the carbon black is replaced with a fibrous conductive material, the volume resistivity is remarkably lowered, but the resistance of the battery reaction during rapid charge / discharge is not so much reduced. This is because the fibrous conductive material has a high ability to secure a linear conduction path, but it is difficult to cover the gaps between the active material particles or the surface of the active material evenly. Therefore, it is important to mix carbon black and fibrous conductive material in appropriate amounts. The volume resistivity of the electrode active material layer can be easily measured by forming an electrode active material layer on an insulating sheet and measuring by a four-probe method according to JIS K7194. Further, when measuring the volume resistivity of the electrode active material layer in a state where the electrode active material layer is formed on the current collector, the electrode plate cut out to a predetermined area and the current collector alone in the thickness direction The resistance is measured, and the volume resistivity of the electrode active material layer alone is obtained by calculation.
7) The discharge capacity can be maintained during rapid discharge. That is, it can be seen that it has high output characteristics.

以上のようにして本発明に係る非水電解液二次電池用電極板が得られ、該電極板を用いて非水電解液二次電池を作製することができる。尚、本発明における非水電解液二次電池用電極板は、上述したように正極板及び負極板の少なくとも一方が、上記非水電解液二次電池用電極板であればよいが、特に正極板は、活物質として半導体のような比較的導電性の小さい材料を用いることが多く、負極板と比べて抵抗が高くなる傾向があるため、高出力特性を得るために本発明を適用することによる効果は大きい。
通常、正極板及び負極板を、ポリエチレン製多孔質フィルムのようなセパレータを介して渦巻状に捲回又は積層し、外装容器に挿入する。外装容器には一般に金属缶やラミネートフィルムによるパッケージなどが用いられる。挿入後、正極板及び負極板に取り付けられた(あるいは集電体の一部を用いて形成された)電流取り出し端子をそれぞれ、外装容器に設けた正極端子及び負極端子に接続する。外装容器がラミネートパッケージの場合は、電流取り出し端子をそのまま容器の外に取り出しても良い。その後、外装容器に非水電解液を充填し、密封することによって、本発明に係る電極板を備えた非水電解液二次電池が完成する。
As described above, the electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is obtained, and a non-aqueous electrolyte secondary battery can be produced using the electrode plate. The electrode plate for a non-aqueous electrolyte secondary battery according to the present invention may be any electrode plate for at least one of the positive electrode plate and the negative electrode plate as described above, particularly the positive electrode. Since the plate often uses a material having a relatively low conductivity such as a semiconductor as an active material and tends to have a higher resistance than the negative electrode plate, the present invention is applied to obtain high output characteristics. The effect of is great.
Usually, a positive electrode plate and a negative electrode plate are wound or laminated in a spiral shape through a separator such as a polyethylene porous film, and inserted into an outer container. Generally, a metal can, a package made of a laminate film, or the like is used for the outer container. After the insertion, current extraction terminals attached to the positive electrode plate and the negative electrode plate (or formed using a part of the current collector) are connected to the positive electrode terminal and the negative electrode terminal provided in the outer container, respectively. When the exterior container is a laminate package, the current extraction terminal may be taken out of the container as it is. Then, the non-aqueous electrolyte secondary battery provided with the electrode plate according to the present invention is completed by filling and sealing the outer container with the non-aqueous electrolyte.

リチウム系二次電池を作製する場合には、溶質であるリチウム塩を有機溶媒に溶かした非水電解液が用いられる。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr等の無機リチウム塩、または、LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO、LiOSO11、LiOSO13、LiOSO15等の有機リチウム塩等が用いられる。 When producing a lithium secondary battery, a nonaqueous electrolytic solution in which a lithium salt as a solute is dissolved in an organic solvent is used. Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr, or LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( SO 2 CF 3) 3, LiOSO 2 CF 3, LiOSO 2 C 2 F 5, LiOSO 2 C 3 F 7, LiOSO 2 C 4 F 9, LiOSO 2 C 5 F 11, LiOSO 2 C 6 F 13, LiOSO 2 C An organic lithium salt such as 7 F 15 is used.

リチウム塩を溶解するための有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等を例示できる。より具体的には、環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等を例示できる。   Examples of the organic solvent for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, chain ethers and the like. More specifically, examples of cyclic esters include propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, and the like.

鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。   Chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, malon Examples thereof include acid dialkyl esters and acetic acid alkyl esters.

環状エーテル類としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等を例示できる。   Examples of cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane and the like.

鎖状エーテル類としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等を例示することができる。   Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, and the like. Can do.

(実施例1)
正極用活物質として平均一次粒径が1μmのLiCoO粉末を80重量部、導電材としてアセチレンブラックを10重量部、黒鉛化炭素繊維(平均繊維長8μm)を2重量部、結着剤としてポリフッ化ビニリデン(PVDF)を8重量部を、溶媒であるN−メチル−2−ピロリドン(NMP)中で分散して電極活物質層材料を調製した。
厚さ15μmのアルミ箔上に、電極活物質層材料を塗布、乾燥し、約120g/mの塗工量(活物質重量は約96g/m)の電極活物質層を形成し、正極板を得た。
得られた正極板を約2.1g/cmの密度にロールプレス機でプレスした後、直径15mmの円盤状に打ち抜き、真空乾燥した後、以下の方法でコインセルにて急速放電特性を評価した。実施例1の正極板は、20C放電における放電容量比が98%、また、30C放電における放電容量比が74%であり、良好な充放電特性を示した。
Example 1
80 parts by weight of LiCoO 2 powder having an average primary particle size of 1 μm as the active material for the positive electrode, 10 parts by weight of acetylene black as the conductive material, 2 parts by weight of graphitized carbon fiber (average fiber length of 8 μm), and polyfluoride as the binder. An electrode active material layer material was prepared by dispersing 8 parts by weight of vinylidene chloride (PVDF) in N-methyl-2-pyrrolidone (NMP) as a solvent.
An electrode active material layer material is applied on an aluminum foil having a thickness of 15 μm and dried to form an electrode active material layer having a coating amount of about 120 g / m 2 (active material weight is about 96 g / m 2 ). I got a plate.
The obtained positive electrode plate was pressed with a roll press to a density of about 2.1 g / cm 3 , punched into a disk shape with a diameter of 15 mm, vacuum dried, and then evaluated for rapid discharge characteristics with a coin cell by the following method. . The positive electrode plate of Example 1 had good charge / discharge characteristics with a discharge capacity ratio of 20% in 20C discharge and a discharge capacity ratio in 30C discharge of 74%.

<急速放電特性評価方法>
作成した電極板を作用極、金属リチウムを対極及び参照極、多孔性ポリエチレンシートをセパレータとして用い、電解液として1M−LiPF6/エチレンカーボネート(EC)+ジメチルカーボネート(DMC)(体積比1:1)を使用し、三極式のコインセルを作成する。
また、正極板の電極活物質層重量中の活物質量および活物質の理論容量(mAh/g)(コバルト酸リチウムの場合130mAh/gとする)から放電レート1Cを算出した。尚、1時間で満充電から完全放電する電流値を1C(mA)という。
次に、上記セルを25℃の環境下にて、1C(mA)の定電流で充電し、所定の電極電位(コバルト酸リチウムの場合4.2V)に到達した後、その電位にて定電位充電に切替え、流れる充電電流が1C(mA)の5%以下になった時点で充電完了とした。その後、10分間休止し、満充電状態から1C(mA)の電流値で30分放電した。この状態を50%放電状態とする。
50%放電状態から1C(mA)の電流値で電極電位が3Vに達するまで放電し、1Cにおける50%放電状態からの放電容量(mAh/g)を求めた。
同様に、上記において放電レート1Cであるところを20C及び30Cに替えて、20C及び30Cにおける50%放電状態からの放電容量を求め、20C放電/1C放電、及び30C放電/1C放電の放電容量比を求める。
<Rapid discharge characteristics evaluation method>
The prepared electrode plate was used as a working electrode, metallic lithium as a counter electrode and a reference electrode, a porous polyethylene sheet as a separator, and 1M-LiPF6 / ethylene carbonate (EC) + dimethyl carbonate (DMC) as an electrolyte (volume ratio 1: 1). To create a tripolar coin cell.
Further, the discharge rate 1C was calculated from the amount of active material in the electrode active material layer weight of the positive electrode plate and the theoretical capacity (mAh / g) of the active material (130 mAh / g in the case of lithium cobaltate). In addition, the electric current value which completely discharges from a full charge in 1 hour is called 1C (mA).
Next, the cell is charged with a constant current of 1 C (mA) in an environment of 25 ° C., and after reaching a predetermined electrode potential (4.2 V in the case of lithium cobaltate), the constant potential is maintained at that potential. Switching to charging was performed, and charging was completed when the flowing charging current became 5% or less of 1 C (mA). Thereafter, it was paused for 10 minutes, and discharged from a fully charged state at a current value of 1 C (mA) for 30 minutes. This state is defined as a 50% discharge state.
The electrode was discharged from the 50% discharge state at a current value of 1 C (mA) until the electrode potential reached 3 V, and the discharge capacity (mAh / g) from the 50% discharge state at 1 C was determined.
Similarly, in the above, the discharge rate of 1C is changed to 20C and 30C, the discharge capacity from the 50% discharge state at 20C and 30C is obtained, and the discharge capacity ratio of 20C discharge / 1C discharge and 30C discharge / 1C discharge Ask for.

(実施例2)
正極用活物質を70重量部、アセチレンブラックを17重量部、結着剤を12重量部とし、塗工量を約139g/mとした以外は、実施例1と同様にして、正極板を得た。該正極板の急速放電特性を評価したところ、実施例2の正極板は、20C放電における放電容量比が90%、また、30C放電における放電容量比が63%であり、比較的良好な充放電特性を示した。
(Example 2)
A positive electrode plate was prepared in the same manner as in Example 1, except that the positive electrode active material was 70 parts by weight, acetylene black was 17 parts by weight, the binder was 12 parts by weight, and the coating amount was about 139 g / m 2. Obtained. When the rapid discharge characteristics of the positive electrode plate were evaluated, the positive electrode plate of Example 2 had a discharge capacity ratio of 90% in 20C discharge and a discharge capacity ratio in 30C discharge of 63%, which was relatively good charge / discharge. The characteristics are shown.

(実施例3)
アセチレンブラックを8重量部、結着剤を10重量部とした以外は、実施例1と同様にして、正極板を得た。該正極板の急速放電特性を評価したところ、実施例3の正極板は、20C放電における放電容量比が92%、また、30C放電における放電容量比が67%であり、比較的良好な充放電特性を示した。
(Example 3)
A positive electrode plate was obtained in the same manner as in Example 1 except that 8 parts by weight of acetylene black and 10 parts by weight of the binder were used. When the rapid discharge characteristics of the positive electrode plate were evaluated, the positive electrode plate of Example 3 had a discharge capacity ratio of 92% at 20C discharge and a discharge capacity ratio of 67% at 30C discharge, which was relatively good charge / discharge. The characteristics are shown.

(比較例1)
黒鉛化炭素繊維を加えず、結着剤を10重量部とした以外は、実施例1と同様にして、正極板を得た。該正極板の急速放電特性を評価したところ、20C放電における放電容量比が81%、また、30C放電における放電容量比が58%であり、放電容量は低下した。
(Comparative Example 1)
A positive electrode plate was obtained in the same manner as in Example 1 except that no graphitized carbon fiber was added and the binder was 10 parts by weight. When the rapid discharge characteristics of the positive electrode plate were evaluated, the discharge capacity ratio in 20C discharge was 81%, the discharge capacity ratio in 30C discharge was 58%, and the discharge capacity decreased.

(比較例2)
アセチレンブラックを5重量部、黒鉛化炭素繊維を5重量部、結着剤を10重量部とした以外は、実施例1と同様にして、正極板を得た。該正極板の急速放電特性を評価したところ、20C放電における放電容量比が62%、また、30C放電における放電容量比が36%であり、放電容量は低下した。
(Comparative Example 2)
A positive electrode plate was obtained in the same manner as in Example 1 except that 5 parts by weight of acetylene black, 5 parts by weight of graphitized carbon fiber, and 10 parts by weight of the binder were used. When the rapid discharge characteristics of the positive electrode plate were evaluated, the discharge capacity ratio in 20C discharge was 62%, the discharge capacity ratio in 30C discharge was 36%, and the discharge capacity decreased.

本発明に係る電極板を測定溶媒中に浸漬し、浸漬直後からの超音波透過強度の経時変化を測定したグラフである。It is the graph which immersed the electrode plate which concerns on this invention in the measurement solvent, and measured the time-dependent change of the ultrasonic transmission intensity from immediately after immersion. 本発明に係る電極板を測定溶媒中に浸漬し、浸漬直後からの超音波透過強度の経時変化を測定したグラフである。It is the graph which immersed the electrode plate which concerns on this invention in the measurement solvent, and measured the time-dependent change of the ultrasonic transmission intensity from immediately after immersion.

Claims (12)

集電体の少なくとも一面に、電極活物質層を備える非水電解液二次電池用電極板であって、該電極活物質層は、平均一次粒径が0.1〜5μmである活物質、カーボンブラック及び繊維状導電材を、該活物質100重量部に対して、カーボンブラックを7〜25重量部、繊維状導電材を0.5〜6.5重量部の割合で含有することを特徴とする非水電解液二次電池用電極板。   An electrode plate for a non-aqueous electrolyte secondary battery comprising an electrode active material layer on at least one surface of a current collector, the electrode active material layer having an average primary particle size of 0.1 to 5 μm, The carbon black and the fibrous conductive material are contained in a ratio of 7 to 25 parts by weight of carbon black and 0.5 to 6.5 parts by weight of the fibrous conductive material with respect to 100 parts by weight of the active material. An electrode plate for a non-aqueous electrolyte secondary battery. 前記カーボンブラックと前記繊維状導電材の配合重量比が10:0.5〜10:5であることを特徴とする請求項1に記載の非水電解液二次電池用電極板。   2. The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein a blending weight ratio of the carbon black and the fibrous conductive material is 10: 0.5 to 10: 5. 前記電極活物質層は、さらに結着剤を活物質100重量部に対して6.5〜25重量部の割合で含有することを特徴とする請求項1又は2に記載の非水電解液二次電池用電極板。   The non-aqueous electrolyte 2 according to claim 1, wherein the electrode active material layer further contains a binder at a ratio of 6.5 to 25 parts by weight with respect to 100 parts by weight of the active material. Secondary battery electrode plate. 前記電極活物質層の細孔径が1μm以下の領域についての空隙率が12〜35容量%であることを特徴とする請求項1乃至3のいずれかに記載の非水電解液二次電池用電極板。   The electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein a porosity of the electrode active material layer in a region having a pore diameter of 1 µm or less is 12 to 35% by volume. Board. 前記電極活物質層の細孔径が1μm以下の領域における細孔の体積メディアン径が100nm以上であることを特徴とする請求項1乃至4のいずれかに記載の非水電解液二次電池用電極板。   5. The electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein a volume median diameter of pores in a region where the pore diameter of the electrode active material layer is 1 μm or less is 100 nm or more. Board. 測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、測定開始から1分間の間で、超音波透過強度の立ち上がりから飽和するまでの間の超音波透過強度増加率の最大値が1db/sec以上であることを特徴とする請求項1乃至5のいずれかに記載の非水電解液二次電池用電極板。   When the electrode plate is immersed in the measurement solvent and the time-dependent change in the ultrasonic transmission intensity immediately after the immersion is measured, the ultrasonic wave from the start of the ultrasonic transmission intensity to the saturation within 1 minute from the start of measurement. The electrode plate for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the maximum value of the transmission intensity increase rate is 1 db / sec or more. 測定溶媒中に電極板を浸漬し、浸漬直後からの超音波透過強度の経時変化を測定した時に、超音波透過強度が大きく上昇を始める時点の超音波透過強度をIs(db)、測定開始60秒後の超音波透過強度をIe(db)、測定開始t秒後の超音波透過強度をIt(db)としたとき、超音波透過強度の上昇分(It−Is)が最終的な上昇分(Ie−Is)の98%に達する時点のtの値が10(秒)以下である、請求項1乃至6のいずれかに記載の非水電解液二次電池用電極板。   When the electrode plate is immersed in the measurement solvent and the change in the ultrasonic transmission intensity over time immediately after the immersion is measured, the ultrasonic transmission intensity at the time when the ultrasonic transmission intensity starts to increase greatly is Is (db), and the measurement start 60 When the ultrasonic transmission intensity after 1 second is Ie (db), and the ultrasonic transmission intensity after t seconds after the start of measurement is It (db), the increase in the ultrasonic transmission intensity (It-Is) is the final increase. The electrode plate for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein a value of t at which 98% of (Ie-Is) reaches 10 (seconds) or less. 正極板であることを特徴とする請求項1乃至7のいずれかに記載の非水電解液二次電池用電極板。   The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode plate is a positive electrode plate. 前記電極活物質層の密度(プレス密度)が、1.8〜3g/cmであることを特徴とする請求項8に記載の非水電解液二次電池用電極板。 9. The electrode plate for a non-aqueous electrolyte secondary battery according to claim 8, wherein a density (press density) of the electrode active material layer is 1.8 to 3 g / cm 3 . 前記電極活物質層の体積抵抗率が4Ω・cm以下であることを特徴とする請求項8又は9に記載の非水電解液二次電池用電極板。   The electrode plate for a non-aqueous electrolyte secondary battery according to claim 8 or 9, wherein the volume resistivity of the electrode active material layer is 4 Ω · cm or less. 少なくとも正極板、負極板、及び電解液を含む非水電解液二次電池であって、該正極板及び該負極板の少なくとも一方が、請求項1乃至10のいずれかに記載の非水電解液二次電池用電極板であることを特徴とする非水電解液二次電池。   11. A non-aqueous electrolyte secondary battery including at least a positive electrode plate, a negative electrode plate, and an electrolyte solution, wherein at least one of the positive electrode plate and the negative electrode plate is a non-aqueous electrolyte solution according to claim 1. A non-aqueous electrolyte secondary battery, which is an electrode plate for a secondary battery. 前記正極板が、請求項8乃至10のいずれかに記載の非水電解液二次電池用電極板であることを特徴とする請求項11に記載の非水電解液二次電池。   The said positive electrode plate is an electrode plate for nonaqueous electrolyte secondary batteries in any one of Claims 8 thru | or 10, The nonaqueous electrolyte secondary battery of Claim 11 characterized by the above-mentioned.
JP2005287785A 2005-09-30 2005-09-30 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Expired - Fee Related JP4848723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287785A JP4848723B2 (en) 2005-09-30 2005-09-30 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287785A JP4848723B2 (en) 2005-09-30 2005-09-30 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007103040A true JP2007103040A (en) 2007-04-19
JP4848723B2 JP4848723B2 (en) 2011-12-28

Family

ID=38029798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287785A Expired - Fee Related JP4848723B2 (en) 2005-09-30 2005-09-30 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4848723B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2012209161A (en) * 2011-03-30 2012-10-25 Toyota Central R&D Labs Inc Lithium secondary battery
JP2015197968A (en) * 2014-03-31 2015-11-09 エリーパワー株式会社 Impregnation inspection device and impregnation inspection method
JP2015536539A (en) * 2012-10-23 2015-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing positive electrode
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
JP2017045547A (en) * 2015-08-24 2017-03-02 日産自動車株式会社 Inspection method of electrochemical element, and manufacturing method for electrochemical element
KR20180101262A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101251A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101263A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20190096649A (en) * 2018-02-09 2019-08-20 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2001135317A (en) * 1999-10-29 2001-05-18 Toshiba Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002184392A (en) * 2000-12-08 2002-06-28 Japan Storage Battery Co Ltd Nonaqueous secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (en) * 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JP2001135317A (en) * 1999-10-29 2001-05-18 Toshiba Battery Co Ltd Nonaqueous electrolytic secondary battery
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002184392A (en) * 2000-12-08 2002-06-28 Japan Storage Battery Co Ltd Nonaqueous secondary cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015904A (en) * 2008-07-04 2010-01-21 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2011081960A (en) * 2009-10-05 2011-04-21 Kri Inc Nonaqueous secondary battery
JP2012209161A (en) * 2011-03-30 2012-10-25 Toyota Central R&D Labs Inc Lithium secondary battery
JP2015536539A (en) * 2012-10-23 2015-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing positive electrode
US9865865B2 (en) 2012-10-23 2018-01-09 Basf Se Method for producing cathodes
JP2015197968A (en) * 2014-03-31 2015-11-09 エリーパワー株式会社 Impregnation inspection device and impregnation inspection method
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
JP2017045547A (en) * 2015-08-24 2017-03-02 日産自動車株式会社 Inspection method of electrochemical element, and manufacturing method for electrochemical element
KR20180101263A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101251A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180101262A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
JP2018147691A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147687A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147692A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
KR20180114530A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114526A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
KR20180114527A (en) 2017-03-03 2018-10-18 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
KR20190096649A (en) * 2018-02-09 2019-08-20 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR102343706B1 (en) 2018-02-09 2021-12-24 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same

Also Published As

Publication number Publication date
JP4848723B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4848723B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5070680B2 (en) Nonaqueous electrolyte secondary battery electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP5333184B2 (en) All solid state secondary battery
KR101006212B1 (en) NEGATIVE ELECTRODE FOR NON-AQUEOUS SECONDARY CELL, NON-AQUEOUS SECONDARY CELL COMPRISING THE SAME, METHOD FOR PRODUCING THE SAME AND ELECTRONIC DEVICE COMPRISING NON-x
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20130219703A1 (en) Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
KR101520138B1 (en) Anode active agent and electrochemical device comprising the same
JP4848725B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5029017B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4830434B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN104412442A (en) Non-aqueous electrolyte secondary cell and method for manufacturing non-aqueous electrolyte secondary cell
JP2009099441A (en) Negative electrode plate for nonaqueous electrolyte solution secondary battery, its manufacturing method, and nonaqueous electrolyte solution secondary battery
KR20210132078A (en) Lithium metal negative electrode, manufacturing method thereof, and lithium battery using the negative electrode
JP2001266855A (en) Manufacturing method of electrode for non-aqueous electrolite secondary battery and non-aqueous elecrolyte secondary battery
KR101225882B1 (en) Anode for secondary battery
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP2007103065A (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP5114857B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2005108640A (en) Electrode plate for nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery
JP4834975B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP4527423B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2009093819A (en) Negative electrode active material, method of assessing the same, negative electrode plate for nonaqueous electrolyte secondary battery using the negative electrode active material, and nonaqueous electrlyte secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2019057505A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees